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ABSTRACT

Nowadays, vehicles have complex in-vehicle networks that have
recently been shown to be increasingly vulnerable to cyber-attacks
capable of taking control of the vehicles, thereby threatening the
safety of the passengers. Several countermeasures have been pro-
posed in the literature in response to the arising threats, however,
hurdle requirements imposed by the industry is hindering their
adoption in practice. In this paper, we propose spectra, a data-
driven anomaly-detection mechanism that is based on spectral
analysis of CAN-message payloads. Spectra does not abide by
the strict specifications predefined for every vehicle model and
addresses key real-world deployability challenges.
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1 INTRODUCTION

In-vehicle security has recently attracted notable attention as real-
world attacks have demonstrated that it is possible to remotely
control vehicles and compromise safety-critical functions via, for
example, the Internet-enabled multimedia system, thereby threat-
ening the safety of the passengers [6, 18, 34, 36, 37].

As early as 2010 and 2011, a group of researchers [6, 20] demon-
strated two unprecedented remote attacks on vehicles. A few years
later, Miller and Valasek [26] compromised a Jeep Cherokee through
a vulnerability in its Internet-enabled multimedia system, allowing
them to control the steering, the brakes, and the acceleration of
the vehicle. Rather alarmingly, they showed how this exploit could
be implemented as a worm to quickly compromise approximately
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1.4 million vulnerable vehicles. The trend of cyberattacks against
vehicles has continued to date with more major brands, such as
Tesla and BMW, being remotely compromised [21, 22]. Although
some automakers seem to have reacted to certain breaches by issu-
ing over-the-air updates to patch exploited vulnerabilities, it was
shown that the introduced security protection mechanisms can be
bypassed [32].

The increasing susceptibility of vehicles to cyberattacks is in
large part due to connectivity to the Internet, lack of secure network
partitioning that ensures separation of safety-related domains from
the rest of the network, and lack of measures to verify the integrity
and authenticity of Electronic Control Unit (ECU) software and
communications [7]. In addition, the communication architectures
currently used in In-Vehicle Networks (IVNs) were mainly designed
with no security in mind. In particular, the Controller Area Net-
work (CAN), by far the most prevailing bus technology in IVNs, is
inherently insecure and lacks the necessary means of protecting
against message tampering and spoofing attacks. For instance, CAN
messages are broadcast and carry no information about the sender
and thus can easily be spoofed.

Most previous studies on anomaly-based attack detection lever-
age the high regularity of the timing behavior of IVN messages
to detect malicious traffic by monitoring for unlikely changes in
their periodicity. Other studies leverage the subtle, yet distinctive,
differences in the physical properties of ECUs to detect intruders
and identify compromised ECUs [8, 10, 19, 29]. Since a considerable
portion of IVN messages are transmitted periodically, and CAN
messages are inherently associated with unique low-level physical
ECU properties, existing approaches are, by and large, capable of
detecting attacks that cause such kinds of deviation. State-of-the-art
solutions, however, fall short on two main fronts. First, there have
been no noteworthy attempts to detect attacks of a more stealthy
nature that do not cause drastic changes in the IVN dynamics.
Among the most common types of attacks on IVNs considered in
the literature (see Section 3.2), the masquerade attack, where the
adversary injects attack messages from a compromised ECU while
simultaneously muting the intended ECU, is often branded as a
stealthy attack. However, in Section 3.2, we show that the masquer-
ade attack does cause changes in the overall behavior of the CAN
traffic and is hardly stealthy. This paper introduces a more stealthy
attack in which the adversary reprograms the intended ECU and
directly manipulates the payloads of its messages without affecting
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the IVN characteristics. We find no clear evidence in the literature
that existing techniques are capable of detecting this type of attack.
Second, in most cases, prior knowledge about the underlying IVN
traffic (frame ID, transmission frequency, etc.) and ECU configu-
rations is needed. This makes the existing solutions dependent on
the underlying system specifications, which are typically proprietary
and may vary in vehicles of the same model and year produced by
the same OEM, let alone in vehicles of different brands.

In this work, we introduce spectra, a method for detecting at-
tacks on vehicles by continuously monitoring CAN traffic. Spectra
employs an exploratory time-series analysis technique to capture
the deterministic behavior of the IVN dynamics by processing CAN
traffic at the payload level. The method works by first identifying a
mathematical representation of the normal behavior of IVNs and
subsequently monitoring in real time for attack-indicating changes
in the payload structure. In addition to being inherently capable of
detecting stealthy attacks on IVNs by detecting slight variations
in the monitored signal, spectra requires no prior knowledge of
the mechanism generating the CAN traffic. As such, the proposed
technique overcomes the discussed challenges pertaining to the
deployability of such solutions in practice. More specifically, this
paper makes the following contributions: (i) We introduce a fast,
lightweight, and specification-agnostic attack-detectionmechanism
for IVNs that goes a long way toward overcoming adoption hurdles
imposed by the industry; (ii) We demonstrate the effectiveness of
our approach by conducting extensive experiments including per-
forming stealthy attacks that we designed to serve as real-world
scenarios on a 2018 Volvo XC60; (iii) We show that by monitoring
CAN traffic in a way that treats the entire stream of CAN message
payloads as a single signal we require no comprehension of the
actual encoded signals and the underlying vehicle specifications
that are typically proprietary. As such, our approach is applicable
to vehicles of different brands and configurations; (iv) We show
that by identifying malicious manipulations directly at the payload
level spectra is capable of detecting strategic adversaries who en-
sure that message frequencies and low-level ECU configurations
remain intact under the attack. After reviewing related literature
in Section 2, we underline the vulnerability of IVNs and describe
the attack scenarios in Section 3. Then, we present our detection
methodology in Section 4, which we evaluate in Section 5.

2 RELATEDWORK

In recent years, there have been several attempts to design and
develop intrusion detection systems for IVNs [8, 16, 30, 31, 33].
Due to the long life-span (decades) of vehicles and the difficulty of
maintaining regular updates, anomaly-based detection has been
considered to be more viable than signature-based approaches [31].
Much of the related literature on in-vehicle attack detection lays
particular emphasis on the well-defined specifications of CAN com-
munication with respect to message periodicity and data content.
Larson et al. [23] propose a specification-based method to detect
malicious communication that does not comply with the configura-
tion parameters of the ECU and the CAN protocol specifications.
Müter et al. [31] propose a sensor-based detection method to detect
abnormal events related to eight potentially exploitable aspects
of CAN communication. An entropy-based approach is proposed

in [30], where the normal entropy of CAN traffic is initially mod-
elled, and the entropy of subsequent traffic is then monitored such
that a higher value indicates a higher level of coincidence in the
communication. Since IVN traffic has strict specifications, manipu-
lation in the frequency or payload of CAN frames is expected to
increase the entropy, and may thus be detected by the proposed
technique. Based on the assumption that each frame ID can be
associated with only one transmitter on a single bus, Matsumoto et
al. [24] suggest the use of the frame ID to both detect and prevent
unauthorized message transmissions. According to the authors, an
ECU should verify that its own messages are not present on the
bus unless the ECU is in sending mode. If this is not the case, then
it is likely that an unauthorized node is transmitting the message
on behalf of the actual sender, in which case, the receiving ECU
overwrites the message before the transmission is over. To detect
message-injection attacks, Moore et al. [27] propose to model the
inter-arrival time (or wait time) of periodic messages. Given that
in a message-injection attack the adversary must send messages
with a valid ID at a rate at least equal to the original message fre-
quency, the proposed technique detects an attack whenever the
inter-arrival time between two instances of a given message devi-
ates from the expectation. Distinctively, Murvay and Groza [29]
exploit the physical characteristics of CAN frames (e.g., voltage)
to fingerprint ECUs so as to achieve source detection. The authors
argue that signals generated by CAN transceivers exhibit different
patterns, even if the transceivers originate from the same manu-
facturer, due to peculiar differences in their physical properties.
A follow-up study by Choi et al. [10] improves the fingerprinting
capabilities by analyzing more CAN traffic features. In a similar
fashion, Cho and Shin [8] propose to fingerprint CAN transceivers
based on ECU clock behavior. Due to the lack of clock synchro-
nization in CAN communication, the authors hypothesized that
the clock offset and the clock skew of each CAN transceiver
are inimitable because they depend only on each ECU’s local crys-
tal clock. Unlike other state-of-the-art methods, the clock-based
technique has been shown capable of detecting more acute attacks.
Even though the state-of-the-art IVN intrusion detection systems
are capable of detecting many types of attacks, they suffer from
certain drawbacks. In particular, most proposed methods require
prior knowledge about the underlying IVN and ECU configura-
tions, which may vary even in vehicles of the same model and
year. Furthermore, with regards to coverage of different attacks,
the proposed techniques have not been shown particularly capable
of detecting attacks of a more stealthy nature.

3 ATTACKS AND VULNERABILITIES

In this section, we give a brief overview of CAN communication,
introduce our adversary model, and describe the attack scenarios
we used for evaluating our approach.

3.1 CAN Communication & Adversary Model

CAN is a multi-master serial bus with a typical speed of 500 kbit/s
on which many of the operational and safety-critical in-vehicle
functions are implemented. Each CAN frame has a unique ID that
indicates its priority, determines its source and destination(s), and
enables the receivers to decode its data content accordingly. If two
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or more CAN frames are to be transmitted simultaneously on a
single bus that is in idle state, the frame with the highest priority
(the lowest ID) is transmitted first. During this time, all other ECUs
refrain from transmission, switch to receivingmode, and wait un-
til the bus returns to the idle state. A single CAN frame can carry up
to 8 data bytes of content, typically consisting of one or multiple sig-
nals that control different functions such as speed, steering-wheel
angle, autonomous braking, indicators, and lamps. The permissible
data content and transmission frequency of each CAN frame are
specified by the vehicle manufacturer in the early phases of ECU
development. For instance, a CAN frame with ID=0x12 and peri-
odicity of 10 ms may belong to the engine-control ECU, in which
case, it would carry data related to the engine speed and torque. A
receiving ECU that is waiting for a frame with ID=0x12 examines
the ID using a filtering mechanism and drops unwanted frames.
Due to the strict specification of the ECU communication, the de-
gree of randomness in IVN traffic is significantly lower than that
of Internet traffic and classical computer networks.

The most common way of accessing a vehicle’s internal network
to inject attack messages is through its OBD-II port. It is also pos-
sible to remotely access the vehicle through other media such as
the Internet, cellular networks, and Bluetooth systems [6, 26]. In
our experiments, we assume that the adversary has either local or
remote access to the IVN. Furthermore, we consider the worst pos-
sible situation in which a nefarious adversary aims to influence the
vehicle’s behavior, potentially leading to immobilization, danger-
ous maneuvers, or even collision. Irrespective of the attack surface
used to mount the attack, after having identified the CAN ID of the
intended safety-critical message, the adversary’s goal is to perform
one of the following malicious tasks or a combination thereof: (i)
compromise the original sender ECU (hereinafter referred to as
target ECU) and maliciously manipulate the message payload be-
fore it is transmitted on the bus; (ii) impersonate the target ECU
by injecting the carefully crafted message in an indistinguishable
manner; or (iii) prevent the target ECU from sending the message
by placing it in a listen-only mode via diagnostic commands.

Similar to [7], we consider that ECUs can be either partially or
fully compromised. If an ECU is partially (or weakly) compromised,
the adversary lacks access to its memory and can only listen to the
communication on the bus. A partially compromised ECU may not
be used to inject arbitrary messages, however, the adversary can
forcibly prevent it from transmitting its normal messages by either
putting it offline, or by putting the transceiver into listen-only
mode via basic diagnostic commands. ECU developers usually im-
plement a set of service routines that may be triggered by a testing
device in a workshop through a diagnostic session after the rou-
tine requirements have been met. Safety-critical routines are well
protected and execute only under certain conditions, such as the
vehicle being at low speed or completely turned off. Importantly, a
weakly compromised ECUmay not be used to trigger or exploit such
routines. An adversary may essentially use a weakly compromised
ECU to sniff traffic or shut it down entirely to cause one or several
other ECUs that rely on its messages to malfunction. On the other
hand, if an ECU is fully (or strongly) compromised, the adversary is
assumed to have full memory access and the ability to inject crafted
messages into the bus. An adversary who can fully compromise an
ECU typically has comprehensive knowledge of its software and

hardware specifications, and may be capable of reprogramming its
firmware to add or remove ECU features. Moreover, with a fully
compromised ECU, the adversary may obtain the Security Access
seed/key generation algorithm by reverse-engineering the firmware
to unlock the ECU and exploit its safety-critical routines. In fact, as
demonstrated in recent automotive attacks [6, 20, 22, 26, 32], it is
not uncommon for an adversary to unlock a strongly compromised
ECU using advanced diagnostic commands and bypass (or disable)
existing software protection mechanisms.

3.2 Attack Scenarios

In the literature, three attack scenarios for in-vehicle networks are
documented: suspension, fabrication, and masquerade attacks [8, 9,
25, 26], which are considered in our evaluation. In addition, we
introduce and evaluate spectra on an attack of a more stealthy
nature, which we refer to as the conquest attack, to highlight the
detection capabilities of our approach.

In order to provide an intelligible explanation of the attacks, let
us consider a simple CAN setup (Figure 4a) in which messages A0,
B0/B1, and C0 are transmitted over different time intervals by ECUs
A, B, and C respectively. For the sake of illustration, we consider
B0 to be a sensitive message related to one or more safety-critical
functions, and thus B is the target ECU in the attacks.

Suspension attack. The suspension attack (Figure 1a) is a type
of Denial of Service (DoS) attack, where the weakly compromised
ECU B ceases to send messages. In order to achieve this, the ad-
versary manages, through a diagnostic session, to put the ECU
into programming mode so that it is no longer able to transmit
messages. As a result, the receivers that rely on incoming data from
the suspended ECU may no longer function properly.

Fabrication attack. In a fabrication attack, the adversary is
incapable of compromising the target ECU, but is able to fully
compromise another ECU (A) on the bus and use it as a means
to impersonate B. Specifically, A is used to transmit forged mes-
sages with ID B0 at a higher frequency than B so that the receiving
ECUs would receive conflicting B0 messages sent by both A and
B, except that the data received from A would be dominant due to
higher frequency of transmission (see Fig 1b). Hence, the receiving
ECUs would process the payload of the B0 messages overwhelm-
ingly received from the adversary and react accordingly, potentially
starting to malfunction. A typical scenario is the transmission of
forged speedometer values at a higher frequency than the original
message, resulting in the speedometer behaving erratically on the
dashboard and predominantly showing the falsified values.

Masquerade attack. As can be noticed in the fabrication at-
tack scenario, although the adversary impersonates the target ECU
through a fully compromised ECU, the target ECU will keep trans-
mitting messages. This makes the fabrication attack ineffective
whenever safety-related protection mechanisms on the receiving
ECUs are in effect. These mechanisms are designed to identify
and react to messages with contradicting signal values [26]. In a
masquerade attack (Figure 1c), on the other hand, the adversary
has the additional power of weakly compromising the target ECU
and suspending it from transmission, while immediately starting
to transmit attack messages (B0) at the original frequency from a
fully compromised ECU (A) on the same bus. This way, the adver-
sary can bypass possible protection mechanisms on the receiving
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Figure 1: Schematics for suspension attack (1a), fabrication attack (1b),masquerade attack (1c), and conquest attack (1d).

ECUs, as the latter only process B0 messages coming from A and
no violation in the arrival times of these messages occurs. It is
worth noting that since the target ECU is suspended by the adver-
sary, it ceases to transmit all of its messages (and typically ECUs
transmit more than a single message), including B1; hence ECUs
relying on receiving message B1 may start to malfunction. A mas-
querade attack may have an impact on ECU A as well, which may
become overloaded in the likely case that it has fewer transmission
buffers than the number of messages it has to transmit. This in turn
would introduce problems such as significant priority inversion [11]
and non-abortable message transmission [12] that consequently
degrade the real-time performance of the CAN bus. Thus, the mas-
querade attack is not particularly stealthy because it leads to more
chaotic CAN communication.

Conquest attack. To highlight the full potential of our approach,
we introduce the more stealthy conquest attack, in which the ad-
versary is able to evade both the security protection mechanisms
and the state-of-the-art intrusion detection systems. As shown in
Figure 1d, in a conquest attack, the adversary directly conquers the
target ECU by fully compromising it, which in none of the previ-
ous scenarios the adversary was able to achieve. In particular, the
adversary is able to reprogram the target ECU so that instead of
having to compromise another node on the network to inject the
intended malicious payload, the adversary directly manipulates the
payload of the sensitive message B0, albeit only subtly, thus forcing
the corresponding safety-sensitive operation executed on the re-
ceiving ECU to function erroneously. Unlike all other scenarios we
have described so far, this attack causes no changes in the normal
behavior of any of the ECUs with respect to message frequency,
clock offset, or clock skew behavior. Even at the payload level, a
strategic adversary carrying out a conquest attack alters only a

few bytes of data in a continuous stream of CAN frames. Such a
stealthy attack may prove particularly effective against Advanced
Driver-Assistance Systems (ADAS), such as forward collision warn-
ing, lane departure warning, and electronic stability control, that
critically rely on the integrity of sensor values. Therefore, perform-
ing a conquest attack on such sensor values may have far-reaching
consequences on the underlying IVN if the adversary manages to
maliciously alter sensor data bytes in such a way that they fall into
the normal range yet deviate from the actual values.

A possible real-world conquest attack scenario is one where the
adversary is able to reprogram the parking assistant module and di-
rectly send crafted steering wheel angles to the steering wheel ECU
causing the wheel to behave erratically. In another hypothetical
scenario, the adversary reprograms the engine control module and
maliciously alters data bytes in the engine speed messages in such
a way that the speed sensor readings remain in a reasonable range
while not reflecting the actual speed of the engine. Consequently,
functions that make use of these readings to make decisions based
on the engine speed will be presented with misleading information.

4 METHODOLOGY

In this section, we elucidate our attack-detection methodology.
Spectra detects the types of attacks on IVNs described in Sec-
tion 3.2 by monitoring CAN traffic at the payload level to identify
structural changes attributable to malicious payload manipulation.
The method processes the data fields in the stream of frames trans-
mitted over the CAN bus one byte at a time. A key enabling property
for spectra is the regularity of vehicular dynamics, which seem to
follow a pattern with military precision. Given that this regularity
is highly reflected in the CAN traffic (see Figure 2a), spectra lends
itself to specification-agnostic detection of attacks on IVNs.
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(a) CAN traffic

(b) Signal subspace.

Figure 2: Visualization of the departure of IVN dynamics from nor-

mal behavior during a masquerade attack.

4.1 Spectral Analysis of CAN Traffic

Spectra is rooted in singular spectrum analysis (SSA), a time-series
analysis technique mainly used to explore different behavioral char-
acteristics of a dynamical system purely from noisy time series of
measurements [5, 14, 15, 35]. Inherently, SSA can extract essential
signal information describing the deterministic behavior of the un-
derlying system and has recently been used for anomaly detection
in cyber-physical systems [1–4, 17].

Spectra takes as input a time series of CAN-message payloads
and works in two phases: an offline learning phase and an online
detection phase. The method is capable of detecting slight structural
changes in the payloads by recognizing unusual byte sequences
that were unseen during training, no matter whether the individual
maliciously altered bytes fall into the normal range or not.

In the learning phase, an initial time series of CAN traffic used for
training is embedded in a vector space, referred to as the trajectory
space. Then, a signal subspace is identified through a mathemati-
cal procedure, onto which training vectors are projected. Owing
to the regularity of IVN dynamics, the projected vectors form a
cluster in the signal subspace, thereby defining the normal behavior.
Afterwards, during an online detection phase, at every iteration,
a test vector is composed by incorporating the most recent value.
A departure score is then iteratively computed by measuring the
distance between the most recent test vector and the centroid of

the determined cluster. Finally, an alarm is generated whenever the
score crosses a prescribed threshold.

The CAN traffic ismodeled as a time seriesT = 𝑏1, 𝑏2, · · · , 𝑏𝑁 , · · ·
of (the integer representation of) bytes extracted from the payloads
of consecutive messages, such that if the payload of a message𝑚 𝑗

on the CAN bus consists of bytes 𝑏𝑖 , 𝑏𝑖+1, 𝑏𝑖+2, then 𝑏𝑖+3, 𝑏𝑖+4 would
belong to the following message𝑚 𝑗+1 whose payload contains only
2 bytes of data. The rationale behind processing individual bytes is
that the CAN data field, which may contain up to 8 bytes of data,
has a variable length, yet always contains a multiple of one byte.

4.2 Learning Phase

In the learning phase, an initial subseries of T of length 𝑁 is un-
folded into a Hankel trajectory matrix by forming 𝐾 𝐿-lagged vec-
tors b𝑖 = (𝑏𝑖 , 𝑏𝑖+1, · · · , 𝑏𝑖+𝐿−1)𝑇 as follows

B =


𝑏1 𝑏2 . . . 𝑏𝐾
𝑏2 𝑏3 . . . 𝑏𝐾+1
.
.
.

.

.

.
. . .

.

.

.

𝑏𝐿 𝑏𝐿+1 . . . 𝑏𝑁


(1)

where 𝐿 is called the lag parameter, 1 ≤ 𝑖 ≤ 𝐾, and 𝐾 = 𝑁 −
𝐿 + 1. Then, the singular value decomposition of B is performed to
obtain an orthonormal set of 𝐿 eigenvectors u1, u2, · · · , u𝐿 of the
covariance matrix BB𝑇 . A matrix U = [u1 : u2 : · · · : u𝑟 ] is then
formed, whose columns are the 𝑟 < 𝐿 leading eigenvectors, where 𝑟
is the so-called statistical dimension. This choice of the few leading
eigenvectors plays a key role in capturing essential information
about the underlying behavior of the CAN trafficwhile disregarding
the many remaining components that correspond to noise.

The matrix U is a linear transformation that maps the CAN byte
sequences b𝑖 , 1 ≤ 𝑖 ≤ 𝐾 (training vectors), from the trajectory
space into the lower-dimensional signal subspace spanned by the
column vectors of U. The transformed vectors form a cluster in the
signal subspace (see Figure 2b), whose centroid is then computed
as c̃ = U𝑇 c, where c is the sample mean of the training vectors.

4.3 Detection Phase

At every iteration during the detection phase, a departure score is
computed for the most recent lagged vector b𝑗 , 𝑗 > 𝐾 . This is done
by computing the weighted squared Euclidean distance from the
centroid, where the weights are determined by the ratio of each
eigenvalue to the total sum of eigenvalues associated with the 𝑟
eigenvectors determined in the learning phase. More formally,

�̃� 𝑗 = | |W(c̃ − U𝑇 b𝑗 ) | |2 (2)

such thatW is an 𝑟 -dimensional diagonal matrix whose 𝑖𝑡ℎ diagonal
entry is defined as 𝑒𝑖/(

∑𝑟
𝑖 𝑒𝑖 ) , where 𝑒𝑖 is the eigenvalue correspond-

ing to the 𝑖𝑡ℎ eigenvector u𝑖 , for 1 ≤ 𝑖 ≤ 𝑟 . Finally, an alarm is
generated whenever �̃� 𝑗 ≥ \ , where \ is a prespecified threshold.

Figure 2a shows CAN traffic generated using a testbed (see Sec-
tion 5.1). The initial subseries highlighted in blue corresponds to
attack-free CAN traffic used in the learning phase to identify signal
information that is representative of the normal behavior of the
underlying vehicular communication. Once the learning phase is
complete, a detection phase is initiated, in which a departure score
is computed for every new traffic instance. The subseries of CAN
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traffic highlighted in red corresponds to malicious traffic injected by
the attacker during a masquerade attack (described in Section 3.2).
The signal subspace being isomorphic to a low-dimensional Eu-
clidean space enables the visualization of the projected vectors in
R3 [4]. Figure 2b displays the vectors corresponding to the CAN
traffic presented in Figure 2a after they have been projected onto
the identified signal subspace. Owing to the highly regular behavior
of IVNs, as Figure 2b depicts, the projected training vectors occupy
a firmly bounded region in the signal subspace and thereby form
a cluster. Under normal conditions, the projected test vectors fall
close to a cluster of training vectors. Under attack conditions, on the
other hand, anomalous test vectors are forced to lie further away
from the cluster and the computed distance is presumed to increase,
signaling that the IVN is departing from the normal behavior.

4.4 Determining the Detection Threshold

One important metric for evaluating spectra’s performance is
the average time it takes to detect an attack, which we refer to
as the delay factor. Evidently, setting the alarm threshold high
enough so as to avoid false positives results in a larger delay factor.
More precisely, the delay factor, denoted by 𝛿𝐿,\ , varies with the lag
parameter 𝐿 and is inversely proportional to the alarm threshold
\𝐿,𝑟 for a fixed choice of 𝐿 and 𝑟 .

We define the delay factor as the number of traffic instances
(bytes) that fall into the aggregate of attack intervals 𝑇𝑎 and whose
corresponding departure scores are below the threshold, normalized

(a) Repeated masquerade attacks

(b) Identifying the best threshold

Figure 3: Optimizing the detection delay/false alarms trade-off.

by the total number of attack instances 𝛾𝑎 ; more formally,

𝛿𝐿,\ =
�� {T𝑖 | 𝑖 ∈ 𝑇𝑎, �̃�𝑖 < \ } �� / 𝛾𝑎 . (3)

Figure 3a shows CAN traffic from an IVN that was subject to 10
repeated masquerade attacks. To discover the best alarm threshold,
for 𝑘 different values of the lag parameter 𝐿, we determine the
corresponding statistical dimension 𝑟 , and compute 𝛿𝐿,\ for 1, 000
different values of \ selected by evenly dividing the range between
the minimum and maximum departure scores attained throughout
the entire experiment. As illustrated in Figure 3b, this procedure
yields 𝑘 curves describing the trade-off between the time to detec-
tion and the likelihood of false positives for different choices of
spectra’s lag parameter. The task then is to optimize this trade-off
by determining the best delay factor 𝛿𝐿∗,\∗ . Intuitively, the best lag
parameter 𝐿∗ should correspond to the curve with the minimum
AuC (Area under Curve), which measures the total detection delay
over the different threshold trials. After identifying the best curve
as such, we determine the best threshold \∗ by visually identifying
the optimal cut corresponding to the threshold that minimizes the
delay factor while maximizing the threshold, where the latter is
equivalent to minimizing the likelihood of false positives.

4.5 Limitations

Notwithstanding the importance of CAN communication, which
carries most of the critical signals in modern vehicles, spectra only
handles CAN traffic to detect attacks on IVNs, at least as far as tested.
As spectra essentially performs spectral analysis of time series,
the monitored messages also need to be periodic or frequently
transmitted over the CAN bus, which is the case for most signals.
The way spectra would handle non-periodic traffic depends on
the type of messages being transmitted (i.e., somewhat common
event-driven messages or very rare messages). As discussed in the
attack-free experiment in Section 5.6, while driving a real car, we
intentionally emulated passenger-triggered controls and observed
that such benign activity would be gracefully handled by spectra.
Furthermore, as spectra monitors for changes in behavior, it may
not react promptly to attacks in which the adversary manages to
drive the vehicle to an unsafe state by making slow normal-looking
changes at the payload level (e.g., linearly increasing engine speed)
through a conquest attack.

5 EVALUATION

In order to evaluate the effectiveness of spectra, we conduct a
series of experiments on a real vehicle, a CAN bus prototype, and
CAN traffic captured from two additional vehicle brands. In the first
set of experiments (Exp I-VIII), we demonstrate the capability of
our approach to detect all attacks described in this paper, including
the stealthy conquest attack. In the second set of experiments (Exp
IX, X), we examine the behavior of spectra when performing
under attack-free conditions. We begin with a description of the
evaluation setups and the data used in validating our approach.

5.1 Evaluation Setup

CAN bus prototype.As shown in Figure 4a, we build an experimen-
tal CAN bus prototype consisting of three ECUs that communicate
on a single bus. Each ECU consists of a SeeedStudio CAN-bus shield
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(a) CAN bus prototype (b) 2018 Volvo XC60 (c) In-car OBD connection setup

Figure 4: Different setups used for evaluation.

plugged on top of an Arduino Uno PCB. The CAN-bus shield adopts
the Microchip MCP2515 SPI, a widely used CAN controller, and
the Microchip MCP2551 CAN transceiver. The Arduino Uno is a
microcontroller that is based on the ATmega328P with a 16 MHz
quartz crystal clock, 32KB flash memory, and 2KB SRAM. ECU A
was programmed to transmit message 0x1C every 30ms, and ECU B
was programmed to transmit messages 0x01 and 0x05 every 15ms
and 25ms respectively, in addition to a third ECU (C) which was
programmed to capture the CAN traffic. To produce realistic be-
havior, we simulate three messages with transmission frequencies
and payloads (i.e., signals) that are similar to arbitrarily chosen
safety-critical messages from a 2018 Volvo XC60. The CAN bus
prototype was set up to operate at 500Kbps, which is the typical
bit rate for in-vehicle high-speed CAN buses.
Real vehicle. In order to evaluate spectra in a real-world setting
and demonstrate its capability of detecting attacks on recent vehi-
cles, we use a brand new 2018 Volvo XC60 (Figure 4b). Being a test
vehicle, provided by Volvo Cars for the purpose of this research,
it comes equipped with extra network interfaces, which granted
us the privilege of accessing ECUs that are otherwise unreachable
through the standard interfaces on a released vehicle. This privilege
enabled us to perform the attacks in a much more cost-effective
and time-efficient manner. It should be noted that mounting some
of the attacks without such privileges requires extensive technical
knowledge and would be highly costly and challenging.

To communicate with the vehicle’s internal network, we chose
Vector CANoe, a widely used software for ECU development and
testing in the automotive industry, running on a laptop, together
with a Vector VN1630A CAN interface connected to the vehicle’s
OBD-II port (see Figure 4c). This setup permitted us to create two
virtual ECUs, namelyE1 andE2, that were used for running spectra
and mounting attacks respectively. To evaluate the performance
of spectra under complex conditions in a real vehicle, we chose
to monitor one of the CAN buses on the XC60 that reflects the
vehicle dynamics. The highly loaded CAN bus that we monitored
consists of more than five safety-critical ECUs and a gateway that
enables cross-domain communication. There were more than 80
CAN messages transmitted at high frequencies between the ECUs
on the bus, carrying approximately 1100 distinct signals in total.
Such an environment would be a highly attractive target for attack-
ers as it controls some major functions in the vehicle and contains
messages with high integrity requirements. In this setup, E1 and
E2 were practically considered as two new nodes added to the CAN

bus capable of both passively monitoring the traffic in real-time
and actively influencing the vehicle’s internal communication by
injecting crafted messages. The evaluation was performed while
the vehicle was driven on a test track. However, for safety reasons,
the vehicle was in parking mode when mounting an attack.
Captured CAN traffic. To investigate the performance of spec-
tra in the absence of attacks, in addition to testing the method on
traffic generated by the CAN bus prototype and the real vehicle, we
used CAN traffic captured from a 2012 Toyota Corolla by Mueller
et al. [28] and from a 2012 Honda Civic by Diacon et al. [13]. The
Toyota Corolla traffic consists of 58 distinct CAN messages periodi-
cally transmitted over different frequencies ranging from 9ms to
1.06 seconds. The Honda Civic traffic consists of 46 distinct CAN
messages periodically transmitted over different frequencies rang-
ing from 9ms to 302ms. In both cases, the data was captured while
the subject vehicle was being driven under attack-free conditions.

5.2 Results Overview

In all subsequent figures, the upper subplot displays the time series
of raw CAN bytes. The part highlighted in blue corresponds to the
subseries that was used for training spectra, and the part high-
lighted in red corresponds to the time frame during which the attack
was occurring. Figures 5 and 6 display the detection results for all
four attacks. Evidently, spectra successfully detects misbehaviors
in the CAN traffic when the IVN is subject to all of the discussed
attacks, including the stealthy conquest attack. Figure 7 shows how,
with a proper choice of alarm threshold, spectra triggers no false
alarms during attack-free monitoring of CAN traffic generated from
various sources. Next, we describe the experiments we performed.
For each one of the four attack scenarios discussed in Section 3, we
performed the attack on the CAN bus prototype (Figure 4a) and on
a 2018 Volvo XC60 (Figure 4b).

5.3 Suspension Attack

Exp I-a: To simulate a suspension attack on the CAN bus prototype,
we programmed ECU B to stop transmitting all of its messages,
namely the ones with IDs 0x01 and 0x05, 20 seconds after the start
of the experiment.
Exp I-b: To perform the attack on the real vehicle, we used ECU E1
to monitor the CAN traffic, while an additional OBD-II interface in
the test vehicle was used to suspend a real (target) ECU on the bus
by putting it into programming mode 20 seconds after establishing
a diagnostic session. To observe how traffic behaves before and
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(a) Exp I-a: Suspension on prototype (b) Exp I-b: Suspension on Volvo XC60 (c) Exp II-a: Fabrication on prototype

(d) Exp II-b: Fabrication on Volvo XC60 (e) Exp III-a: Masquerade on prototype (f) Exp III-b: Masquerade on Volvo XC60

Figure 5: Detection of attacks on prototype and Volvo XC60.

after a suspension attack, we put the target ECU back online by
terminating the programming session.
Discussion. As explained in Section 4, spectramonitors the CAN
traffic at the payload level by processing one byte of traffic at a
time. Although in a suspension attack, the adversary only suspends
the target ECU and does not manipulate the payloads of the CAN
messages, spectra still manages to detect the attack as indicated
in Figures 5a and 5b. The reason why this attack is detectable by
spectra is that the suspension of the target ECU leads to a change
in the byte sequence such that the subsequences monitored during
the attack would be foreign to spectra because they were unseen
during the learning phase. This observation effectively implies that
any change in transmission frequency is detectable by spectra
because it would induce a change in the payload byte sequence.

5.4 Fabrication & Masquerade Attacks

Exp II-a: To evaluate spectra against fabrication attacks on the
CAN bus prototype, we programmed ECU A to inject messages with
ID 0x05 at the same frequency as its original transmitter B roughly
20 seconds after the start of the experiment. The payload of the
injected message is identical to the original data sent by B except
for the last byte, assumed to represent the target signal for the
adversary. Therefore, A was programmed to change only the last
byte of the payload when injecting forged messages with ID 0x05.
Exp II-b: To carry out the attack on the real vehicle, we considered
a scenario in which ECU E2 is fully compromised by the adversary
and used to mount a fabrication attack on a real ECU in the vehicle.
Using the proprietary signal database, we identified the ECU that
transmits Speed Limit Warning (SLW) signals in a CAN message to
the gateway ECU, which subsequently forwards it to the dashboard
ECU located in another network domain. Ignoring the various
signals that were irrelevant to the SLW function, we located the bits
in the message payload that belong to the SLW signal; specifically,
the bits which trigger the warning and specify whether it shall
be visual, audible, or both. Finally, we programmed E2 to initiate
a fabrication attack on the SLW message. Exp III-a: To launch a

(a) Exp IV-a: On CAN bus prototype

(b) Exp IV-b: On 2018 Volvo XC60

Figure 6: Exp IV: Detection of the stealthy conquest attack.

masquerade attack on the CAN bus prototype, we programmed ECU
A, assumed to be fully compromised, to launch an attack on ECU
B, assumed to be partially compromised, in which B is forcibly
withdrawn from transmission after 20 seconds, and immediately
afterwards, A starts to inject messages with ID 0x05 at the original
frequency on behalf of B, but with a maliciously crafted payload.
Exp III-b: To perform a masquerade attack on the real vehicle, we
considered a scenario in which the fully compromised ECU E2
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(a) CAN bus prototype (b) 2018 Volvo XC60 (c) 2012 Toyota Corolla (d) 2012 Honda Civic

Figure 7: Exp V: Evaluation of spectra on attack-free CAN traffic.

launches a fabrication attack on the real ECU (T) in the vehicle
that is responsible for sending the engine rotation speed (RPM)
values to the dashboard ECU and a few other receivers. For this
attack scenario, we used the signal database to identify the ECU
responsible for transmitting CAN messages containing RPM values
(among other sensor values) to the gateway ECU, which in turn
relays them to the dashboard ECU located in another network
domain. We located the bits in the message payload that belong
to the RPM signal and programmed E2 to transmit the maliciously
altered RPM message, while immediately suspending T. This was
achieved by injecting forged RPM messages from E2 having the
same ID and frequency as the original RPMmessage, butwith forged
RPM values in the payload, while placing T into a suspension mode
by sending a reprogramming request through a diagnostic session.
Discussion. In the fabrication attack, the payloads corresponding
to SLW messages are maliciously altered and, as in the suspension
attack, the frequency of messages is affected since ECU A transmits
the fabricated messages at a higher frequency. As pointed out in
Section 3.2, when a fabrication attack is not feasible due to the
receiving ECU having protection mechanisms in place, a masquer-
ade attack can be performed instead. Technically, the masquerade
attack causes similar changes in the payload byte sequence, since
it involves both altering the payload of the intended message and
suspending the target ECU. Figures 5c, 5e, 5d and 5f clearly show
how both attacks can be detected by spectra.

5.5 Conquest Attack

Exp IV-a: To simulate a stealthy conquest attack on the CAN bus
prototype, we assumed that the target ECU B is fully compromised
by an adversary who wants to silently manipulate specific signals
in one or several messages without injecting any other messages
into the bus by any other ECUs. To perform this attack, B was
programmed to maliciously modify only the last two bytes in the
payload of messages with ID 0x05 in such a way that the modified
values remain within the normal range of the corresponding signal.
Exp IV-b: To perform the conquest attack on the real vehicle, we
considered a scenario in which the target ECU T is fully compro-
mised and the adversary is capable of changing certain bytes of
the payload where one or more critical signals are stored, while
leaving the remaining data bytes intact. In this scenario, an ex-
isting safety-critical diagnostic service (see Section 3.1) used for
overwriting specific signal values on the target ECU is identified
as the launching point of the attack. As this service is protected
from unauthorized users by the Security Access request-response
protocol, an additional OBD-II interface in the test vehicle would
run the Security Access algorithm and unlock the service on the
target ECU, while ECU E1 monitors the traffic on the CAN bus. In

this attack, the signal related to fuel consumption was maliciously
altered roughly 20 seconds after the start of the experiment.
Discussion.Unlike existing attacks, in a conquest attack, only a rel-
atively small subset of payload bytes is affected, while all messages
are transmitted by their original ECUs. Importantly, the adversary
would inject the attack message using its original sender ECU and
at the original frequency. This effectively means that the adversary
is able to evade protection mechanisms, since neither the timing
behavior nor the low-level physical specifications of the messages
are violated. In contrast to the other attacks, the conquest attack
causes minimal changes in the CAN traffic. Nonetheless, as spectra
is inherently capable of detecting slight variations in the monitored
traffic, as shown in Figure 6, it successfully detects the conquest
attack both on the CAN-bus prototype and the real vehicle. The
significance of this result particularly lies in spectra’s distinctive
capability of detecting subtle anomalous deviations in a small frac-
tion of signal data bytes on a heavily loaded CAN bus containing
more than 1100 distinct signals, and without prior knowledge of
the underlying signal specifications.

5.6 The Attack-Free Experiment

Exp V-a: To simulate normal traffic behavior on the CAN bus pro-
totype, we programmed ECUs A and B to transmit messages 0x1C
and [0x01,0x05] respectively. For the sake of producing realistic be-
havior, the payloads of the messages were constructed to be similar
to that of existing messages on the Volvo XC60 CAN bus.
Exp V-b: In order to investigate the performance of spectra under
normal driving conditions, the test vehicle was driven in an urban
area, where unforeseen events and ambient conditions required the
driver to show different reactions (sudden acceleration, braking,
etc.), thus adding normal, yet significant, variability to the IVN
traffic, which was passively monitored by E1 throughout the ex-
periment. Finally, in order to demonstrate the applicability of our
approach to other vehicle brands, we ran spectra on normal CAN
traffic captured from a 2012 Toyota Corolla and a 2012 Honda Civic.
Discussion. Figure 7 shows the behavior of spectra when per-
forming on normal traffic generated by the CAN prototype and
three different real vehicles. In particular, the CAN traffic displayed
in Figure 7b was captured while driving the Volvo XC60 test vehicle
in an urban area and, as indicated in the figure, no false alarms
were triggered by spectra.

6 CONCLUSION

With the rapid increase in the number of cyberattacks on vehicles,
designing intrusion detection systems for CAN communication has
become a major area of interest. This paper has made several note-
worthy contributions to the field of automotive security. First, we
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have presented spectra, an efficient attack-detection mechanism
that is particularly suitable for the IVN domain. Second, we have
demonstrated, through extensive experiments including performing
attacks on a 2018 Volvo XC60 test vehicle, how spectra is capa-
ble of detecting stealthy attacks on IVNs. Finally, we have shown
that spectra enjoys the advantage of being specification-agnostic,
which makes it applicable to a wide range of vehicle models and
deployable in real-world settings.
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