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Abstract

The electric conduction under intense electric fields (up to ~ 10° V/m) in nanofluids using surface-
modified ZnO-C, g nanoparticles dispersed in mineral oil as host, is investigated with both
experiments and numerical simulations. The measurements are used to estimate unknown
parameters necessary to represent the generation and loss of electrons in an electrohydrodynamic
model for mineral oil with and without ZnO-C; g nanoparticles in a needle-plane configuration. The
model suggests that ZnO—C; g nanoparticles induce an enhanced field emission from negative needles,
explaining the significantly larger conduction currents measured in the nanofluid compared with
those in the host liquid. It is also found that the scavenging of electrons by ZnO—C, g nanoparticles is a
process which is negligible compared with the loss of electrons due to attachment in mineral oil. It is
shown that ZnO-C;g nanoparticles hinder the streamer initiation process by reducing the effective
electric field at the tip of the needle. This electric field reduction is caused by the combined effect of
enhanced electron injection through ZnO-C, g nanoparticles and strong electron attachment in
mineral oil. Thus, the electric field on the needle tip reaches the same threshold value when the
streamer is incepted in the nanofluid as in mineral oil, although at a larger voltage. Solid evidence
indicating that the additional electron scavenging and the reduced electron mobility introduced by
nanoparticles has no effect in the conduction currents and in the negative streamer inception in the
tested ZnO-C, g nanofluids is shown.

1. Introduction

Interest in the study of nanofluids has been recently motivated by the current need to improve dielectric systems
to meet the continuously increasing demands of the power industry. Several studies have shown that nanofluids
produce a significant enhancement of the insulating properties of traditional dielectric liquids commonly used
in electric power apparatus [1]. Thus, it has been vastly demonstrated that the addition of some nanoparticles
increase the breakdown strength of mineral oil under very different experimental conditions [2—4]. The
obtained dielectric improvements of nanofluids have been found to depend on several factors, such as the type,
surface modification, concentration of the dispersed nanoparticles, and the moisture content of the liquid [4].
Unfortunately, theoretical assessment of the effect of the suspension of nanoparticles in mineral oil has been
difficult since the fundamental physical mechanisms of electrical breakdown in dielectric liquids and their
associated nanofluids are still not well understood [5].

Electric breakdown in dielectric liquids is the consequence of the initiation and development of the so-called
streamers [6]. Streamers are filamentary, branched gaseous channels forming in the liquid under the influence of
an applied electric field, which form a conducting path that may bridge the gap between two electrodes. Despite
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of the large number of studies available in the literature, the processes involved in the initiation and development
of streamers in hydrocarbons such as mineral oil are not yet fully understood [6, 7]. It has been shown that the
presence of a gas cavity is required in order to initiate a positive streamer from an anode electrode [6, 8]. This
process depends on the pressure externally applied to the liquid. However, there is currently no physical
mechanism capable to explain the formation of such a cavity in the liquid phase [6]. On the other hand, streamer
initiation at the cathode (negative streamer) is always preluded by a current pulse in the liquid. This process is
not dependant upon neither the pressure nor the temperature of the liquid [8, 9]. Therefore, negative streamers
are considered to be caused by electronic processes taking place in the liquid.

There are several hypotheses presented in the literature explaining the enhancement of the breakdown
strength of mineral oil when nanoparticles are added [ 10—12]. One hypothesis suggests that hydrophilic
nanoparticles improve the dielectric strength of the host liquid by adsorbing moisture [10, 13—16]. Recent
experimental results show that this hypothesis is consistent only for positive streamer initiation [17].
Hydrophylic nanoparticles have however no effect on negative streamer initiation, which is unaffected by
moisture content [18]. A second hypothesis suggests that nanoparticles improve the dielectric strength of the
liquid by trapping electrons and converting them into slower charge carriers. According to this hypothesis,
nanoparticles will effectively scavenge electrons only if they electrostatically relax within a period shorter than
the time scale associated to the streamer initiation and development processes [12, 19]. Experiments have shown
that nanoparticles with short relaxation time increase the voltage necessary to initiate negative streamers [17]. A
third hypothesis suggests that nanoparticles improve the dielectric strength by increasing the density of shallow
traps in theliquid [11, 20]. Assuming that electronic transport in the liquid mainly occurs by electron hopping
processes, the increase in shallow trap density therefore leads to slower electrons [21]. This hypothesis is related
to similar processes described in polymer nanocomposite dielectrics [22]. A partial correlation between
improvements in positive breakdown voltage by nanofluids with higher trap density has been reported in the
literature [11]. Nevertheless, no direct experimental evidence have been reported until now to clearly
demonstrate the causal effect of the increase in trap density on the breakdown strength enhancement when some
types of nanoparticles are added to mineral oil. Furthermore, several doubts have been cast upon this
hypothesis [18].

Currently, improvements in the streamer initiation and propagation, partial discharge inception or
breakdown voltages measured when nanoparticles are added to mineral oil have been correlated to the different
hypotheses discussed above [5]. Unfortunately, such correlations are not sufficient to conclusively prove a cause-
and-effect relationship with any hypothesis. The main challenge is that these hypotheses are directly related to
microscopic electronic mechanisms induced by nanoparticles in the liquid, which cannot be assessed by
experimental tests also affected by other larger-scale processes. Since electric conduction measurements in
needle-to-plane configuration are only caused by high-field electronic processes in the liquid phase, they can
potentially provide quantitative information to assess the validity of the existing hypotheses under negative
polarity. Electrical conduction measurements in nanofluids have been recently reported [23, 24]. However,
these measurements were analysed using simple analytical approaches that have serious limitations as they
neglect the mutual interaction of different electrohydrodynamic processes taking place in the liquid [5].
Recently, electrical conduction measurements have been analysed through computer simulation to deduce
fundamental processes in cyclohexane and mineral o0il [5, 25]. There, detailed electrohydrodynamic simulations
under stationary conditions were used to successfully estimate the contribution of different electronic processes
from measured conduction currents.

Following a similar methodology as in [5], the electronic processes in the hostliquid are here first
obtained from conduction currents measured in mineral oil for a needle-plane electrode configuration
under both polarities. Then, the electric conduction current is measured and simulated after nanoparticles
are added to mineral oil under negative polarity. In this way, the enhanced injection of electrons due to the
presence of nanoparticles is numerically estimated from the measurements. The electrostatic conditions
prior to streamer initiation in ZnO—C,; g nanofluids and the hostliquid are also assessed with the model. The
electron scavenging and shallow trap hypotheses are analysed and discussed based on the measurement and
simulated results.

In the paper, section 2 presents the experimental procedure implemented. Section 3 introduces the
numerical model used. The additional processes introduced by the presence of nanoparticles are discussed in
section 3.2, where a new analytical formulation for the electron scavenging process is proposed. Section 4
summarizes the obtained experimental and numerical results. Finally, the electric conduction processes just
before streamer inception from negative needle are simulated in section 4.4.
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Figure 1. SEM image of the used needle.

2. Experimental procedure

The experiments are performed using a needle-plane electrode configuration in a vacuum-tight reactor as
previously reported in [5, 26]. The gap distance between the plane and the tungsten needle is here set to
dgap = 830 pum. Figure 1 shows the scanning electron microscope (SEM) image used to characterize the used
needle shape. A hyperbolic approximation of the contour of the image is used to define the needle geometry in
the simulation. The tip radius of the needle defined as the radius at the vertex of the best-fitted hyperbola is
estimated as Ry, = 550 nm.

Nitro 10NX mineral oil is used as received after filtering and degassing for 24 hours through a vacuum tight
circulation path. This liquid is a mix of naphthenic, paraffinic and aromatic hydrocarbons, commonly used as
transformer oil. It is a low viscosity oil containing mainly naphthenic and paraffinic molecules and having an
aromatic content of 6 % [27].

The nanofluid is prepared using the procedure described in [17]. High-purity ZnO nanoparticles with a
narrow size distribution centered at 20nm are synthesized by an aqueous precipitation method, and then
surface-coated with octadecyltrimethoxysilane as described in [28]. This coating renders the nanoparticle
surface hydrophobic and improves the stability of the nanofluid without adding additives (surfactants) into the
liquid. Thus, the hydrophobic and mesoporous coating directly interacts with mineral oil molecules, improving
the colloidal stability while keeping the ZnO surface directly available for electron scavenging. The ZnO-Cg
nanoparticles have a short relaxation time constant of 0.1 ns when dispersed in mineral oil [17], sufficiently low
as to scavenge electrons efficiently according to [19].

In contrast to existing studies measuring conduction currents at different DC voltage levels [23, 24], an
exponential ramp voltage with associated time constant 7 = 4.1 ms and maximum voltage of 4.5kV is here
applied instead. In order to obtain sufficient data for statistical analysis of the conduction current characteristic,
the voltage ramp is applied at least 30 times for each tested condition. In this way, the mean value and standard
deviation along the entire steady-state conduction current characteristic are measured within less than 15
minutes, minimizing the dependence of the results to nanoparticle agglommeration. The experiment is said to
be under positive or negative needle when the needle is positively or negatively charged with respect to the plane
electrode. The electric current flowing through the liquid is obtained as the derivative of the charge measured
using the measurement technique reported in [5].

The electric conduction currents are first measured in mineral oil. These currents measured under both
polarities are used as input to the numerical model described in the next section for the estimation of the
electronic processes in mineral oil. Then, the oil is extracted from the set-up and used as the host liquid for the
preparation of the nanofluid. The ZnO-C, g nanoparticles with mass density p,,, = 5610 kg/ m” are dispersed
into the oil without any surfactant by using an ultrasonic bath for 30 min. The first prepared nanofluid (NFa)
having a mass fraction concentration of 0.01 wt% is inserted into the set-up and the electric conduction currents
are measured a second time. Then, the nanofluid is extracted from the set-up and more ZnO-C;g nanoparticles
are added until a second mass fraction concentration of 0.05 wt% is reached. The nanoparticles are dispersed in
the oil by using the ultrasonic bath for additional 30 min. This second nanofluid (NFb) is inserted into the set-up
and the electric conduction currents are measured a third time. Even though the measurements are also
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performed under both polarities in the nanofluids, only the negative conduction current characteristic is here
reported and used for the analysis of the electronic processes in the presence of nanoparticles as it will be
described in the next section.

Dynamic light scattering measurements with a 633 nm He/Ne laser at 25 deg C show that the nanofluid is
stable during the testing period. However, some agglomeration of the nanoparticles have been detected after
preparation when increasing nanoparticle concentration. Thus, formation of clusters with primary particle
radius distribution centred at 75 and 190 nm are measured for the nanofluids NFa and NFb respectively [17].

3. Numerical model

The simulation of the conduction currents in the tested configuration is performed by implementing the self-
consistent electro-hydrodynamic (EHD) model for mineral oil reported in [5]. This model includes the
electrohydrodynamic motion of the liquid to take into account its effect on the conduction current [25]. In
addition, the model is extended to include the additional processes introduced by the dispersed nanoparticles.
Thus, the charge continuity equations and Poisson equation:

on G
6te + V- #nW - DVn,) = ?I + aimpne‘/ve - nmneWe - Snp - Re.p ne 1p, (1)
on,
E + V- (n, W, — Dnv”n) = ﬂan”eWe - Rp.n ny Np, )
Oty
W +V- (”npwnp - anvnnp) = Snp - Rnp.p Myp Np, 3)
Ony G
E + V.- mW, — D,Vn,) = 7 + Qimpne W, — Ry 1y 1, — Rypp Ny 11y — Rep 1, 1, 4)
en, — Ny, — Ny, — n
V.E—= V2V — ( P e n np), (5)
€o€r

are solved coupled with Navier—Stokes equations for a non-compressible liquid in laminar flow:
V-u=0. (6)

dL(% + (u- V)u) = —Vp + (Vu+e(n, — ny, — ny)E + €o(e, — 1)(& + 2)VE?, 7)

where Eis the electric field, V the electric potential and e the elementary charge. The number density of positive
ions, negative ion and electrons are 7, 11,, and n. respectively. n,,, is the number density of electrons scavenged by
the nanoparticles. €y and ¢, are the vacuum permittivity and the relative permittivity of the liquid. The drift
velocity of electrons, negative ions, charged nanoparticles and positive ions is W, = — u .E, W, = — i, E+u,
W, = — ptpE +uand W, = 1, E + u, respectively. uis the velocity of the liquid, and f, ft,, jt,p and p,, are the
mobility of electrons, negative ions, nanoparticles and positive ions. The mobility of the nanoparticles is
estimated with the Walden rule as y1,,, = Q,,,/(67(R,,), where Q,,, and R,, are the charge and radius of the
nanoparticle, and ¢ the dynamic viscosity of the mineral oil. S,,, is the electron scavenging term due to
nanoparticles in the hostliquid, detailed later in section 3.2. D,, D,,, D,,, and D, are the diffusion coefficients for
electrons, negative ions, nanoparticles, and positive ions. R, R,, , and R,,,, , are the electron-ion, ion-ion and
nanoparticle-ion recombination coefficients. dr, (and p are the mass density, the dynamic viscosity, and the
pressure of the liquid. €y(e, — 1)(e, + 2)VE? is the electric force exerted on the liquid [29]).

The model is solved using the finite element method (FEM) using a commercial software [30]. The electric
current flowing through the electrodes is estimated using the modified Sato equation according to [31]. The
parameters of mineral oil Nytro 10X assumed in the simulations are listed on table 1. Here, some improvements
have been considered for the used parameters in comparison with our previous publication [5]. Particularly, the
diffussion-controlled recombination coefficient is used instead since it is in better agreement with
measurements of recombination in liquids (such as mineral oil) with low electron mobilities [32], in contrast to
the Langevin recombination proposed in [12]. Furthermore, the positive and negative carrier mobilities of
cyclohexane [25] are used instead as representative for those in mineral oil at high electric fields. However, the
reader should be aware that most parameters in table 1 are not yet known in mineral oil at high electric fields and
the values used here are educated estimates in the absence of sufficient experimental data [19, 33].

3.1. Physical processes in the host oil

A detailed simulation analysis of the conduction currents in mineral oil [5] has shown that the electron
generation in the liquid can be described by using generalized equations usually attributed to two different
mechanisms: Zener molecular ionization [35—-37] and electron impact ionization [38—40]. Thus, the generation
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Table 1. Parameters used in the EHD model for

mineral oil.

Parameter Value Source
L 1 x 10~* m?/(Vs) [12]
D, 2.6 x 10°°m?/s [5]
Yo 1 x 107% m?/(Vs) [34]
Hp 3% 107" m?/(Vs) [25]
D,,D, 6.7 x 107" m?/s Calculated
€ 22 [5]
dr 880 kg/m’ [27]
n 1.232 x 1072 kg/(ms) [27]
R, R;; 1x107 2 m’/s [32]

of electrons by Zener molecular ionization is represented by the function G;defined as [12]:
Gr = AE exp(—B; /E), )

where A;and By are constants depending on the liquid. This mechanism is dominant when the needle is
positively charged, with a secondary role as source of initial electrons under negative polarity [5]. In turn, the
electron impact ionisation coefficient c;,,, is given by [32]:

Qimp = Aatyexp(—Byn /E). )

with empirical constants A,,, B, for the liquid with number density #;. This mechanism is the dominant source
of electrons when the needle is negatively charged, having a minor effect under positive polarity [5].

As electrons drift, they are converted into slower negatively charged liquid molecules (negative ions) by a
process known as attachment. Since attachment of electrons in mineral oil has a significant effect when the
needle is negatively charged, it is here considered through the coefficient 1, representing the number of
electrons lost per unitlength . Even though 7, is not known for most hydrocarbons, it is expected to decrease at
high electric fields as the electron energy exceeds the energy difference required to form a negative ion [41]. Even
though the decrease of attachment at high fields could be approximated by a linear function [25], a more general
approximation is here implemented. For that, the attachment coefficient is defined by piece-wise interpolation
from a vector 772]:2 defined at three discrete electric fields E” (where j = 1,2, 3) as:

Cy(E) E® < E< E® (10)

{c1 (E) EM < E< E®

Mo =

given by a two cubic Hermite polynomial functions C;, C, with continuous first derivatives. The electric field
vectoris chosenas {1 x 10°,4 x 10%,2 x 10°} [V/m]. The limit values ¥’ and E®’ in this interval are selected
considering the minimum and maximum electric fields expected in the gap above the ohmic regime. The middle
point E? is arbitrarily chosen as an initial guess of the critical field at which the rates of ionization and
attachment are in the same order of magnitude.

Even though several values have been suggested in the literature for A;and Byin mineral 0il [33, 37, 42], they
do not have any theoretical or empirical justification [33] and have been shown to grossly overestimate the
production of electrons in the liquid [5]. Moreover, the parameters for impact ionization and attachment A ,n;,
B.n; n;]t;, 7722; and 17(“3; in equations (9) and (10) are not known for mineral oil. As in [5], all these parameters
describing the generation and loss of electrons in the host liquid are here tuned until the simulated conduction
currents best fit the corresponding measured currents in mineral oil. However, the search for these parameters is

here implemented instead as an inverse optimization problem. Thus, the parameters Ay, B, A1, By, 7722, 775,2:2

and 77&2 are simultaneously solved as optimization variables that minimize the least square error between the
measured and calculated logarithm of the conduction currents under both polarities. The optimization is
performed using the derivative-free Nelder-Mead method [43].

3.2. Additional electronic processes when nanoparticles are suspended

Once the parameters used to represent the generation and loss of electrons are obtained for mineral oil, they are
assumed to remain unaffected when nanoparticles are added. Observe that even though nanoparticles dispersed
in the oil intensify the electric field around them [19], this local effect will lead to a negligible increase in the
generation of electrons in the liquid. Since this field enhancement vanishes rapidly within a fraction of the
nanoparticle radius, no significant impact or Zener ionization is possible within such a short distance. Thus, the
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simulation of conduction process in the nanofluid under negative polarity is performed considering additional
processes to those already included in the previous subsection.

Even though measurements have showed that the cold field emission is not a relevant conduction
mechanism in mineral oil for sharp needles [5], there is experimental evidence that the presence of ZnO
nanostructures enhance electron injection [44]. Moreover, it has been shown that nanoparticles tend to stick to
the needle tip enhancing its electric field [23]. Thus, single or agglomerated nanoparticles standing on the needle
surface can induce enhanced field emission leading to an increased electron current density ], at the cathode
boundary, defined as [45]

Je = ) (11
¢ BE
where apy = 1.54 X 107° A eV V?and by = 6.83 x 10° eV 1> V. m ™! are the first and second Fowler-
Nordheim parameters. The correction factor 1/ f) and the scaled barrier field fare defined as
v(f) =1 — f+ 0.166f In(f) (12)
3
__¢ (55)2 (13)
dmeger @)

iq

The parameter ¢;;, is the apparent work function defined as the difference of the work function of the emitting
surface ¢ and the energy of the bottom conduction band in the liquid A¢ measured from the vacuum level [46].
Unfortunately, ¢ for the tested ZnO nanoparticles is not yet known. However, there is experimental evidence
that the work function measured in ZnO films with organic ligands (such as the octadecyltrimethoxysilane (C18)
here used) on metal surfaces is significantly lower than the work function of pure ZnO of about 4.8eV [47].
Similarly, A¢ for mineral oil is not known, although it should range between 0 and —0.6 eV by comparison with
other hydrocarbons with similar electron mobility [5]. Considering the existing uncertainities, an apparent work
function ¢p=4eV is here assumed. The parameter 3is the field intensification factor representing the local
increase in electric field on the surface of the needle caused by an emitting single nanoparticle or an agglomerated
cluster [12, 19]. Since Fis difficult to measure or estimate, it is usually taken as a fitting factor [48]. Here, (s
optimized until a good agreement between the simulated and measured conduction current in the nanofluids
under negative polarity is reached considering an emitting nanoparticle agglomerate with the measured mean
primary cluster radius [17].

On the other hand, electrons drifting towards uncharged, dielectrically relaxed nanoparticles can be readily
converted into slow negatively charged nanoparticles [12]. In the literature, this additional electron scavenging
process has been analytically modelled through a time constant 7,,, [12, 19]. The lowest possible value of 7,,, for
conducting nanoparticles is 2ns [ 12]. However, this approach grossly misestimates the electron scavenging
caused by nanoparticles [18]. Therefore, the electron scavenging process is modelled in this work following [18],
where a different analytical expression is derived to represent this process. There, the temporal rate of change of
the charge Q(#) of a single nanoparticle due to electron scavenging is defined as [12, 19]:

dQw) _ 3Q [ew Aw|
dr T A | Qs 307

where the squared term on the right hand side of (14) reflects the reduction in dQ(t)/dt as the limit of electrons
than can be trapped by a nanoparticle is reached. Thus, Q; is the electron saturation charge for the nanoparticle
given by

(14)

Qs = 127 Ry Es (15)

€,i11s the electric permittivity of the host oil and R,,,, is the radius of the nanoparticle. 7, is the time constant for
nanoparticle charging defined as
4e,i1
Tpc = -, (16)
efle [h,

where eis the elementary charge, #, is the number density of electrons present in the nanofluid, and y, is the
electron mobility. The variable A(#) is:
t
1 - exp(t—)]. (17)

Enp — Epil t Oup — Obil

A)=1+2-2 2% exp(—) T Tt Bl
26 + Enp tr 20,1 + Onp

€np 18 the electric permittivity of the nanoparticle. o,;and o,,, are the electric conductivity of the oil and the

nanoparticle, respectively. 7, is the charge relaxation time constant of the nanoparticle given by:
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_ 260 + Enp

T (18)

20,1 + Onp

In the case of a ZnO nanoparticle, 7, &~ 10 ps [19], which is significantly lower than the time scales associated
to the conduction processes in mineral oil [5]. This short relaxation time also allows treating ZnO as a highly
conducting nanoparticle with the electrical conductivity o,,, more than 10 orders of magnitude larger than o,
[19]. Therefore, A(f) &~ 3 and the nanoparticle charging rate dQ(f)/dt in equation (14) becomes

dQ() _ g( Q )2'

= 1
dt The

19
Qs

The electron scavenging source term S,,, due to the presence of all nanoparticles dispersed in a host liquid
with volumetric mass density p,; in equations (1) and (3) is thus [18]

_ Ny dow
e dt

where N,,, is the number density of the nanoparticles dispersed in the host liquid, defined as 3 k,, g, / (47rR3P Pap)
for nanoparticles with radius R,,,, mass fraction concentration k,,, (i.e. 0.01 wt% for NFa and 0.05 wt% for NFb)
and volumetric mass density p,,,. If agglomeration occurs in the nanofluid, N,,, should be estimated using the
mean radius of the measured clusters instead of the radius of a single nanoparticle.

Then, the scavenging source term S,,, can be rewritten by combining equations (15) and (16) into (20) as:

Sup (20)

2
S,y = n.| 3N, R2 W, € o 1 1)
np e np xnp ¥Ve (12 - anp i E)an

In addition to the processes above, the electron mobility i, has also been suggested to change when
nanoparticles are dispersed in mineral oil [11]. It has been hypothesed that nanoparticles create additional
shallow traps of less than 0.5eV in which electrons get captured and then released. This trapping and detrapping
process of electron transport would lead to a decrease of the electron mobility of the nanofluid in relation to the
host liquid. Up to now, only indirect estimates using electron hoping theory predict a reduction of the electron
mobility of Al,O3, TiO, and Fe;0,4 nanofluids of less than 43% compared with mineral oil [11]. Since the chosen
electron mobility of the ZnO nanofluid does not affect the simulated conduction currents, even for 4, aslow as
half of that in the host liquid, the same value in table 1 is used in the simulations. Similarly, the presence of
nanoparticles have also been reported to influence the ion mobilities in mineral oil [49, 50]. However, such
measurements have been only made at low electric fields for TiO, and ferro nanofluids and no data are available
about the change of the ionic mobilities in mineral oil when ZnO nanoparticles are used. Thus, the ionic
mobilities in the nanofluid are also here taken as those of the host liquid.

4, Results

4.1. Conduction currents in mineral oil
Current-voltage (IV) characteristics measured in dielectric liquids are generally classified within three different
regimes [5, 18]: ohmic, injection/generation, and space charge limited. Atlow electric fields in the ohmic
regime, the current increases linearly with applied voltage due to the presence of ionic charges in the liquid. As
the electric field increases, the measured current increases exponentially with applied voltage due to injection
and/or generation of electrons, defining the second regime. At even higher electric fields, the produced ionic
charges of the same polarity as the needle accumulate in front of it, creating a space charge cloud sufficiently large
as to distort the electric field [18, 48]. Thus, the electric field at the tip of the needle becomes lower than the
Laplacian electric field. As a consequence, the rate of increase of the conduction current with voltage starts
saturating, defining the space charge limited regime.

figure 2 shows the high-field electric conduction currents measured for mineral oil under both polarities.
The error bars shown represent the 68% confidence intervals defined by one standard deviation above and below
the mean value. Observe that the currents in the ohmic regime are not measured since they are below the charge
detection threshold in the experiment. Analysis of the measured negative currents using the widely-used Fowler-
Nordheim plot (In(I2/V') as a function of V') [48] shows that the characteristic yields a straight line for voltages
lower than about 3300V. This range corresponds to the generation regime in mineral oil, which is dominated
by Zener molecular ionization and electron impact ionization rather than by electron field emission (as
demonstrated in [5]). At higher voltages, the space-charge limited behavior is observed for the negative needle
(such that I° varies linearly with V [48]). On the other hand, the Halpern-Gomer plot (log,,(I) as a function of
V1) [51] of the positive characteristic shows that the measured currents in that polarity correspond mainly to
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Figure 2. Current voltage characteristics in mineral oil with positive and negative needle. The currents estimated with the model are
also included. The error bars correspond to the standard deviation above and below the mean value.

Table 2. Optimization variables estimated with the EHD model for mineral oil and for
Zn0O-C,g nanofluids.

Process Parameter Value Units
Molecular ionization (host liquid) Ar 2.28 x 10% S/m?
B; 6.1 x 10° V/m
Electron impact ionization (host liquid) A 1.9 x 107 m!
Bom 1.474 x 10® V/m
Electron attachment (host liquid) nf]ltg 1.63 x 107 m!
n? 1.00 x 107 m!
7% 4.26 x 10° m™!
Enhanced field emission (nanofluid) 5 3.75 (NFa),
3.83 (NFb)

the space-charge limited regime. The positive characteristic has also larger confidence intervals compared with
the negative case as the currents under positive needles in mineral oil are noisy and are much less reproducible as
observed in experiments with other hydrocarbons [48].

The conduction currents simulated for mineral oil using the same voltage waveform applied in the
experiment are also shown in figure 2. As can be seen, the agreement is excellent between the simulations and the
measured currents in positive polarity. Similarly, the simulated currents match well those measured for negative
polarity in the generation regime, although with increasing differences at higher voltages in the space charge
limited zone. This result is expected as the simulated space-charge-limited currents can be overestimated at
higher voltages due to the model assumption of alaminar electrohydrodynamic flow. Observe that the liquid
motion is likely to change from laminar into a unsteady flow, such that turbulence losses (not accounted in
equation (7)) increase, making the removal of accumulated charges less efficient as reported in cyclohexane [25].

The optimization variables Ay, B, A 1, Boy, 77512, 77512 and 7752 found to best fit the experimental data in the
experiment with mineral oil are listed in table 2. Observe that differences are found between the optimized
values for these variables and those reported in [5]. These differences are attributed to the simultaneous solution
of the unknown parameters and to the better transport parameters used here for mineral oil (table 1). Note that
the set of optimization variables here obtained to describe the generation and loss of electrons in mineral oil is
not unique and is only valid in connection with the other parameters used in the simulation and summarized in
table 1. Thus, the entire simulation model with the obtained optimization variables is self-consistent to
reproduce the measured electrical conduction processes in mineral under similar conditions as those tested
here. Since the variables in table 2 are not obtained through direct measurements of electron production or loss,
their value should be considered as intermediate estimates consistent at least with the conduction measurements
here reported. Although not unique, this set is here used as the best possible way to quantitatively evaluate the
microscopic processes in mineral oil, in the absence of direct measurements of charge transport and electron
production/loss parameters at high fields.
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Figure 3. Current voltage characteristics with negative needle in mineral oil based ZnO-C, 3 nanofluids synthesized at 0.01 wt% (NFa)
and 0.05 wt% (NFb) mass fraction concentrations. The currents estimated with the EHD model are also included. The error bars
correspond to the standard deviation above and below the mean value.

4.2. Negative conduction currents in ZnO nanofluids

Since the additional electronic processes influencing the electric conduction for nanofluids (as described in
section 3.2) are relevant mainly for negative needles [5], only results obtained with this polarity are here analysed.
Figure 3 shows the electric conduction currents measured with negative needle for ZnO-C; 3 nanofluids at

0.01 wt% (NFa) and 0.05 wt% (NFb) at high electric fields of up to 10° V/m (at the needle tip). Analysis of the
currents measured for the used nanofluids with Fowler-Nordheim plots (not shown here) indicate that the
injection/generation regime occurs for voltages lower than 2500 V with the space charge limited regime at larger
voltages. These conduction currents measured for both tested nanofluids are more than an order of magnitude
larger than for the hostliquid (shown in figure 2). This increased conduction current in nanofluids compared
with the host liquid is consistent with previous measurements [23, 24, 26]. On the other hand, only a slightly
larger conduction current is measured at lower voltages for the nanofluid with larger nanoparticle concentration
(NFDb). However, there are only minor overall differences between the measured currents Ing, and Iy, under the
two tested nanoparticle concentrations.

The negative conduction currents simulated including the enhanced electron injection and the electron
scavenging effect due to the presence of the nanoparticles (as described in section 3.2) are also shown in figure 3.
As expected, there is a good agreement between the simulation and the measurements in the injection/
generation regime. Nevertheless, in a similar manner as for the host liquid, the estimated currents in the
nanofluid are slighly larger than those measured in the space-charge limited regime due to the assumption of
laminar liquid flow. The optimized field intensification factor 3 found for the nanofluid NFa is 3.75, only 2%
smaller than the case with a larger nanoparticle concentration in NFb, as indicated in table 1. This minor change
in (3 suggests that the enhanced electron injection is weakly dependent on the nanoparticle concentration within
the tested range (0.01-0.05wt%). This result supports the assumption here taken that a single ZnO cluster
agglomerate occupies the entire high electric field zone at the needle tip. Therefore, this cluster agglomerate emit
electrons with nearly the same current density regardless of the concentration of nanoparticles in the liquid bulk.

4.3. Electronic processes in the mineral-oil-based ZnO-C, 3 nanofluid under the tested experimental
conditions

Once all the unknown model parameters are estimated from the conduction current measurements, the physical
processes involved in the conduction currents in the mineral-oil-based ZnO-C,g nanofluid can be quantified up
to electric fields of 1 x 10° V//m. Figure 4 shows the frequency of the different processes of generation and loss of
electrons in the tested nanofluid, estimated by the model using the optimized parameters in table 1. As can be
seen, the frequency of collisional ionization vj,,;, (defined as cv;,,,, W) and of attachment v/, (given by 17, W)
in the host oil dominate the production and loss of electrons in the nanofluid. According to figure 4, avalanches
can develop in mineral oil and its derived nanofluids at local electric fields larger than a critical value E; of about

3 x 10® V/m, granted that initial electrons are available. Under such a condition, electrons can multiply since
the rate of their production is higher than for their loss (i.€ ¥y, 2 Vasacn)- Observe that the estimated E; in
mineral oil is larger than that found in cyclohexane (of 2 x 10® V/m) [39]. This result is consistent with the
experimental fact that the inception of negative streamers in mineral oil takes place at larger voltages than in
cyclohexane [52].
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Figure 5. Surface plot of the logarithm of the density (in m?) of electrons n, (left) and negative ions 1, (right) in front of the
needlepoint at 3000V for a) mineral oil and b) ZnO-C, 3 nanofluid NFb.

A representative example of the spatial density distribution of electrons and negative ions, mainly produced
by ionization and attachment processes, is shown in figure 5 in mineral oil and in the nanofluid at a voltage level
0f 3000 V. In this case, electron avalanches develop within the first few micrometres from the electrode tip in
both cases, before they are mainly converted into negative ions by attachment. Observe that this penetration

depth of the avalanches into the gap is in the same order of magnitude as estimated for other hydrocarbons [48].
Itis noteworthy however, that the avalanche penetration depth is not related to the tip radius as previously suggested
[53]. Instead, it is defined by the location where the total field (including the space charge shielding) reaches E;and
by the additional attachment distance required to reduce significantly the size of the drifting electron avalanche after
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in the gap at 3000V for the ZnO-C; g nanofluid NFb.

it stops multiplying. These avalanches are started by a low density of initial electrons produced by Zener molecular
ionization over a submicrometric thin layer of high electric field (E > 1 x 10* V/m) on the needle tip. In the
presence of nanoparticles, enhanced field injection from the needle tip causes a significant flux of initial electrons
which, after multiplying, reach a maximum density more than two orders of magnitude larger than in mineral oil.
As negative ions are slower than electrons, they accumulate and reach densities more than three orders of magnitude
larger than those of electrons. Observe that the extension of the charged plumes in figure 5 are defined by the strong
coupling between the velocity field induced by the EHD motion and the electrostatic forces due tot he injected
carriers as observed in other liquids under the high field conduction regime [25].

Interestingly, the frequency of electrons scavenged by the ZnO-C, 3 nanoparticles dispersed in the liquid
Vscaven (the term within the square parenthesis in equation (21)) also shown in figure 4, is more than three orders
of magnitude lower than the attachment frequency v/,1,,. This result demonstrates that even though
nanoparticles may scavenge electrons, the frequency of this process is negligible compared with the already
existing high loss of electrons due to attachment in the host liquid. This is also evident for instance by comparing
the logarithmic distribution of the density of electrons scavenged by the nanoparticles 7,,, and of electrons
attached into negative ions #,, as shown in figure 6 for the NFb nanofluid at 3000 V. In this case, 1,,, is more than
three orders of magnitude smaller than 7,, in the close proximity of the rod. As the plume of negative ions and
negatively charge nanoparticles moves along the hydrodynamic flow, the magnitude of n,,,, and ,, starts
decreasing away from the needle. However, the significantly lower density of 1,,, compared with ,, is still
maintained all along the entire gap.

The above-described low frequency of electron loss due to the presence of ZnO-Cg nanoparticles compared
with electron attachment in the host fluid is an important finding that challenges the widely-spreading electron
scavenging theory of nanoparticles [12, 19]. Observe that the zero-field attachment time constant 7,,,, = 200 ns
for mineral oil was conveniently assumed to justify this theoryin [12, 19], a value which was much larger than
the estimated scavenging time constant 7,,, = 2 ns for conducting nanoparticles. Consequently, this theory was
justified by assuming that the scavenging frequency due to nanoparticles 1/7,,, also shown in figure 4, is two
orders of magnitude larger than the assumed frequency of electron attachment in the liquid 1/7,,,. However,
observe that the zero-field attachment frequency 1 /7,,,, widely used for mineral oil (e.g. [19, 54, 55]), is more
than four orders of magnitude smaller than the actual high-field attachment frequency v,,, here estimated
from the measurements. This fact also casts doubts on the simulation of negative streamers using the zero-field
attachment constant 7, (as in [56]), which would exaggerate the penetration depth of avalanches in the liquid.

4.4. Conditions prior to negative streamer inception in ZnO-C, g nanofluids

Since negative streamers are initiated by electronic processes in the liquid [57], the model could also be used to
shed light upon the mechanisms involved. Given that no streamers are initiated in the experiment described
above, the model is here implemented to reproduce the testing conditions described in [17]. In this experiment,
it was observed that the voltage required to initiate negative streamers in ZnO-C, g nanofluids is significantly
larger than in mineral oil and it was also weakly sensitive to the nanoparticle concentration (up to 0.05 wt%). The
tip radius of the negatively charged needle was R,;, = 225 nm, separated by a distance d,, = 4.5 mm from a
sphere electrode. A voltage ramp with a rate of about 2.75 x 10° V /s was applied to the sphere while the needle
was grounded.
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Figure 7. Negative surface electric field E,;, at the needle tip in mineral oil and in the ZnO—-C, 3 nanofluids NFa and NFb. The Laplacian
electric field Ey,, is also shown as reference. The corresponding 50% probability of streamer inception voltage Vg, is also indicated.

figure 7 shows the simulated electric field E,;;, at the tip of the needle as a function of the applied voltage in
mineral oil without and with ZnO-C; 3 nanoparticles. The corresponding Laplacian electric field Ey, at the tip
of the needle is also included as a reference. The 50% probability negative streamer inception voltage Vs,
measured in the host liquid and the nanofluid in [17] is also indicated.

As expected, the effective tip electric field E,;, (including the shielding effect of the space charge accumulated
in front of the needle) in both cases starts deviating from the laplacian electric field Ej,, at the start of their
corresponding space-charge-limited injection regime. However, the enhanced field emission produced in the
nanofluid leads to an intensified production of negative carriers (mainly electrons and negative ions), which
produces alarger electrostatic shielding of the needle electric field compared with case of mineral oil alone. Thus,
E,;, in the nanofluid is lower than in the host liquid at voltages in the space-charge limited regime.

As the voltage further increases, the threshold field E;, on the needle surface at which streamers are initiated
in mineral oil at the measured Vg0, 0f 5696 V [17] is estimated at about 2.5 x 10° V/m. At that voltage level, E,;;,
in the nanofluid case is still 20% lower than in the host fluid due to the strong space charge shielding induced by
enhanced field emission. Thus, the applied voltage in the nanofluid needs to further increase to 7111 and 7157 V
in order to initiate streamers in the nanofluids NFa and NFb respectively [17]. Interestingly, the estimated
streamer threshold field E;, in the nanofluids is then nearly the same as in the host liquid, regardless of the tested
nanoparticle concentration (0.01 or 0.05 % wt). The fact that the estimated effective Ej,, at the streamer
inception voltage in the host liquid and in the nanofluid is roughly the same, shows that the relation between the
probability of streamer initiation and the surface electric field of the stressed electrode [6, 7] also holds for sharp
needles with strong space charge shielding.

Observe that the scavenging hypothesis [12, 19] would predict a stronger scavenging of electrons when
increasing nanoparticle concentration, which in turn would cause a larger accumulation of charged
nanoparticles electrostatically shielding the needle tip. Then, a larger shielding of E,;, would lead to a higher
streamer inception voltage. These predictions are however not supported by the results in figure 7 or by the
nanofluid streamer inception voltages measured in [17], which are independent of the density of dispersed
nanoparticles. These results show instead that the larger streamer inception voltage in ZnO-C, g nanofluids is
mainly caused by the strong production of negative carriers due to the enhanced electron injection at the
cathode. This process is however only active under negative needles when there is a continuous emission of
electrons from the electrode surface into the liquid through nanoparticles (as single particles or as agglomerate
clusters) with high or moderate electrical conductivity o,,, and low work function ¢. Thus, the electrons injected
under the action of enhanced emission at the tip, are ready converted into negative ions by the already strong
attachment to the host liquid at locations with electric fields lower than E,. Even though the presence of the
nanoparticles can scavenge electrons, this process is negligible compared with attachment even under ZnO-C,g
concentration of up to 1%wt (as inferred from figure 4). Consequently, the electrostatic shielding produced by
the negative charge carriers (mainly negative ions) is unaffected by changes in the nanoparticle concentration as
shown in figure 7.

Similarly, the simulation results also show that the decrease of the electron velocity predicted by the shallow
trap hypothesis [11, 20] has no effect in the surface electric field E,;,. Even if the higher density of traps produced
in the nanofluid would also increase the rate of attachment in the liquid as suggested in [11], such a process
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would be proportional to the nanoparticle concentration. However, this suggestion is also not supported by the
estimated E,;, as the size of the negative ion cloud in front of the needle tip is independent of the nanoparticle
concentration.

On the other hand, the streamer inception in hydrocarbons under negative polarity is generally evaluated
using the Townsend-Meek criterion in gases [32]. This criterion relates the inception of the discharge to the
critical size N,,;, of an avalanche started with n, electrons, estimated as [58]:

25

o ol oD _ noe® = Nt (22)
where Cis a dimensionless parameter representing the effective ionization integral from the needle tip at z,;, to
the location zg, where the electric field is equal to E,. In other words, C represents the net number of ionization
events a single electron produces as an avalanche propagates. Typical values of Cbetween 5 and 10 have been
estimated for hydrocarbons at their streamer inception voltages [32], by using the Laplacian electric field
distribution and assuming ny, = 1. Based on the EHD model results, the effective ionization integral C can be
directly estimated under the total electric field including the space charge contribution. The Chere estimated for
mineral oil under the experimental conditions in [17] is equal to 5.4, while for the nanofluid it is 3.2. Observe
that the lower Cin the nanofluid compared with that in the host liquid is caused by the different number of
electrons 1, initiating the avalanches in both cases.

In the literature, it has been stated that one possible mechanism of negative streamer inception is liquid
boiling [53]. Although the energy continuity equation (as in [12]) could be readily added to the model in order to
calculate temperature, its estimates already show that the pressure induced by electrostrictive forces [29] at the
needle is in the order of several thousand atmospheres. Under such high pressures, there are significant changes
in some thermodynamical properties of hydrocarbons [59] compared with atmospheric conditions, which are
unknown for mineral oil. Therefore, any estimate of the joule heating produced by the conduction currents in
mineral oil would be unreliable when only thermodynamic properties at room conditions are used. Moreover,
there is no phase diagram information of the used mineral oil at such intense pressures as to enable a proper
assessment of boiling in the liquid at the streamer inception. For these reasons, no further assessment of liquid
boiling in mineral oil or in the ZnO-C, 3 nanofluid has been here attempted.

5. Conclusions

In this work, high-field conduction currents measured under both polarities and a detailed electrohydrodynamic
model are used to quantitatively characterize the electron generation and loss mechanisms in mineral oil as a host
liquid for ZnO—-C, g nanofluids. Furthermore, conduction current measurements in ZnO—C,g nanofluids under
asharp negative needle-plane electrode configuration are used to characterize additional high-field processes
present when nanoparticles are dispersed in the host liquid. In this manner, the simulation model is tuned to
estimate the drift and generation of charged carriers at high fields in mineral oil and ZnO-C, g nanofluids, such that
the predicted currents are in good agreement with the measurements. As in a recent study, the model results show
that high field generation of electrons in mineral oil can be described by generalized equations usually attributed to
Zener molecular ionization and electron impact ionization. Zener molecular ionization acts as the source of initial
electrons in front of the negative needle surface at fields larger than about 1 x 10® V/m. As these initial electrons
drift, they multiply due to the impact ionization. Itis also found that electron attachment decreases with electric
field. Electron attachment is a dominant process at fields lower than 3 x 10® V/m at which it overcomes the
generation of electrons caused by impact ionization. Consequently, the avalanches penetrate into theliquid only a
distance of few micrometres from the electrode tip since the electric field is highly divergent at close proximity to
the needle.

The model results suggest that enhanced electron field emission takes place due to the ZnO—C, g nanoparticle
aggregates standing on the negative needle surface, in addition to the generation processes already taking place in
the hostliquid. This field cold emission is enhanced due to the intensified electric field at the surface of the
nanoparticle and by the low work function of ZnO. As a consequence, there is a large injection of electrons into
the liquid in the presence of nanoparticles, which causes the negative conduction currents measured at high
electric fields in ZnO-C; g nanofluids to be more than an order of magnitude larger than those in mineral oil.
Additionally, it is found that even though ZnO-C, g nanoparticles scavenge electrons, the frequency of this
process is negligible compared with the loss of electrons due to attachment in the host liquid. For this reason, the
negative conduction currents measured at high electric fields in ZnO-C, g nanofluids are not influenced by the
concentration of the dispersed nanoparticles.

The electrohydrodynamics processes in mineral oil and ZnO-C; g nanofluids just before negative streamer
inception have also been analysed. The results show that negative ions in the host liquid and its associated
ZnO-C,g nanofluid electrically shield the needle, reducing its surface electric field. In the case of the ZnO-C
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nanofluid, this shielding is more significant than in mineral oil due to the intensified production of negative
carriers under the enhanced electron emission. Thus, the total electric field at the needle tip when streamers are
initiated in the nanofluid reach the same level of about 2.5 x 10° V/m as in the case of mineral oil, even if the
streamer inception voltage in the presence of the nanoparticles is significantly larger than in the host liquid.
However, the estimated net number of ionization events a single electron produces as an avalanche propagates
when streamers are initiated is different between the ZnO—C; 5 nanofluid and mineral oil due to their different
number of initial seed electrons in both cases.

Last, it is shown that the scavenging hypothesis of nanofluids is not valid for ZnO-C, 3 nanofluids under
negative needles. This hypothesis mistakenly presumes that scavenging of electrons by the dissolved
nanoparticles in the nanofluid dominate over the attachment processes in mineral oil. For this reason, it fails to
explain the weak dependence of the measured conduction currents or the streamer inception on the
nanoparticle concentration in the tested nanofluid. Similarly, it is shown that the reduction of the electron
mobility by the nanoparticles in the shallow trap hypothesis has not effect on the simulated conduction currents
or the needle electric field at the streamer inception voltage in ZnO-C; g nanofluids. These results cast serious
doubts on the general validity of those two theories of the breakdown improvement for other nanofluids in
mineral oil. However, further studies are necessary to conclusively state whether these two theories are valid or
not to explain the enhancement of the dielectric strength of mineral oil when using other nanoparticles.
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