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Abstract
In Physical Human-Robot Interaction (PHRI), humans and robots share the
workspace and physically interact and collaborate to perform a common task.
However, robots do not have human levels of intelligence or the capacity to
adapt in performing collaborative tasks. Moreover, the presence of humans in
the vicinity of the robot requires ensuring their safety, both in terms of soft-
ware and hardware. One of the aspects related to safety is the stability of the
human-robot control system, which can be placed in jeopardy due to several
factors such as internal time delays. Another aspect is the mutual understand-
ing between humans and robots to prevent conflicts in performing a task. The
kinesthetic transmission of the human intention is, in general, ambiguous when
an object is involved, and the robot cannot distinguish the human intention
to rotate from the intention to translate (the translation/rotation problem).
This thesis examines the aforementioned issues related to PHRI. First, the

instability arising due to a time delay is addressed. For this purpose, the time
delay in the system is modeled with the exponential function, and the effect of
system parameters on the stability of the interaction is examined analytically.
The proposed method is compared with the state-of-the-art criteria used to
study the stability of PHRI systems with similar setups and high human stiff-
ness. Second, the unknown human grasp position is estimated by exploiting
the interaction forces measured by a force/torque sensor at the robot end ef-
fector. To address cases where the human interaction torque is non-zero, the
unknown parameter vector is augmented to include the human-applied torque.
The proposed method is also compared via experimental studies with the con-
ventional method, which assumes a contact point (i.e., that human torque is
equal to zero). Finally, the translation/rotation problem in shared object ma-
nipulation is tackled by proposing and developing a new control scheme based
on the identification of the ongoing task and the adaptation of the robot’s role,
i.e., whether it is a passive follower or an active assistant. This scheme allows
the human to transport the object independently in all degrees of freedom and
also reduces human effort, which is an important factor in PHRI, especially
for repetitive tasks. Simulation and experimental results clearly demonstrate
that the force required to be applied by the human is significantly reduced
once the task is identified.
Keywords: physical human-robot collaboration, kinesthetic perception,
human-robot interaction control, system identification
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CHAPTER 1

Introduction

As technology advances, robotics is continuously transforming production in-
dustries and services. Traditionally, robots have been used for tedious, precise
tasks, especially in the manufacturing industry. Traditional robots require a
well-designed bounded workspace, which makes them unjustifiable for rapid
deployment and application in Small and Medium-sized Enterprises (SMEs).
This requirement also limits the use of robotic systems in non-manufacturing
industries such as healthcare.
Collaborative robots (cobots) offer a flexible solution to overcome the limi-

tations of traditional robots. The main reasons for employing cobots include
higher accuracy, time and energy savings, economic benefits, and consistent
help for humans. But most importantly, cobots are safe to operate in the
vicinity of humans (Fig. 1.1) as new regulations apply to their hardware and
software designs [1], [2]. These characteristics allow for faster deployment
and result in a safer and more productive collaboration between humans and
robots for the purpose of accomplishing tasks.

Cobots have a variety of potential applications, including assembly assis-
tance [3], rescue robotics [4], space applications [5], and social care [6]. The
main tasks are predicted to be pick & place, assembly, and handling of materi-
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als [7]. A current application is the use of cobots in the COVID-19 pandemic in
health and non-health sectors. Undoubtedly, COVID-19 has raised standards
for cleaning and hygiene. According to [8], [9], although the new cleaning
requirements pose a challenge for a segment of society that relies heavily on
humans and their skills, cobots have effectively mitigated this issue, especially
in hospitals and common areas such as workplaces, factories, and department
stores, delivering healthcare and safety to society [10].
The growing demand for cobots in various fields, e.g., production, health-

care, mining, and manufacturing, requires high levels of cooperation between
robots and humans [11]. Humans must be aware of the ongoing operation
of the robot, and the robot should be able to interpret a human’s command
correctly and deal with the intentions and movements of the human [12].
Comprehensive interpretations require that the robots receive sufficient and
accurate information through communication channels with the humans. The
main communication channels in Human-Robot Interaction (HRI) are vision
and haptics [13]–[16], but other communication channels such as sound [17]
and electromyography (EMG) signals [18], [19] are also possible.
The haptic channel is distinguished from other communication channels

through the bidirectional exchange of mechanical energy between the robot
and the human [20]. The information that can be obtained from this channel
includes the measured interaction force, which can then be used to study Phys-
ical Human-Robot Interaction (PHRI) and to design perception and control
algorithms [21]–[27].
A paramount objective in PHRI is to ensure safety. One of the safety

aspects is the stability of the human-robot control system, which can be com-
promised by various factors such as internal time delays. Internal delays in
the control loop system increase the possibility of instability and more os-
cillations when the human grasps the robot firmly, i.e., the stiffness of the
human hand is high. There are several studies that focus on the delay and
derive stability conditions on the controller parameters by approximating the
delay, but in many cases the approximation of the delay does not lead to an
accurate stability boundary. Another safety aspect is the mutual understand-
ing between human and robot to avoid conflicts in the execution of a task.
Interpretation of human intention is challenging when human force/torque is
not directly measured. The applied human force/torque represents the human
intention in case of direct measurement. However, with a distance between

4



1.1 Thesis outline

robot and human, such as in shared object manipulation, a mapping of human
forces that does not correspond to human intention is measured. Furthermore,
shared object manipulation in physical human-robot interaction may require
extra effort from the human side, which is not desirable especially for repet-
itive tasks. If the task is known, the desired trajectory for the robot can be
determined and thus the robot can actively participate in the task. However,
in a generic object-handling scenario, the task is typically unknown and thus
the robot’s role cannot be assigned.
The thesis focuses on perception and control algorithms for physical human-

robot interaction. It is devoted to investigating safety aspects, such as stabil-
ity, and to addressing the challenges of identifying and responding to human
haptic commands. The thesis investigates the effect of internal delay on direct
PHRI. A generic mathematical formulation for modeling the PHRI system is
developed and compared with similar studies on stability in PHRI. An analy-
sis approach is also proposed to analytically derive the stability conditions for
the design parameters. The thesis also investigates the shared human-robot
object manipulation. An estimation algorithm based on the Recursive Least-
Squares (RLS) method is developed to estimate the human grasp position.
The estimation algorithm is tested and validated with simulation and experi-
mental data. Finally, the thesis introduces a control scheme for shared object
manipulation. We assume that the human determines the target position of
the object and that the cobot assists the human by applying a percentage of
the force required to move the object. In order to reduce the human effort, the
ongoing task is compared with the known tasks, which are defined as dynam-
ical systems, and in case of a similar velocity profile, the robot assists with
the identified task based on a predefined load share. In particular, primitive
motions are encoded as separate tasks; this allows human effort in generic
object manipulation to be reduced.

1.1 Thesis outline
The thesis consists of two main parts. Part I is a summary of the research
area, concepts, and proposed methods. In this regard, Chapter 2 focuses on
the modeling of time-delay in physical human-robot interaction and presents
the proposed approach to analyze the stability of such systems. Chapter 3
introduces the human grasp position estimation problem and the proposed

5
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Figure 1.1: Non-collaborative robots vs collaborative robots (cobots) [28].

estimation scheme. Chapter 4 presents the interaction dynamics from which
the control scheme for shared human-robot object manipulation is derived and
the role of the robot is formulated. In addition, task definition and identi-
fication and the assignment of the robot’s role based on the identified task
are discussed. Chapter 5 summarizes the appended papers, offers concluding
remarks, and comments on future work. The papers appended to this thesis
are given in Part II.

1.2 Contributions of the author
Paper A: On the stability of admittance control for physical human-
robot interaction under delays
Summary of contributions: In this paper, we address the effect of time
delay on the stability of a time-delayed PHRI system and derive the stability
conditions analytically. Using the derived conditions, we evaluate the effect of
backdrivability and first-order filtering on the stability of the system. Finally,
we show how the derived conditions can be used to experimentally evaluate a
PHRI system.
Individual contribution: The author proposed the analysis method, planned,
implemented, and processed the simulations and experiments, and took the
main responsibility in writing the paper as the lead author.

Paper B: Human grasp position estimation for human-robot coop-
erative object manipulation
Summary of contributions: This paper addresses the estimation of human
grasp position in an object-handling scenario in PHRI. Knowing the human

6
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grasp position is a key factor enabling the human to manipulate an object
smoothly when this object is also handled by the robot. To achieve this,
we proposed a new estimation algorithm that modifies the recursive least
squares method. The proposed estimation method is developed to estimate
the position of the human grasp even when the human applies force and torque
simultaneously. We evaluated the proposed method through simulation and
experimental studies.
Individual contribution: The author developed the estimation method,
implemented the algorithm, planned, implemented, and processed the simula-
tions and experiments, and took the main responsibility in writing the paper
as the lead author.

Paper C: Task-based role adaptation for human-robot cooperative
object handling
Summary of contributions: This paper focuses on the shared human-
robot object handling. We proposed a new control scheme to reduce the
human effort without restricting the degrees of freedom. The proposed method
includes three main parts: controller, task encoding, and role allocation. The
controller is designed to have stable closed-loop interaction dynamics. The
task coding is performed using the dynamical system. Moreover, the primitive
motions are defined as separate tasks. Finally, using the interaction dynamics,
the desired force for each task is used to increase the role of the robot and
reduce the human effort. The proposed method is validated by simulation and
experimental studies.
Individual contribution: The author proposed the control algorithm, planned,
implemented, and processed the simulation and experimental studies, and
took the main responsibility in writing the paper as the lead author.

7





CHAPTER 2

Interaction Control under Time Delay

In PHRI, system stability is important to human safety. This chapter gives
an overview of the stability problem in the presence of a time delay in a
direct PHRI. We start by formulating the problem and deriving the closed-
loop dynamics of the system. We then describe an approach to evaluating the
stability of the system by analyzing the location of its pole. We also review
the proposed approach for determining the stability conditions and discuss
two study cases in detail.

2.1 Overview
The PHRI system consists of an uncoupled system (robot and force sensor)
and a human, shown in Fig. 2.1. The stability of the coupled system (the
uncoupled system and human) is affected by 1) system parameters, e.g., time
delay [29], [30], human hand stiffness [31], sampling time [32], and the robot’s
inertia and damping [32], and 2) design parameters used in the controllers and
filters [31]. Multiple approaches for studying the stability of PHRI systems
have been proposed, including passivity-based methods [29], [30], [32]–[34],
pole placement [35], Lyapunov theory [31], [36], and online monitoring of high
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frequency oscillations of the force signal [37], [38].
This thesis investigates the effect of a time delay on the stability of the

system. The delay is introduced either by the components of the system, such
as the admittance controller and force filter, or by the communication channel
and computation steps. The evaluation of stability by approximating the time
delay [31], [36] using Taylor series expansion or Pade approximation [39] may
lead to inaccurate stability conditions [36], and employing the passivity-based
methods may result in conservative stability conditions [37], [40]. This thesis
models the time delay with exponential functions and proposes a new approach
to calculating the stability conditions analytically.
This chapter discusses a direct physical human-robot collaboration scenario

with a non-backdrivable robotic manipulator and a time delay, either in the
force sensor or in the internal control of the robot, and presents an analytical
approach to evaluating the stability of such a system.

Robot

Human

velocity/force

force/velocity

Uncoupled Stability
Coupled Stability

Figure 2.1: A typical physical human-robot interaction.

2.2 Problem formulation
The block diagram of a setup for direct physical human-robot interaction is
shown in Fig. 2.2. The uncoupled system is the closed-loop dynamics of the
robotic system and is described in the Laplace domain by the transfer function
Gus. Robotic systems in PHRI can be categorized as impedance or admittance
based on the causal relationship between force and velocity [41]. Robots of

10
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Robot
dynamics

(Gr)

Admittance
Controller

(Gc)

Force/Torque
Sensor
(Gf )

Human impedance
(Zh)

vr

fh

fhd

fc

vc

Uncoupled system (Gus)

Coupled system (Pcs)

Figure 2.2: Block diagram of a PHRI system.

the impedance type generate forces based on the motion deviation and are
typically backdrivable and lightweight. Robots of the admittance type deviate
from the desired motion based on the interaction force and are typically non-
backdrivable, such as commercial industrial robots. In this thesis, we consider
the uncoupled system as an admittance robotic system; this means that the
input is the measured interaction force and the output of the robotic system
is the velocity. The robotic system and the human constitute the coupled
system, which is described by the closed-loop dynamics for the robot velocity
vr; i.e., Pcsvr = 0, where Pcs is a function in the Laplace domain. The
following components constitute the dynamics of the coupled system:

• Robot dynamics (Gr): The mathematical model of the robotic ma-
nipulator is given by

vr =
[
Gr1 Gr2 Gr3

] fcvc
fh

 (2.1)

where fh ∈ R is the applied force by the human, and fc, vc ∈ R stand for
the force command and velocity command, respectively. The transfer
functions Gr1, Gr2, and Gr3 describe a force control robot, a velocity-
control robot, and a backdrivable/non-backdrivable robot, respectively.

• Interaction Controller (Gc): The reference force and velocity for the

11
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robot are generated by the controller formulated as:

[
fc
vc

]
=
[
Gc11 Gc12
Gc21 Gc22

] [
vr
fhd

]
(2.2)

where Gc describes the admittance, impedance, or mixed impedance-
admittance controller. The pure impedance-type controller generates
force using the input velocity, i.e., Gc11 6= 0, and the pure admittance-
type controller generates velocity using the measured force, i.e., Gc22 6=
0.

• Force sensor (Gf): The force applied by the human is measured by a
Force/Torque (F/T) sensor installed at the robot’s end-effector, which
is described by Gf .

• Human dynamics (Zh): The human dynamics are described by Zh.
The human can be considered as a passive linear system [32], an impedance
with mass, damping, and stiffness [31], [42], or a combination of pas-
sive/active elements [35], [36].

2.3 Stability analysis of uncoupled and coupled
system

In this thesis, we evaluate the passivity of the individual parts, and the sta-
bility of the closed-loop system.

Uncoupled system
The uncoupled system includes the F/T sensor, the admittance controller,
and the robot dynamics. The input to the uncoupled system is the applied
force of the human fh, and the output is the velocity of the end-effector of the
robot vr. The transfer function of the uncoupled system Gus, shown in Fig.
2.2, is derived as follows:

Gus = GfGc12Gr1 +GfGc22Gr2 −Gr3
Gc11Gr1 +Gc21Gr2 − 1 (2.3)

Assuming that the human is passive, the passivity of the uncoupled system
results in the stability of the coupled system. A linear time-invariant system

12
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described with the transfer function model vr = Gusfh is passive if and only
if the transfer function Gus is positive real [39]. Before stating the definition
of positive realness, we need to review the definition of a rational transfer
function and analytic transfer function:

Definition 1: A transfer function is said to be rational if it can be written
in the form

H(s) = K
P (s)
Q(s) (2.4)

where the scalar K is called the gain, P (s) is a polynomial in the complex
variable s of degree m, and Q(s) is a polynomial of degree n [39].
Definition 2: An irrational transfer function is said to be analytic in a

region if it is defined and continuous in that region [39].
The positive real of a transfer function can be defined as follows [39], [43]:
Definition 3: The rational or irrational function Gus(s) is positive real if

• Gus(s) is analytic for all Re[s] > 0.

• Gus(s) is real for all positive and real s.

• Re[Gus(s)] ≥ 0 for all Re[s] > 0.

Coupled system
The closed-loop dynamics of the coupled system includes the uncoupled dy-
namics and the human dynamics. By considering the velocity of the robot vr
as the state of the system, the characteristic equation of the coupled dynamics
is given by:

Pcsvr := (Gc11Gr1 +Gc21Gr2 +Gr3Zh

−GfGc12Gr1Zh −GfGc22ZhGr2 − 1) vr = 0
(2.5)

For a time-delayed system with a single delay, the characteristic equation
(2.5) has the form Ph(s, T ) ≡ A(s) + B(s)e−sT , where A(s) and B(s) are
polynomials of degrees nA and nB , respectively. The systems with nA > nB ,
nA = nB , and nA < nB are referred as retarded, neutral, and advanced,
respectively. In this thesis, only the retarded characteristic equations are con-
sidered. Also, we assume that A(s) and B(s) do not have common imaginary

13



Chapter 2 Interaction Control under Time Delay

roots and that A(0) + B(0) 6= 0. Otherwise, the Ph(s, T ) is unstable for all
T ≥ 0.
To derive stability conditions, we use the direct method where the system

poles, i.e., the roots of the characteristic equation (2.5), are evaluated. The
system is stable if all the poles are in the left half-plane (LHP). Assuming that
A(s) and B(s) have no common imaginary roots and that A(0) + B(0) 6= 0,
the direct method is employed to check the location of poles [44]. The number
of roots is infinite for Ph(s, T ) when T 6= 0 because of the complex exponen-
tial function e−sT [45], [46]. However, roots of Ph(s, T ) change continuously
with respect to T . This means that as T changes, the roots may cross the
imaginary axis from the LHP to the RHP (i.e., become unstable) and vice
versa (i.e., become stable). Thus, to evaluate the roots of the characteristic
equation, first, the roots of Ph(s, T ) for T = 0 are evaluated. Since Ph(s, 0) is
a polynomial, the number of roots is finite. If Ph(s, 0) has roots in RHP then
the system is unstable for all values of T . Otherwise, the imaginary crossing
of the roots must be checked for T 6= 0. Expanding Ph(s, T ) = 0 for s = ±ωj
yields [45], [46]: {

A(ωj) +B(ωj)e−ωTj = 0
A(−ωj) +B(−ωj)eωTj = 0

(2.6)

Eliminating the exponential terms results in the delay-independent equation

A(ωj)A(−ωj)−B(ωj)B(−ωj) = 0 (2.7)

which is a polynomial equation in ω2. The potential imaginary crossings of the
roots are given by the non-negative roots of (2.7). For the positive roots, the
time delays satisfying Ph(s, T ) = 0 can be derived using the phase equation
of Ph(s, T ) = 0 as follows:

ωcT0 = arg
{
−B(ωcj)
A(ωcj)

}
+ 2πk, k = 0, 1, ... (2.8)

where ωc is the root of (2.7). If the delay T is less than T0, the roots do not
cross the imaginary axis and thus the system is stable.
In summary, to check the stability of the time-delayed system with the

retarded characteristic equation, the stability for the non-delayed system, i.e.,
Ph(s, 0), is first determined. If the system is stable, ωc is calculated by finding
the roots of (2.7). In the case of negative or complex ωc, the system is stable

14
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human model

for all time delays. In the case of positive real ωc, T0 is computed; and the
system is stable for time delays T < T0.

2.4 Case study 1: Physical human–robot
interaction with a passive/active human model

The first case study uses the 1-DoF PHRI system described in [36]. In [36],
the robot is modeled by an integrator, while the human model consists of a
passive and an active part. The passive part is modeled as a mechanical mass-
damper-spring system that corresponds to the dynamical model of the human
arm. The active part of the human dynamics is modeled as a PD-controller
with proportional and derivative gains that react to the velocity of the system.
The mathematical model of this setup is given by:

Gr(s) =
[
0 1 0

]
Gc(s) = 1

mcs+ cc

[
0 0
−kes 1

]
Gf (s) = 1

Zh(s) = −(mhs+ ch + khke
s

+ e−Ts(kd + kpke
s

))

(2.9)

where mc, cc ∈ R are the admittance controller parameters, ke ∈ R is the
stiffness of the virtual environment, mh, ch, kh ∈ R are the human’s arm
mass, damping, and stiffness, respectively, and kp, kd ∈ R denote derivation
and proportional gains of the active part of the human model, respectively.
Finally, T ∈ R denotes time-delay in the human’s response time.
Müller et al. proposed sufficient stability conditions, based on the Lyapunov-

Krasovskii functional [47], for the stability analysis of a stationary point for a
special type of nonlinear time-delay systems, and they employed it to analyze
the aforementioned PHRI system. The stability conditions for (2.9) proposed
by Müller et al. [36] are given by:{

(cc + ch)− |kd| > T |kp|
ke(1 + kh) + kp > 0

(2.10)

They compare these stability conditions with those derived using Colgate’s
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passivity condition [32], and the Routh-Hurwitz stability condition for sys-
tems with time-delay approximations, which are first-order Taylor expansion
series, and first-order Pade-approximation [39], as shown in Fig. 2.3. They
conclude that their proposed stability conditions are more accurate than the
conditions derived by time-approximation, and also less conservative than
Colgate’s passivity condition.
To evaluate our approach, the stability criterion using the direct method

is calculated. To this aim, first the characteristic equation of system (2.9) is
derived using (2.5) and given by:

Ph(s, T ) = (mc +mh)s2 + (dc + dh)s+ ke + khke + (kds+ kpke)e−Ts (2.11)

Then, the stability region is derived using the direct method and presented
in Fig. 2.3. Using the direct method, the poles of the characteristic equation
are examined. Since we consider the delay as an exponential term, the de-
rived stability region is accurate. The stability regions found by the proposed
condition (2.10) and Colgate’s passivity condition are conservative, and the
ones found by time-approximation methods are not accurate and give false
stability regions.

−200 0 200 400 600 800
−200

0

200

400

kp (kg/s2)

k
d
(k
g
/s
)

Stable area using the direct method First order approximation [36]

Stability boundry for T = 0 Colgate’s passivity condition [36]

Proposed by Müller et al. [36] First order Pade approximation [36]

Figure 2.3: Comparison of stability region for parameters kp and kd calculated
using the direct method with the stability regions calculated using
stability conditions of [36].
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2.5 Case study 2: Direct PHRI

2.5 Case study 2: Direct PHRI
A typical setup of direct interaction between a human and a robot is shown in
Fig. 2.4. The setup includes a UR10 collaborative robot, an OptoForce F/T
sensor, and a light handle to interact with the robot. Also, a laser pointer
is installed on the handle. The robot is velocity-controlled and is modeled
by a first-order filter following the velocity input with delay T . The F/T
sensor is modeled with a first order filter. In this thesis, we consider a linear
impedance to model the human arm. Details on such models are given in [48].
The mathematical model of such a setup for 1-DoF is given by:

Gr(s) = e−Ts
[
0 1

mrs+cr 0
]

Gc(s) =
[
0 0
0 1

mcs+cc

]
Gf (s) = 1

Tfs+ 1

Zh(s) = −(mhs+ ch + kh
s

)

(2.12)

where mr, cr ∈ R are the apparent inertia and damping of the robotic manip-
ulator, respectively. T ∈ R is the internal delay in the communication channel
of the reference velocity; mc, cc ∈ R are the admittance controller parameters;
and Tf ∈ R is the time constant of the force filter.
In paper A, the mathematical model (2.12) is first compared to studies with

similar PHRI setups, such as [31], [35], [36]. The comparisons are made across
three topics: the method of stability analysis, backdrivability of the robot ma-
nipulator, and modeling of delay. The majority of the studies evaluate the sta-
bility of the coupled system with the delay. Also, backdrivable manipulators
have been studied more than the non-backdrivable robots for time-delayed
PHRI systems. Then, the effect of first-order filtering and backdrivability on
the stability of the coupled system of (2.12) is evaluated separately. We show
that although a backdrivable robot is a passive robotic system, converting a
non-backdrivable robot to a backdrivable robot does not result in a passive
robotic system in the presence of a delay in command or force data. Finally,
we conducted an experimental study in which an operator grasps the handle
on the end effector of the robot and attempts to stabilize the laser spot on
the given target. We show how the proposed approach can be used to analyze
the stability of the interaction. The reader is referred to Paper A for more
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robot

F/T sensor

handle with laser pointer

target

Figure 2.4: Physical Human-Robot Interaction setup. The operator grabs the han-
dle to turn on the laser and then moves the laser to the target point.

details.
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CHAPTER 3

Human Grasp Position Estimation

This chapter addresses the problem of estimating the human grasp position
in physical human-robot interaction. The chapter also reviews the challenges
involved and possible strategies to overcome them.

3.1 Overview
Shared object handling is a common task in PHRI, see Fig. 3.1 for an example.
In such scenarios, the robot typically measures the interaction force at its end
effector. When a human applies the force there, at the end effector, the
measurement represents the human’s intention and the direction of motion
[21], [26], [27]. However, when the interaction involves a jointly held object,
the human applies force at a grasp position that is at a distance from the force
sensor. In this case, the measurement of the force applied by the human may
not represent the human’s intent [22], [25], [49]. To overcome this problem,
we showed that the intention of the human can be interpreted correctly if the
grasp position is known [50]. By knowing the human grasp position, the force
applied by the human can be calculated from the measured force at the end-
effector of the robot, and the command for the robot can be calculated based
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on the calculated human force. If no torque is exerted at the grasp position of
the human, the estimation of the human grasp position is simplified to contact
point estimation, which is a well-studied topic in robotics [51]–[58]. In this
regard, the contact point can be estimated by approaches such as the least
squares method [59], particle filters [53], and machine learning [56], [58]. The
contact point is estimated for various purposes such as calibration of a tool by
simultaneously estimating the tool-tip and the normal direction of the contact
surface [52], and keeping an object horizontal with robot assistance [60]. In
contact point estimation, the measured force and torque are sufficient for
estimation of the contact point [55]. However, estimating the human grasp
position is challenging in the case of a “grasp” that involves simultaneous
torques and forces. The measured force and torque data may not be enough
for the estimation of the human grasp position, and additional data such as
the velocity and acceleration of the human hand may be required [59]. We
extend contact point estimation algorithms to enable human grasp position
estimation in this more challenging case. Unlike [59], our method does not
require any additional data beyond the force and torque measured at the
robot’s end-effector. This chapter also presents the derivation of the proposed
estimator.

Figure 3.1: Shared object-handling scenario.

3.2 Problem formulation
The free-body diagram of an object interacting with a robot and a human is
shown in Fig. 3.2. The position and orientation of a rigid object is described
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Figure 3.2: Free-body diagram of an object.

using six independent parameters denoted by xo = [pTo ,φ
T
o ]T ∈ R6, where

the vector po ∈ R3 represents the position of the object’s center of mass and
the vector φo ∈ R3 denotes the orientation of the fixed body frame located
at the center of mass. The vector vo = [ṗTo ,ωTo ]T ∈ R6 represents linear and
angular velocities, where ωo = T (φo)φ̇o and T (φo) depends on the sequence
of the Euler angles. The dynamics of an object with six degrees of freedom
with respect to its center of mass are given by [61]:

Mo(xo)v̇o +Co(xo,vo) + go(xo) = ho (3.1)

where:

• Mo(xo) ∈ R6×6 is the object inertia matrix:

Mo(xo) =
[
mI3×3 03×3
03×3 Jo(xo)

]
(3.2)

where Jo(xo) ∈ R3×3 is the moment of inertia relative to the center of
mass of the object, and expressed in the world frame {W},

• Co(xo,vo) ∈ R6 is the Coriolis vector:

Co(xo,vo) =
[

03×1
[ωo]×Joωo

]
(3.3)

where [ωo]× ∈ R3×3 is the skew-symmetric matrix employed to replace
a cross product with a matrix product,
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• go(xo) ∈ R6 is the gravity vector:

go(xo) = −Mog (3.4)

where g ∈ R6 is the gravity vector defined with respect to the world
frame,

• ho ∈ R6 is the total external wrench, i.e., force and torque, applied on
the object:

ho =
[
fo
τ o

]
. (3.5)

where fo ∈ R3 and τ o ∈ R3 are the total external force and torque
applied on the object, respectively.

Considering nA contact points of the object with the environment and grasp
positions with agents, i.e., human and robot, the external wrench applied on
the object is given by:

ho =
nA∑
i=1

Goihi (3.6)

where Goi ∈ R6×6 is the grasp matrix, defined as:

Goi =
[
I3×3 03×3
[roi]× I3×3

]
(3.7)

where roi ∈ R3 presents the position of contact or grasp point i and [roi]× ∈
R3×3 is the skew-symmetric matrix employed to replace a cross product with
a matrix product. Finally, hi ∈ R6 is the external wrench applied by the
agent i on the object:

hi =
[
f i
τ i

]
(3.8)

where f i ∈ R3 and τ i ∈ R3 are the external force and torque applied by the
agent i, respectively. In the contact-point case, τ i is assumed to be zero.
Since all the measurements are available for the robot end-effector frame
{R}, it is more convenient to derive the object dynamics with respect to this
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3.2 Problem formulation

frame. The object dynamics can be written as:

Mo/Rv̇o/R +Co/R + go/R = hr +Grhhh (3.9)

where

• xo/R denotes the position and the orientation of the object, measured
at the origin of the frame {R} and vo/R the translational and angular
velocities of the object, measured at the origin of the frame {R},

• Mo/R is the object inertia matrix defined with respect to the origin of
the frame {R}:

Mo/R =
[
mI3×3 m[ror]×
−m[ror]× Jo/R

]
(3.10)

where Jo/R = Jo −mI3×3[rro]×[rro]×,

• Co/R is the Coriolis vector defined with respect to the origin of the
frame {R}:

Co/R =
[
−mωo × (ωo × ror)
ωo × (Jo/Rωo)

]
(3.11)

• go/R is the gravity vector defined with respect to the origin of the frame
{R}:

go/R = −Mo/Rg. (3.12)

The unknown variables in the equation of motion (3.9) are the grasp position
of the human, i.e., rrh included in the termGrh, and the exerted wrench by the
human, i.e., hh. The human force fh can be calculated from the translational
part of (3.9) and is given by the difference between the inertial forces and the
forces measured by the sensor, fr, i.e.:

fh =
[
mI3×3 m[ror]×

]
(v̇o/R − g)−mωo × (ωo × ror)− fr. (3.13)

Thus, we derive a parameter vector that consists of rrh and τh:

θ
def=
[
Rrrh
τh

]
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where Rrrh is the human grasp position defined with respect to frame {R}.
To identify the unknown parameter θ, the rotational part of (3.9) is written
in a linear regression form as follows:

y = Φθ (3.14)

where the known output signal y ∈ R3 is defined as:

y
def= τ r −

[
−m[ror]× Jo/R

]
(v̇o/R − g)− ωo × (Jo/Rωo) (3.15)

and the known input signal Φ ∈ R3×6 is defined as:

Φ def=
[
[fh]×RW

R I3×3
]

(3.16)

where RW
R is the rotation matrix of {R} with respect to the world frame {W}.

The identification model (3.14), combined with (3.15) and (3.16), is different
from typical ones used for contact point estimation in the sense that, here, the
human torque, τh, is considered as an unknown parameter. We assume that
the dynamic parameters of the object are known. However, these parameters
can be identified using the method as described in [62].

3.3 Parameter estimation algorithm
The most common method for obtaining values of unknown parameters in-
volved in dynamics is the least-squares method. This approach is used to es-
timate the unknown parameters for a linear model by minimizing the squares
of the error between the measured/known output of the system and the com-
puted output of the model. The general form of the least-squares method
is:

θ̂ = argmin
θ

N∑
i=1

1
2γ

N−i (‖yi −Φiθ‖2Ni
+ ‖θ − θr‖2W

)
(3.17)

where N is the number of data points, 0 < γ ≤ 1 is the forgetting factor,
N i ∈ R3×3 is the normalization gain matrix, θr ∈ R6 is the leakage value,
and W ∈ R6×6 is the leakage gain.
The least-squares problem (3.17) is solved by finding the roots of the gra-
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dient of its cost function, i.e.:

∇θ

(
N∑
i=1

1
2γ

N−i (‖yi −Φiθ‖2Ni
+ ‖θ − θr‖2W

))
= 0 (3.18)

and is given by:

θ̂N = PN

[
N∑
i=1

γN−i
(
φTi N iyi +Wθr

)]
(3.19)

where PN =
[∑N

i=1 γ
N−i

(
ΦT
i N iΦi +W

)]−1
. For a faster estimation for

online use, the solution can be written in recursive form:

θ̂N = θ̂N−1 + PN

(
ΦT
NNN

(
yN −ΦN θ̂N−1

)
+W

(
θr − θ̂N−1

))
(3.20)

and

PN = 1
γ

[
PN−1 − PN−1

(
PN−1 + γ

(
ΦT
NNN

−1ΦN +W
)−1

)−1
PN−1

]
(3.21)

Here, the goal is to estimate the human grasp position rrh, which is a part
of the unknown parameter θ. The unconstrained least-squares method can
be employed to identify θ. The challenges for estimation of the unknown
parameter θ are listed below.

(a) The data may not contain enough information to make solving the esti-
mation problem possible. The main concept related to this problem is
the Persistence of Excitation [63]. If the input signal Φ, defined in (3.16),
satisfies this condition, the solution of the estimator would converge to
the true parameter when N → ∞ [63]. However, it is challenging to
satisfy this condition in real-world human-robot interaction since the
excitation should be generated by the human.

(b) The human is likely to change the grasp position to have better control
over the object motion. Thus, the human grasp position may suddenly
change to a new value.

(c) The human may apply a torque to the object, especially if the object is
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grasped with two hands. Since no assumption can be made regarding
the exerted torque, τh is time-varying and unpredictable.

To address the mentioned challenges, we propose modifying the least-squares
method as follows:

• Maximum deviation from mean: Since variations in τh and Rrrh
result in variations in the estimates, we propose to check the constancy
of the estimates using the Maximum Deviation (MD) from the mean
value, i.e.:

MD(θ(t−sMD)→t) ≤ EcMD (3.22)

where sMD ∈ [0, t]. EcMD ∈ R6 is an upper bound which is empirically
chosen.

• Force magnitude: For small force values, the estimation problem
would result in inaccurate parameter estimates. Thus, we disregard
the data with small force values.

The proposed human grasp position estimation algorithm is presented in Al-
gorithm 1, and the reader is referred to Paper B for more details. In addition,
an evaluation of the proposed method is done in Paper B via simulation and
experimental studies. The studies show the effect of the applied torque on the
estimation of the grasp position and the performance of the proposed estima-
tion method. In summary, the estimated human grasp position is successfully
updated to the true grasp position when the human-applied torque is con-
stant over a period of time. When the human applied torque is not constant,
the estimated human grasp position also does not remain constant and varies
with the applied torque. However, the final estimated human grasp position
does not vary with the applied torque and remains at a previously estimated
value that is considered to be reliable. As described at the beginning of the
chapter, the estimated position can be employed for a better identification of
the human intention in shared human-robot object handling.
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3.3 Parameter estimation algorithm

Algorithm 1: Grasp Position Estimation Algorithm
Result: Rr̂rh
Initialize P 0 , Rr̂rh , θ̂ , EcMD, f̄ , r̄rh, rrh;
while (The estimator is running) do

if ‖fh‖ > f̄ then
P k = 1

γ
P k−1 − 1

γ
P k−1ΦT

k

(
ΦkP k−1ΦT

k + γ
)−1 ΦkP k−1

θ̂k = θ̂k−1 + P kΦT
k

(
yk − Φkθ̂k−1

)
if MD(θ(t−sMD)→t) ≤ EcMD then

Rr̂rh = min(r̄rh, max(rrh,θ̂
k,1:3))

end
k ← k + 1

end
end
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CHAPTER 4

Task-based Role Adaptation in Shared Object
Manipulation

In a shared object-handling scenario, it is important that the human can move
the object independently in all degrees of freedom with the least possible
effort. This chapter discusses interaction dynamics, role allocation, and task
definition and adaptation for a shared human-robot object handling.

4.1 Overview
Fig. 4.1 shows a shared human-robot object-handling scenario in which the
human and the robot collaborate to transport an object. The robot has an
active role if the desired trajectory is explicitly commanded in the motion
control loop, or passively follows the human’s commands, typically conveyed
through the haptic channel [21]. The interaction force is typically measured
at the robot’s end-effector and provides the data to understand the desired
direction of human motion [21], [64]. We should note that the term force is
sometimes used for describing both force and torque. As described in the
previous chapter, an object between the human and the F/T sensor leads to
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measuring a distorted torque instead of the true one applied by the human,
which obscures the understanding of the human intention. The sensed force
can still be used to design controllers for shared object manipulation by con-
sidering a constrained motion policy [23], [49]. In the previous chapter, we
showed that the human grasp position can be estimated from the distorted
force measurements. Knowing the human grasp position, the human interac-
tion force can be calculated and consequently be used to compute the true
force applied by the human. In addition to interpreting the human’s intention,
it is important to assist the human as much as possible and to reduce their
effort. For this purpose, it is necessary to determine the required effort for the
ongoing task and change the role of the robot accordingly. The required effort
can be calculated using the interaction dynamics [14], [65]–[67], which allows
the formulation of how the effort is shared by the agents, i.e., human and
robot [21], [68]. However, in a generic scenario, the desired trajectory for the
robot may not be defined. For generic motions, this thesis proposes to define
primitive motions based on Chasles’ theorem and encode them as separate
tasks. The tasks are encoded as dynamical systems, where the velocity can
be calculated based on the robot’s position. However, other methods such as
human-human collaboration models [26], Dynamic Primitive Motions (DMPs)
[69], and learning from demonstration by dynamical systems [64], [70] can also
be used for task encoding. The robot’s motion is compared with the encoded
tasks and in the case of similar velocity profiles, one task is selected as active
task. Based on the active task, a supporting force is calculated as part of the
force required to move the object and the corresponding velocity command is
sent to the robot. Consequently, the human effort is reduced without affecting
the degrees of freedom of motion or installing an additional sensor.
This chapter describes how to define a desired trajectory for the robot from

a known task and how to identify the ongoing task. Using the identified task,
we propose a control strategy that reduces human effort while avoiding the
translation/rotation problem.

4.2 Interaction dynamics of shared object
manipulation

The free-body diagram of an object for a PHRI scenario is shown in Fig. 4.2.
The object dynamics for PHRI application is reviewed in Section 3.2.
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Figure 4.1: Shared object-handling scenario.
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Figure 4.2: Free-body diagram of an object.

Robot dynamics

An inherently non-backdrivable collaborative robot is considered that follows
the reference velocity vr given by:

M rv̇r = −Drvr − hr + ur (4.1)

whereM r,Dr ∈ R6×6 are the diagonal matrices denoting the apparent inertia
and the damping of the robotic manipulator, respectively, and vi ∈ R6 for
i = r, h are the velocities of the robot’s end-effector and the human grasp
point, respectively. The vector hr ∈ R6 denotes the force and torque applied
on the robot from the object, and ur ∈ R6 is the control input.
Depending on the selection of the apparent inertial and damping gains of

the admittance controller, different modes of control can be achieved. For ex-
ample, the robot can be set to perform only translational motions by choosing
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sufficiently high values for the entries of M r associated with angular acceler-
ation, and it can be constrained to perform rotational motions about its end
effector by choosing sufficiently high values for the entries of M r associated
with Cartesian acceleration.

Constraints
The human and the robot are grasping the same object, and thus they cannot
move independently. In this regard, the following assumption is made:

Assumption 1. Both the object and the connections between the object and
the agents, i.e., human and robot, are assumed to be rigid.

Due to the rigidity of the connections, both translational and rotational
motions are restricted. This limitation of the movement can be formulated
through kinematic constraints, defined as follows:

xr = xh +
[
rhr
03,1

]
vr = GT

hrvh

v̇r = GT
hrv̇h + cv,hr

(4.2)

where xr,xh ∈ R6 are position and orientation of robot’s end-effector and
human’s grasp, respectively, rhr is the vector from the human’s grasp position
to robot’s end-effector and cv,hr is given by:

cv,hr =
[
[ωo]×[ωo]×rhr

03×1

]
(4.3)

Interaction dynamics
The dynamics of the object (3.9) and the robot (4.1) are coupled through
the kinematic constraints (4.2). The dynamics of the coupled system with re-
spect to the human velocity is derived by solving these equations for unknown
variables v̇r, v̇h, and hr. The solution for v̇h is given by:

(Mo/R +M r)GT
hrv̇h = hΣ

id +Grhhh + ur (4.4)
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where
hΣ
id = hΣ

o/R −Drvr − (Mo/R +M r)cv,hr (4.5)

The system (4.4) is coupled sinceMo/R and Grh are not diagonal matrices.
To decouple this system, we design ur as follows:

ur = −hΣ
id −Grhhh + (Mo/R +M r)

(
GT
hrM

−1
c (hh + ht −Dcvh)

)
(4.6)

which leads to the following interaction dynamics:

M cv̇h +Dcvh = hh + ht (4.7)

where M c,Dc ∈ R6×6 are positive definite diagonal matrices and denote the
apparent mass and damping of the system appearing to the human operator.
The vector ht denotes an additional control input encoding an assisting force
applied on the object by the robot to help the human in a task. By employing
this controller, the motion of the human directly corresponds to the applied
force by the human. This means that we avoid the translation/rotation prob-
lem [22], [23], [25].

4.3 Role allocation
To move a rigid-body object along a trajectory, forces and torques must be
applied. When objects are handled jointly by humans and robots, the total
force required for moving the object can be applied by the human or the robot,
or by both. An example is shown in Fig. 4.3, where the human and the robot
are assigned to different roles for four cases that result in the same motion.

Our goal in role allocation is to reduce the human effort, when the task is
known, by adjusting the role of the robot in the spectrum between active and
passive. Adjusting the robot’s role requires specifying a desired trajectory.
For this part, we assume that the desired trajectory is given; however, we
discuss how to find the desired trajectory in the next section. Given a task
velocity to be tracked on the robot side with vt ∈ R6 and v̇t, the desired force
applied by the robot to adjust its role is given by:

hti = Ct

(
M c(GT

rhv̇ti + cvti,rh) +DcG
T
rhvti

)
(4.8)
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where Ct = diag(cti) ∈ R6×6 is a diagonal matrix with positive entries cti ∈ R
denoting the share of the robot assistance for each degree of freedom. The
gain cti takes values between 0 and 1, where 0 means that only the human
applies the required force, and 1 means that the robot performs the task
autonomously. To specify hti from (4.8), we require to find the velocity profile
of the ongoing task, vt, that matches the human’s velocity vh.

object
hr = F hh = 0

(a)

object
hr = 0.8F hh = 0.2F

(b)

object
hr = 0.5F hh = 0.5F

(c)

object
hr = 0 hh = F

(d)

Figure 4.3: In all figures, the object undergoes the same motion. The roles of the
robot and the human are different for each case. In (a), the robot moves
the object without human assistance. Cases (b) and (c) show a mixed
role. In (d), the human moves the object without robot assistance.

4.4 Task adaptation
For the purpose of a generic task definition for object handling, we focus on
primitive motions of a rigid-body object. We use Chasles’ theorem, which
states [71]: “any spatial displacement is a composition of a rotation about
some axis and a translation along the same axis.” In this regard, we define
three local tasks to describe the motion of an object generally. The first task is
free motion which has a task velocity of zero. The second task is pure rotation
where the object is rotating around a screw axis with an angular velocity, par-
allel to the angular velocity vector, and a velocity along this axis. The third
task is pure translation where the object has a rotational velocity of zero. The
task definitions are described in detail in paper C. An example of such tasks
for a planar case is presented in Fig. 4.4. The task set can be expanded by
other tasks formulated using dynamical systems such as tasks defined in [70].
Khansari et al. [70] generate the tasks globally using the dynamical systems.
They propose a learning method called Stable Estimator of Dynamical Sys-
tems to learn the dynamical system using a set of demonstrations. Unlike
[64], [70], the task trajectories proposed in this thesis are defined locally with
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hr

(a)

c

hr

(b)

hr

(c)

Figure 4.4: Velocity profile of a) free motion task, b) rotation task, and c) trans-
lation task.

respect to the world frame.
To find the most similar task, we propose to minimize the error between the

velocity of the ongoing task and the velocities generated by the pre-defined
tasks for the last Nd number of samples. This problem is formulated as a
Mixed-Integer Linear Programming (MILP), where the cost function is the
linear combination of the state of the tasks bi, i.e., active or inactive, and the
error between the last Nd samples of the velocity of the robot, vr, and the
corresponding velocities of all tasks, T i(xr, t).
This is formulated as the following optimization problem:

min
b

∑
i=1:Nt

bi ∑
j=1:Nd

‖vrj − T i,j(xr, t)‖

 (4.9a)

subj. to ∀i ∈ {1 : Nt}, bi ∈ {0, 1} (4.9b)
1T b = 1 (4.9c)
∀i ∈ {1 : Nt}, bi‖vr − T i(xr, t)‖ ≤ v̌i (4.9d)

∀i ∈ {1 : Nt}, bi‖hh − hid‖ ≤ ȟi (4.9e)

where Nt ∈ N is the number of tasks, Nd ∈ N is the number of collected
samples, and bi = {0, 1} decides whether a task is active, i.e., bi = 1. I

is the identity matrix, b = [b1, . . . , bNt ], 1 ∈ RNt is an all-one matrix, v̌i ∈
R is the bound on the error of the velocities, and ȟi is the bound on the
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difference of human applied and desired forces, i.e., hh − hid. Constraint
(4.9b) ensures that a task is either inactive or active, i.e., bi = 0, 1. Note
that a mixed-task role can be achieved by changing the constraint (4.9b)
to “∀i ∈ {1 : Nt}, 0 ≤ bi ≤ 1,” which converts the optimization problem
(4.9) to a convex optimization problem. This may be desirable in the case
of a large number of tasks. Constraint (4.9c) ensures that only one task is
active at a time. Constraint (4.9d) determines whether the selected task is
similar to the current motion. To clarify, this constraint decides whether the
error of the velocity for the identified task is within the predefined bound,
v̌i. Finally, Constraint (4.9e) guarantees that the robot will not perform a
task if the human does not apply her/his share of the required force on the
object. Should any of the constraints in (4.9) not be met, the free motion
task is selected and the human can move the object in all degrees of freedom,
independently.
Remark: Formulating the task identification as an optimization problem

is a flexible and scalable approach that can accommodate constraints and
numerous tasks. Additional specific-purpose tasks that can be learned by
dynamical systems [69], [70] can be added along with the current tasks.
In paper C, the proposed task-based control algorithm is evaluated in sim-

ulation and experimental studies. In the simulation study, without uncer-
tainties in the modeling and parameters, the human applied force is reduced
equally to the preset load-share of the robot when the tasks were identified.
In the experimental study, the human effort is reduced proportionally to the
preset load-share of the robot, which means that an increase in the robot
load share leads to a reduction in the human effort. It should be emphasized
that the translation/rotation problem is also avoided by the control design.
The studies show that the proposed control algorithm can successfully reduce
the human effort in shared human-robot object transportation. The reader is
referred to Paper C for more details.
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CHAPTER 5

Conclusion and Future Work

This thesis contributes to the field of physical human-robot interaction by
investigating the effects of internal time delays on the stability of the system
and by addressing the challenges of identifying human haptic commands and
responding to them in shared human-robot object handling.
In paper A, we investigate the effect of internal time delay on the stability

of a PHRI system for a direct interaction. The internal time delay is modeled
with an exponential function, and the stability of the coupled human-robot
system is analyzed as a time-delayed system. To evaluate the stability, first
the stability of the non-delayed system is evaluated, and then the poles of
the characteristic equation are inspected to establish if the imaginary axis is
crossed. In the case of poles crossing the imaginary axis, the minimum time
delay for which the system is stable, is calculated and used to evaluate stability.
We also analyze the effect of backdrivability, first-order filters and admittance
controller on the stability of the coupled human-robot system. Since the
backdrivable robots are preferable for PHRI, we show that converting a non-
backdrivable robot to a backdrivable one using force measurements with time
delay requires more caution, especially for interaction with stiff environments.
Although we, in Paper A, consider the case of a single time delay in the system,
an interesting direction for future study will be to extend the application of the
analysis approach for a shared human-robot object manipulation to include
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additional sources of time delay, e.g., delays in measurement of the object’s
velocity and acceleration.
Papers B and C explore the topic of shared object handling in physical

human-robot interaction. Haptic sensing and analysis of interaction wrenches
are crucial for developing effective collaboration between humans and robots.
The focus of paper B is on estimating the grasp position of the human for
human-robot collaborative object manipulation to enable an accurate calcu-
lation of applied human force and overcome the translation/rotation problem.
While many studies consider no external torque for contact, in this paper, we
explicitly take into account the effect of the human-applied torque to local-
ize the human grasp and evaluate the estimates. The results show that the
conventional contact point estimation is not accurate for the generic case of
human grasp, and the approach for grasp point estimation proposed in Paper
B is more robust and accurate for estimating the human grasp position, es-
pecially in the presence of human-applied torque. In paper C, we exploit the
known human grasp position to design a control scheme for shared human-
robot object handling. We also propose a formulation of three generic tasks
to describe the motion of the object. Then, we present an algorithm to find
the task most similar to the robot’s motion and calculate the desired force of
the robot to reduce the force applied by the human. The proposed control
scheme is verified through a set of simulation and experimental scenarios and
successfully reduces the human applied force for the similar motions. The
thesis considers the problems of human grasp position estimation and object
handling, separately. The limitation of the control scheme proposed in Paper
C is the assumption that the human grasp position is considered as known,
which can be alleviated using the method proposed in Paper B. For future
studies, an indirect adaptive control scheme where the human grasp position
can be provided by the estimator and used as the true grasp position in the
control scheme will be investigated. Furthermore, conducting a user study
to evaluate the performance of the proposed control scheme is a top prior-
ity. In addition to performance metrics, quantitative and qualitative results
from different users interacting with the robot will be collected and analyzed.
Another interesting idea for future work is to augment the task adaptation
algorithm with force measurements and extend the proposed control for tasks
that involve contact with a surface, such as assembly [72], polishing [73], and
food-cutting [74].
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