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A B S T R A C T

Proliferation of an in vitro population of cancer cells is described by a linear cell cycle model with 𝑛 states,
subject to provocation with 𝑚 chemotherapeutic compounds. Minimization of a linear combination of constant
drug exposures is considered, with stability of the system used as a constraint to ensure a stable or shrinking
cell population. The main result concerns the identification of redundant compounds, and an explicit solution
formula for the case where all exposures are nonzero. The orthogonal case, where each drug acts on a single
and different stage of the cell cycle, leads to a version of the classic inequality between the arithmetic and
geometric means. Moreover, it is shown how the general case can be solved by converting it to the orthogonal
case using a linear invertible transformation. The results are illustrated with two examples corresponding to
combination treatment with two and three compounds, respectively.
1. Introduction

Recent decades have seen an increased interest in combination ther-
apies to treat cancer [1]. Mathematical modeling of cancer growth and
treatment plays an important role in the discovery and development of
pharmaceutical compounds, as well as in increasing our understanding
of biological processes [2]. Mathematical tools and prediction tech-
niques are especially suitable to support the combinatorial explosion
associated with testing different pairs, or even triplets, of anticancer
drugs simultaneously and at different dose levels [3].

The mammalian cell cycle is central to cancer growth and therefore
also to our understanding of how to treat cancer. The cell cycle is
typically divided into four or five stages: 𝐺1, 𝑆, 𝐺2, 𝑀 , and also 𝐺0.
Here, 𝐺1 and 𝐺2 are gap, or growth, phases that separate the stages
𝑆, during which DNA synthesis takes places, and 𝑀 , which is when
mitosis occurs. The stage 𝐺0 is a quiescent stage where a cell lays
dormant in between cell cycles.

Chemotherapeutic compounds are often classified as cell cycle non-
specific, meaning that they target cells in all stages of the cell cycle, as
well as quiescent cells, or cell cycle specific, meaning that they target
cells in only one or a couple of the stages of the cell cycle [4]. Examples
of cell cycle nonspecific drugs include platinum-based chemothera-
pies such as cisplatin and carboplatin. Examples of chemotherapeutic
compounds that are cell cycle specific include enzymes such as asparag-
inase, which primarily target cells in the 𝐺1 phase, antimetabolites such
as 5-fluorouracil and gemcitabine, which target cells in the 𝑆 phase,

∗ Correspondence to: Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg, Sweden.
E-mail address: tim.cardilin@fcc.chalmers.se (T. Cardilin).

topoisomerase including topotecan and irinotecan that target the 𝐺2
phase, and taxanes such as paciltaxel as well as vinca alkaloids such
as vinorelbine that primarily target cells in the 𝑀 phase of the cell
cycle [4].

Mathematical models that describe the growth of cancerous cells
and tumors have been developed with varying complexity, taking into
account many important biological features [5–7]. Perhaps the sim-
plest model is described by a single difference or ordinary differential
equation that captures growth that is either purely exponential, or
which slows down or saturates as the tumor becomes large, e.g., in
the Gompertz model [8,9]. More advanced models use systems of
differential equations, and partial differential equations can be used to
describe spatial or age-related aspects of tumor growth [10–14].

In this paper, we consider a simple mathematical model of the cell
cycle model with 𝑛 stages. Early use of such a model to describe the
growth of a population of cancer cells can be found in two papers
by Takahashi [15,16]. Like many biological models based on ordinary
differential equations, it can be recovered from a stochastic model
where the time that a cell spends in each stage is assumed to be expo-
nentially (or Erlang) distributed [17,18]. This assumption is consistent
with some experimental results [19]. These models have been analyzed
with respect to cell cycle kinetics without treatment [20–24], and have
also been used to describe treatment with cell cycle specific drugs that
target cells in certain stages of the cell cycle [25–29]. Similar models
have also been used to describe combination treatments [30,31].
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Fig. 1. Cell cycle model for a population of cancer cells with states 𝑥1 and 𝑥2, subject
to combination therapy with two drugs, 𝐶1 and 𝐶2, with concentrations 𝑢1 and 𝑢2,
respectively. Cells are transferred from state 𝑥1 with rate 𝑘1 and from 𝑥2 back to 𝑥1

ith rate 𝑘2 during which mitosis occurs. Drug 𝐶1 acts cytotoxically on cells in state
1 with rate 𝑎11 and on cells in state 𝑥2 with rate 𝑎12. Drug 𝐶2 acts cytotoxically on
ells in state 𝑥1 with rate 𝑎12 and on cells in state 𝑥2 with rate 𝑎22.

Our analysis of the linear cell cycle model incorporates combination
reatment with an arbitrary number of chemotherapeutic drugs, whose
rug actions may be different for cells in different stages of the cell
ycle. In comparison, earlier works using a similar model have only
onsidered special cases with one or multiple specific drugs [7,15,30–
2]. We first analyze the set exposure combinations that result in
tability and refer to this as the shrinkage set. Then, we find an optimal
reatment combination under the assumption of constant drug exposure
y minimizing a weighted sum of the exposures subject to the con-
traint that the system is stable and therefore that the cancer cells will
ventually be eradicated. The analysis rests on two main assumptions:
i) that cell killing is proportional to drug concentration, and (ii)
hat drug actions is additive, i.e., the model does not include general
xpressions for potential antagonistic or synergistic interactions.

Our results are illustrated using two examples. The first example
ombines the drugs 5-fluorouracil and vinorelbine, which act primarily
n the 𝑆 and 𝑀 phases of the cell cycle, respectively. The second
xample incorporates a third compounds, irinotecan, which acts mainly
n the 𝐺2 phase of the cell cycle, and considers the problem of find-

ing optimal triple combinations that result in a stable or regressing
population of tumor cells.

We end the introduction with an analysis of the special case with
a cell cycle model with two stages, subject to combination treatment
with two chemotherapeutic compounds.

Consider a simple model of the cell cycle with two states 𝑥1 and 𝑥2.
ells in 𝑥1 travel to 𝑥2 with rate 𝑘1. At 𝑥2 mitosis occurs and the two
aughter cells are transferred back to 𝑥1 with rate 𝑘2 where the cycle
epeats. Two chemotherapeutic drugs, 𝐶1 and 𝐶2, induce cell death

via apoptosis depending on the concentration of the drugs, denoted
by 𝑢1 and 𝑢2, respectively. Assume that drug action is linear and that
apoptosis is induced for cells in state 𝑥𝑗 , due to drug 𝐶𝑖, with rate
𝑎𝑖𝑗 ≥ 0. The model is illustrated in Fig. 1. Growth of the cell population
subject to chemotherapeutic provocation with the two drugs is then
described by the following system of differential equations

̇ 1 = −(𝑘1 + 𝑎11𝑢1 + 𝑎12𝑢2)𝑥1 + 2𝑘2𝑥2, 𝑥1(0) = 𝑥01,

̇ 2 = 𝑘1𝑥1 − (𝑘2 + 𝑎21𝑢1 + 𝑎22𝑢2)𝑥2, 𝑥2(0) = 𝑥02, (1)

where 𝑥01 and 𝑥02 are the number of cells in states 𝑥1 and 𝑥2 at time
𝑡 = 0, respectively. Next, we investigate the stability of the system (1) to
determine which combinations (𝑢1, 𝑢2) lead to eradication of the cancer
cell population. The system (1) has the system matrix

𝐴 ∶=
[

−(𝑘1 + 𝑎11𝑢1 + 𝑎12𝑢2) 2𝑘2
]

. (2)

𝑘1 −(𝑘2 + 𝑎21𝑢1 + 𝑎22𝑢2)

2

Fig. 2. Illustration of the shrinkage set 𝑆 for the model (1) with parameter values
𝑘1 = 8, 𝑘2 = 5, 𝑘3 = 7, 𝑎11 = 0.1, 𝑎12 = 0.7, 𝑎21 = 0.6, 𝑎22 = 0.05. The boundary set, 𝜕𝑆,
shown in blue, separates the concentration plane into a region of growth (red) and
shrinkage (green). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

It is well-known that, for a 2 × 2-matrix, the system is stable if and
only if tr 𝐴 < 0 and det 𝐴 > 0. We note that the condition on the trace
always holds, and that the determinant is given by

det 𝐴 = 𝑎11𝑎21𝑢
2
1 + 𝑎12𝑎22𝑢

2
2 + (𝑎12𝑎21 + 𝑎11𝑎22)𝑢1𝑢2

+ (𝑎21𝑘1 + 𝑎11𝑘2)𝑢1 + (𝑎12𝑘2 + 𝑎22𝑘2)𝑢2 − 𝑘1𝑘2. (3)

Eq. (3) describes a hyperbola in the 𝑢1𝑢2-plane, since the discriminant,
𝜎, is given by

𝜎 = (𝑎12𝑎21 + 𝑎11𝑎22)2 − 4𝑎11𝑎12𝑎21𝑎22

= (𝑎12𝑎21 − 𝑎11𝑎22)2 > 0. (4)

The hyperbola intersects the coordinate axes in two points, (𝑢∗1 , 0)
and (0, 𝑢∗2), corresponding to the minimum concentration of either
compound that, when given as monotherapy, results in stability. The
determinant condition, det 𝐴 = 0, for monotherapy becomes

det 𝐴 = 𝑎1𝑗𝑎2𝑗𝑢
2
𝑗 + (𝑎1𝑗𝑘2 + 𝑎2𝑗𝑘1)𝑢𝑗 − 𝑘1𝑘2, 𝑗 = 1, 2, (5)

which is a second-order equation with exactly one positive root, given
by

𝑢∗𝑗 =
−(𝑘1𝑎2𝑗 + 𝑘2𝑎1𝑗 ) +

√

(𝑘1𝑎2𝑗 + 𝑘2𝑎1𝑗 )2 + 4𝑎1𝑗𝑎2𝑗𝑘1𝑘2
2𝑎1𝑗𝑎2𝑗

, (6)

so that any 𝑢𝑗 > 𝑢∗𝑗 leads to eradication. In general, we define the set

𝑆 ∶= {(𝑢1, 𝑢2) ≥ 0 ∶ det 𝐴 ≥ 0}, (7)

which we refer to as the shrinkage set. The boundary, 𝜕𝑆, separates
the first quadrant of the 𝑢1𝑢2-plane into a region corresponding to
stability and a shrinking cell population, and a region corresponding
to instability and population growth. As noted above, 𝜕𝑆 is (part of) a
hyperbola, and the set 𝑆 is therefore convex. An illustration of this set
is shown in Fig. 2.

We consider a linear objective function 𝐹 (𝑢1, 𝑢2) ∶= 𝛼1𝑢1 + 𝛼2𝑢2,
where the coefficients correspond to some cost, e.g., related to toxicity
and side-effects, associated with the drugs, respectively. This leads to
the convex optimization problem

min 𝐹 (𝑢1, 𝑢2), (8)

(𝑢1 ,𝑢2)∈𝑆
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Fig. 3. Illustration of a linear cell cycle model with 𝑛 states, 𝑥1 ,… , 𝑥𝑛, with transfer
rates 𝑘1 ,… , 𝑘𝑛. During transfer between 𝑥𝑛 and 𝑥1 mitosis occurs and the cell splits into
two daughter cells. Cell death due to the presence of cytotoxic compounds 𝐶1 ,… , 𝐶𝑚,
with concentrations 𝑢1 ,… , 𝑢𝑚, is induced on cells in state 𝑥𝑖 with total rate ∑

𝑗 𝐷𝑗,𝑖𝑖𝑢𝑗 .

which can be solved using the standard technique with Lagrange mul-
tipliers.

2. Methods

Note: Throughout the rest of this paper, inequalities for vectors and
matrices are to be interpreted element-wise, e.g., 𝐴 ≥ 𝐵 for matrices of
equal dimensions, or 𝑢 ≤ 𝑣 for vectors of equal length.

We describe in vitro growth of a population of cancer cells with a
general linear cyclic model with 𝑛 states as a description of the cell
cycle

̇ 1 = 2𝑘𝑛𝑥𝑛 − 𝑘1𝑥1, 𝑥1(0) = 𝑥01,

𝑥̇𝑖 = 𝑘𝑖−1𝑥𝑖−1 − 𝑘𝑖𝑥𝑖, 𝑥𝑖(0) = 𝑥0𝑖, 𝑖 = 2,… , 𝑛, (9)

where 𝑥𝑖 represents the number of cells in the 𝑖:th stage, 𝑥0𝑖 is the initial
number of cells in stage 𝑖, and 𝑘𝑖 are the transfer rates between stages.
At the last stage, 𝑛, mitosis occurs and the two daughter cells are placed
in state 𝑥1 and re-enter the cell cycle. Unlike normal cells, we assume
that the cancerous cells grow unimpeded, and never enter a quiescent
stage 𝐺0 to wait for external signals to commence proliferation.

The system (9) is linear and autonomous and can be written in
matrix form

𝑥̇ = 𝐴𝑥, 𝑥(0) = 𝑥0, (10)

where 𝑥 = (𝑥1,… , 𝑥𝑛) is the vector of states, 𝑥0 = (𝑥01,… , 𝑥0𝑛) is the
initial vector, and the matrix 𝐴 is given by

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑘1 0 … 0 2𝑘𝑛
𝑘1 −𝑘2 0 … 0
0 𝑘2 ⋱ ⋮
⋮ 0 ⋱ ⋱ 0
0 … 0 𝑘𝑛−1 −𝑘𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

It is easy to see that if 𝑥0 ≥ 0 the solution 𝑥(𝑡) remains in the non-
negative orthant, 𝑂, for all 𝑡 ≥ 0. Take 𝑥 ∈ 𝜕𝑂. Then from (9) we have
that 𝑥̇𝑖 ≥ 0 for all 𝑖 such that 𝑥𝑖 = 0. Hence, the vector field 𝐴𝑥 never
points outside 𝑂 and 𝑥(𝑡) is trapped inside.

We extend the cell cycle model (10) to account for multiple drug
provocations, by introducing a control vector 𝑢 = (𝑢1,… , 𝑢𝑚) where 𝑢𝑖
represents the concentration of drug 𝑖, assumed to be non-negative and
constant over time, which is plausible for an in vitro setting. We assume
that drug action is linear and may be different for different stages in
the cell cycle. Although drug action is in general sigmoidal, a linear
approximation can often be justified for a range of exposure levels such

that saturation effects are sufficiently small [33]. Moreover, we assume

3

additive effects for combinations of drugs that target the same stage of
the cell cycle. This is a natural assumption given that we consider a
general case and not specific compounds with known mechanisms. For
each 𝑢𝑖, let 𝐷𝑖 be a non-negative diagonal 𝑛 × 𝑛-matrix, whose entries
𝐷𝑖,𝑗𝑗 represent the efficiency of drug 𝑖 at killing cells in state 𝑗. This
model is illustrated in Fig. 3. The model is described by the following
system of differential equations

𝑥̇ =

(

𝐴 −
𝑚
∑

𝑖=1
𝐷𝑖𝑢𝑖

)

𝑥, 𝑥(0) = 𝑥0. (12)

Eq. (12) is a linear system with respect to both states and drug concen-
trations. Define

𝐴𝑢 ∶= 𝐴 −
𝑚
∑

𝑖=1
𝐷𝑖𝑢𝑖. (13)

Definition 1 (Drug Action Matrix). We define the drug action matrix 𝐵
to be the matrix whose entries are given by 𝑏𝑖𝑗 = 𝐷𝑗,𝑖𝑖.

The entries 𝑏𝑖𝑗 correspond to the drug action of drug 𝑗 on state 𝑖.
Using the drug action matrix, 𝐴𝑢 can be written

𝐴𝑢 = 𝐴 − diag(𝐵𝑢). (14)

We investigate the asymptotic behavior of the solution 𝑥(𝑡) to (12) by
considering the eigenvalues of 𝐴𝑢. In particular, we are interested in the
case when all eigenvalues have negative real part, which implies that
tumor will shrink over time and eventually be eradicated. First, we note
that 𝐴𝑢 can be written 𝐴𝑢 = 𝑁 − 𝛼𝑢𝐼 , for some 𝛼𝑢 ≥ 0, where 𝑁 is a
non-negative irreducible matrix. It follows from the classical Perron–
Frobenius theorem (see, e.g., [34]) that 𝐴𝑢 has a simple largest real
eigenvalue 𝜆𝑚𝑎𝑥, with a corresponding eigenvector 𝑣𝑚𝑎𝑥 with positive
components. Thus, the asymptotic growth rate will be determined by
𝜆𝑚𝑎𝑥 and the corresponding distribution of cells into the different states
will be determined by 𝑣𝑚𝑎𝑥. Our objective is therefore to find those 𝑢
such that 𝜆𝑚𝑎𝑥 becomes negative. We make the following definition

Definition 2 (Shrinkage Set). For any square matrix 𝐴𝑢 whose entries
depend on a control vector 𝑢, define the shrinkage set 𝑆 as the set of all
non-negative 𝑢 such that all eigenvalues of 𝐴𝑢 have negative real part.

Before analyzing the shrinkage set for 𝐴𝑢 we make the following
observation.

Gerschgorin’s circle theorem states that the eigenvalues of a matrix
are contained inside the Gerschgorin discs in the complex plane [35].
Applying the theorem to the columns of 𝐴𝑢 gives the discs (−𝑘𝑖 −
∑

𝑗 𝑏𝑖𝑗𝑢𝑗 , 𝑘𝑖), 𝑖 = 1,… , 𝑛−1 and (−𝑘𝑛−
∑

𝑗 𝑏𝑛𝑗 , 2𝑘𝑛), where the first and
second argument denotes the origin and radius of the disc, respectively.
Only the last of these discs can intersect the positive half of the complex
plane. Moreover, increasing the values of 𝑢 does not change the radii
of the Gerschgorin discs, but only pushes them further into the left
half of the complex plane. If ∑

𝑗 𝑏𝑖𝑗 ≥ 𝑘𝑛 all discs are located in the
left half of the complex plane, i.e., no eigenvalue of 𝐴𝑢 has a positive
real part. Applying the theorem to the rows of 𝐴𝑢 gives the similar
condition ∑

𝑗 𝑏𝑛𝑗 ≥ 2𝑘𝑛 − 𝑘1. Note also that if there exists 𝑖 such that
𝑏𝑖𝑗 = 0 for all 𝑗, i.e., there exists a state 𝑥𝑖 that is not acted upon by
any drug, then even if all other discs are pushed far into the left half of
the complex plane, the corresponding Gerschgorin disc does not change
and therefore provides a bound on how quickly the tumor can shrink.

The matrix 𝐴𝑢 has non-negative off-diagonal entries and is thus a
Metzler matrix (c.f. [36]). The additive inverse of such a matrix is
known as a Z-matrix. Z-matrices have been studied extensively, as they
can be written 𝛼𝐼−𝑁 , where 𝛼 is a scalar, and 𝑁 is a non-negative ma-
trix. Metzler matrices and Z-matrices occur frequently in applications,
e.g., in the study of linear compartment models [37]. What follows is
a presentation of selected parts of the theory of Z-matrices, which are

useful in establishing our main result.
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Recall that a matrix is said to be positive stable if all of its eigenval-
es have positive real part. A positive stable Z-matrix is known as an
-matrix. Hence, the question of stability for a Metzler matrix such as
𝑢 in Eq. (13) can be recast as a question of whether its additive inverse

s an M-matrix. In 1979, Berman and Plemmons published a collection
f a large number of properties that are equivalent to a Z-matrix also
eing an M-matrix [38]. Some of these properties are useful to us and
re summarized in the following theorem

heorem 1 (Berman and Plemmons, 1979). Let 𝑍 ∈ R𝑛×𝑛 be a Z-matrix.
he following are equivalent to 𝑍 also being an M-matrix

1. 𝑍 is positive stable.
2. All eigenvalues of 𝑍 have positive real part.
3. 𝑍𝑥 ≥ 0 implies 𝑥 ≥ 0.
4. All principal minors of 𝑍 are positive.
5. The leading principal minors of 𝑍 are positive.

ecall that a principal minor of a square matrix is the determinant of
submatrix obtained by removing a number of rows and the corre-

ponding columns. The leading principal minors are the determinants
f the submatrices obtained by successively removing rows and column,
tarting with the last row and column. Note that the determinant of a
atrix counts as a principal minor to itself.

The sum of two Z-matrices is clearly a Z-matrix. However, it is
ell-known that the sum of two M-matrices need not be an M-matrix.
ome results regarding convex combinations of M-matrices have been
resented, c.f., Fan [39], Horn and Johnson [34], and Stipanović and
iljak [40]. We shall use a result that follows immediately from a the-
rem originally proved by Cohen [41] although the version presented
ere is due to Friedland [42]

heorem 2 (Cohen, 1978). Let 𝑀1 and 𝑀2 be two M-matrices such that
1 − 𝑀2 is a diagonal matrix. Then, for any 𝛼 ∈ [0, 1], the matrix
𝑀1 + (1 − 𝛼)𝑀2 is also an M-matrix.

Note that this result follows from Theorem 1 when 𝑀1 − 𝑀2 ≥ 0.
n immediate consequence is the following proposition

roposition 1. Let 𝑀 be a Metzler matrix, and 𝐷𝑖, 𝑖 = 1,… , 𝑚 be non-
egative diagonal matrices. Then the shrinkage set 𝑆 of 𝑀𝑢 ∶= 𝑀 −
𝑚
𝑖=1 𝐷𝑖𝑢𝑖 is convex.

roof. Take 𝑢, 𝑣 ∈ 𝑆 and 𝛼 ∈ [0, 1]. Then 𝑀𝛼𝑢+(1−𝛼)𝑣 = 𝛼𝑀𝑢 + (1 −
)𝑀𝑣. Since −𝑀𝑢 and −𝑀𝑣 and are M-matrices that differ only on the
iagonal, It follows from Theorem 2 that −𝛼𝑀𝑢 − (1 − 𝛼)𝑀𝑣 is also an
-matrix, i.e., all of its eigenvalues have positive real part. Hence, all

igenvalues of 𝛼𝑀𝑢 + (1 − 𝛼)𝑀𝑣 have negative real part and therefore
𝑢 + (1 − 𝛼)𝑣 ∈ 𝑆. □

Note that the proposition gives convexity for the shrinkage set of
ny compartment model where the control vector stimulates or induces
utput from the system. Note also that convexity is preserved if we
eplace the linear functions (𝑏𝑖𝑗𝑢𝑗 ) with any concave functions of 𝑢𝑗 ,
.g., saturable functions of Michaelis–Menten type [43].

Suppose now that we want the tumor described by (12) to be
radicated, i.e., the matrix 𝐴𝑢 should be stable, while at the same time
inimizing the metabolic strain induced by the drugs. A simple and

ommon way to express this is based on the (weighted) total drug
xposure 𝐹 (𝑢) given by

(𝑢) ∶=
𝑚
∑

𝑖=1
𝛼𝑖𝑢𝑖,= 𝛼𝑇 𝑢, (15)

here 𝛼 ≥ 0 is a vector of weights that reflect the relative toxicity of the
rugs 𝑢𝑖. Such objective functions have been used in various optimal
ontrol problems of cancer therapies, c.f. the book by Schättler and

edzewicz [44].

4

. Results

We begin by presenting the main results, with proofs, followed by
wo illustrative examples.

emma 1. The shrinkage set for the matrix 𝐴𝑢 given by Eq. (13) is the
onvex set given by

=

{

𝑢 ≥ 0 ∶
𝑛
∏

𝑖=1

(

𝑘𝑖 +
𝑚
∑

𝑗=1
𝐷𝑗,𝑖𝑖𝑢𝑗

)

> 2
𝑛
∏

𝑖=1
𝑘𝑖

}

. (16)

roof.We first note that convexity follows from Proposition 1. To find a
ormula for the shrinkage set 𝑆, it follows from Theorem 1 that we only
eed to study when the leading principal minors of −𝐴𝑢 are positive.
ll leading principal minors except det(−𝐴𝑢) are trivially positive since

hey are determinants of positive diagonal matrices. Therefore, 𝑆 is
etermined by the condition det(−𝐴𝑢) > 0. An application of Leibniz’s
ormula for determinants gives condition (16). □

Note that 𝑆 can also be expressed using the drug action matrix 𝐵

=

{

𝑢 ≥ 0 ∶
𝑛
∏

𝑖=1

(

𝑘𝑖 + [𝐵𝑢]𝑖
)

> 2
𝑛
∏

𝑖=1
𝑘𝑖

}

. (17)

he Eq. (17) can be given a probabilistic interpretation. First, recall that
system such as (12) can be derived from a probabilistic model where

he transfer time, 𝑇𝑖, from state 𝑥𝑖 to the next state is an exponentially
istributed random variable with parameter 𝑘𝑖. Similarly, cell death in
tate 𝑥𝑖 due to drug 𝑗 can be assumed to be exponentially distributed
ith parameter 𝑏𝑖𝑗 . By independence, the time until cell death for a

ell in state 𝑥𝑖 due to any of the drugs is exponentially distributed with
arameter ∑

𝑗 𝑏𝑖𝑗𝑢𝑗 . We denote this time by 𝜏𝑖. A cell in state 𝑖 survives
ntil the next state if 𝑇𝑖 < 𝜏𝑖. The probability of this event is given by

(𝑇𝑖 < 𝜏𝑖) =
𝑘𝑖

𝑘𝑖 +
∑𝑚

𝑗=1 𝑏𝑖𝑗𝑢𝑗
. (18)

Letting 𝑇 be a random variable such that 𝑇 = 1 if a cell survives the
entire cell cycle, and 𝑇 = 0 if the cell dies somewhere along the way.
Then, by independence, the probability of surviving is given by

P(𝑇 = 1) =
𝑛
∏

𝑖=1

𝑘𝑖
𝑘𝑖 +

∑𝑚
𝑗=1 𝑏𝑖𝑗𝑢𝑗

. (19)

ince each completed cell cycle results in two new cells, the tumor
s expected to shrink if P(𝑇 ) < 1∕2, which gives the same condition
s Eq. (17).

We first use this lemma to prove the following intuitively obvious
act about monotherapy

roposition 2 (Monotherapy). Consider the monotherapy case with only
ne compound, whose tumor concentration we denote by 𝑢, acing on each of
the states 𝑥1,… , 𝑥𝑛 according to the diagonal matrix 𝐷. Then, there exists
exactly one value 𝑢∗ such that any 𝑢 > 𝑢∗ ensures stability of 𝐴𝑢.

Proof. Define the polynomial 𝑃 given by

𝑃 (𝑢) ∶=
𝑛
∏

𝑖=1

(

𝑘𝑖 +𝐷𝑖𝑖𝑢
)

− 2
𝑛
∏

𝑖=1
𝑘𝑖, (20)

and note that 𝑃 (0) < 0. By Lemma 1, 𝐴𝑢 is stable precisely for those 𝑢
or which 𝑃 (𝑢) > 0. Rewriting 𝑃 on the form

(𝑢) = 𝑎0 + 𝑎1𝑢 +⋯ + 𝑎𝑛𝑢
𝑛, (21)

we note that 𝑎0 < 0 and 𝑎𝑖 > 0 for all 𝑖 ≥ 1. It follows from Descartes’s
rule of sign that 𝑃 has exactly one positive root, 𝑢∗, and consequently
𝑃 (𝑢) > 0 for all 𝑢 > 𝑢∗. □

Proposition 1 expresses the fact that for a single compound, there
exists exactly one concentration 𝑢∗ such that any concentration below it
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will lead to tumor growth, whereas any concentration above will lead
to tumor shrinkage. Finding an explicit formula for 𝑢∗ is non-trivial,
but it can be expressed using the trick from the proof of part (iii) of
the next proposition involving combination therapy.

The next proposition considers the combination therapy case, with
𝑚 drugs. We characterize the optimal solution, given a linear objective
function in 𝑢 and using the stability condition as a constraint. We
optimize over the closed set 𝑆̄, which will give an optimum 𝑢∗ ∈ 𝜕𝑆.
Then, for any vector 𝜖 > 0 we have that 𝑢∗ + 𝜖 ∈ 𝑆, which will
ensure stability. We also assume, without loss of generality, that the
drug action matrix 𝐵 does not contain rows of all zeros, corresponding
to states without drug action, since it is clear from Eq. (17) that the only
influence from such states comes from the corresponding 𝑘𝑖, which can
be simplified from Eq. (17).

Proposition 3 (Combination Therapy). Let the shrinkage set 𝑆 be defined
by Eq. (17) and consider the optimization problem

min
𝑢∈𝑆̄

𝐹 (𝑢) ∶= 𝛼𝑇 𝑢, (22)

where 𝛼 = (𝛼1,… , 𝛼𝑚) is a vector of weights. We have the following cases
depending on the drug action matrix 𝐵
(i) If 𝐵 is rank-deficient with rank 𝑛 − 𝑘 for some positive integer 𝑘, there
exists an optimum 𝑢∗ where at least 𝑘 entries are zero.
(ii) If 𝐵 is diagonal with positive diagonal entries, 𝑢∗ > 0 if and only if

‖𝜃‖∞ < 𝑛
√

2𝐺𝑀(𝜃), (23)

where 𝜃𝑖 = 𝛼𝑖𝑘𝑖∕𝑏𝑖𝑖, and 𝐺𝑀 denotes the geometric mean. The optimum is
then given by

𝑢∗𝑖 =
𝑘𝑖
𝑏𝑖𝑖

(

𝑛
√

2
𝐺𝑀(𝜃)

𝜃𝑖
− 1

)

, (24)

nd the optimal value becomes

(𝑢∗) = 𝑛( 𝑛
√

2𝐺𝑀(𝜃) − 𝜃̄). (25)

(iii) If 𝐵 has full rank, the problem can be converted to case (ii) by a linear
invertible transformation.

Proof. We first prove part (i). Note that, due to Lemma 1, the domain
𝑆 can be written 𝑆 = {𝑢 ≥ 0 ∶ 𝑔(𝑢) ≥ 0} where

𝑔(𝑢) ∶=
𝑛
∏

𝑖=1

(

𝑘𝑖 + [𝐵𝑢]𝑖
)

− 2
𝑛
∏

𝑖=1
𝑘𝑖. (26)

ince the objective function 𝐹 is linear, any optimum 𝑢∗ must be
ocated on the boundary 𝑔(𝑢) = 0. If 𝐵 is rank-deficient with rank 𝑚−𝑘

for some positive integer 𝑘, then for each 𝑣 ∈ 𝑐𝑜𝑙(𝐵) the solution set to
𝐵𝑢 = 𝑣 is a 𝑘-dimensional affine space. If 𝑢∗ > 0 is an optimum, then the
𝑚-dimensional tangent spaces of 𝑔 and 𝐹 at 𝑢∗ must coincide and, since
𝐹 is linear, be a level set to 𝐹 . Now, since 𝐵𝑢 = 𝐵𝑢∗ is a 𝑘-dimensional
affine space, there must exist a point 𝑢̃, with 𝑘 zeros, in this level set,
that also satisfies 𝑔(𝑢̃) = 0. This proves (i).

To prove (ii), note that when 𝐵 is diagonal, the change of variables
𝑦𝑖 = 𝑏𝑖𝑖𝑢𝑖 + 𝑘𝑖 gives rise to the equivalent optimization problem, which
also occurs, e.g., in one of the standard proofs of the inequality between
the arithmetic and geometric means,

min 𝛽𝑇 𝑦, (27)

s.t.
𝑛
∏

𝑖=1
𝑦𝑖 − 2

𝑛
∏

𝑖=1
𝑘𝑖 ≥ 0, (28)

and 𝑦𝑖 ≥ 𝑘𝑖, 𝑖 = 1,… , 𝑛, (29)

here 𝛽𝑖 = 𝛼𝑖∕𝑏𝑖𝑖. This is a convex optimization problem, hence any
ocal minimum must also be a global minimum (see, e.g., [45]). Since
he objective function is linear and the optimum therefore is attained on
he boundary, we can assume that Eq. (28) holds with equality. Define
he Lagrangian

(𝑦, 𝜆, 𝜇) ∶= 𝛽𝑇 𝑦 − 𝜆

( 𝑛
∏

𝑦𝑖 − 2
∏

𝑘𝑖

)

−
𝑛
∑

𝜇𝑖(𝑦𝑖 − 𝑘𝑖). (30)

𝑖=1 𝑖=1𝑛 𝑗=1

5

The Karush–Kuhn–Tucker conditions, which are necessary for optimal-
ity by the linear independent constraints qualification (see, e.g., [45]),
are given by
𝜕𝐿
𝜕𝑦𝑖

= 𝛽𝑖 − 𝜇𝑖 − 𝜆
∏

𝑗≠𝑖
𝑦𝑗 = 0, (31)

𝜕𝐿
𝜕𝜆

=

( 𝑛
∏

𝑖=1
𝑦𝑖 − 2

𝑛
∏

𝑖=1
𝑘𝑖

)

= 0, (32)

𝜇𝑖(𝑦𝑖 − 𝑘𝑖) = 0, (33)

𝜇𝑖 ≥ 0. (34)

et 𝐾 =
∏𝑛

𝑖=1 𝑘𝑖. Multiplying Eq. (31) with 𝑦𝑖 and using Eq. (32) gives

𝑖 =
2𝜆𝐾
𝛽𝑖 − 𝜇𝑖

. (35)

Moreover, taking the product of Eq. (31) over all 𝑖 and using Eq. (32)
gives
𝑁
∏

𝑖=1
(𝛽𝑖 − 𝜇𝑖) = 𝜆𝑛𝐾𝑛−1 ⇒ 𝜆 =

𝑛
√

2𝐺𝑀(𝛽 − 𝜇)𝐺𝑀(𝑘)
2𝐾

. (36)

Combining Eqs. (35) and (36) gives the solution

𝑦∗𝑖 =
𝑛
√

2𝐺𝑀(𝛽 − 𝜇)𝐺𝑀(𝑘)
𝛽𝑖 − 𝜇𝑖

. (37)

Finally, if 𝑢∗𝑖 > 0, then 𝜇𝑖 = 0. Letting 𝜃𝑖 = 𝛼𝑖𝑘𝑖∕𝑏𝑖𝑖 gives

𝑢∗𝑖 =
𝑘𝑖
𝑏𝑖𝑖

(

𝑛
√

2
𝐺𝑀(𝜃)

𝜃𝑖
− 1

)

. (38)

he condition (23) follows by noting that it precisely the condition that
nsures positivity in Eq. (38). This proves (ii).

Finally, we prove (iii) by constructing the desired linear invertible
ransformation. Note that the claim is obvious when 𝐵 is invertible,
ince the change of variables 𝑦 = 𝐵𝑢 gives case (ii) with new cost vector
= 𝐵−𝑇 𝛼. If 𝐵 has full rank, but does not have enough columns to span
𝑛, 𝐵 can be augmented with Euclidean unit vectors 𝑒𝑗𝑚+1 ,… , 𝑒𝑗𝑛 such

hat
𝐵̃ ∶= [𝐵, 𝑒𝑗𝑚+1 ,… , 𝑒𝑗𝑛 ] is invertible. Letting the additional columns

f 𝐵̃ correspond to control variables 𝑢𝑚+1,… , 𝑢𝑛 with costs 𝛼𝑚+1,… 𝛼𝑛
reduces the problem to the invertible case with the new variables 𝑦 =
𝐵̃𝑢 and costs 𝛽 = 𝐵̃−𝑇 𝛼, which gives the analog to Eq. (37)

𝑦∗𝑖 =
𝑛
√

2𝐺𝑀(𝛽 − 𝜇)𝐺𝑀(𝑘)
𝛽𝑖 − 𝜇𝑖

, (39)

from which it follows

𝑢∗𝑖 = −𝑘𝑖 +
𝑛
∑

𝑗=1
𝐵̃−1
𝑖𝑗

𝑛
√

2𝐺𝑀(𝛽 − 𝜇)𝐺𝑀(𝑘)
𝛽𝑗 − 𝜇𝑗

. (40)

Finally, we note that by choosing the fictitious costs such that they
satisfy the equations

𝑘𝑖
𝐺𝑀(𝛽)𝐺𝑀(𝑘)

=
𝑛
∑

𝑗=1

𝐵̃−1
𝑖𝑗

𝛽𝑗
, 𝑖 = 𝑚 + 1,… , 𝑛, (41)

where 𝛽 = 𝐵̃−𝑇 𝛼 is the transformed cost vector, ensures that 𝑢∗𝑖 = 0 for
𝑖 = 𝑚 + 1,… , 𝑛 so that the fictitious control variables do not appear in
the solution. □

Case (i) states that if we have more compounds than targets, then
we do not lose anything by getting rid of some of the compounds. Case
(ii) presents the diagonal case where each compound has a unique
single target. This could also be called the orthogonal case, since it
covers any orthogonal matrix 𝐵 up to scaling and a reordering of the
compounds. An important insight expressed in case (ii) is that there
is intrinsic benefit from combining compounds with different targets,
which is precisely due to the convexity of the shrinkage set established
in Lemma 1 and Proposition 1. Case (iii) relates the general case back
to case (ii) via a linear bijection.

We have the following obvious corollary to Proposition 3, case (ii),
which can also be applied to case (iii), after a linear change of variables.
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Corollary 1. If 𝑢∗𝑗 = 0 for some 𝑗, then equation (24) simplifies to

𝑢∗𝑖 =
𝑘𝑖
𝑏𝑖𝑖

(

𝑛−1
√

2
∏

𝑖≠𝑗 𝜃
𝑛−1
𝑖

𝜃𝑖
− 1

)

, 𝑖 ≠ 𝑗. (42)

Proof. The proof is a direct calculation, letting 𝑢∗𝑗 = 0 in Eq. (37) and
solving for 𝜇𝑗 , then plugging this value back into Eq. (38) for 𝑖 ≠ 𝑗. □

We can also consider, as a special case, the situation where all
compounds are ‘equal’ in the sense that the 𝜃𝑖 are equal. This gives
an estimate of the inherent benefits of targeting different states.

Corollary 2. If 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑛 = 𝜃, then the minimum value of the
objective function, given by Eq. (25), becomes

(𝑢∗) = 𝜃𝑛( 𝑛
√

2 − 1), (43)

and in the limit as 𝑛 → ∞, we have 𝐹 (𝑢∗) → 𝜃 ln 2.

Proof. The proof is a direct calculation. The limit follows, e.g., by an
application of l’Hopital’s rule. □

For a single drug, 𝑛 = 1, Corollary 2 gives the objective value
𝐹 (𝑢∗) = 𝜃, whereas in the limit as 𝑛 → +∞ we have 𝐹 (𝑢∗) = 𝜃 ln 2 ≈
0.7 𝜃. Thus, Corollary 2 states that combination therapy with additive
drugs that target different stages of the cell cycle can at most reduce
the cost compared to single-agent treatment by 30%.

An example with a two-drug combination

We consider a cell cycle model with four states, 𝑥1, 𝑥2, 𝑥3, and 𝑥4,
corresponding to the stages 𝐺1, 𝑆, 𝐺2, and 𝑀 of the cell cycle, and
transfer rates 𝑘1, 𝑘2, 𝑘3, and 𝑘4. In order to obtain biologically plausible
parameter values, we assume phase durations of 12, 6, 6, and 1∕2 hours
for the phases 𝐺1, 𝑆, 𝐺2, and 𝑀 , respectively [46]. Since the average
time in the i:th phase is given by 1∕𝑘𝑖, we therefore set 𝑘1 = 1∕12,
𝑘2 = 1∕6, 𝑘3 = 1∕6, and 𝑘4 = 2 h−1. With these parameter values, the
largest and only positive eigenvalue of the corresponding system matrix
is given by 𝜆𝑚𝑎𝑥 ≈ 0.032. The corresponding normalized eigenvector is
𝑣𝑚𝑎𝑥 ≈ (0.55, 0.23, 0.20, 0.02). Thus, the initial proportion of cells in each
phase is assumed to be given by 𝑣𝑚𝑎𝑥.

We now consider treatment with two cell cycle specific compounds
that target different phases of the cell cycle. 5-fluorouracil is an an-
timetabolic agent that interferes with DNA and RNA synthesis, and
therefore acts mainly on the 𝑆 phase of the cell cycle, that is used to
treat a variety of cancers including stomach cancer, colon cancer, pan-
creatic cancer and breast cancer [4]. Vinorelbine is a vinca alkaloid that
interferes with microtubule assembly and therefore acts primarily on
the 𝑀 stage of the cell cycle [4]. Vinorelbine is used to treat different
cancers including breast cancer and non-small cell lung cancer [47].

Let 𝑎 denote the drug action parameter of 5-fluorouracil on cells
in 𝑆 phase, and let 𝑏 denote the drug action parameter of vinorelbine
on cell in 𝑀 phase. Moreover, let 𝛼 be the cost, or toxicity, or 5-
fluorouracil and 𝛽 be the toxicity of vinorelbine. Combinations of these
compounds satisfy case (ii) of Proposition 3, i.e., the orthogonal case.
Monotherapy with 5-fluorouracil requires exposure levels above 𝑘2∕𝑎
to achieve stability and a shrinking population of cancer cells, whereas
the equivalent quantity for vinorelbine monotherapy is 𝑘4∕𝑏. Note that
since the 𝑀 phase is much shorter than the 𝑆 phase of the cell cycle,
the potency parameter 𝑏 would need to be much larger than 𝑎 in order
to achieve stability at similar exposure levels.

To compute biologically reasonable values for 𝑎 and 𝑏 we use re-
ported in vitro geometric mean IC50 values across a large number of cell
lines of 34.8 μM and 0.0217 μM for 5-fluorouracile and vinorelbine [48],
and then use our model to find the corresponding 𝑎 and 𝑏 such that the
cell population after 72 h of single-agent treatment is exactly half of
the untreated cell population at the same time point. This yields the
values 𝑎 = 19.4 μM−1h−1 and 𝑏 = 0.00115 μM−1h−1.
6

Fig. 4. Shrinkage set for combinations of 5-fluorouracil and vinorelbine. The green
region indicates exposure combinations (𝑢5𝐹𝑈 , 𝑢𝑣𝑖𝑛𝑜) that will cause a reduction in the
ancer cell population over time, whereas the red region indicates combinations that
esult in a growing cancer cell population. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

The shrinkage set, defined in Lemma 1, is given by

𝑘2 + 𝑎𝑢5𝐹𝑈 )(𝑘4 + 𝑏𝑢𝑣𝑖𝑛𝑜) > 2𝑘2𝑘4. (44)

This set is shown in Fig. 4. In terms of Eq. (23) we have that 𝜃5𝐹𝑈 =
𝛼𝑘2∕𝑎 and 𝜃𝑣𝑖𝑛𝑜 = 𝛽𝑘4∕𝑏, and therefore 𝐺𝑀(𝜃) =

√

𝛼𝛽𝑘2𝑘4∕
√

𝑎𝑏. It will
be optimal to use only 5-fluorouracil if 𝜃5𝐹𝑈 ≥ 2𝜃𝑣𝑖𝑛𝑜 and it will be
optimal to use only vinorelbine if 𝜃𝑣𝑖𝑛𝑜 ≥ 2𝜃5𝐹𝑈 . Therefore if
𝜃5𝐹𝑈
2

< 𝜃𝑣𝑖𝑛𝑜 < 2𝜃5𝐹𝑈 , (45)

or equivalently
𝛼𝑘2
2𝑎

<
𝛽𝑘4
𝑏

<
2𝛼𝑘2
𝑎

, (46)

it will be optimal to use both compounds and the optimum will be given
by

𝑢∗5𝐹𝑈 =
𝑘2
𝑎

(

√

2

√

𝜃𝑣𝑖𝑛𝑜
√

𝜃5𝐹𝑈
− 1

)

, (47)

and

𝑢∗𝑣𝑖𝑛𝑜 =
𝑘4
𝑏

(

√

2

√

𝜃5𝐹𝑈
√

𝜃𝑣𝑖𝑛𝑜
− 1

)

. (48)

After inserting the values for 𝑘2, 𝑘4, 𝑎, and 𝑏, Eq. (46) defines a
condition on the costs 𝛼 and 𝛽 for which it will be optimal to use both
compounds. This set in shown in Fig. 5. The light blue region shows
the cost pairs (𝛼, 𝛽) such that it will be optimal to use both compounds,
whereas the white regions on either side indicate for which cost pairs
it will be optimal to use only 5-fluorouracil or vinorelbine.

An example with a three-drug combination

We consider the same two compounds as in the previous example,
5-fluorouracil and vinorelbine, but this time also include irinotecan.
Irinotecan is a topoisomerase I inhibitor, which stops the cell at the
G2-checkpoint which eventually triggers apoptosis. Irinotecan is used
to treat primarily colorectal cancers [49]. We assume that irinotecan
acts on cell in the G2 phase with rate 𝑐, and let its cost be denoted by
𝛾. The cell cycle model subject to triple combination treatment with 5-
fluorouracil, vinorelbine, and irinotecan is shown in Fig. 6. To compute
𝑐 we take the same approach as before and use the model to find
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Fig. 5. Illustration of cost pairs (𝛼, 𝛽), corresponding to 5-fluorouracil and vinorelbine
respectively, for which it will be optimal to use monotherapy with 5-fluorouracil
or vinorelbine (white regions), or combination therapy (light blue region). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Cell cycle model with four states 𝐺1 , 𝑆, 𝐺2, and 𝑀 , subject to provoca-
tion with the three drugs 5-fluorouracil, vinorelbine, and irinotecan, with exposures
𝑢5𝐹𝑈 , 𝑢𝑣𝑖𝑛𝑜 , 𝑢𝑖𝑟𝑖𝑛𝑜, respectively. It is assumed that 5-fluorouracil acts on cells in the 𝑆
hase with parameter 𝑎, vinorelbine acts on cells in phase 𝑀 with parameter 𝑏, and

irinotecan acts on cells in state 𝐺2 with rate parameter 𝑐.

such that the cell population after 72 h of irinotecan treatment at
eported IC50 concentrations is exactly half the size of the untreated
ell population. The reported geometric mean IC50 for irinotecan across
large number of cell lines is 13.8 μM [48], which corresponds to
= 0.0029 μM−1h−1.

The shrinkage set, defined in Lemma 1, for combinations of 5-
luorouracil, vinorelbine, and irinotecan is given by the condition

𝑘2 + 𝑎𝑢5𝐹𝑈 )(𝑘4 + 𝑏𝑢𝑣𝑖𝑛𝑜)(𝑘3 + 𝑐𝑢𝑖𝑟𝑖𝑛𝑜) > 2𝑘2𝑘3𝑘4, (49)

and is shown in Fig. 7.
Now let 𝜃𝑖𝑟𝑖𝑛𝑜 = 𝛾𝑘3∕𝑐, and 𝐺𝑀(𝜃) =

(

𝜃5𝐹𝑈𝜃𝑣𝑖𝑛𝑜𝜃𝑖𝑟𝑖𝑛𝑜
)
1
3 . Then the

conditions that ensure that it is optimal to use all three compounds are
given by

𝜃5𝐹𝑈 < 3
√

2𝐺𝑀(𝜃), (50)

𝜃 < 3
√

2𝐺𝑀(𝜃), (51)
𝑣𝑖𝑛𝑜
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Fig. 7. Shrinkage set for combinations of 5-fluorouracil, vinorelbine, and irinotecan.
The green region indicates exposure combinations (𝑢5𝐹𝑈 , 𝑢𝑣𝑖𝑛𝑜 , 𝑢𝑖𝑟𝑖𝑛𝑜) that cause a
reduction in the cancer cell population over time, whereas the red region indicates
combinations that result in a growing cancer cell population. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 8. Illustration of cost triples 𝛼, 𝛽, 𝛾, corresponding to 5-fluorouracil, vinorelbine,
and irinotecan, respectively, for which it is optimal to use all three compounds.

and

𝜃𝑖𝑟𝑖𝑛𝑜 <
3
√

2𝐺𝑀(𝜃). (52)

sing the estimated values for 𝑘1, 𝑘2, 𝑘3 as well as 𝑎, 𝑏, 𝑐 this gives rise
to a region in cost space consisting of triples (𝛼, 𝛽, 𝛾) for which it is
optimal to use all three compounds. This region is shown in Fig. 8. It
is clear from the figure that in order for the optimum to use all three
compounds we would need 𝛼 ∼ 102𝛽 and in turn 𝛽 ∼ 102𝛾.
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4. Discussion

We analyze stability conditions for a linear cell cycle model subject
to chemotherapeutic combination treatment. Such analyses are com-
mon for single-agent treatments and lead to the definition of threshold
concentrations such that any concentration above the threshold results
in a shrinking tumor or population of cancer cells [50] and have
also been derived for combination treatments [32,51]. We prove the
existence of such a concentration for our model in Proposition 2.
However, finding an explicit formula for the general case where the
single-agent treatment may act differently on different phases of the
cell cycle is difficult. One way to approach this problem is to apply
Proposition 3(iii), and the proof thereof, when there are more targets
than compounds. For combination treatments, stability analysis leads to
the definition of a shrinkage set consisting of all exposure combination
that result in a shrinking cancer cell population. The geometry of the
shrinkage set is interesting since it is related to the inherent benefits of
combination therapy [51]. For the cell cycle model in this paper, where
the anticancer agents are assumed to be additive, we show in Lemma 1
and Proposition 1 that the shrinkage set is always convex, and that this
will be true for general compartment models subject to treatment with
cell killing drugs.

We use the shrinkage set as a constraint to optimize combination
treatments under the assumption of constant drug exposure. Constant
exposure is achievable in an in vitro setting which is our primary con-
sideration in this paper, but it is less feasible in vivo. Instead, constant
exposure should be viewed as an approximation that is suitable for
drugs that can be administered via continuous infusion, or which have
frequent dosing and/or slow enough clearance such that exposure levels
can be maintained at fairly stable levels. Our main result, given in
Proposition 3, provides a formula for the optimal exposure combination
as well as conditions for when one or several compounds are super-
fluous. We believe that these results can be useful when considering
new combinations treatments with compounds for which cell cycle
specificity is at least somewhat understood. Moreover, we believe that
Corollary 2, which provides a bound of at most 30% cost reduction
compared to single-agent treatment, to be a relevant result that can
help determine whether additive combination treatments are feasible
or whether synergistic compounds with drug interactions are necessary
to achieve a desired cost reduction.

Optimization and optimal control in the more general case of cancer
and cell cycle models with time-varying exposure have been ana-
lyzed in numerous papers including the works of Kimmel, Swierniak,
Ledzewicz, and Schättler to name a few [44,52–56]. The objective
to be minimized is typically a weighted 𝐿1- or 𝐿2-norm of the drug
concentrations and tumor volume, combined with an endpoint penalty
at a final time, which can be either fixed or free. Compared to the case
with constant exposure, which is appropriate for the in vitro setting,
optimal control problems are more suitable for the clinical setting [57].
Moreover, although optimal controls can be computed numerically for
specific choices of parameter values, it is often very difficult to obtain
explicit analytical solutions. One important result, which has been
proved to hold for a general case of linear cancer models, states that
optimal controls are always ‘‘bang–bang’’, i.e., at any time point the
exposure level should be set either to a maximum allowed value, or to
zero [44]. However, a complete determination of the switching times,
when the exposure should be changed from its maximum value to zero
or vice versa, is highly nontrivial.

The optimization problem with constant drug exposures that we
consider in this paper is much simpler than the related optimal con-
trol problems and can therefore be analyzed analytically. Another
difference is that whereas optimal control problems consider the full
dynamics of the model as a constraint, we only consider the sign of
the eigenvalues and therefore mainly consider the asymptotic behav-
ior of the system. One important result by Clairambault et al. states
that a linear model given by a Metzler matrix, with time-varying
8

periodic coefficients, has worse stability properties than the corre-
sponding system with time-averaged constant coefficients [58]. This
provides justification for our restriction to only consider constant drug
exposures.

The model considered in this paper describes an in vitro population
of cancer cells. In order to describe in vivo tumor growth, the model
would need to be modified to account for spatial heterogeneity in
particular. This can be done using partial differential equations, or
an ordinary differential equation approach such as the one by Evans
et al. [59] who describe a tumor consisting of an outer shell and an
inner core with the possibility to transfer cell mass between the two.
See the paper by Checkley et al. for an example where the shell model
was integrated into a cell cycle model [60].

5. Conclusions

This paper analyzes a simple in vitro model of a population of cancer
cells that captures two important aspects of cancer treatment: (i) the
cell cycle, and (ii) combination treatment with two or more chemother-
apeutic compounds. We find an explicit condition for stability of the
model, and show that the corresponding shrinkage set is convex, which
is useful for understanding which exposure combinations may produce
a stable or shrinking cancer cell population.

Moreover, our main result, Proposition 3, provides a condition for
when compounds are redundant, and a solution formula for the case
where all compounds are used. These results could potentially be useful
for practical applications such as selecting compounds for additional
experiments, as well as for more mathematical endeavors such as
sensitivity analyses and to understand for which sets of parameter
values a particular combination is optimal.

Finally, since our analysis is performed for general additive combi-
nation treatments, it has the potential to be used and reused to analyze
many different chemotherapeutic scenarios. It could also be used as
a baseline case for additivity, which may then help determine if a
particular combination is synergistic or antagonistic.
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