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Abstract

Deregulation of the protein secretory pathway (PSP) is linked to many hallmarks of cancer,

such as promoting tissue invasion and modulating cell-cell signaling. The collection of

secreted proteins processed by the PSP, known as the secretome, is often studied due to

its potential as a reservoir of tumor biomarkers. However, there has been less focus on the

protein components of the secretory machinery itself. We therefore investigated the expres-

sion changes in secretory pathway components across many different cancer types. Specif-

ically, we implemented a dual approach involving differential expression analysis and

machine learning to identify PSP genes whose expression was associated with key tumor

characteristics: mutation of p53, cancer status, and tumor stage. Eight different machine

learning algorithms were included in the analysis to enable comparison between methods

and to focus on signals that were robust to algorithm type. The machine learning approach

was validated by identifying PSP genes known to be regulated by p53, and even outper-

formed the differential expression analysis approach. Among the different analysis methods

and cancer types, the kinesin family members KIF20A and KIF23 were consistently among

the top genes associated with malignant transformation or tumor stage. However, unlike

most cancer types which exhibited elevated KIF20A expression that remained relatively

constant across tumor stages, renal carcinomas displayed a more gradual increase that

continued with increasing disease severity. Collectively, our study demonstrates the com-

plementary nature of a combined differential expression and machine learning approach for

analyzing gene expression data, and highlights key PSP components relevant to features of

tumor pathophysiology that may constitute potential therapeutic targets.

Author summary

The secretory pathway is a series of intracellular compartments and enzymes that process

and export proteins from the cell to its surrounding environment. Dysfunction of the
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secretory pathway is associated with many diseases, including cancer, and therefore con-

stitutes a potential target for novel therapeutic strategies. The large number of interacting

components that comprise the secretory pathway pose a challenge when attempting to

identify where the dysfunction originates or how to restore healthy function. To improve

our understanding of how the secretory pathway is changed within tumors, we used gene

expression data from normal tissue and tumor samples from thousands of individuals

which included many different types of cancers. The data was analyzed using different

machine learning algorithms which we trained to predict sample characteristics, such as

disease severity. This training quantified the relative degree to which each gene was associ-

ated with the tumor characteristic, allowing us to predict which secretory pathway compo-

nents were important for processes such as tumor progression—both within specific

cancer types and across many different cancer types. The machine learning-based

approach demonstrated excellent performance compared to traditional gene expression

analysis methods and identified several secretory pathway components with strong evi-

dence of involvement in tumor development.

1. Introduction

One of the most challenging features in diagnosing and treating cancer is its heterogeneity–the

tissue of origin, gene mutation profile, patient, and local tumor environment are just a few of

the many factors that can affect the pathophysiology and response to treatment of a particular

cancer [1]. However, a core set of features exhibited by cancer cells establish a common thread

despite other variations. Many of these shared features have been distilled into a set of “cancer

hallmarks”, such as resisting cell death, activating invasion and metastasis, and avoiding

immune destruction [2]. Furthermore, tumor cells acquire and sustain many of these hall-

marks through interactions with each other and with neighboring “normal” cells, which

together with the cancer cells form the tumor microenvironment [3]. An important system

that links tumor cells to each other and to the microenvironment is the protein secretory path-

way (PSP) [4]. Secreted and membrane proteins processed by the PSP contribute to critical

tumor functions, such as facilitating communication among different cells residing in the

microenvironment (and even with distant tissue sites in the body), and for construction and

turnover of the tumor extracellular matrix. Collectively, these functions support a key role for

the PSP in cancer physiology, making it an attractive target for potential therapeutic

approaches.

Advancements in high-throughput molecular profiling technologies such as transcrip-

tomics and proteomics have enabled extensive investigation and characterization of the

human secretome [5] and its changes during the onset and progression of diseases such as can-

cer [6,7]. Although many components of the PSP that drive these important secretome changes

have been studied individually, an investigation of how these constituents behave together as a

system is lacking, particularly in the context of cancer. Recent efforts have begun to elucidate

this system by exploring how PSP expression patterns compare to those of the secretome

among different human tissues [8], and by developing genome-scale reconstructions of the

PSP to mechanistically link these characteristics to the metabolic network [9]. We sought to

further extend the investigation of the PSP through the application of machine learning (ML)

approaches.

The efficacy of ML-based approaches in the investigation of omics datasets has been dem-

onstrated in a number of recent studies [10–14]. For example, van IJzendoorn and colleagues
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applied a random forest algorithm to three gene expression databases (TCGA, GTEx, and the

French Sarcoma Group) to identify novel diagnostic markers for soft tissue sarcoma, which

was validated with qRT-PCR in an independent experiment [11]. In another study, Wood and

colleagues used L1-regularized logistic regression (Lasso) to develop a classifier for nonalco-

holic fatty liver disease (NAFLD) based on phenotypic, genomic, and proteomic features [10].

Giordano and colleagues merged the results of three different approaches—Lasso regression,

support vector machine (SVM) with recursive feature elimination, and a collection of random-

ized decision trees (Extra Trees)—to identify robust gene signatures for cigarette exposure,

which harbor potential for biomarker development [15]. Furthermore, the MLSeq R package

was developed to facilitate the use of over 90 different ML algorithms for the analysis of RNA-

seq or microarray data, enabling the generation of classification models and identification of

potential biomarkers [16].

We applied differential expression (DE) analysis and 8 different ML methods on RNA-seq

data from The Cancer Genome Atlas (TCGA) to identify genes encoding PSP machinery that

are associated with clinical features including cancer status, tumor stage, and mutation profile.

The classification performance of the ML algorithms was evaluated for each of the clinical fea-

tures, and relevant PSP genes were identified by DE analysis and compared with those identi-

fied by ML. The analyses reveal PSP components that exhibit pan-cancer and cancer-specific

roles, and demonstrate the complementarity of DE and ML methods in the analysis of omics

data.

2. Results

2.1 Data retrieval and definition of PSP genes

We retrieved 11,053 RNA-seq samples and 9,375 mutation profiles from TCGA, spanning

10,198 individuals and 33 cancer types (S1 Table). Our analysis was focused on the subset of

575 genes encoding and/or regulating the human PSP machinery, as defined in the study by

Feizi et al. [8]. Feizi and colleagues defined the PSP genes through literature surveys, KEGG

pathway annotation information, and orthologs from a model of yeast protein secretion [17].

These 575 PSP genes encode for secretory processes such as folding, glycosylation, and traffick-

ing, as well as protein-related stress responses (e.g., the unfolded protein response). We limited

our study to this subset of genes to specifically investigate the behavior of the PSP in different

cancer types, and infer which components (if any) appear to have a more pronounced role or

association with sample characteristics, such as cancer status or tumor stage. This focused

approach also served to reduce the feature space for the application of ML methods, which

often face challenges when the number of features greatly exceeds the number of samples.

2.2 ML-based gene scoring

We implemented a gene scoring approach (Fig 1) whereby samples were grouped according to

a known binary variable of interest (such as normal vs. tumor), and a ML classifier was trained

to predict the group (class) of each sample based on the expression of its PSP genes. Classifiers

were trained using 10-fold cross validation, and prediction performance was quantified by

area under the receiver operating characteristic (ROC) curve (ROC AUC). The resulting fea-

ture importance scores of the trained classifier, which quantify roughly how useful each gene is

in predicting sample class, were normalized by taking the absolute value and scaling to a range

of 0 to 1. A consensus score for each gene was computed as the average score across the 8 dif-

ferent ML algorithms.

The ML algorithms used in the present study were random forests [18], extremely random-

ized trees (ExTrees) [19], adaptive boosting (AdaBoost) [20], extreme gradient boosted trees

PLOS COMPUTATIONAL BIOLOGY Investigation of the cancer protein secretory pathway

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008898 April 5, 2021 3 / 20

https://doi.org/10.1371/journal.pcbi.1008898


(XGBoost) [21], linear discriminant analysis (LDA), Lasso regression [22], Ridge regression,

and support vector machine [23]. We did not seek to include a comprehensive coverage of the

available ML algorithms, as this would be infeasible and beyond the scope of the study. The

algorithms were selected to include some of the most commonly employed methods for bio-

logical data [24,25], and to span different classes such as ensemble learning (random forests,

ExTrees), boosting (AdaBoost, XGBoost), regularized logistic regression (lasso and ridge

regression), and other common linear classifiers (LDA and SVM). Furthermore, algorithms

were limited to those for which feature importance scores could be calculated.

All classification analyses were performed within individual cancer types before comparing

or averaging with the results of other cancer types. This approach was implemented to avoid

tissue-specific features that would likely dominate gene expression changes when including

samples from different tissues of origin in the same analysis. In this way, we could effectively

eliminate differences associated with tissue type, and instead highlight those driven by a class

variable of interest, such as cancer status or tumor stage.

2.3 Mutation of tumor protein 53

We first sought to validate our ML gene scoring approach using a class variable for which the

associated gene(s) are well-established. A mutation in the TP53 gene (encoding the p53 pro-

tein) is one of the most common mutations observed in human cancers, and the resulting loss

or change in its activity as a tumor suppressor contributes to malignant progression [26]. Since

p53 and its regulatory targets have been extensively characterized [27], we began our investiga-

tion with p53 mutation status as the class variable by which to group samples (non-mutated vs.

mutated TP53). Genes known to be regulated by p53 are likely to exhibit a change in expres-

sion if p53 is mutated, and can therefore be used as positive controls to assess whether the

scores from our ML approach are biologically meaningful. Of the 575 PSP genes considered in

the study, 4 are known to be direct targets of p53 regulation: BCL2 Associated X (BAX), Heat

Shock Protein Family A Member 4 Like (HSPA4L), Kinesin Family Member 23 (KIF23), and

BCL2 Antagonist/Killer 1 (BAK1) [27–29]. It is therefore expected that an effective approach

Fig 1. Schematic of the ML gene scoring approach. (A) RNA-Seq data from TCGA was filtered to remove non-PSP genes, and cancer types were analyzed individually.

(B) Samples within each cancer type were grouped according to a binary variable (e.g., Class 1 = normal; Class 2 = tumor), and 8 different ML algorithms were used to

train models to predict sample class based on PSP gene expression levels (red Xs in the plot indicate failed predictions). (C) The prediction performance of each model

was evaluated by ROC AUC, and the feature (gene) importance scores were extracted from each ML model, normalized to a range of 0–1, and averaged across all ML

algorithms to obtain a consensus ML gene score. Abbreviations: c.v., cross-validation; TPR, true positive rate; FPR, false positive rate; FIS, feature importance score.

https://doi.org/10.1371/journal.pcbi.1008898.g001
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should be able to identify some or all of these 4 genes as being associated with p53 mutation

status.

Mutation data for the TP53 gene in TCGA subjects was obtained from whole-exome

sequencing data and aligned with the RNA-seq data, enabling the classification of tumor

RNA-seq samples in each cancer type as “mutated” or “non-mutated” in TP53. Cancer types

with fewer than 10 samples in each class were discarded, leaving a total of 22 different cancer

types. Each of the 8 ML algorithms were trained on the data to predict p53 mutation status

based on PSP gene expression, and the resulting gene scores (S2 Table) and ROC AUC values

(S3 Table) were calculated. In addition, DE analyses were performed between mutated and

non-mutated samples for each cancer type, yielding a log2 fold-change and associated signifi-

cance (p-value; adjusted for the false discovery rate (FDR)) for each PSP gene (S4 Table).

The consensus ML gene scores were averaged across all cancer types to identify genes that

were generally associated with the p53 mutation (Fig 2A and 2B). The top three genes were

BAX, HSPA4L, and KIF23—three out of the four direct regulatory targets of p53—thus provid-

ing support for the biological relevance of the ML gene scores. Although the four p53 target

genes were significantly differentially expressed (p53 mutated vs. non-mutated) in many of the

cancer types, only KIF23 was among the top three when averaging DE gene scores across all

cancers, and BAX in the top ten (S1 Fig). The ML gene scoring approach thus outperformed

the DE method in identifying the PSP genes directly associated with the p53 mutation status.

Another gene exhibiting a high average ML score across cancer types was ASAP3. Although

we did not find any literature supporting its direct regulation by p53, ASAP3 has been identi-

fied to promote cell migration and invasion by destabilizing cytoskeletal protein ACTG1. It is

therefore possible that ASAP3 is indirectly affected by the activity of p53 as part of a broader

tumorigenic program, or is simply correlated with the mutation.

Despite the excellent performance of the ML scoring approach in identifying relevant

genes, this was not entirely reflected in the associated ROC AUC values. The average ROC

AUC across all cancer and ML algorithm types was 0.74 ± 0.11 (mean ± standard deviation)

(Fig 2C), where a value of 1 corresponds to a perfect predictor and 0.5 is no better than ran-

dom. There were no clear differences between algorithms in terms of ROC AUC, though the

regularized regression methods (Ridge and Lasso) exhibited slightly higher scores than most.

A much larger difference was observed between cancer types, where the average ROC AUC for

LGG, BRCA, and UCEC exceeded 0.85, but was at or below 0.60 for SKCM, OV, and LUSC

(Fig 2D and 2E). Interestingly, BAX, HSPA4L, and KIF23 were often not among the top-scor-

ing genes for the three cancer types with the highest ROC AUC values, which suggests that

useful information can be extracted from the feature scores of trained ML classifiers despite a

relatively poor corresponding ROC AUC.

2.4 Investigation of PSP genes associated with malignant transformation

After validating the ML gene scoring pipeline, we used the approach to evaluate the relative

importance of each PSP component in distinguishing normal vs. tumor samples and identify

genes that are likely to contribute to the tumor phenotype. Analogous to the p53 mutation

analysis, samples for each cancer type were grouped according to cancer status (normal or

tumor) and each of the 8 ML algorithms, as well as DE analysis, were used to score the 575 PSP

genes. Cancer types without at least 10 samples in each group were excluded, yielding a total of

16 cancer types.

Unlike the classifiers trained on p53 mutation status, the ROC AUC for predicting normal

vs. tumor samples based on PSP gene expression was high across all cancer types and ML

methods, with an overall average of 0.98 ± 0.03 (S2 Fig). Only the LDA algorithm and the
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ESCA cancer type tended to exhibit lower ROC AUC values relative to the others, but the low-

est value for each was still greater than 0.80. This higher prediction performance for cancer sta-

tus as compared to p53 mutation status was expected since there are more substantial

expression changes between normal and tumor samples than there are between tumor cells

differing in a single gene mutation.

2.4.1 Pan-cancer features

Inspection of the ML gene scores and DE analysis results revealed that kinesin-6 family pro-

teins (KIF20A and KIF23), Crystallin Alpha B (CRYAB), and several proteins belonging to the

soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) family

(STX1A, STX12, STX11, and VAMP2) generally scored highly in both ML and DE approaches

among the different cancer types (Figs 3A and 3B and S3), suggesting that these proteins may

play an important role in tumor physiology. KIF20A and KIF23 were among the top 3 genes

Fig 2. Identification of PSP genes associated with p53 mutation. (A) Histogram of ML gene scores averaged across

all cancer types, with the top 3 scoring genes labeled. (B) Heatmap of the ML gene scores for each cancer type, showing

only the top 10 scoring genes on average across cancer types. (C) Density histogram of all ROC AUC values for each

ML algorithm and cancer type. Boxplots of ROC AUC values grouped by (D) cancer type or (E) ML algorithm.

https://doi.org/10.1371/journal.pcbi.1008898.g002

Fig 3. Kinesins and components of the SNARE complex are associated with cancer status. Boxplots show the (A)

consensus ML gene scores and (B) normalized DE gene scores among the different cancer types. Only the top 10

scoring genes on average for each scoring type are shown. (C) Log-transformed expression fold-changes and

significance (FDR-adjusted p-values) of PSP genes belonging to the STX family, from the DE analysis. Color indicates

fold-change magnitude and direction, whereas circle size indicates significance.

https://doi.org/10.1371/journal.pcbi.1008898.g003
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with the highest average ML consensus scores and exhibited a significant (FDR adjusted p-

value < 0.01) expression increase in tumor compared to normal samples for all 16 cancer

types except two renal carcinomas, KICH and KIRP (S4 Fig). Although they are associated

with Golgi-to-ER retrograde transport and intracellular organelle transport, KIF20A and

KIF23 play a critical role in mitosis and cytokinesis [30,31]. Inhibitors of these and other kine-

sin family proteins are undergoing clinical trials as anticancer therapeutics [32].

Although STX1A exhibited a similar expression increase across most cancer types as the

kinesin-6 family proteins, the expression of STX11, STX12, and VAMP2 was significantly

decreased in tumors across nearly all 16 cancer types. We further investigated the expression

changes of the PSP genes belonging to the STX (Fig 3C) or VAMP (S5 Fig) gene families.

There was a common restructuring pattern of STX expression among the different cancer

types, involving a mixture of increases and decreases across the different STX genes, whereas

VAMP genes tended to be more broadly decreased with the exception of VAMP1 and VAMP8.

SNARE proteins, which include the STX and VAMP families, mediate the membrane fusion

necessary for trafficking through the different steps of the secretory pathway [33]. SNAREs

have been found to support many tumorigenic functions such as autophagy, cell invasion, and

chemo-resistance, and thus constitute potential targets in anti-cancer therapies [34].

The CRYAB gene exhibited the second highest ML consensus score on average across the

16 cancer types (Fig 3A), and was significantly differentially expressed (FDR-adjusted

p< 0.01) in all but 3 cancer types. Unlike the kinesins whose expression was nearly always

increased in tumor relative to normal tissue, CRYAB expression was significantly decreased in

tumor for 10 cancer types and increased in only 3: LIHC, KIRC, and KIRP (S6 Fig). The mean

CRYAB mRNA abundance of LIHC samples were the lowest of all cancer types (< 10 TPM)

and thus the DE results are less reliable; however, both KIRC and KIRP exhibited among the

highest expression of CRYAB in paired normal samples which further increased by 1.9- and

6.5-fold in their corresponding tumor samples, respectively. The main role of CRYAB is to

form multimeric structures with other proteins to prevent aggregation, but it has also been

shown to exhibit other activities such as protection from oxidative stress and apoptotic stimuli

[35]. In the context of cancer, there does not appear to be a clear consensus as to whether

CRYAB supports or suppresses tumorigenesis [35]. Many studies conclude a pro-tumorigenic

effect of CRYAB and a positive correlation between its expression and tumor aggression [36],

whereas others report a tumor-suppressive activity and/or decreased expression in more

aggressive tumors [37,38]. Our results suggest that cancer type is one factor determining

whether CRYAB exerts an inhibitory or supportive role in a tumor, and that renal carcinomas

in particular may be susceptible to CRYAB-modulating therapies.

2.4.2 Cancer-specific features

Although the kinesins, SNAREs, and CRYAB were among the highest ML gene scores when

averaging over all 16 cancer types, no genes were consistently high scoring in more than a few

of the cancer types. An inspection of the top-scoring genes of each individual cancer type

revealed that high-scoring genes were primarily cancer-specific (S7 Fig). For example, RAS
oncogene family member 17 (RAB17) scored highly in prostate adenocarcinoma (PRAD)

across nearly all ML algorithms with a consensus score of 0.82, whereas its score in all other

cancer types ranged from 0.01 to 0.17. Members of the RAB family regulate vesicle trafficking

and are known to both promote and suppress tumor growth, depending on the family member

and cancer type [39]. Although increased expression of RAB25 has been shown to contribute

to prostate cancer malignancy and recurrence [40], similar studies or observations involving

RAB17 are lacking.
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When investigating the highest-scoring genes for each individual cancer type, we observed

a high frequency of genes associated with glycosylation, particularly for five cancer types:

STAD, READ, COAD, KICH, and THCA (Fig 4). For each of these cancer types, 3 out of their

top 5 scoring genes encoded some form of glycosylation activity, despite such activity account-

ing for less than 18% of the 575 PSP genes considered in this study.

Genes associated with O-linked peptide glycosylation (LARGE2, B3GNTL1, B4GALNT2,

and the GALNT family) were associated with KICH, COAD, and to a lesser extent READ,

whereas genes encoding N-linked glycosylation activity (DPM2, MAN1A1, TUSC3, and the

ALG family) scored highly for the STAD and THCA cancer types. The expression and specific

patterns of glycans dictate cellular functions such as adhesion, signal transduction, differentia-

tion, and proliferation, and the alteration of such patterns is a hallmark of tumor physiology

[41,42]. It is therefore logical that genes encoding these post-translational modifications

(PTMs) scored highly in the ML classifiers distinguishing normal from tumor samples. Fur-

thermore, the cancer-specificity of these high-scoring genes is likely a reflection of the specific-

ity and complexity of the glycosylation machinery and its large repertoire of glycan patterns

[43].

We further explored the overrepresentation of glycosylation activity among high-scoring

genes in these cancer types by investigating expression changes among secretome genes. The

secretome gene expression fold-changes (between tumor and paired normal samples) were

retrieved from a previous secretome analysis of TCGA data [7] and analyzed together with

post-translational modification information obtained from UniProt [44]. For each of the

secretome genes, the total number of N- and O-glycosylation sites were summed to obtain the

total number of glycosylation sites per gene. We calculated the Spearman correlation between

the total glycosylation sites and the expression fold change of each secretome gene for the five

cancer types that exhibited an enrichment of glycosylation activity among its high-scoring PSP

genes (STAD, READ, COAD, KICH, and THCA) (Fig 4B). In addition, we performed an

Fig 4. Glycosylation is an enriched function among the top PSP genes associated with a subset of cancer types. (A)

The heatmap shows the consensus ML gene scores of the cancer types for which 3 out of 5 top-scoring genes encode

for glycosylation activity. The colorbar to the left of the heatmap indicates the function associated with each gene. (B)

Spearman correlation of secretome gene expression fold-changes (normal vs. tumor) with the total number of N- and

O-linked glycosylation sites present on those genes. Negative and positive correlations are colored in blue and red,

respectively, with darker colors shown for correlations with p< 0.05. (C) Enrichment of highly glycosylated proteins

among significantly differentially expressed secretome genes between normal and tumor samples. Shown are the log-

transformed p-values obtained from the hypergeometric test, where darker colored bars represent cancer types for

which p< 0.05.

https://doi.org/10.1371/journal.pcbi.1008898.g004
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enrichment analysis (hypergeometric test) to evaluate if the significantly differentially

expressed (FDR-adjusted p< 0.05) secretome genes were enriched in those with several (5 or

more) N- or O-glycosylation sites (Fig 4C). Although only COAD and READ were signifi-

cantly correlated (albeit weakly; Spearman’s ρ ~ 0.1), all of the cancer types except READ

exhibited an enrichment of differentially expressed glycosylated secretome genes, suggesting

that there may be some tuning of the PSP to accommodate the changing PTM needs of its

secretome clientele. However, this is a very simplified approach to quantify a far more complex

relationship between the PSP and secretome, which combined with the modest results should

be interpreted with caution.

2.5 Analysis of different tumor stages

We next focused on PSP gene expression changes between tumor stages to identify secretory

pathway components that were associated with disease severity and tumor development. Most

TCGA samples are annotated with tumor stage information which generally ranges from stage

I to stage IV, enabling the investigation of transcriptomic changes as a function of disease

severity. Primary tumor samples were therefore grouped into stages I, II, III, and IV within

each cancer type. Although a regression formulation could be applied by assigning numerical

values to each of the tumor stages (such as 1–4 for stages I–IV, respectively), this establishes an

implicit assumption about the relative severity of the different stages, for which we did not

have sufficient supporting evidence. Furthermore, a regression formulation prevents the use of

the same binary classification scheme and set of ML algorithms throughout the study. See S1

Text and S8 Fig for further detail and an implementation of the regression-based approach.

We instead chose to analyze the tumor stages within each cancer type in a pairwise manner by

training ML classifiers on all possible pairs of tumor stages (for example, I vs. II, I vs. III, II vs.

IV, etc.) to predict a sample’s stage based on its corresponding PSP gene expression profile.

Cancer types without at least 10 samples in at least 2 tumor stages were discarded, yielding a

total of 20 cancer types.

The ROC AUC values for the ML classifiers of tumor stage were substantially lower than

those trained to separate normal vs. tumor samples, where many performed no better than

random (ROC AUC ~ 0.5) (Figs 5A and S9). This was expected given that physiological differ-

ences between tumor stages are relatively subtle when compared to those between normal and

cancerous tissue. Although our initial analysis with the p53 mutation ML classifiers suggested

that feature importance scores can still provide some meaningful information despite relatively

low ROC AUC values, we expect that such scores will largely degrade into random noise when

approaching very poor values near (or below) 0.5. We therefore continued the analysis using

only the top 10 performing cancer types based on their average ROC AUC values across the

different ML algorithms and pairs of tumor stages (Fig 5A).

Among the PSP genes exhibiting the highest average consensus ML scores across the differ-

ent cancer types and tumor stages, hyaluronan synthase 3 (HAS3) and KIF20A were some of

the most prominent (Figs 5B and S10). Hyaluronan, an extracellular matrix polysaccharide, is

enriched in the matrix surrounding virtually all epithelial tumors [45], and has been shown to

promote tumor malignancy and metastasis by increasing cell invasiveness and anchorage-

independent growth [46]. Consistent with the malignant function of hyaluronan, HAS3 exhib-

ited a high consensus ML score for the TGCT, THCA, and STAD cancer types, suggesting an

association between HAS3 expression and tumor stage. This was reflected in the gene expres-

sion profiles of TGCT tumor samples, which showed increasing expression of HAS3 and

HAS2 with increasing tumor stage (S11 Fig). The expression of HAS3 also increased among

later tumor stages of STAD, though after an initial decrease from stage I. Conversely, THCA
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did not exhibit a substantial difference in HAS3 expression as a function of tumor stage, but a

positive relationship was observed between THCA tumor stage and HAS1 expression (S11

Fig).

The top-scoring gene on average across the 10 cancer types was KIF20A, which exhibited

particularly high scores for distinguishing tumor stages of KIRP, and to a lesser extent those of

KIRC and ACC (S10 Fig). Interestingly, the renal carcinomas (KIRP, KICH, and KIRC) were

among the few cancer types for which the kinesins (KIF23 and KIF20A) were either not signifi-

cantly DE or exhibited a very low consensus ML score (less than 0.1 on average) when compar-

ing normal to tumor tissues. This distinction becomes clear when comparing the expression of

KIF20A between normal tissue and different tumor stages for each cancer type (Fig 5C). Most

cancer types exhibit a sharp increase in KIF20A expression between normal and tumor sam-

ples that remain relatively constant across the different tumor stages, whereas renal carcino-

mas display a more gradual change in KIF20A expression that continues to increase with

increasing tumor stage. Another noteworthy characteristic is the relatively low baseline expres-

sion of KIF20A in the normal kidney tissue samples compared to other cancer types, where

even stage IV kidney carcinoma tumor samples exhibit expression levels that are comparable

to the normal expression of other tissue types. This highlights the impact that tissue-specific

differences can have on gene expression, which can mask potentially important changes asso-

ciated with disease characteristics. Although KIF20A has been implicated in the development

of many other cancer types [32,47,48], its involvement in renal carcinoma has not been

addressed. The expression dynamics observed here suggest that KIF20A may support more

invasive and metastatic functions associated with later stages of renal carcinoma, and thus con-

stitutes a potential therapeutic target for this cancer type.

Fig 5. PSP genes associated with tumor stage. (A) Boxplots of mean ROC AUC values for the prediction of tumor

stage based on PSP gene expression. Dark blue boxes indicate the cancer types with the top 10 ROC AUC values on

average, which were used in subsequent analyses. (B) Heatmap of consensus ML gene scores for the different stage

comparisons of each cancer type, showing only the top 10 scoring genes on average, and only cancer-stage pairs with at

least one gene score� 0.5. (C) Expression (log-transformed TPM) of KIF20A among different cancer types, grouped

by tumor stage.

https://doi.org/10.1371/journal.pcbi.1008898.g005
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3. Discussion

The secretory pathway and its products are essential to the viability of eukaryotic organisms,

but the deregulation of secretory machinery can support detrimental processes such as those

driving tumorigenesis [7,49]. The identification of PSP components exhibiting oncogenic or

tumor suppressive activities can aid in the development of novel anti-cancer therapies that aim

to restore healthy PSP function through the modulation of these components. We therefore

conducted a focused investigation of the PSP transcriptional changes associated with malig-

nant transformation and tumor progression across many different cancer types. This allowed

us to identify patterns in PSP expression that were common to carcinogenesis independent of

cancer type, as well as explore secretory elements that exhibited cancer type specific behavior.

Accessing and interpreting the information embedded within omics data is non-trivial due

to its high volume and dimensionality, and has traditionally been limited to a few methods,

such as DE analysis and principal component analysis (PCA) [50]. We therefore sought to

deepen the investigation by applying different machine learning (ML) approaches to provide a

more detailed understanding of PSP behavior in tumors. However, ML methods generally

struggle when the number of features (genes) greatly exceeds the number of samples, which is

often the case for RNA-seq or other omics datasets and is referred to as the curse of

dimensionality [51]. The ML methods were therefore well-suited for this focused study

because the number of features was greatly reduced by including only the 575 PSP genes in the

analyses. We note that the approach is not specific to these PSP genes and could be applied to

any gene subset of interest, such as those encoding metabolism, the cell cycle, or the immune

response. There is also often a risk of over-fitting or a high frequency of false positives when

using a data-driven approach such as ML. We therefore implemented 8 different types of ML

algorithms in our analyses and used a normalized average consensus score that combined the

results of each algorithm. This ensured that genes identified as relevant to a given biological

class variable were robust to the choice of ML algorithm or effects of overfitting.

The use of several different ML algorithms also enabled comparison of their predictive per-

formance for each of the investigations, as quantified by ROC AUC. Although some ML algo-

rithms (such as regularized regression and extreme gradient boosted trees) tended to

outperform others (such as LDA and adaptive boosting) among the different class variables

and cancer types, the difference was marginal and far from significant. This further supported

using a consensus score that combined the output of the 8 different methods with equal

weighting because no method consistently outperformed the others.

We used a well-studied feature in cancer biology—the mutation of p53—to evaluate the

performance of the ML approach in terms of identifying biologically relevant features, and to

compare with DE analysis. The highest consensus ML gene scores were exhibited by known

regulatory targets of p53 in the 575 PSP genes (BAX, HSPA4L, and KIF23), providing confi-

dence in the biological relevance of the ML results. Although the DE analysis identified these

genes as important, the genes were not ranked as highly as other PSP genes. A reason for why

the ML methods outperformed DE analysis in this case could be the capacity of the ML algo-

rithms to capture interactions between genes and their expression patterns in different sam-

ples, whereas DE analysis estimates a fold-change and confidence for each gene individually.

A recurring gene of importance in our analyses was KIF20A, which was remarkably among

the top-scoring genes for both ML and DE approaches and for all class variables (p53 mutation

status, normal vs. tumor, and different tumor stages). This is consistent with the abundance of

studies that have identified KIF20A to be highly expressed, linked to tumor aggressiveness,

correlate with poor survival, diagnostic, and/or prognostic in many different cancer types [47],

which support a critical and diverse role of the protein in general tumor development and
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progression. There are however a lack of studies identifying any role or association of KIF20A
with renal carcinoma other than a co-expression network analysis of clear cell renal cell carci-

noma (ccRCC) by Yuan and colleagues, in which KIF20A was identified as one of six hub

genes associated with ccRCC progression [52]. We observed a substantial difference in the pat-

tern of KIF20A expression among normal and stage-stratified tumor samples in all renal carci-

nomas (KICH, KIRP, KIRC) compared to other cancer types; KIF20A expression in renal

carcinomas increased more gradually with increasing tumor stage rather than a sharp increase

between normal and tumor that remained relatively constant across stages. We cannot specu-

late from this data alone as to the cause for the different dynamics, but it may indicate that

anti-cancer treatments targeting KIF20A could exhibit variable efficacy with tumor stage for

renal carcinomas.

Our investigation demonstrates the efficacy of using a consensus ML-based gene scoring

approach to predict biologically relevant features from a focused set of genes, and highlights

the utility of using such an approach to complement and support the results of DE analysis.

Furthermore, we present several PSP-associated proteins and protein families that exhibit a

robust association with malignant transformation and tumor progression, and thus hold

potential as targets in the development of anti-cancer therapeutics.

4. Methods

Analysis and figure scripts

The scripts used to perform the analyses and generate the figures presented here, as well as all

analysis outputs, are available on GitHub: https://github.com/SysBioChalmers/

CancerProteinSecretionML. Data files too large to host on GitHub were deposited on Zenodo:

https://doi.org/10.5281/zenodo.3978373.

RNA-Seq and mutation data retrieval

Transcriptomic (RNA-seq) and mutation annotation data was retrieved from TCGA using the

TCGAbiolinks R package [53]. Raw gene counts and normalized (FPKM) gene counts were

retrieved for 33 available cancer types. Mutation annotation information was obtained using

the MuTect2 variant calling pipeline [54], and processed such that each gene in each sample

was classified as mutated if it was modified in any way (insertion, deletion, missense, silent,

etc.), otherwise it was classified as non-mutated. To avoid leakage of information between

groups when training the ML classifiers, duplicate tumor samples originating from the same

patient were removed such that there was only one tumor sample per patient.

Differential expression analysis

Differential expression analysis was performed on raw gene counts using the edgeR R package

[55]. Samples were grouped according to a binary class variable of interest (e.g., p53 mutation

status, cancer status, or tumor stage), and all genes were included except for those that had

fewer than 10 counts in 70% of the samples of the smallest group. Genes excluded from an

analysis due to low counts were automatically assigned a log2 fold-change of zero and a p-

value of one. The design matrix included only information regarding group membership of

each sample. We did not account for patient identity when performing the normal vs. primary

tumor analysis because it would require the exclusion of many tumor samples which were

used in the ML analyses. The expression fold-changes and associated significance (FDR-

adjusted p-values) were calculated prior to filtering out non-PSP genes. Analyses were
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performed on each cancer type individually, where cancer types with fewer than 10 samples in

a group were excluded.

A DE gene score was formulated to enable comparison with the ML gene score described

below. The FDR-adjusted p-values of PSP genes for a given comparison and cancer type were

log-transformed, negated, and normalized to a range of 0 to 1.

ML model training and gene scoring

All ML methods were implemented in python using the scikit-learn package [56] or the

XGBoost package [21]. Gene expression values were converted to transcripts per million

(TPM), and natural log transformed after adding a pseudocount of 1 TPM to avoid logarithm

of zero. Samples were grouped according to a binary class variable of interest (e.g., p53 muta-

tion status, cancer status, or tumor stage), and cancer types were analyzed individually, where

cancer types with fewer than 10 samples in a group were excluded. Non-PSP genes and genes

with a median expression below 0.1 TPM among both sample groups were also excluded.

For each cancer type and class variable, 8 classification models were trained using each of

the 8 ML algorithms (random forests, ExTrees, AdaBoost, XGBoost, LDA, lasso regression,

ridge regression, and SVM). Default parameters were used for each algorithm when available.

For the tree-based methods, the number of estimators was set to the recommended value of

the square root of the number of features, rounded down to the nearest integer. For the ridge

and lasso regression methods, the “saga” solver was used with a maximum of 10,000 iterations.

Training was performed using stratified 10-fold cross validation, such that each fold contained

approximately the same proportion of samples from each group. Feature importance scores

were extracted from each trained model, and normalized by taking the absolute value and scal-

ing to a range of 0 to 1. A consensus score was calculated for each gene by averaging the nor-

malized importance scores obtained from each of the 8 algorithms.

We note that our primary interest was to determine the relative importance of features

(genes), as quantified by the gene scores, rather than developing predictive models. We there-

fore used all available samples when training each classifier and did not exclude any samples

for a separate test set, meaning that the reported ROC AUC values are likely higher than what

one would expect if the trained model predictions were evaluated using an independent test

set of samples. The ROC AUC values were determined using stratified 10-fold cross validation,

where the reported values are the mean of the 10 folds.

ML model scoring metric

Some of the cancer types and biological features investigated in this study involve imbalanced

classes, where there are more samples belonging to one class than the other. Although metrics

such as area under the precision-recall curve (PR AUC), average precision-recall, or the F1 sta-

tistic are often well-suited for heavily imbalanced datasets, these methods are sensitive to the

choice of “positive” class and will vary upon class swapping. If the positive class is the majority

class, then even a very poor model can exhibit a high PR AUC, for example.

In our study, it is not always trivial or meaningful to define the positive class, such as when

comparing tumor stages. Even in cases where it may appear more straightforward to select the

positive class (e.g., normal vs. tumor), some cancer types contain majority normal samples,

whereas others contain majority tumor samples. If we for example define tumor samples as the

positive class, the PR AUC would be inflated for cancer types with more tumor samples, and

vice versa. We therefore chose to use the ROC AUC as the scoring metric because it is suffi-

ciently resistant to class imbalances and is unaffected by class swapping, both of which are rele-

vant features of the present dataset.
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Classification of tumor stages

Unlike the p53 mutation or cancer status classification analyses, there were more than two pos-

sible classes when investigating tumor stages (I, II, III, and IV). The tumor stages were there-

fore analyzed in pairs to facilitate the use of the same binary classification pipeline used for the

other analyses. Specifically, within each cancer type, all possible pairwise combinations of

tumor stages were compared. Therefore, if a cancer type had a sufficient number of samples

(10 or more) in all 4 tumor stages, a total of 6 classification analyses were performed: stage I vs.

II, I vs. III, I vs. IV, II vs. III, II vs. IV, and III vs. IV. The formulation and application of an

alternative regression-based approach for the tumor stages is presented in S1 Text.

Identification of p53 regulatory targets

To identify the set of PSP genes known to be directly regulated by p53, we conducted an exten-

sive literature search in combination with an investigation of the STRING database [57]. We

first searched for primary literature and review papers that identified or summarized the

known p53 gene regulatory targets [27,28], and filtered these target genes to include only those

overlapping with the PSP gene list. Furthermore, we extracted all indexed experimental inter-

actions between the 575 PSP genes and p53 from the STRING database, using 0.4 as a mini-

mum required interaction score to yield a list of 12 proteins with evidence of p53 interaction

(S5 Table). We then performed an additional literature search on each of the 12 proteins to

determine which were confirmed to be direct regulatory targets of p53. A total of 4 PSP genes

were identified from the literature search as confirmed targets: BAX, HSPA4L, KIF23, and

BAK1 [27–29]. We note that BCL2 and PARK2 were among the 12 genes identified from the

STRING database for which some evidence of p53 regulation could be found, but there were

contradictory studies showing that BCL2 is not regulated by p53 [58], and a lack of support for

p53-mediated regulation of PARK2 in humans [27].

Secretome glycosylation correlation and enrichment analysis

Secretome gene expression changes between normal and tumor samples were analyzed

together with their post-translational modification annotations. The list of secretome genes

and their differential expression results (tumor vs. paired normal, fold-changes and FDR-

adjusted p-values) were retrieved from S2 Table of the Robinson et al. cancer secretome study

[7]. Post-translational modification information was retrieved from UniProt [44] for each of

the secretome genes, specifically the number of N-glycosylation and O-glycosylation sites per

gene. For 5 different cancer types (STAD, COAD, READ, KICH, and THCA), we calculated

the Spearman correlation between the total number of N- and O-glycosylation sites and the

normal vs. tumor log2 expression fold-change among all secretome genes. A hypergeometric

test was also performed to assess whether differentially expressed secretome genes (FDR-

adjusted p< 0.05) in these cancer types were significantly enriched with highly glycosylated

members, defined here as those with 5 or more (95th percentile) total N- or O-glycosylation

sites.

Tumor stage processing

Tumor stages in TCGA are often provided with sub-stage detail, such as stage IIa, stage IIb,

etc. We merged such annotations to achieve only four different stages: I, II, III, and IV. The

merging was performed to avoid increasingly large numbers of pairwise stage comparisons, as

well as groups with very few samples.
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Supporting information

S1 Text. Regression analysis of tumor stages.

(DOCX)

S1 Fig. Consensus ML and DE gene scores for p53 mutation status. Histogram of (A) mean

ML gene scores and (B) mean DE gene scores across all available cancer types, where the PSP

genes known to be directly regulated by p53 are labeled. Boxplots of (C) consensus ML gene

scores and (D) DE gene scores for the top 10 scoring genes on average. Clustered heatmaps

showing the (E) consensus ML gene scores and (F) DE gene scores for individual cancers for

the top 10 scoring genes on average.

(TIF)

S2 Fig. ROC AUC values for the prediction of cancer status by the trained ML models. (A)

Density histogram of all ROC AUC values across different cancer types and ML algorithms.

Boxplots showing the ROC AUC values grouped by (B) cancer type or (C) ML algorithm.

(TIF)

S3 Fig. Consensus ML and DE gene scores for cancer status. Histogram of (A) mean ML

gene scores and (B) mean DE gene scores across all available cancer types. Boxplots of (C) con-

sensus ML gene scores and (D) DE gene scores for the top 10 scoring genes on average. Clus-

tered heatmaps showing the (E) consensus ML gene scores and (F) DE gene scores for

individual cancers for the top 10 scoring genes on average.

(TIF)

S4 Fig. Expression fold-change and significance of PSP genes belonging to the KIF family

from the DE analysis of normal vs. tumor. Color indicates fold-change magnitude and direc-

tion, whereas circle size indicates significance (FDR-adjusted p-value).

(TIF)

S5 Fig. Expression fold-change and significance of PSP genes belonging to the VAMP fam-

ily from the DE analysis of normal vs. tumor. Color indicates fold-change magnitude and

direction, whereas circle size indicates significance (FDR-adjusted p-value).

(TIF)

S6 Fig. Expression of CRYAB in normal and tumor tissue samples across different cancer

types. Cancer types are grouped according to whether CRYAB significantly (FDR-adjusted p-

value < 0.01) changed in expression between normal and tumor, and whether that change was

a decrease or increase.

(TIF)

S7 Fig. Heatmap of the consensus ML gene scores for cancer status. The heatmap includes

all available cancer types and the top 5 scoring genes of each type. For visual aid, rows and col-

umns were clustered such that high-scoring genes for each cancer tend to lie along or near the

diagonal. The colorbar to the left of the heatmap indicates the function associated with each

gene.

(TIF)

S8 Fig. Regression-based analysis of tumor stage. (A) Histogram of mean ML gene scores

across all cancer types. (B) Consensus ML gene scores for the top 10 scoring genes on average.

(C) Density histogram of negative mean squared error (Neg. MSE) values across different can-

cer types and ML algorithms. Boxplots showing the negative MSE values grouped by (D) can-

cer type or (E) ML algorithm. (F) Heatmap of consensus ML gene scores, showing the top 5
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scoring genes of each cancer type. The colorbar to the left of the heatmap indicates the func-

tion associated with each gene.

(TIF)

S9 Fig. ROC AUC values for the prediction of tumor stage by the trained ML models. (A)

Density histogram of all ROC AUC values across different cancer types and ML algorithms.

Boxplots showing the ROC AUC values grouped by (B) cancer type, (C) ML algorithm, or (D)

all possible tumor stage pairs. (E) Heatmap showing the consensus ML gene scores for the top

10 scoring genes on average, including all possible tumor stage pairs.

(TIF)

S10 Fig. Consensus ML and DE gene scores for tumor stage. Histogram of (A) mean ML

gene scores and (B) mean DE gene scores across the 10 cancer types with the highest average

ROC AUC values. Boxplots of (C) consensus ML gene scores and (D) DE gene scores for the

top 10 scoring genes on average. Clustered heatmaps showing the (E) consensus ML gene

scores and (F) DE gene scores for individual cancers for the top 10 scoring genes on average.

(TIF)

S11 Fig. Expression of PSP genes belonging to the HAS family among different tumor

stages. Boxplots present the expression of HAS1, HAS1, and HAS3 in different tumor stages of

STAD, TGCT, and THCA cancer types. Note that the stage IV expression levels are lacking for

TGCT because no stage IV samples were available for this cancer type.

(TIF)

S1 Table. TCGA cancer abbreviations and sample metadata.

(DOCX)

S2 Table. Consensus ML gene scores for p53 mutation, cancer status, and tumor stage.

(XLSX)

S3 Table. Model score values of each ML algorithm for predicting p53 mutation, cancer

status, and tumor stage.

(XLSX)

S4 Table. Differential expression log2 fold-changes, FDR-adjusted p-values, and gene

scores for p53 mutation, cancer status, and tumor stage.

(XLSX)

S5 Table. Evaluation of potential p53 regulatory targets identified by the STRING data-

base.

(DOCX)
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