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Abstract—New helmet technologies have been developed to
improve the mitigation of traumatic brain injury (TBI) in
bicycle accidents. However, their effectiveness under oblique
impacts, which produce more strains in the brain in
comparison with vertical impacts adopted by helmet stan-
dards, is still unclear. Here we used a new method to assess
the brain injury prevention effects of 27 bicycle helmets in
oblique impacts, including helmets fitted with a friction-
reducing layer (MIPS), a shearing pad (SPIN), a wavy
cellular liner (WaveCel), an airbag helmet (Hövding) and a
number of conventional helmets. We tested whether helmets
fitted with the new technologies can provide better brain
protection than conventional helmets. Each helmeted head-
form was dropped onto a 45� inclined anvil at 6.3 m/s at
three locations, with each impact location producing a
dominant head rotation about one anatomical axes of the
head. A detailed computational model of TBI was used to
determine strain distribution across the brain and in key
anatomical regions, the corpus callosum and sulci. Our
results show that, in comparison with conventional helmets,
the majority of helmets incorporating new technologies
significantly reduced peak rotational acceleration and veloc-
ity and maximal strain in corpus callosum and sulci. Only
one helmet with MIPS significantly increased strain in the
corpus collosum. The helmets fitted with MIPS and WaveCel
were more effective in reducing strain in impacts producing
sagittal rotations and a helmet fitted with SPIN in coronal
rotations. The airbag helmet was effective in reducing brain
strain in all impacts, however, peak rotational velocity and
brain strain heavily depended on the analysis time. These
results suggest that incorporating different impact locations
in future oblique impact test methods and designing helmet

technologies for the mitigation of head rotation in different
planes are key to reducing brain injuries in bicycle accidents.

Keywords—Traumatic brain injury, Helmets, Rotational

motion, Oblique impacts, Standards.

INTRODUCTION

Cycling is the most popular mode of active mobility,
with many environmental and health benefits.25,38,39

The number of cyclists are steadily increasing in Eur-
ope, United States and worldwide since 2009.2,12 For
instance, the pedal cyclist traffic increased by 16% in
Great Britain between 2009 and 2019.33 The recent
COVID-19 pandemic has led to a large increase in
cyclist traffic, which is likely to be permanent. The
UK’s Secretary of State for Transport has reported
‘‘We’ve seen around a 100% increase in weekday cy-
cling. At weekends, that increase has been up to around
200% compared to pre-COVID-19 levels. We want to
use this recovery to permanently change the way we
travel with huge levels of investment.’’.51

However, cyclists are among the vulnerable road
users. Their severe injury and fatality rate per passen-
ger miles are several folds larger than car occupants
and bus passengers.41 More cyclists were fatally in-
jured in 2018 than in any year since 1990 in the U.S.
according to the U.S. Department of Transportation.12

Notably, the head is the most common body part to be
severely injured during an accident.46 For instance, an
analysis of the STRADA (Swedish Traffic Accident
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Data Acquisition) database showed that 42% of in-
juries leading to severe impairment were blows to the
head.46 Impacts to the head can lead to traumatic
brain injury (TBI) with fatal and lifelong consequences
and large economic costs.3 Hence, cyclists are often
advised to wear helmets as helmets can play a key role
in protecting their head and brain against
impacts.13,17,20 Previous work has shown that 19% of
helmeted cyclists suffered severe TBI compared to 48%
of non-helmeted cyclists.17 This study, amongst others,
shows that there are still opportunities to reduce TBI
in helmeted cyclists through improving helmet design.

The functional design of bicycle helmets has been
driven by standard test methods (e.g. EN1078), where
helmets are assessed under vertical impacts and the
linear motion of the headform is used to evaluate their
protection effects.19 However, analysis of accident data
shows that in vast majority of real-world head colli-
sions, impacts to the head occur at an angle which
produces large rotational motions. There is significant
body of research that show rotational motion of the
head is the key determinant of brain deformation and
subsequent damage to the brain tissue.27,30,42,50 These
studies have led to new proposals from Fédération
Internationale de Motocyclisme (FIM) and European
Committee for Standardization Working Group 11
(CEN/TC158/WG11) for helmet testing under oblique
impacts and using injury criteria based on head rota-
tion.24,35,37,49 However, the effects of current bicycle
helmets, particularly those that incorporate new tech-
nologies to reduce head rotation, on mitigating brain
injuries under oblique impacts are still unclear.

Limited studies have assessed the performance of
bicycle helmets with new technologies dedicated to
mitigating rotational head motion.8,9 These previous
studies assessed the performance of helmets in a single
impact location. In contrast, a significant body of
research has shown that the location and direction of
impact has a large effect on rotational kinematics of
the head and brain deformation.7,31,35,50 In addition,
helmets are likely to provide different levels of pro-
tection against impacts at different locations.15 Hence,
it is important to assess the performance of helmets
under oblique impacts with different directions and
locations.

In this study, we evaluated brain protection effects
of a range of commercially available helmets under
different oblique impacts. We studied helmets with
EPS liners (conventional), helmets fitted with the fric-
tion-reducing ‘multi-directional impact protection
system’ (MIPS),8 helmets with a corrugated ‘wavy’
cellular liner (WaveCel),8 helmets fitted with shearing
pads (SPIN) and the airbag helmet Hövding 3.0.32 We
tested whether helmets fitted with these new tech-

nologies provide better or worse brain protection in
oblique impacts than conventional helmets.

Previous computational studies have shown that
head impacts can produce large mechanical strains in
key brain regions; corpus callosum and sulci.22,26 The
corpus callosum is the largest white matter tract, which
connects two hemispheres and is a location typically
associated with diffuse axonal injury after head
impacts.47 Sulci is where the pathology of the neu-
rodegenerative disease, chronic traumatic
encephalopathy, in sporting collisions and white mat-
ter damage in survivors of single head impacts have
been seen.22,34 Hence, in addition to using measures of
brain injury based on head kinematics, we used a de-
tailed finite element model of TBI to predict strain in
the sulci and corpus callosum during oblique impacts.

METHODS

Bicycle Helmets

27 commercially available bicycle helmets were se-
lected from the European market (both online and in-
store), representing a large number of commonly used
helmets. The price ranged from £10 to £275, reflecting
a wide range of designs. Since we used a Hybrid III
50th percentile male dummy headform with a 58 cm
circumference, we selected helmets with a size range
that included 58 cm. Table 1 lists all the helmets and
their rotational technology, if any. Helmets without a
dedicated rotational technology are referred to as
‘conventional’ and serve as the controls for evaluating
the effectiveness of the helmets incorporating rota-
tional technologies. Four new technologies were
investigated. 15 helmets were fitted with the ‘multi-di-
rectional impact protection system’ (MIPS)—a low-
friction slip-layer that lies between the helmet liner and
the head (Fig. 1) which enhances the decoupling
between the helmet and head rotations.23 We also in-
cluded a helmet with the corrugated ‘wavy’ cellular
liner called WaveCel (Fig. 1). This liner technology is
claimed to increase shear-compliance during collapse
and mitigate head rotation.8 Another technology that
we evaluated was the add-on shear pads, called SPIN
(Fig. 1). This technology is also claimed to increase the
relative motion between the helmet and head, thus
mitigating head rotation. Finally, we included a radical
technology, the airbag helmet Hövding 3.0 (Fig. 1).32

This helmet has been shown to reduce the head linear
acceleration by several folds32 and has been shown to
reduce peak head rotational acceleration in oblique
impacts.49
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TABLE 1. Summary of all the bicycle helmets included in the study with their respective technologies dedicated for managing
rotational motion of the head in impact and advertised helmet type i.e. Urban/Skate, Road, or Mountain Bike (MTB)

Bike helmets Helmet ID (HID) Rotational technologies Type

Abus Hyban 2 1 – Urban/skate

Bell crest universal 7 – Urban/skate

Biltema bicycle helmet 2 – Road

Closa design fuga 24 – Urban/skate

Giro caden 26 – Urban/skate

Halford commuter helmet 12 – Urban/skate

Rockrider MTB ST 500 20 – MTB

Van Rysel RoadR 900 19 – Road

Bell super air R 8 MIPS MTB

Bell trace 10 MIPS Road

Biltema bicycle helmet 15 MIPS Road

Bontrager solstice 6 MIPS Road

Giro agilis 17 MIPS Road

Giro caden 29 MIPS Urban/skate

Giro quarter FS 27 MIPS Urban/skate

Lazer blade 3 MIPS Road

Occano 28 MIPS Road

Scott vivo plus 22 MIPS MTB

Smith convoy 13 MIPS Road

Specialized ambush ANGi MIPS 25 MIPS MTB

Specialized S-works prevail II w/ ANGi MIPS 23 MIPS Road

Sweet protection outrider 21 MIPS Road

Tec quadriga 18 MIPS Road

Bontrager specter WaveCel 4 WaveCel Road

POC axion SPIN 14 SPIN MTB

POC tectal SPIN 16 SPIN MTB

Hövding 3.0 5 Airbag Road

FIGURE 1. Mid-sagittal cross-sectional views of some of the helmets used in this study (from left to right): A conventional helmet,
a ‘multi-directional impact protection system’ (MIPS) helmet, a corrugated ‘wavy’ cellular liner (WaveCel) helmet, a shear pad
(SPIN) helmet and an airbag helmet (Hövding 3.0).
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Oblique Impact Tests

In order to test helmets under oblique impacts at
different locations, we used the method proposed by
the CEN Working Group 11 ‘‘Rotational test meth-
ods’’.54 This method requires testing helmets under
three different oblique impacts, shown in Fig. 2a.
These impacts are representative of impacts in bicycle
accidents and are based on the reconstruction of 1024
bicycle accidents.10,54 The helmet was mounted onto
the 50th male Hybrid III headform, the chin strap was
fastened and the helmeted headform was dropped onto
a 45� anvil covered with a 40-grit sandpaper repre-
senting asphalt. The impact speed was 6.3 m/s. A
digital inclinometer was used to position the helmeted
headform, and a camera system was used to ensure the
precision in positioning. An array of nine accelerom-
eters in the 3-2-2-2 arrangement was mounted inside

the headform.43 This method allowed us to determine
the linear and rotational accelerations of the centre of
gravity (CoG) of the headform with respect to the
head-fixed axes (Fig. 2b and 2c). The accelerations
were acquired at a frequency of 20kHz and filtered
using an IOtechDBK4 12-pole Butterworth low-pass
filter.1

Each helmet was tested at least twice for each im-
pact location using two separate helmets to analyse the
variability. The mean responses for all six accelerations
were calculated and used for further analysis. All tests
were performed by a test lab accredited for testing and
certification in accordance with the European standard
via Folksam Insurance Group. They were using the
same test set-up as for the regulatory tests. Thereby,
each helmet was inspected, and the impact locations
were chosen to be far separated from prior impact

FIGURE 2. Setup of the three experimental impact conditions carried out for each helmet (a). For each of the impacts, three
translational and three rotational acceleration time-history pulses are recorded about the CoG of the HIII headform (b). These are
then applied to the detailed finite element model of TBI (c) which is then further analysed to extract brain strain as an injury metric
in regions-of-interest such as the corpus callosum and sulci (d). The three impacts were selected to produce different head
rotations (a, b). Impact 1, with the initial position of the headform X-, Y- and Z-axis 0�, produces predominant rotation about the X-
axis. For impact 2, the initial position of the headform was X-, Y-axis 0� and Z-axis -90�, which produces predominant rotation about
the Y axis. For impact 3, the Initial position of the headform was X- and Z-axis 0� and 65� around Y-axis. This impact produces large
rotation about the Z-axis compared to the other impacts.
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location to minimize influence of prior damage in
subsequent tests.

Kinematics-Based Measures of TBI

The linear and rotational accelerations of the
headform’s CoG were processed to extract the kine-
matic injury metrics that are commonly used to predict
brain injury, including peak translational acceleration
(PTA), peak rotational acceleration (PRA), peak
rotational velocity (PRV) and brain injury criterion
(BrIC) 50. The peak values are the maximum of the
magnitude of each vector:

PTA ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax tð Þ2þay tð Þ2þaz tð Þ2
q

� �

ð1Þ

PRA ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_xx tð Þ2þ _xy tð Þ2þ _xz tð Þ2
q

� �

ð2Þ

PRV ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xx tð Þ2þxy tð Þ2þxz tð Þ2
q

� �

ð3Þ

BrIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmaxfxx tð Þg=xxCÞ2 þ ðmaxfxy tð Þg=xyCÞ2 þ ðmaxfxz tð Þg=xzCÞ2
q

:

ð4Þ

In these equations, ~a ¼ ax; ay; az
� �

is the transla-

tional acceleration, ~x is the rotational velocity and _~x is
the rotational acceleration. For the calculation of
BrIC, the peak angular velocities about each axis were
employed regardless of the time at which each peak
occurs, and xxC, xyC and xzC are the components of

the critical rotational velocity with values 66.25, 56.45
and 42.87 rads/s respectively as recommended by Ta-
khounts et al.50

Finite Element Modelling of TBI

We used an anatomically detailed finite element
model of TBI to predict the distribution of strain
across the brain during oblique impacts.22,29,48 The
model incorporates fine details of brain anatomy such
as sulci and gyri. The prediction of the model for brain
displacement has been validated against recent cadaver
experiments where the post-mortem human subject
heads were subjected to well-controlled rotations.21

To simulate the impacts, the skull was assumed rigid
due to its negligible deformation in helmeted impacts
and the headform CoG accelerations from the experi-
mental impacts were applied to the skull at the CoG of
the head model (Figs. 2b and 2c). Simulations were
carried out using the non-linear explicit dynamics
solver LS-DYNA (R10.0, LSTC, US). Each simulation
spanned 30 ms from the start of impact except for the

Hövding impact which spanned 75 ms due to the ex-
tended time it remained in contact with the anvil.
These durations ensured full capture of the peak brain
deformation and strains resulting from the impact. The
simulation outputs were postprocessed to determine
the maximum value of the 1st principal Green-La-
grange strain at each element of the brain (called strain
hereafter) and results were written into a NIFTI
(Neuroimaging Informatics Technology Initiative) file
for further analysis.

We determined the 90th percentile value of strain
across the whole brain as a measure of overall brain
response to the impact. We also determined strain in
two regions of interest, corpus callosum and sulci
(Fig. 2d). For the corpus callosum, the 90th percentile
strain was determined. To determine strain in sulci,
first Freesurfer was used to segment the structural
MRI used to generate the FE model. This process
resulted in an accurate spatial map of the grey/white
matter boundary, which was then subdivided into
regions of interest based on the Destrieux Atlas,
including labelling of 30 gyri and 33 sulci in each
hemisphere. The NIFTI image of strain was registered
to the Freesurfer space using a standard affine trans-
formation. This allowed for the calculation of mean
strain within the anatomically correct sulcal maps.

Statistical Analysis

The performance of each helmet fitted with a new
technology was compared with the performance of
conventional helmets serving as controls. The mean
and standard deviation of the injury metrics of con-
ventional helmets were used to calculate helmet-speci-
fic z-scores. A z-score of 2 1 indicates that the
performance measure of the helmet is one standard
deviation smaller than the mean of the controls. We
used a significance level of 0.05, which for a two-sided
test is equivalent to a z-score outside the 2 1.96 to +
1.96 range.16 Hence, a helmet that is significantly dif-
ferent to conventional helmets would have a z-score
outside these bounds. We also determined the per-
centage change of each outcome measure of a helmet
with respect to the mean of the conventional helmets.

RESULTS

Head Motion

Snapshots of the high-speed videos for impact 1 are
shown in Fig. 3a for some helmets along with the mean
and bounds of the linear and rotational acceleration
time histories for all impacts in Fig. 3b. Between 8 and
10 ms, when both linear and rotational accelerations
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FIGURE 3. (a) Snapshots from the high-speed videos of a helmet from each technology category captured 10 ms apart, 10 and 20
ms after the start of impact 1. (b) Mean resultant translational and rotational time-history pulses colour-coded by technology. A
filled region bounds the minimum and maximum recorded traces across all helmets where more than one helmet was assessed for
a given technology. The results show that acceleration pulses peaked between 8 and 10 ms with an impact duration under 20 ms
except for the Hövding 3.0 airbag helmet (white). Due to the larger size of the inflated airbag helmet, the impact duration was
significantly increased and hence the peak was dramatically reduced. In all cases, translational accelerations did not exceed 150 g
and rotational accelerations rarely exceeded 8 krads ms21.
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have reached their peak, the helmets have rotated
noticeably on the headform except the Hövding airbag
helmet. At time 20 ms, headform accelerations have
reached near zero for all helmets, except for Hövding,
causing noticeable headform rotation (Fig. 3a).

The performance of the Hövding helmet is very
different to the other helmets. It remains in contact
with the anvil for 2–3 folds longer than the other hel-
mets and as a result the acceleration of the headform is
2–3 folds smaller than that with other helmets across
all impacts (Fig. 3b).

Kinematics-Based Measures of Brain Injury Are Lower
in Helmets with New Technologies

Some of the helmets fitted with the new technologies
had significantly different PTA, PRA, PRV and BrIC
compared to conventional helmets (Fig. 4). The hel-
mets fitted with MIPS had significantly lower PTA
compared to conventional helmets for all impacts
(impact 1: 7–21%, 2: 19–36%, 3: 18–28% - for z-scores
and p values please see Tables 2, 3, 4, 5). However, one
of the helmets with MIPS had a significantly higher
PTA for impact 1 (11%) and another MIPS helmet
had a significantly higher PTA for impact 3 (17%).
33% of the helmets fitted with MIPS had significantly
lower PRA in impact 1 (38–46%), 53% in impact 2
(30–52%) and 40% in impact 3 (22–35%). Similarly,
40% of the helmets fitted with MIPS had significantly
lower PRV in impact 1 (33–50%), 60% in impact 2
(16–47%) and 47% in impact 3 (16–35%). Finally,
47% of the helmets fitted with MIPS had significantly
lower BrIC in impact 1 (25–45%), 60% in impact 2
(16–46%) and 40% in impact 3 (15–41%). When
comparing the Giro Caden helmet versions with and
without MIPS, we find that all kinematic-based injury
metrics are reduced with the MIPS version (Tables 1, 2,
3, 4, 5). When comparing the Biltema helmet versions
with and without MIPS, we find that all kinematic-
based injury metrics are reduced with the MIPS ver-
sion except for PTA, which was increased. However,
the Biltema helmet versions had design differences not
exclusive to MIPS. None of the helmets fitted with
MIPS had significantly higher rotational measures of
brain injury compared to the conventional helmets.

In comparison to conventional helmets, the Wave-
Cel helmet had significantly lower PTA in impacts 1
and 2 (1: 15% and 2: 27%). This helmet also had
significantly reduced PRV in impact 1, and PRA and
PRV in impact 2 (1: 33% reduction in PRV, 2: 46%
reduction in PRA and 20% reduction in PRV). The
WaveCel helmet had a significantly lower BrIC in
impact 1 and 2 (1: 29%, 2: 19%).

The helmets fitted with SPIN (Axion and Tectal),
hereon referred to as SPIN 1 and SPIN 2 respectively,

presented different responses. Only SPIN 1 had a sig-
nificantly lower PTA in impact 1 and 3 compared to
conventional helmets (1: 10%, 3: 13%). However, only
SPIN 2 had a significantly lower PTA in impact 2
(16%). Neither SPIN helmets had significantly lower
PRA, PRV or BrIC in impact 1 and 2. Only SPIN 1
had a significantly lower PRA, PRV and BrIC in im-
pact 3 (PRA: 24%, PRV: 20%, BrIC: 19%).

Finally, the airbag helmet had significantly reduced
PTA and PRA in all impacts considering both 30 and
75 ms durations. PTA was significantly reduced in all
three impacts with this helmet irrespective of duration
(1: 75%, 2: 76% and 3: 76%). PRA was also signifi-
cantly reduced almost identically across all three im-
pacts. However, the reduction in PRA slightly
depended on analysis duration particularly for impact
3 (1: 80%, 2: 76% and 3: 66%@ 30ms; 1: 80%, 2: 79%
and 3: 74% @ 75ms). PRV and BrIC were more dra-
matically affected by analysis duration. We found both
PRV and BrIC to be significantly larger with this hel-
met in impact 2 (PRV: 69%, BrIC: 70%) and 3 (PRV:
20%, BrIC: 16%) and within normal ranges in impact
1 considering a 75ms analysis duration. Considering a
30ms duration, PRV and BrIC were significantly re-
duced in both impact 2 (PRV: 60%, BrIC: 62%) and 3
(PRV: 47%, BrIC: 55%) and within nominal ranges in
impact 1.

Strain Across the Whole Brain Is Lower in Helmets
with New Technologies

We observed a large variation in strain distribution
across the brain when using different helmets in im-
pacts 1, 2 and 3 (Fig. 5). The axial sections of the brain
show that the three impact conditions led to noticeably
different strain patterns for each helmet. Generally,
larger strains where more focused in the cortical
regions and the corpus callosum.

To better show the effects of the technology on
brain strain, we plotted the 90th percentile strain
across the whole brain in Fig. 6. A large variation in
the strain can be seen across the helmets, from 0.01
with the airbag helmet to 0.19 with a conventional
helmet. Compared to the performance of conventional
helmets, strain was within normal ranges in all MIPS
helmets for impact 1. In impacts 2 and 3, strain was
significantly lower in 60% of MIPS helmets (2: 35–
66%, 3: 23–51% - for z-scores and p values please see
Tables 6). When comparing the Giro Caden and Bil-
tema helmet versions with and without MIPS, we find
that strain measures in all brain regions are reduced
with the MIPS versions.

Likewise, strain was lower in the WaveCel helmet in
impact 2 (59%), but not in impact 1 or 3. Strain was
also significantly reduced in impact 3 in the SPIN 1
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helmet, however no significant reductions were
observed for the other impacts nor in the SPIN 2
helmet. The airbag helmet significantly reduced the
strain in all three impacts irrespective of analysis

duration (1: 86, 2: 90% and 3: 82% @ 30 ms and 1: 81,
2: 89% and 3: 82% @ 75ms). None of the helmets
fitted with the new technologies showed increased
global strain compared to the conventional helmets.

FIGURE 4. The performance of all the helmets in impact condition 1 (left), 2 (middle) and 3 (right) grouped by technology (marker
fill colour) with respect to the four kinematic metrics assessed (PTA, PRA, PRV and BrIC). Solid white horizontal lines represent the
mean metric value of each technology. The dotted white horizontal lines represent the mean for conventional helmets (red). The red
and green margins represent regions where the performance would be significantly worse or better than conventional helmets for
that metric (p < 0.05). The right-hand side axis of each plot represents the percentage difference of the metric value of each helmet
with respect to the mean of the conventional helmets. The results show that, in most cases, helmets perform either significantly
better than (green marker edge) or insignificantly different to conventional helmets, with rare occasions where helmets perform
significantly worse (red marker edge).
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TABLE 2. The PTA percentage difference, z-score and p value of each helmet (referenced by the HID) in comparison to the
conventional helmets for each impact condition. The HID cell colours represent the different technologies (see Fig. 1).

PTA
Impact 1 Impact 2 Impact 3

HID % diff. z-score p value % diff. z-score p value % diff. z-score p value

3 2 9 2 2.416 0.016 1.4 0.18 0.857 2.3 0.482 0.63

6 2 7.4 2 1.985 0.047 2 9.8 2 1.242 0.214 0.2 0.035 0.972

8 2 20.9 2 5.591 0 2 3.8 2 0.475 0.635 2 0.1 2 0.012 0.99

10 2 6.1 2 1.632 0.103 1.9 0.239 0.811 2 4.5 2 0.948 0.343

13 10.7 2.85 0.004 2 6.8 2 0.862 0.389 2 5.8 2 1.228 0.219

15 2 0.3 2 0.077 0.939 2 4.3 2 0.539 0.59 17.1 3.641 0

17 2 15.2 2 4.061 0 2 2.9 2 0.368 0.713 2 4.8 2 1.02 0.308

18 2 19.3 2 5.16 0 2 19.4 2 2.447 0.014 6.1 1.307 0.191

21 2 21.4 2 5.72 0 2 21.9 2 2.767 0.006 2 17.9 2 3.807 0

22 2 11.8 2 3.15 0.002 2 14.9 2 1.888 0.059 2 6 2 1.273 0.203

23 2 19.2 2 5.14 0 2 35.6 2 4.501 0 2 28.3 2 6.017 0

25 2 9.6 2 2.571 0.01 2 9.1 2 1.145 0.252 2 6.7 2 1.415 0.157

27 2 1.5 2 0.408 0.683 2 10.7 2 1.348 0.178 2 4.7 2 1.003 0.316

28 2 4.7 2 1.266 0.206 2 19.5 2 2.463 0.014 2 3.6 2 0.763 0.445

29 2 7.2 2 1.93 0.054 2 5.7 2 0.727 0.467 2 6.3 2 1.351 0.177

4 2 14.6 2 3.905 0 2 27.4 2 3.463 0.001 2 6.8 2 1.441 0.15

14 2 10 2 2.669 0.008 2 3.4 2 0.428 0.669 2 13 2 2.774 0.006

16 2 7.9 2 2.125 0.034 2 16.2 2 2.047 0.041 2 8.9 2 1.899 0.058

530 ms 2 74.8 2 19.984 0 2 76.2 2 9.632 0 2 76.1 2 16.205 0

575 ms 2 74.8 2 19.984 0 2 76.2 2 9.632 0 2 76.1 2 16.205 0

TABLE 3. The PRA percentage difference, z-score and p value of each helmet (referenced by the HID) in comparison to the
conventional helmets for each impact condition. The HID cell colours represent the different technologies (see Fig. 1).

PRA
Impact 1 Impact 2 Impact 3

HID % diff. z-score p value % diff. z-score p value % diff. z-score p value

3 2 27.6 2 1.466 0.143 2 17 2 1.423 0.155 2 35.2 2 3.658 0

6 2 35.9 2 1.906 0.057 2 22.4 2 1.877 0.061 2 14.9 2 1.545 0.122

8 2 46.3 2 2.458 0.014 2 37 2 3.101 0.002 2 25.2 2 2.617 0.009

10 2 41.8 2 2.216 0.027 2 35.4 2 2.966 0.003 2 21.7 2 2.257 0.024

13 2 9.9 2 0.526 0.599 2 4.7 2 0.395 0.693 2 6.5 2 0.676 0.499

15 2 31.2 2 1.655 0.098 2 50.9 2 4.265 0 2 22.3 2 2.312 0.021

17 2 14.6 2 0.773 0.44 2 12.1 2 1.016 0.31 2 7.9 2 0.824 0.41

18 2 37.8 2 2.007 0.045 2 29.7 2 2.49 0.013 2 24.2 2 2.517 0.012

21 2 4.8 2 0.253 0.8 2 37.7 2 3.156 0.002 2 24.8 2 2.574 0.01

22 2 36.5 2 1.936 0.053 2 32 2 2.682 0.007 2 17.9 2 1.856 0.063

23 2 37.8 2 2.006 0.045 2 52.1 2 4.361 0 2 12.6 2 1.309 0.191

25 2 22.4 2 1.19 0.234 2 17.6 2 1.47 0.142 2 11.1 2 1.149 0.251

27 2 21.9 2 1.163 0.245 2 11.6 2 0.974 0.33 4 0.412 0.68

28 2 44.5 2 2.363 0.018 2 33.2 2 2.777 0.005 2 3.5 2 0.365 0.715

29 2 19.2 2 1.02 0.308 2 4.2 2 0.35 0.726 2 7.9 2 0.82 0.412

4 2 35.4 2 1.88 0.06 2 45.9 2 3.845 0 2 4.6 2 0.475 0.635

14 2 8.4 2 0.443 0.658 2 18.8 2 1.576 0.115 2 24.1 2 2.506 0.012

16 2 10.6 2 0.563 0.573 2 16.6 2 1.387 0.165 2 8.6 2 0.89 0.373

530 ms 2 74.8 2 19.984 0 2 76.2 2 9.632 0 2 76.1 2 16.205 0

575 ms 2 74.8 2 19.984 0 2 76.2 2 9.632 0 2 76.1 2 16.205 0
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TABLE 4. The PRV percentage difference, z- score and p value of each helmet (referenced by the HID) in comparison to the
conventional helmets for each impact condition. The HID cell colours represent the different technologies (see Fig 1).

PRV
Impact 1 Impact 2 Impact 3

HID % diff. z- score p value % diff. z- score p value % diff. z- score p value

3 2 17.6 2 1.226 0.22 2 22.5 2 2.705 0.007 2 29.8 2 3.845 0

6 2 33.1 2 2.304 0.021 2 16.3 2 1.964 0.05 2 22 2 2.836 0.005

8 2 17.8 2 1.238 0.216 2 24.5 2 2.954 0.003 2 17 2 2.194 0.028

10 2 41.6 2 2.897 0.004 2 32.7 2 3.938 0 2 23 2 2.968 0.003

13 2 8 2 0.56 0.575 2 2.5 2 0.304 0.761 2 9.5 2 1.222 0.222

15 2 37.3 2 2.597 0.009 2 47 2 5.662 0 2 35.5 2 4.58 0

17 2 4 2 0.276 0.783 2 13.8 2 1.667 0.096 2 10 2 1.29 0.197

18 2 42.4 2 2.955 0.003 2 15.3 2 1.842 0.065 2 34.3 2 4.429 0

21 2 0.2 2 0.017 0.986 2 25.5 2 3.065 0.002 2 16 2 2.067 0.039

22 2 35.2 2 2.451 0.014 2 24.5 2 2.95 0.003 2 12.3 2 1.593 0.111

23 2 26.2 2 1.823 0.068 2 19.7 2 2.376 0.018 5.4 0.695 0.487

25 2 11.7 2 0.814 0.416 2 10.8 2 1.303 0.193 2 10.5 2 1.358 0.174

27 2 18.1 2 1.26 0.208 2 4.4 2 0.532 0.595 12.3 1.583 0.113

28 2 50.4 2 3.508 0 2 20.3 2 2.449 0.014 2 1.2 2 0.16 0.873

29 2 20.8 2 1.45 0.147 2 12.2 2 1.464 0.143 0.4 0.051 0.959

4 2 33.2 2 2.312 0.021 2 20 2 2.414 0.016 0.4 0.052 0.959

14 2 2.3 2 0.161 0.872 2 13 2 1.57 0.116 2 20 2 2.578 0.01

16 5.3 0.37 0.711 3.1 0.376 0.707 2 3.8 2 0.496 0.62

530 ms 2 27.2 2 1.894 0.058 2 60.4 2 7.271 0 2 47.3 2 6.102 0

575 ms 2 15.5 2 1.077 0.281 68.5 8.248 0 19.5 2.517 0.012

TABLE 5. The BrIC percentage difference, z- score and p2 value of each helmet (referenced by the HID) in comparison to the
conventional helmets for each impact condition. The HID cell colours represent the different technologies (see Fig. 1).

BrIC
Impact 1 Impact 2 Impact 3

HID % diff. z- score p value % diff. z- score p value % diff. z- score p value

3 2 15.5 2 1.224 0.221 2 22.8 2 2.837 0.005 2 26.9 2 3.575 0

6 2 30.8 2 2.431 0.015 2 16.1 2 2.005 0.045 2 21.4 2 2.847 0.004

8 2 15.2 2 1.204 0.229 2 21.6 2 2.691 0.007 2 12.8 2 1.707 0.088

10 2 41.8 2 3.304 0.001 2 32.8 2 4.076 0 2 25.4 2 3.37 0.001

13 2 1.4 2 0.11 0.912 2 2.3 2 0.287 0.774 2 4.3 2 0.578 0.563

15 2 32.5 2 2.57 0.01 2 46.2 2 5.744 0 2 41.3 2 5.486 0

17 2 7 2 0.554 0.58 2 14.6 2 1.812 0.07 2 12.4 2 1.644 0.1

18 2 35.2 2 2.776 0.006 2 15.6 2 1.935 0.053 2 38.6 2 5.136 0

21 2 0.4 2 0.031 0.975 2 25.2 2 3.131 0.002 2 14.9 2 1.974 0.048

22 2 30.6 2 2.42 0.016 2 24.4 2 3.039 0.002 2 10.1 2 1.34 0.18

23 2 24.9 2 1.965 0.049 2 19.5 2 2.422 0.015 2.9 0.392 0.695

25 2 12.2 2 0.961 0.337 2 10.7 2 1.328 0.184 2 11.3 2 1.507 0.132

27 2 21.9 2 1.73 0.084 2 4.6 2 0.572 0.567 8.2 1.094 0.274

28 2 45.4 2 3.586 0 2 19.7 2 2.452 0.014 3.3 0.437 0.662

29 2 20.2 2 1.593 0.111 2 12 2 1.49 0.136 0.7 0.096 0.924

4 2 29.1 2 2.298 0.022 2 18.9 2 2.347 0.019 5 0.669 0.503

14 2.6 0.208 0.835 2 12.8 2 1.595 0.111 2 18.6 2 2.476 0.013

16 2 7.9 2 2.125 0.034 2 16.2 2 2.047 0.041 2 8.9 2 1.899 0.058

530 ms 2 74.8 2 19.984 0 2 76.2 2 9.632 0 2 76.1 2 16.205 0

575 ms 2 74.8 2 19.984 0 2 76.2 2 9.632 0 2 76.1 2 16.205 0
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Strain in Corpus Callosum Is Lower in Helmets
with New Technologies

The 90th percentile strain in corpus callosum (CC)
was generally larger than that across the whole brain,
ranging from 0.08 to 0.28. Most helmets with new
technologies had significantly lower CC strains. On

bFIGURE 5. Voxel-wise representation of the maximum Green
Lagrange strain in the brain in the transverse plane as a result
of each impact condition for each helmet. The coloured
marker to the left of each helmet name represents the
technology. The results show a large variation in brain
strain patterns across helmets and across impact conditions
for each helmet.

FIGURE 6. The performance of all the helmets in impact condition 1 (left), 2 (middle) and 3 (right) grouped by technology (marker
fill colour) with respect to the Green-Lagrange strain across the entire brain (global) as well as in brain regions-of-interest (corpus
callosum and sulci). For the global and corpus callosum, the 90th percentile strain value was used. For the sulci, the mean strain
value was used. Solid white horizontal lines represent the mean metric value of each technology. The dotted white horizontal lines
represent the mean for conventional helmets (red). The red and green margins represent regions where the performance would be
significantly worse or better than conventional helmets for that metric (p > 0.05). The right-hand side axis of each plot represents
the percentage difference of the metric value of each helmet with respect to the mean of the conventional helmets. The results
show that, in most cases, helmets perform either significantly better than (green marker edge) or insignificantly different to
conventional helmets, with rare occasions where helmets perform significantly worse (red marker edge).

BIOMEDICAL
ENGINEERING 
SOCIETY

F. ABAYAZID



TABLE 6. The global 90th percentile brain strain percentage difference, z- score and p value of each helmet (referenced by the
HID) in comparison to the conventional helmets for each impact condition. The HID cell colours represent the different

technologies (see Fig. 1).

Global
Impact 1 Impact 2 Impact 3

HID % diff. z- score p value % diff. z- score p value % diff. z- score p value

3 2 45 2 1.313 0.189 2 34.7 2 1.938 0.053 2 50.7 2 4.491 0

6 2 49.7 2 1.45 0.147 2 35.3 2 1.973 0.048 2 31.2 2 2.768 0.006

8 2 58.7 2 1.713 0.087 2 51.8 2 2.892 0.004 2 37.8 2 3.348 0.001

10 2 57.3 2 1.673 0.094 2 50.5 2 2.82 0.005 2 34.1 2 3.022 0.003

13 2 18.3 2 0.534 0.593 2 11.1 2 0.622 0.534 2 10.1 2 0.898 0.369

15 2 49.2 2 1.436 0.151 2 65.1 2 3.633 0 2 47 2 4.164 0

17 2 20.9 2 0.609 0.543 2 24.1 2 1.347 0.178 2 22.8 2 2.018 0.044

18 2 57.4 2 1.676 0.094 2 43.6 2 2.437 0.015 2 44.3 2 3.926 0

21 2 10 2 0.292 0.77 2 53.2 2 2.97 0.003 2 37.2 2 3.294 0.001

22 2 52.1 2 1.52 0.129 2 45.3 2 2.531 0.011 2 28.8 2 2.547 0.011

23 2 50 2 1.458 0.145 2 66.2 2 3.7 0 2 19.4 2 1.717 0.086

25 2 30.3 2 0.884 0.377 2 28.5 2 1.589 0.112 2 20.7 2 1.829 0.067

27 2 33.7 2 0.983 0.326 2 19.8 2 1.107 0.268 16 1.417 0.156

28 2 61.3 2 1.788 0.074 2 45.9 2 2.565 0.01 2 8.5 2 0.754 0.451

29 2 33.9 2 0.989 0.323 2 15.6 2 0.873 0.383 2 6.3 2 0.557 0.578

4 2 51 2 1.487 0.137 2 58.5 2 3.267 0.001 2 5.3 2 0.469 0.639

14 2 11.6 2 0.339 0.735 2 26.7 2 1.49 0.136 2 43.5 2 3.853 0

16 2 9.1 2 0.265 0.791 2 20.9 2 1.166 0.244 2 15.6 2 1.381 0.167

530 ms 2 86.4 2 2.522 0.012 2 90.2 2 5.035 0 2 82.4 2 7.301 0

575 ms 2 80.7 2 2.355 0.019 2 89.4 2 4.992 0 2 81.8 2 7.248 0

TABLE 7. The CC 90th percentile brain strain percentage difference, z- score and p value of each helmet (referenced by the HID) in
comparison to the conventional helmets for each impact condition. The HID cell colours represent the different technologies (see

Fig. 1).

CC
Impact 1 Impact 2 Impact 3

HID % diff. z- score p value % diff. z- score p value % diff. z- score p value

3 2 19.9 2 1.218 0.223 2 26.2 2 3.047 0.002 2 31.1 2 3.59 0

6 2 35.8 2 2.195 0.028 2 22.1 2 2.575 0.01 2 24.1 2 2.779 0.005

8 2 22.6 2 1.387 0.165 2 33.5 2 3.899 0 2 17.7 2 2.04 0.041

10 2 46.8 2 2.871 0.004 2 37.9 2 4.413 0 2 19.2 2 2.212 0.027

13 2 0.1 2 0.008 0.994 2 3.9 2 0.453 0.651 2 7.2 2 0.826 0.409

15 2 36.9 2 2.263 0.024 2 54.4 2 6.339 0 2 28 2 3.227 0.001

17 2 13.9 2 0.853 0.394 2 18.7 2 2.182 0.029 2 6.6 2 0.761 0.447

18 2 43 2 2.639 0.008 2 22.2 2 2.581 0.01 2 31 2 3.571 0

21 2 1.4 2 0.087 0.931 2 31.8 2 3.704 0 2 16.9 2 1.953 0.051

22 2 37.3 2 2.286 0.022 2 27.2 2 3.171 0.002 2 10 2 1.151 0.25

23 2 33.3 2 2.039 0.041 2 31.1 2 3.616 0 8.9 1.03 0.303

25 2 14.3 2 0.878 0.38 2 12.6 2 1.472 0.141 2 9.8 2 1.129 0.259

27 2 23.7 2 1.452 0.147 2 6.8 2 0.795 0.427 18.3 2.107 0.035

28 2 52 2 3.188 0.001 2 26 2 3.032 0.002 0.1 0.006 0.995

29 2 21.1 2 1.294 0.196 2 11.3 2 1.317 0.188 4.4 0.506 0.613

4 2 32.4 2 1.986 0.047 2 33.8 2 3.933 0 3.5 0.405 0.685

14 2 6.7 2 0.413 0.68 2 13.9 2 1.614 0.107 2 23.6 2 2.725 0.006

16 1.6 0.097 0.923 2 0.6 2 0.065 0.948 2 3.9 2 0.447 0.655

530 ms 2 59.7 2 3.659 0 2 66.2 2 7.712 0 2 67.2 2 7.751 0

575 ms 2 47.5 2 2.91 0.004 2 50.5 2 5.878 0 2 47.7 2 5.502 0
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one occasion, a helmet showed a significantly higher
CC strain. Significantly lower strain in the CC was
found with 47% of MIPS fitted helmets in impact 1
(33–52%), 73% in impact 2 (19–54%) and 40% in
impact 3 (17–31% - for z-scores and p-values please see
Tables 7). A significantly increased CC strain was
found with one of the helmets fitted with MIPS in
impact 3 (18%). Significantly lower CC strain was
found with the WaveCel helmet in impact 1 and 2 (1:
32%, 2: 34%), but not 3. Of the SPIN helmets, a sig-
nificant reduction in CC strain was found only with
SPIN 1 in impact 3 (24%). A significant reduction in
the CC strain was found in all impacts with the
Hövding 3.0 helmet considering both analysis dura-
tions (1: 60%, 2: 66% and 3: 67%@ 30ms and 1: 48%,
2: 51% and 3: 48% @ 75ms,).

Strain in Sulci Is Also Lower in Helmets with New
Technologies

Finally, we determined the mean strain across all
sulcal regions for all helmeted headform impacts.
Strain in sulci was ranging from 0.06 to 0.27 and it was
generally larger than the 90th percentile strain across
the whole brain. Significant reduction in sulci strain
was found with 40% of MIPS fitted helmets in impact
1 (33–50%), 67% in impact 2 (20–53%) and 53% in
impact 3 (16–45% - for z-scores and p values please see
Table 8). Significantly lower sulci strain was found

with the WaveCel helmet in impacts 1 and 2 (1: 33%, 2:
34%) but not 3. Of the SPIN helmets, the sulci strain
was significantly lower only with SPIN 1 in impact 3
(25%). A significant reduction in the sulci strain was
found with the airbag helmet in all impacts irrespective
of analysis duration (1: 57%, 2: 74% and 3: 75% @ 30
ms; 1: 47%, 2: 61% and 3: 51% @ 75 ms). None of the
helmets fitted with new technologies showed signifi-
cantly increased sulcal strain compared to the con-
ventional helmets.

DISCUSSION

We showed that the new helmet technologies can
provide better protection under oblique impacts than
conventional helmets. For this assessment, we used a
new test method proposed by CEN/TC158/WG11,
designed to represent real-world oblique impacts and
recorded translational and rotational motions of the
headform. This enabled a unique brain strain analysis
which considers key anatomical regions such as corpus
collosum and sulci using a highly detailed TBI model.
The results of this study show that in comparison with
the conventional helmets, the helmets fitted with
MIPS, WaveCel, SPIN and Hövding can reduce peak
rotational acceleration and velocity, BrIC, overall
brain strain and strain in corpus callosum and sulci.
None of these helmets showed a significant increase

TABLE 8. The mean brain sulci strain percentage difference, z- score and p value of each helmet (referenced by the HID) in
comparison to the conventional helmets for each impact condition. The HID cell colours represent the different technologies (see

Fig. 1).

Sulci
Impact 1 Impact 2 Impact 3

HID % diff. z- score p value % diff. z- score p value % diff. z- score p value

3 2 23.4 2 1.515 0.13 2 25.8 2 2.915 0.004 2 33.1 2 4.331 0

6 2 32.7 2 2.12 0.034 2 20.4 2 2.312 0.021 2 22.1 2 2.886 0.004

8 2 27.6 2 1.788 0.074 2 33.2 2 3.758 0 2 17.8 2 2.322 0.02

10 2 44.2 2 2.865 0.004 2 37.1 2 4.191 0 2 29.1 2 3.807 0

13 2 6.5 2 0.424 0.672 2 3.7 2 0.424 0.672 2 4.5 2 0.593 0.553

15 2 36.3 2 2.354 0.019 2 52.8 2 5.971 0 2 45.1 2 5.892 0

17 2 7 2 0.452 0.651 2 16.3 2 1.84 0.066 2 16.5 2 2.151 0.031

18 2 42.3 2 2.741 0.006 2 22.8 2 2.573 0.01 2 42 2 5.481 0

21 2 0.2 2 0.015 0.988 2 31.7 2 3.585 0 2 19.5 2 2.541 0.011

22 2 35.6 2 2.311 0.021 2 29.5 2 3.338 0.001 2 14.1 2 1.848 0.065

23 2 28.6 2 1.852 0.064 2 33.7 2 3.808 0 2 3.4 2 0.45 0.653

25 2 12.8 2 0.832 0.405 2 13.9 2 1.572 0.116 2 12.3 2 1.612 0.107

27 2 20.9 2 1.353 0.176 2 7.7 2 0.869 0.385 7.2 0.941 0.347

28 2 50.2 2 3.253 0.001 2 26.7 2 3.015 0.003 0.7 0.085 0.932

29 2 21.3 2 1.382 0.167 2 12.2 2 1.378 0.168 2 1.2 2 0.161 0.872

4 2 33 2 2.141 0.032 2 34.1 2 3.86 0 3.8 0.496 0.62

14 2 0.1 2 0.007 0.994 2 15.9 2 1.803 0.071 2 25 2 3.27 0.001

16 5.9 0.382 0.702 2 2.8 2 0.314 0.754 2 2.9 2 0.373 0.709

530 ms 2 56.6 2 3.671 0 2 73.7 2 8.334 0 2 75.1 2 9.806 0

575 ms 2 47.4 2 3.074 0.002 2 60.7 2 6.865 0 2 50.7 2 6.622 0
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across all measures of injury compared to the con-
ventional helmets, except for two helmets fitted with
MIPS and the Hövding when considering a 75 ms
analysis duration.

Our results show that the effectiveness of helmets in
comparison with the conventional helmets depends on
their technology, impact location and injury metric.
For example, the number of MIPS helmets that were
more effective than conventional helmets depends on
the impact location. The discrepancy in performance
of the helmets across impact locations could be due to
the various thicknesses of the helmets in the different
impact locations which may affect the resultant force
vector and subsequent head motion.36 Another
potential reason for the discrepancy between impact
conditions is the geometric shape of the headform
which is not symmetric about all anatomical planes. A
helmet may rotate easier with less constraints imposed
by the head in the coronal plane (impact 1) than the
transverse plane (impact 3). A similar case may be
found when comparing the coronal to the mid-sagittal
rotations (impact 1 vs. impact 2). This may explain
why helmets with MIPS and WaveCel were less effec-
tive in impacts 2 and 3 than 1 with respect to rotational
kinematic and brain injury metrics. For the WaveCel
helmet, its anisotropic liner design may also contribute
to the different performances. Although cadaveric
studies assessing the effect of the direction of rotational
acceleration on TBI is limited, a few computational
studies have shown that the brain tissue strain and TBI
likelihood resulting from rotational acceleration in the
transverse plane (axial rotation) can be larger than
strain resulting from rotation in other anatomical
planes.5,50,53 Hence, considering the poorer perfor-
mance of some of the helmets with dedicated rotational
damping systems in impact 3 than impacts 1 and 2, the
performance of the helmets in future should better
address rotations in the transverse plane.

These findings support the use of three different
impact locations such as in this study, in contrast to
previous work that has considered one impact location
to compare injury mitigation of helmets.9 The choice
of these locations is also an important one. We em-
ployed three oblique impact locations based on the
method proposed by the CEN/TC158/WG11, which
was derived from a head impact location probability
map of 1024 cyclist falls.10,54 Our results provide fur-
ther evidence as to why future standard methods de-
signed to assess the mitigation effects of helmets on
rotational motion of the head should include several
impact locations.

A recent study introducing a novel comparable
method for assessing helmets, named Summation of
Tests for the Assessment of Risk (STAR), reinforces
the finding of this study.6 The STAR method sum-

marises the performance of a helmet into a single value
based on head kinematics and concussion risk curves
derived from American football players. Although the
study used a National Operating Committee on Stan-
dards for Athletic Equipment (NOCSAE) headform,
the study also emphasises the importance of evaluating
several impact locations. However, the STAR assess-
ment was limited to MIPS and conventional helmets.
Here, we expanded on these results with a wider range
of helmet technologies, including WaveCel, SPIN and
an airbag helmet. Moreover, we determined the influ-
ence of these technologies on the brain using our
computational model of TBI.

The airbag helmet, Hövding, outperformed all hel-
mets by far in most metrics except PRV and BrIC
when considering a 75 ms duration. When considering
only the first 30 ms of impact, the airbag helmet out-
performs all helmets across all injury metrics consid-
ered in this study. Reasons for this are likely due to the
impact kinematics which result from the large size and
low stiffness of the helmet. These features result in a
prolonged impact period (~3 times longer than con-
ventional) with a significantly lower peak acceleration
as seen in Fig. 3b and shown in previous work.32

Analysis of the high-speed videos reinforces this,
revealing that the headform has rotated noticeably less
than conventional helmets during the same time peri-
od. Our brain model shows that this is favourable with
respect to brain tissue strain. However, the prolonged
duration of impacts with this helmet means that the
effect of the neck is likely to be considerable in a real-
life impact. Furthermore, due to the size of the airbag,
interaction with the shoulder and neck during the im-
pact is likely. It is also noteworthy that BrIC was
developed on the basis of 30 ms impacts,50 and hence
may not be suitable for longer duration impacts such
as with the Hövding or similar future technologies.

We determined strain in the corpus callosum and
sulci during impacts. Corpus callosum is the largest
white matter tract in the human brain and a common
location of axonal injury after severe TBI.47 Previous
work has shown clear relationship between mechanical
strain and pathology, including axonal damage and
neuroinflammation.4,18 These pathologies can persist
several years after an injury and have been shown to
contribute to accumulation of tau proteins in depths of
sulci in cases of chronic traumatic encephalopathy.11

In an in-vivo experiment on guinea pig’s optic nerve,
Bain et al. determined a 0.21 strain threshold for
producing structural damage.53 A recent study using
an in-vivo controlled cortical impact model in rats has
shown that increasing strain from below 0.1 to around
0.4 increases axonal damage and neuroinflammatory
responses in white matter.6 This suggests that
decreasing strain is an effective way of reducing
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pathology. Hence, we predicted strain in corpus cal-
losum and sulci to, for the first time, determine the
effects of the new helmet technologies on reducing
strains in these key regions of the brain. The predicted
strains were in the range reported in this recent animal
work, though due to differences in biology and com-
putational models, we cannot directly compare the
results. However, this previous work again confirms
that the new technologies, which reduce the strain in
the brain and key anatomical regions are effective
methods for reducing axonal damage and neuroin-
falmmation post-injury.

This study has some limitations. We used a Hybrid
III headform in this study, which is one of the most
biofidelic headforms with regards to the head shape
and size, mass and moments of inertia.28 However, it
has a vinyl rubber skin which has a larger coefficient of
friction in contact with fabric than the human scalp.52

The coefficient of friction of the surrogate skin should
be improved in future to produce more biofidelic test
conditions. Similar to previous studies,14 we used an
isolated headform, thus ignored the potential effects of
the neck during impacts. Several studies have shown
that primary peak loads from head-first impacts are
less affected by the presence of a neck.40,44 Some
studies on helmets have used a HIII neck, but this neck
has limitations, such as stiffness in axial loading,8

which can have adverse effects on the results.45,55 Fu-
ture work should address the development of a sur-
rogate neck that is biofidelic in head-first impacts. This
should enable current and future helmets, particularly
those that produce head accelerations with longer
durations than conventional helmets, such as the air-
bag helmet, to be evaluated with improved fidelity.
Finally, we have attempted to assess similar helmets
with and without the technologies where possible (i.e.
Giro Caden MIPS vs no MIPS, Biltema MIPS vs no
MIPS). However, we were limited with the availability
of helmets with and without the same technologies in
the current market. Notably, the Biltema helmet ver-
sions in this study have other design differences not
exclusive to MIPS that may have contributed to some
of the performance differences seen between the helmet
versions.

A final notable limitation is regarding the statistical
evaluation method employed. We used a z-scoring
approach to test whether an individual helmet per-
formed better or worse than ‘conventional helmets’.
This method enables future comparisons of new hel-
mets to be tested against an established control or
benchmark group of helmets. However, we are limited
in this study by a small control sample size, which can
lead to potential biases. This method can be optimised
in future by testing the ‘diagnostic accuracy’ in the
context of a different control sample sizes.

In summary, our assessment of 27 commercially
available bicycle helmets shows that the majority of
helmets with new technologies have the potential to
reduce peak rotational acceleration and velocity and
maximal strain in corpus callosum and sulci in oblique
impacts. However, the outcome is highly sensitive to
impact location. Hence, incorporating different impact
locations in future oblique impact test methods and
designing helmet technologies for the mitigation of
head rotation in different planes are key to reducing
brain injuries in bicycle accidents, where helmets are
worn.

APPENDIX

Kinematic-based metrics

See Appendix Tables 2, 3, 4, 5.

Brain strain-based metrics

See Appendix Tables 6, 7, 8.
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