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Abstract—We present a framework for joint estimation and
compensation of three major oscillator impairments, namely
sampling time error (STE), carrier frequency offset (CFO) and
phase noise (PN). In particular, we model these impairments as
Wiener processes and introduce a pilot-aided approach which fa-
cilitates their joint estimation. The proposed solution is carried
out in two steps: first, an initial estimation of the transmitted
symbols is acquired by applying an extended Kalman filter
(EKF) on the pilot symbols and then, a second EKF is applied
on the estimated symbols which yields an accurate tracking
of STE, PN and CFO over an additive white Gaussian noise
channel. Our numerical results demonstrate the efficacy of the
proposed solution.

Index Terms—Carrier frequency offset, extended Kalman
filter, phase noise, sampling time error, synchronization.

I. INTRODUCTION

The performance of any communication system is fun-
damentally limited by the impairments introduced by non-
ideal hardware. A successful demodulation of transmitted
data relies on processes of tracking and compensation of
different hardware impairments at the receiver side. Timing
synchronization is among these crucial tasks.

Timing synchronization is referred to the process of deter-
mining the correct time instances at which the received signal
should be sampled. The timing recovery may not be a difficult
task by itself and several classic solutions have addressed it,
see, e.g., [1] for an overview. What makes timing recovery
challenging is that sample time offsets occur in conjunction
with other hardware impairments such as carrier frequency
offset (CFO).

Joint estimation of sample time offset and CFO has been
addressed in few research articles. For instance, [2] proposes
a joint blind estimation technique which relies on sequential
importance sampling particle filter. The authors in [3] develop
a data-aided maximum likelihood algorithm for joint CFO
and sample time offset estimation. Their two-step approach
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relies on estimating CFO via two FFT operations and then,
computing sample time offset using a simple closed-form
expression.

Phase noise (PN) is the other important hardware impair-
ment which can hinder the synchronization process and if
not properly compensated, can considerably deteriorate the
reception. Our objective in this paper is to address joint
estimation and compensation of sample time offset, CFO and
phase noise over an additive white Gaussian noise (AWGN)
channel. One may note that these hardware impairments are
highly coupled, i.e., they affect each other and get affected
by each other. As a result a proper estimation of them should
be performed jointly. Such joint estimation to the best of our
knowledge has not been addressed before.

In this paper, we introduce a pilot-aided scheme for
jointly tracking sample time offset, phase noise and frequency
offset. We model sampling time error (STE) and PN using
a Wiener random process and, we propose an extended
Kalman filter-aided framework for their joint estimation. Our
proposed solution is different from the conventional timing
synchronization techniques [5] in many aspects. First of all,
in the presented framework, STE is modeled using a more
accurate model, namely, via Wiener process. Moreover, a
clear advantage of the proposed estimation technique is that
does not require oversampling.

Section II describes our system model of interest. In
Section III, we explain our proposed solution. We demon-
strate the efficacy of the proposed scheme through numerical
examples in Section IV and, the paper is concluded in Section
V.

II. SYSTEM MODEL

The system model which will be considered in this paper is
depicted in Figure 1. PN and CFO effects can be represented
by a phase rotation in the received symbols, i.e., if the n-th
transmitted symbol is shown by xn, then taking into account
just PN and CFO, the n-th received symbol can be expressed
as yn = ejΦnxn+wn for n = 1, 2, · · · , N , where wn denotes
the AWGN, Φn is the total phase shift due to PN and CFO
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Fig. 1. System model of an AWGN communication link experiencing carrier
frequency offset (represented by ∆f ), phase noise (represented by Φ(t) in
continuous time domain) and sampling time error (represented by ∆Tn) at
the receiver side.

and N is the number of transmitted symbols. Considering
the characteristics of PN and CFO [4], one can model Φn
using a Wiener process which can be expressed as follows

Φn = Φn−1 + ∆f + ξn, n = 2, 3, · · · , N, (1)

where ξn ∼ N (0, σ2
ξ ) are independent and identically dis-

tributed (i.i.d.) Gaussian random variables and ∆f denotes
the frequency offset effect, which is usually assumed to be a
constant value.

However, STE produces a more significant effect on the
received symbols. Assuming p(t) as the pulse shaping filter
and the STE of δn , ∆Tn

Ts
, where Ts is a symbol duration

and ∆Tn is the amount of deviation from correct sampling
time for n-th symbol, then considering only the STE effect,
the n-th received symbol can be expressed as

yn =

N∑
k=1

xkp(n− k + δn) + wn, n = 1, 2, · · · , N,

where, noting that the sampling time offset δn is introduced
by an oscillator, an accurate model is a Wiener process [1],
i.e.,

δn = δn−1 + ηn, n = 2, 3, · · · , N, (2)

with ηn being i.i.d. zero-mean Gaussian random process with
variance of σ2

η .
Now, if we consider the effects of PN, CFO and STE at

the same time, the n-th received symbol can be expressed as
follows

yn =

N∑
k=1

ejΦkxkp(n−k+δn)+wn, n = 1, 2, · · · , N. (3)

Note that in (3) we have assumed that the received signal
is first down-converted at the receiver and then it is sampled
by an analog-to-digital converter, which is the procedure that
is performed in practice.

Afterwards, we assume that data transmission is done in a
pilot-based scenario. It means that if the pilot ratio is M−1,
in each sub-block of M consecutive symbols, there is one
pilot symbol that is known both at the transmitter and at the
receiver.

III. PROPOSED EXTENDED KALMAN SOLUTION

According to the Wiener process model provided for Φn
and δn in the previous section, we propose the Kalman
Filter algorithm for tracking the target error terms based on
received symbols and pilot symbols. However, the presented
expression for yn in (3) depends on all values of Φk for
k = 1, 2, · · · , N , which makes it challenging to track PN and
CFO in presence of STE. Consequently, it is more useful to
reformulate (3) as follows

yn = ejΦn

N∑
k=1

ejΨk,nxkp(n− k + δn) + wn, (4)

where Ψk,n = Φk − Φn. If we express every Φi recursively
based on Φ0, ∆f and ξi terms, then Ψk,n will be equal to

Ψk,n = (k − n)∆f + ψk,n, (5)

where ψk,n is a sum of |n− k| consecutive terms of ξi and
since all ξi terms are i.i.d Gaussian random variables, ψk,n
is also a zero-mean Gaussian random variable with variance
of σ2

k,n = |n − k|σ2
ξ . Therefore, by substituting Ψk,n from

(5) into (4), the n-th received symbol can be expressed as

yn = ejΦn

N∑
k=1

e−j(n−k)∆fejψk,nxkp(n− k + δn) + wn

' ejΦn

N∑
k=1

xke
−j(n−k)∆fp(n− k + δn) + Υn + wn,

(6)

where we have approximated ejψk,n by the first two terms
of its Taylor expansion and Υn is defined as follows

Υn = jejΦn

N∑
k=1

ψk,nxke
−j(n−k)∆fp(n− k + δn). (7)

Then, Υn can be assumed as a zero-mean additive Gaussian
noise with variance of

σ2
Υn

= P̄xσ
2
ξ

N∑
k=1

|n− k|E
{
p2(n− k + δn)

}
, (8)

where the expectation is computed with respect to δn, which
is a zero-mean Gaussian random variable with variance nσ2

η .
Moreover, we have assumed that transmitted symbols are
zero-mean i.i.d. random variables with variance of P̄x. In
all, the n-th received symbol can be expressed as

yn = ejΦn

N∑
k=1

xke
−j(n−k)∆fp(n− k + δn) + ẃn, (9)

where ẃn = Υn + wn is the total additive Gaussian noise
with zero-mean and variance of σ2

ẃn
= σ2

Υn
+ σ2

w.
In the next step, we need to express (9) based on pilot

symbols. So, without loss of generality, we imagine that
pilot symbols are ordered as x̃l = xM(l−1)+1 for l =



1, 2, · · · , bNM c, where x̃k is the k-th pilot symbol. Then, the
l-th received pilot symbol can be expressed as follows

ỹl = yn

∣∣∣
n=M(l−1)+1

= ejΦ̃l

[ b N
M c∑
m=1

x̃me
−jM(l−m)∆fp(M(l −m) + δ̃l)

+

N∑
k=1

∀r:k 6=M(r−1)+1

xke
−j(n−k)∆fp(M(l − 1) + 1− k + δ̃l)

]

+ ẃM(l−1)+1, (10)

where Φ̃l = ΦM(l−1)+1 and δ̃l = δM(l−1)+1 are PN and
STE errors for the l-th pilot symbol, respectively. In (10), the
first summation is over pilot symbols, however, the second
summation is over non-pilot (data) symbols which are all
unknown at the receiver. Hence, the second summation term
in (10) can be considered as an interference term for the l-th
received pilot.

It is noticeable that our measurement models, expressed
in (9) and (10), are not linear functions of Φn, ∆fn and δn,
which means that we need to apply extended Kalman filter
(EKF) algorithm in order to be able to track all the target
parameters together.

The main difference between measurement models ex-
pressed in (9) and (10) is the inter-symbol interference (ISI)
term that appears in the measurement equation written for
pilot symbols. Therefore, we anticipate that if we use the
measurement equation expressed in (9), then we can track
PN, CFO and STE errors with much lower mean squared
error (MSE). However, in order to be able to use (9) as the
measurement model, we need to develop an initial estimation
of all transmitted symbols. Hence, our approach in tracking
PN, CFO and STE errors based on EKF algorithm is as
follows
• Phase I: Apply EKF algorithm based on pilot symbols

to track the target parameters and achieve an initial
estimation of transmitted symbols.

• Phase II: Apply EKF algorithm based on estimated
symbols to achieve both better estimation of the target
parameters and improved symbol estimation.

Before discussing the two phases of EKF algorithm, we
need to define the state vector of zn = [Φn ∆fn δn]T ,
where we have also considered CFO as a Wiener process, to
be able to track it in the Kalman framework. In particular,
we adopt the following model

∆fn = ∆fn−1 + νn−1, n = 1, 2, · · · , N. (11)

However, in order to make this model consistent with the
assumption made in the previous section where CFO has
been modeled as a constant, we consider ∆f0 in (11) equal
to the actual CFO value and model νn−1 ∼ N (0, σ2

ν) using
a Gaussian random variable whose variance is much smaller
than ∆f0. The value of σ2

ν can be seen as a design parameter
and should be chosen in a way that keeps ∆fn close to ∆f0

for all n = 1, 2, · · · , N . Obviously, appropriate value of σ2
ν

depends on the size of the block of transmitted symbols,
for larger blocks we need to assume smaller values for
σ2
ν . Consequently, based on the defined state vector, system

dynamics model can be expressed as follow

zn =

1 1 0
0 1 0
0 0 1


︸ ︷︷ ︸

,Λ

 Φn−1

∆fn−1

δn−1

+

ξnνn
ηn


︸ ︷︷ ︸
,εn

= Λzn−1 + εn. (12)

In (12), we have assumed that ξn, νn and ηn are uncorrelated
Gaussian random variables for n = 1, 2, · · · , N , so εn would
be a Gaussian random vector with covariance matrix of Qn =
diag(σ2

ξ , σ
2
ν , σ

2
η).

A. Phase I

The system dynamics equation represented in (12) is
written for all received symbols, but in order to track PN,
CFO and STE just based on pilot symbols, we need to also
express system dynamics model for pilot symbols. If PN,
CFO and STE errors are denoted by Φ̃k, ∆f̃k and δ̃k for
k-th received pilot symbol, respectively, then,

Φ̃k − Φ̃k−1 = ΦM(k−1)+1 − ΦM(k−2)+1

= M ×∆f̃k−1

+

M−1∑
i=1

iνM(k−1)+1−i︸ ︷︷ ︸
,υ̃k

+

M−1∑
i=0

ξM(k−1)+1−i︸ ︷︷ ︸
,ξ̃k

,

(13a)

∆f̃k −∆f̃k−1 = ∆fM(k−1)+1 −∆fM(k−2)+1

=

M−1∑
i=0

νM(k−1)+1−i︸ ︷︷ ︸
=ν̃k

(13b)

δ̃k − δ̃k−1 = δM(k−1)+1 − δM(k−2)+1

=

M−1∑
i=0

ηM(k−1)+1−i︸ ︷︷ ︸
=η̃k

, (13c)

where υ̃k is a linear combination of (M − 1) consecutive νi
terms, ν̃k is sum of M consecutive νi terms, ξ̃k is sum of
M consecutive ξi terms, and η̃k is sum of M consecutive ηi
terms. Since νi, ξi and ηi are white Gaussian noise sequences,
υ̃k, ξ̃k, ν̃k and η̃k will also be white Gaussian noise terms
with variances of

σ2
υ̃ =

M(M − 1)(2M − 1)

6
σ2
ν , σ2

ξ̃
= Mσ2

ξ

σ2
ν̃ = Mσ2

ν , σ2
η̃ = Mσ2

η,



respectively. Therefore, system dynamics model based on
pilot symbols can be expressed as follows

z̃k =

1 M 0
0 1 0
0 0 1


︸ ︷︷ ︸

=Λ̃

 Φ̃k−1

∆f̃k−1

δ̃k−1

+

ρ̃kν̃k
η̃k


︸ ︷︷ ︸

=ε̃k

= Λ̃z̃k−1 + ε̃k,

(14)

where z̃k = [Φ̃k ∆f̃k δ̃k]T is the state vector for k-th pilot
symbol and ρ̃k = υ̃k + ξ̃k is a white Gaussian noise term
with variance of,

σ2
ρ̃ =

M(M − 1)(2M − 1)

6
σ2
ν +Mσ2

ξ .

Finally, based on (14) as the system dynamics model
and (10) as the measurement model, we should be able to
track PN, CFO and STE errors just based on pilot symbols.
However, due to the ISI term in (10), it is almost impossible
to track the errors without any kind of compensation that
allows us to decrease the effect of ISI in our received signal.
Fundamentally, if we assume that reliable estimations of
PN, CFO and STE are available, then compensated received
symbols, indicated by ŷn for n = 1, 2, · · · , N , can be
computed as follows

ŷn = e−jΦ̂n

N∑
k=1

ykq(n− k − δ̂n), (15)

where Φ̂n and δ̂k are the estimated values of PN and STE
errors for the n-th and the k-th received symbols, respec-
tively. Note that q(.) is the compensation filter, which can be
computed according to p(.), such that p(n) ∗ q(n) = δ(n),
where δ(n) is 1 at n = 0, and is 0 at any non-zero value of
n.

Consequently, in each step of Kalman framework, we
can use our information about the estimated values of PN
and STE errors in previous steps to compensate the current
erroneous symbol and reduce the effect of ISI term in our
measurement model expressed in (10). Considering practical
values of pilot ratio, we can assume that PN and STE errors
does not change a lot from a pilot symbol to the next pilot.
So, the initial estimation of PN and STE errors for each
pilot can be taken equal to the estimated parameters for
the previous pilot and compensation of the received symbols
can be done based on these initial estimations. Therefore,
assuming Sinc(.) pulse shaping at the transmitter and the
receiver, n-th compensated received pilot symbol can be
expressed as follows

ŷn ' e−jΦ̂n−1

N∑
k=1

ykSinc(n− k − δ̂n−1). (16)

where we have applied q(n) = Sinc(n) according to the
Sinc(.) pulse shaping assumption. By using the compensated
symbol of ŷn expressed in (16), as the measurement symbol
for each pilot, it would be possible to track PN, CFO
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Fig. 2. Estimation of PN, CFO and STE parameters for a block of 2000
symbols, after running Phase I of the proposed algorithm based on pilot
symbols.
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Fig. 3. Estimation of PN, CFO and STE parameters for a block of 2000
symbols, after running Phase II of the proposed algorithm based on the
estimated symbols in Phase I.

and STE errors in the Kalman framework, simultaneously.
Then, by using the linear interpolation technique, we can
make an initial estimation of PN, CFO and STE errors for
non-pilot symbols. According to the available knowledge of
initial estimation of target parameters, we can compensate
the received symbols according to (15) and then, estimate
the transmitted symbols. This initial estimation of transmitted
symbols can be used in the next phase of EKF algorithm.

B. Phase II

After running Phase I of the tracking algorithm, it is
expected that we have an initial estimate of transmitted
symbols, depicted by x̂n for n = 1, 2, · · · , N . Then, based on
available x̂ns, it would be possible to apply EKF algorithm
over all estimated symbols. It means that in current phase of
our algorithm, the EKF runs based on (6) as the measurement
equation and (12) as the system dynamics model. However,
we need to replace xn symbols in (6) by x̂ns, namely, the
estimated symbols from Phase I.

The main corollaries of Phase II of the proposed algorithm
are, first, achieving better estimates of PN and STE errors
with lower mean squared error (MSE) than the MSE of esti-
mated PN and STE errors in Phase I and second, achieving
a more reliable estimation of transmitted symbols in terms
of symbol error rate (SER) compared to the achieved SER
in Phase I.

IV. NUMERICAL EXAMPLES

In this section, we conduct several numerical experiments
to verify the efficacy of the proposed solution. In the first step,
in order to illustrate the performance of provided tracking
process, a block of 2000 16-QAM symbols with pilot ratio
of M−1 = 0.05 is transmitted through an AWGN channel
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Fig. 4. Symbol error rate versus SNR for different pilot ratios with 16-QAM
signals in presence of fixed carrier frequency offset of 10−3, phase noise
with σ2

ξ = 10−4 and sampling time error with σ2
η = 10−5.

with signal-to-noise ratio (SNR), defined as the ratio of
data and pilot signal power over noise power, equal to 20
dB and Sinc(t) is considered as the pulse shape for data
transmission. At the receiver, the received block of symbols is
contaminated by PN, CFO and STE, where CFO is assumed
to be fixed and equal to 10−3, PN is modeled by (1) with
σ2
ξ = 10−4 and STE is modeled by (2) with σ2

η = 2× 10−6.
Tracking curves of PN, CFO and STE after running Phase I
of the algorithm, are plotted in Fig. 2 for the whole block of
symbols. As discussed in section III, it can be observed from
Fig. 2 that at least for CFO and STE the pilot-based tracking
method is not so reliable, however it seems that we can have
a better performance in tracking PN. Nevertheless, an initial
estimation of transmitted symbols can be obtained based on
the erroneously estimated PN, CFO and STE parameters in
Phase I. Thereafter, Phase II of the algorithm is performed
based on the estimated transmitted symbols to achieve new
estimations of PN, CFO and STE, which are depicted in
Fig. 3. Visibly, we can achieve much better trackers for PN,
CFO and STE after running Phase II. As a performance
metric, we can compare the mean squared error (MSE) of
the estimated parameters in Phase I and Phase II of the
algorithm. For estimated parameters in Phase I, depicted in
Fig. 2, the MSE of PN, CFO and STE are equal to 1.5×10−3,
1.3× 10−7 and 5.1× 10−4, respectively, while the MSE of
estimated parameters in Phase II, depicted in Fig. 3, are equal
to 10−3, 5.7 × 10−10 and 6.7 × 10−5, in the same order.
Consequently, if it is desired to achieve more trustworthy
estimations of target parameters, performing Phase II of the
algorithm would be necessary, however, without Phase I we
can not acquire any initial estimation of transmitted symbols
to run Phase II based on them.

In the next step, Monte Carlo simulations are performed
using 1000 blocks of 10000 16-QAM symbols with the
assumption of Sinc(t) pulse shaping. Fig. 4 depicts the SER
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Fig. 5. Error vector magnitude versus σ2
ξ for different values of σ2

η with
CFO of 10−3, pilot ratio of M−1 = 0.05 and SNR = 20 dB in a block of
10000 16-QAM symbols.

values versus SNR for different pilot ratios. The variances
of PN, STE and frequency offset are set to σ2

ξ = 10−4,
σ2
ν = 10−9 and σ2

η = 10−5, respectively. As expected, SER is
improved by increasing the pilot ratio, i.e., by sending pilots
more frequently. This improved performance is of course
obtained at the price of reduced spectral efficiency.

In Fig. 5, we evaluate the error vector magnitude (EVM)
of the compensated signal versus variance of the PN, i.e., σ2

ξ ,
for different values of STE variances, i.e., σ2

η . In particular,
we compute

EVM =

√√√√∑N
k=1 |y̌k − xk|2∑N

k=1 |xk|2
, (17)

where y̌n is the compensated signal given by

y̌n = e−jΦ̌n

N∑
k=1

ykSinc(n− k − δ̌n), (18)

with final estimated phase and time offset values represented
by Φ̌n and δ̌n, respectively. The pilot ratio is equal to
M−1 = 0.05 and the SNR is set to 20 dB. The figure clearly
demonstrates the combined effects of PN and STE on the
performance of our proposed solution.

V. CONCLUSION

A method for the estimation of sampling time error, phase
noise and carrier frequency offset has been proposed using
an extended Kalman framework and based on transmitted
pilots. Noting that these impairments are highly coupled,
the main merit of the proposed solution lies in the fact
that it performs the estimation jointly. Proof of concept
numerical examples have been provided which demonstrate
the feasibility of the proposed tracking algorithm.
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