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Process-Aware Defenses for Cyber-Physical Systems

Wissam Aoudi
Department of Computer Science & Engineering
Chalmers University of Technology

Abstract
The increasing connectivity is exposing safety-critical systems to
cyberattacks that can cause real physical damage and jeopardize
human lives. With billions of IoT devices added to the Internet
every year, the cybersecurity landscape is drastically shifting from
IT systems and networks to systems that comprise both cyber
and physical components, commonly referred to as cyber-physical
systems (CPS). The difficulty of applying classical IT security solu-
tions in CPS environments has given rise to new security techniques
known as process-aware defense mechanisms, which are designed to
monitor and protect industrial processes supervised and controlled
by cyber elements from sabotage attempts via cyberattacks.

In this thesis, we critically examine the emerging CPS-driven
cybersecurity landscape and investigate how process-aware defenses
can contribute to the sustainability of highly connected cyber-
physical systems by making them less susceptible to crippling cyber-
attacks. We introduce a novel data-driven model-free methodology
for real-time monitoring of physical processes to detect and re-
port suspicious behaviour before damage occurs. We show how
our model-free approach is very lightweight, does not require de-
tailed specifications, and is applicable in various CPS environments
including IoT systems and networks. We further design, imple-
ment, evaluate, and deploy process-aware techniques, study their
efficacy and applicability in real-world settings, and address their
deployment challenges.

Keywords: process-aware defenses; cyber-physical systems; indus-
trial control systems; singular spectrum analysis; stealthy attacks
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Introduction
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1
Thesis Overview

Modern societies are becoming growingly dependent on critical
infrastructure operated by industrial control systems (ICS) that
are heading towards increased connectivity to scale and meet effi-
ciency requirements [1]. Leveraging advances in information and
communication technologies is paving the way for unprecedented
efficacy and flexibility of operation. However, through digitalization
and inter-connectivity, the Industrial Internet of Things (IIoT) is
transforming our critical infrastructure and reshaping the cyber
landscape into one with much higher destructive potential [2]. In
particular, connectivity and digitalization of control systems open
doors to malicious actors with high motivation and resources to
remotely compromise these historically isolated systems [3], thereby
posing imminent threats to critical infrastructure on which societies
highly depend; including health care, transportation, manufactur-
ing, and power distribution to name a few.

Unfortunately, the need for meeting efficiency requirements
and enabling more controllability and interfacing with industrial
assets is overshadowing the thought of resilient and sustainable
modernized infrastructure, and cyber adversaries are becoming
ever more capable in the process. Unlike attacks on IT systems
that are often bounded by virtual impact, attacks on ICS are
of a different nature and can cause physical damage to critical
infrastructure [4–10], potentially leading to loss of human lives or
large-scale infrastructural chaos. For instance, a cyberattack on a
nation’s power grid, which could be launched from anywhere in the

3



4 1. THESIS OVERVIEW

world, has been shown capable of depriving thousands of households
and facilities of electricity [11].

The need to secure control systems is unquestionable and efforts
to secure them are increasing, albeit at a relatively modest pace in
light of the scale and nature of the looming threats. Securing ICS
solely from an IT perspective, while necessary, proves insufficient
because, at the physical layer, the critical process would remain
unmonitored and therefore vulnerable to sabotage by the attackers.
At this layer, traditional IT-based security mechanisms are often
inapplicable, hence many attempts to detect attacks via direct
application of off-the-shelf techniques are doomed to fall short.

One approach that has proven viable in recent years proposes to
monitor the process-level network connecting field devices to detect
intrusions [12–18]. This thesis, at its core, is a continuation of this
line of research work as it contributes a novel model-free approach
with key favourable features to detecting cyberattacks on ICS by
monitoring the process network in real time and deciding when the
system operation is departing from normal dynamics.

Besides the introductory part, the thesis consists of three parts
addressing both the theoretical and practical aspects of securing
cyber-physical systems.

In the first part, we present our novel approach to process-level
attack-detection that is rooted in state-of-the-art time-series analy-
sis techniques and adapted to detecting cyberattacks on industrial
control systems by monitoring process sensors. We show how us-
ing a model-free approach, as opposed to existing model-based
approaches, significantly improves the detection accuracy, limits the
need for process knowledge, and widens the spectrum of applicable
systems. We then identify detection thresholds as a key parameter
for process-aware defense techniques and propose a framework for
determining thresholds that are suitable for CPS environments.

In the second part, we generalize our approach to cyber-physical
systems and industrial IoT environments. We show how, by virtue
of the specification-agnostic feature, our proposed technique can
be applied to industrial environments employing a multitude of
sensors, thereby offering invaluable safety and security insight into
the underlying process to operators and stakeholders. We further
demonstrate with a proven application that even systems as complex
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as modern connected vehicles can be efficiently monitored with
model-free process-aware defenses.

In the third part, we investigate the deployment of process-
aware defense mechanisms in real industrial environments. We
identify deployment challenges and best practices, and report lessons
learned from real-world experiments. We also show how using such
techniques for side-channel analysis is a viable deployment strategy.

1.1 Background

In the previous section, we defined the research problem and moti-
vated the work in this thesis by highlighting the growing exposure
and expanding attack surface of safety-critical systems. In this
section, we provide the background on intrusion detection and
the security aspects of two representative types of cyber-physical
systems, namely control systems and modern vehicles.

1.1.1 Intrusion Detection

Intrusion detection arguably has its academic roots in the 1987 work
by Denning [19] and has been extensively studied in the context of
typical IT systems ever since. In a broad sense, intrusion detection
is divided into two main categories: misuse detection and anomaly
detection [20]. In misuse detection, traffic patterns that match with
predefined so-called attack signatures are flagged as anomalous
while all other traffic is considered normal. By contrast, anomaly
detection involves creating a baseline from traffic data defining the
normal behavior such that all other traffic that deviates from the
baseline is considered anomalous.

In response to the rising cyber threats to critical infrastruc-
ture, considerable effort has recently been devoted by the research
community to investigating proper defensive measures. Designing
intrusion detection systems suitable for cyber-physical environments
has been at the forefront of this effort [12–18].

Intrusion detection systems are considered as an important piece
of the puzzle because one indispensable step in combating adversar-
ial acts in CPS, or any information system for that matter, is in fact
detecting the presence of the attacker. Defining attack signatures in
CPS environments is tricky due to the attacks on CPS being rare,
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specialized, and targeted at complex system components that are
often legacy and proprietary. On the other hand, anomaly-based
intrusion detection, although less favorable in IT environments due
to intolerably high false-positive rates, proves more adequate for
CPS environments due to the regularity in machine-to-machine
communication.

1.1.2 Industrial Control Systems (ICS)

Industrial control systems are cyber-physical systems that enable
communication between field devices (actuators and sensors) and
controllers in a closed-loop fashion to control a physical process.
Abstractly considered, closed-loop control systems involve sensors
that sense some physical property from the controlled process and
communicate the measurements to a controller. Based on the
received sensor measurements and on the implemented control logic,
controllers send commands to actuators that directly manipulate
the physical process to maintain a desired state of operation [1].
The controlled physical process is often sophisticated, cost-sensitive,
and high-precision, and ICS are typically found in safety-critical
environments. No matter if it is due to failure or malicious acts,
undesired changes in the dynamics of these systems may prove
highly costly and it is imperative that proper mechanisms are in
place to detect them.

The machine-to-machine communication in ICS process net-
works produces traffic that is highly deterministic, thereby enabling
data-driven methods as a viable approach to attack-detection in
these environments. Highly regular communication enables reliably
constructing a baseline from historical process data and subse-
quently detecting deviant behavior due to anomalous operation.

1.1.3 Security Aspects of Connected Mobility

Securing the fragile In-Vehicle Networks (IVNs) has recently at-
tracted notable attention as real-world attacks have demonstrated
that it is possible to remotely control vehicles and compromise safety-
critical functions via, for example, the Internet-enabled multimedia
system, thereby threatening the safety of the passengers [21–30].
Modern connected vehicles are susceptible to cyberattacks due to
increasing connectivity, lack of secure network partitioning that



1.2. RELATED WORK 7

ensures separation of safety-related domains from the rest of the net-
work, and lack of measures to verify the integrity and authenticity
of Electronic Control Unit (ECU) software and communications [31].
On top of that, the communication architectures currently used
in IVNs and the prevailing Controller Area Network (CAN) bus
technology are inherently insecure and lack the necessary means of
protecting against message tampering and spoofing attacks.

By virtue of the high regularity of the behavior of IVN messages
and the well-defined specification of CAN communication, anomaly-
based attack detection has been considered as a viable approach
to detecting malicious traffic by monitoring for unlikely changes in
the characteristics of CAN traffic.

1.2 Related Work

This section outlines the related work on process-level defense
techniques tailored to cyber-physical systems. We discuss various
approaches proposed by the research community, identify key fronts
where the state-of-the-art solutions fall short, and state motivating
challenges for this thesis.

1.2.1 Monitoring Cyber-Physical Systems (CPS)

Cyber-physical systems are a broad class of systems characterized
by the interplay between cyber (virtual) elements and physical
elements. What follows in a non-exhaustive account of research
work related to this thesis on attack detection techniques for three
types of CPS: control systems, smart grids, and connected vehicles.

1.2.1.1 Control Systems

Most existing approaches to detecting misbehaviors in the control
of physical processes propose the use of model-based techniques to
model the normal behavior of a process and then detect deviations
therefrom [14, 18, 32–34]. While such approaches might prove
viable in some cases where a detailed and complete specification of
the physical process is at hand, in the real world, it is often the case
that the system to monitor is fairly complex and lacks a roadmap
to creating a model of the controlled process. Thus, building a
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model of the physical process requires extensive human effort and
domain knowledge, if at all possible [15].

Another disadvantage of model-based techniques lies in the fact
that they involve solving a more general problem. Specifically,
after presumably modeling the normal behavior of the process,
the identified model is subsequently used to predict the future
behavior of the underlying system, which is then compared to the
observed behavior such that large deviations are labelled as potential
attacks. Predicting the future behavior based on historical data
is a more general problem than detecting the difference between
past and current behaviors, and is known to be difficult and prone
to inaccuracies due to noise in the data. Finally, since models
are specific to the environments for which they were identified,
model-based techniques prove difficult to generalize.

Approaches that use machine learning and data mining have
been considered as well [13, 15, 35–39]. While machine learning
methods do not require a model of the physical process, they involve
a feature extraction and engineering phase, where system-dependent
features need to be selected for training. Feature selection is tricky,
hard to automate, and finding the best (most representative) fea-
tures require a great deal of tuning and cross-validation. Moreover,
the fact that features are constructed by combining various process
variables and then transformed into high-dimensional feature spaces
makes it difficult to identify the whereabouts of the attack and
affects the interpretability of the detection results.

1.2.1.2 Smart Grid

Low-voltage distribution grids are witnessing a rapidly increasing
integration of distributed inverter-based generation and thereby
becoming subject to measurement falsification scenarios, wherein an
adversary could corrupt voltage measurements received by so-called
voltage droop controllers. Although inverters can participate in
intelligent grid controls to solve voltage problems [40, 41], concerns
have been raised about the impact of falsification attacks on sys-
tem stability and voltage magnitude [42]. So-called cyber-secure
modeling frameworks for the power grid and the communication
networks have been proposed in [43, 44], as well as attack-detection
algorithms for centralized voltage regulation [45] that are designed
to detect attacks performed at the controller level only. A mo-
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tivating challenge of part of this thesis was that no model-free
anomaly-based detection techniques were identified in the literature
that can monitor both controllers and actuators simultaneously.

1.2.1.3 Connected Vehicles

Modern connected vehicles are another type of cyber-physical sys-
tems that have attracted considerable attention from the cyber-
security community in light of the increasing attacks on vehicles.
In recent years, there have been several attempts to design and
develop anomaly-based intrusion detection systems for in-vehicle
networks. Much of the related literature on in-vehicle attack de-
tection lays particular emphasis on the well-defined specifications
of CAN communication with respect to message periodicity and
data content. The strict specifications of CAN communication
have been leveraged in designing mitigation techniques that aim to
detect non-compliant malicious communication [46–49]. In addition
to leveraging the well-defined specifications of CAN communica-
tion, researchers have exploited the physical characteristics of CAN
transceivers to develop attack- and source-detection techniques by
fingerprinting ECUs [31, 50, 51].

Even though the state-of-the-art IVN intrusion detection sys-
tems are capable of detecting many types of attacks, they suffer
from certain drawbacks, which served as motivating challenges for
part of this thesis. In particular, most proposed methods require
prior knowledge about the underlying IVN and ECU configurations,
which may vary even in vehicles of the same model and year. Fur-
thermore, with regards to coverage of different attacks, the proposed
techniques have not been shown particularly capable of detecting
attacks of a more stealthy nature.

In Section 1.4.1, we address the challenges and drawbacks of
existing solutions by proposing a data-driven model-free technique
that rather than creating a model to predict the future system
behavior, directly compares the current behavior with the historical
behavior of the process to detect changes in dynamics. Section 1.4.2
outlines our specification-agnostic approach for monitoring diverse
and heterogeneous cyber-physical systems.
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1.2.2 Deployment of Process-Aware Defenses

One of the motivating challenges for this thesis was to investigate
the applicability and deployability of process-level intrusion detec-
tion systems in real and less-controlled environments to identify
challenges pertaining to deployment, stability, and performance.

State-of-the-art process-level detection techniques have mainly
been evaluated in simulation settings [52–54], on physical testbeds [16,
33], and on process data extracted from real environments [16, 35,
55]. Other related works proposed a hardware-based side-channel
approach to process monitoring. For instance, Ahmed et al. [56]
used noise patterns in sensor measurements, which appear due to
manufacturing imperfections, to detect data integrity attacks while
Van Aubel et al. [57] proposed to use electromagnetic measurements
to detect behavioral changes in ICS software. However, to the best
of our knowledge, there were no attempts in the literature to apply
process-aware techniques on external sensors that can be added
to sensitive parts of industrial machines to detect attack-induced
abnormal changes in their dynamics. We outline our attempt in
this regard as well as our approach to real-world evaluation in
Section 1.4.3.

1.3 Research Questions

In this thesis, we study the cybersecurity landscape of modern
cyber-physical systems and highlight their growing susceptibility to
crippling attacks that have far-reaching consequences. We identify
key research challenges in providing these systems with efficient and
practical real-time detection capabilities that can alert operators of
potential malicious schemes and thereby give them the opportunity
to mitigate or minimize potential damage to safety-critical systems.

More specifically, this thesis identifies and contributes to the
following research questions.

RQ1: How can a model-free approach significantly improve the accu-
racy and adaptability of process-aware defenses in industrial
control environments?
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RQ2: What theoretical and practical developments are needed for
process-aware monitoring techniques to work across diverse
cyber-physical systems and how can these be evaluated?

RQ3: To which extent are process-level monitoring solutions practi-
cal and applicable? What design and implementation chal-
lenges should be considered before deploying such research
techniques in practice?

RQ1 is the core focus of this thesis as it relates to the funda-
mental problem of equipping safety-critical systems with adequate
defensive means for combating malicious attempts that can have
devastating impact on societies. Process-aware defense mechanisms
are designed to capture the process dynamics from physics-based
models of the process or from historical measurements that are
representative of the process dynamics. Model-based techniques
are hard to automate and require detailed specifications of the un-
derlying process. By contrast, model-free techniques hardly require
domain knowledge, can be significantly more accurate and noise-
insensitive, and can be adapted to a wide range of systems. By
proposing one such purely data-driven model-free technique with
solid theoretical foundation and investigating its applicability to
real-world problems, its generalizability to a broad class of complex
systems of systems, and its deployability in real environments, we
try to provide a roadmap for producing plausible security methods
that have higher chances of being adopted by the industry.

RQ2 is relevant when one considers how diverse cyber-physical
systems can be. For instance, pneumatic control systems, manufac-
turing robots, and modern vehicles are all cyber-physical systems,
yet they differ widely in terms of architecture, system requirements,
and operation. To appreciate this diversity, one may consider the
plethora of cyber-physical “things” that are connected to the Inter-
net and to open networks today. It is evident that designing security
solutions that are specification-dependent may hinder their scalabil-
ity. Therefore, it is an interesting challenge to develop techniques
that can work across diverse cyber-physical systems.

RQ3 pertains to the hurdles that arise when moving research
techniques from test labs to real environments. Since the ultimate
goal behind research efforts is to produce technologies that can
benefit society and the industry, it is imperative to investigate the
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Table 1.1: A summary of how each chapter contributes to the research questions

Part II Part III Part IV
Attack Detection Process-Aware Deployment

in ICS Defenses for CPS Challenges
Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8

RQ1
RQ2
RQ3

challenges involved in the process in terms of viable deployment
strategies, resource management, sustainability, and flexibility of
operation under difficult conditions.

1.4 Thesis Contributions

This thesis contributes to the security of safety-critical cyber-
physical systems by addressing the key challenges mentioned in
Section 1.2 in view of the research questions stated in the previous
section. Table 1.1 shows how each chapter relates to the research
questions. Following is a summary of the contributions.

1.4.1 Process-Aware Detection Systems for ICS

In Part II of the thesis, we contribute to RQ1 by proposing a novel
process-level detection technique and methodology for industrial
control systems. We show the benefits of using a purely data-driven
model-free approach that is inherently agnostic to the specifications
of the monitored process. We also identify detection thresholds
as a key parameter for this class of algorithms and propose a
context-aware framework for a more sensible determination of this
parameter.

(A) Departure-Based Detection of Stealthy Attacks

In Chapter 2, a novel ICS-specific intrusion detection method
(pasad) is introduced. Pasad is an anomaly-based process-level
intrusion detection system that monitors ICS process activity in
real time to determine whether the system operation is normal or
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anomalous. Initially, pasad learns the normal behavior recorded
in a time series of sensor measurements through a training phase,
during which ideas from a time-series analysis technique known as
Singular Spectrum Analysis are applied to extract signal informa-
tion from process output under normal conditions. Thereafter, the
system continuously checks if incoming observations are departing
from the normal behavior captured during the training phase.

Pasad is a theoretically sound, purely data-driven, lightweight,
model-free mechanism that requires no prior knowledge of the
system dynamics. Specifically, rather than creating a model of the
physical process to predict future system behavior, pasad seeks to
solve the easier problem of deciding whether present sensor readings
are departing from past readings due to a change in the mechanism
generating them. Furthermore, by virtue of its impressive noise-
reduction capabilities, pasad is capable of detecting slight variations
in the sensor signal. This leads to the possibility of detecting
strategic attackers who may try to hide their stealthy attacks even at
the process level. Finally, we show that pasad compares favourably
with state-of-the-art data-driven techniques and we demonstrate
its effectiveness using a simulation platform, data from a physical
testbed, and data from a real system.

(B) Robust Context-Aware Thresholds for CPS

In Chapter 3, we propose a context-aware framework for determin-
ing two-dimensional thresholds that enhance the sensibility and
reliability of process-aware detection systems (PADS) by rendering
them more robust to false detection. We argue that in the context of
securing cyber-physical systems, relying on a single fixed threshold
can undermine the effectiveness of the PADS as false alarms are
highly costly for such systems that rely primarily on availability and
continuity of operation. The proposed framework is context-aware
as it takes into account the expected or typical reaction of a CPS
to malicious manipulations in its operation and rests on two pillars:
two-dimensional thresholds and actionability of alerts. Moreover,
we present an algorithm that implements the concepts underlying
our proposed framework. The algorithm implements two thresholds,
raises both weak and actionable alerts according to which threshold
is crossed, and the second threshold takes into account the typical
score behaviour.
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1.4.2 Process-Aware Detection Systems for CPS

In Part III of the thesis, we contribute to RQ1 and RQ2 by extend-
ing the operational capacity of our proposed detection technique
to enable more scalability and make it applicable in various sce-
narios. We further apply our methodology on two representative
cyber-physical systems: in-vehicle CAN networks and low-voltage
distribution grids.

(C) Scalable Anomaly Detection in IIoT environments

In Chapter 4, we introduce m-pasad, a multivariate extension of
pasad that can handle a plurality of sensors efficiently in IIoT cyber-
physical environments. Although lightweight, fast, and suitable for
distributed environments, the canonical way of monitoring n sensors
simultaneously with pasad at choke points is to awkwardly train
and run n instances of the algorithm. Evidently, as the number of
sensors grows large, the total time-to-train and allocated memory
for deployment can quickly become overwhelming. The inevitable
complexity and overhead involved in this approach is likely to
hinder large-scale deployment of pasad in industrial environments.
Yet, with the monotonically increasing utilization of sensors, the
scalability property is, at any rate, highly desirable. Rather than
employing a plurality of pasad instances, our proposed approach
adapts the underlying theory to accommodate multiple sensors
with little added complexity both in terms of running time and
memory footprint. As such, m-pasad inherits key features from
pasad, such as its noise-reduction potential, its capability to detect
subtle structural changes in the monitored signal, and its efficient
evaluation of the departure score during the detection phase.

(D) Detecting Attacks on In-Vehicle Networks

In Chapter 5, we investigate the applicability of our detection
approach to an important emerging type of cyber-physical sys-
tems—the connected vehicle. We introduce a fast, lightweight, and
specification-agnostic attack-detection mechanism for IVNs that
goes a long way toward overcoming adoption hurdles imposed by
the industry. We also demonstrate the effectiveness of our approach
by conducting extensive experiments including performing stealthy
attacks that we designed to serve as real-world scenarios on a 2018
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Volvo XC60. Then we show that by monitoring CAN traffic in a
way that treats the entire stream of CAN message payloads as a
single signal we require no comprehension of the actual encoded
signals and the underlying vehicle specifications that are typically
proprietary. As such, our approach is applicable to vehicles of
different brands and configurations. Finally, we demonstrate that
by identifying malicious manipulations directly at the payload level
pasad is capable of detecting strategic adversaries who ensure that
message frequencies and low-level ECU configurations remain intact
under the attack.

(E) Detecting Attacks on Low-Voltage Distribution Grids

In Chapter 6, we investigate the applicability of process-aware de-
tection systems to low-voltage distribution grids. Due to limitations,
costs, and growing concerns over environmental impact of the elec-
tricity grid, transitioning into the envisioned cost-effective, more
environment-friendly, highly manageable and controllable smart
grid has become increasingly pressing over the past few years. The
successful operation of smart grid services relies heavily on fine-
grained smart meter readings. The transmission of such sensitive
data over insecure communication links, however, goes beyond pri-
vacy issues and opens doors to malicious actors to compromise the
grid operation via cyberattacks that could cause, for instance, a
massive operational failure of energy assets. We investigate the
effectiveness of pasad in detecting various common types of cyberat-
tacks on LV-grids. Pasad captures the dynamics of voltage-control
loops by processing time series of controller and smart-meter data.
The use of our model-free detection approach in current LV grids is
motivated by the difficulty of modelling current distribution grids
due to scarce and often inaccurate data, and by the fact that pasad
is inherently agnostic to the controller scenario and can thus be
used for different kinds of control, independently of the underlying
LV grid.

1.4.3 Deployment Challenges and Strategies

In Part IV of the thesis, we contribute to RQ3 by investigating the
challenges of deploying process-level monitoring mechanisms in real
environments as well as different deployment strategies.
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(F) Deployment of PADS: The Nuts and Bolts

In Chapter 7, we investigate what it takes to deploy a PADS in a
real ICS environment. The evaluation of ICS intrusion-detection
methods in the literature seems to have been restricted to simu-
lations and offline analysis of relevant datasets. In an attempt to
bridge the existing simulation-based evaluation efforts with the real
world by creating a roadmap characterizing potential hurdles to be
expected when bringing the systems into a real environment, we
take the evaluation of process-level monitoring a step further by
running a fully fledged prototype in a real environment to examine
the feasibility of the proposed methods in real-world settings. We
build a complete system around pasad, deploying a prototype in an
operational paper factory, and describing our experience of running
the prototype for 75 days. Finally, we highlight some technical
challenges and practical aspects of live process-level monitoring for
intrusions in ICS and then propose a set of guidelines and recom-
mendations for both security researchers and practitioners who may
consider designing or deploying IDS solutions for control systems.

(G) Deployment of PADS from a Side-Channel Perspec-
tive

In Chapter 8, we explore the viability of using PADS for side-
channel based monitoring of industrial machinery. The principal
idea is that industrial machines are poised to exhibit changes in
physical properties, such as vibration and sound, when an attack
is undergoing. As these properties can be measured with sensors,
process-level attack-detection mechanisms may be used to detect
such changes in behavior. Our side-channel based approach has the
following merits: i) the detection system is relatively cheap and
practical to deploy; ii) it is completely isolated, hence unreachable
by the attacker; iii) and it makes fewer assumptions about data
collection since it generates its own data. We tested our technique
on an industrial metal lathe and a drilling machine and managed
to successfully detect realistic attacks on them.
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1.5 Conclusion and Future Work
In this thesis, we introduced approaches and techniques that con-
tribute to the security and sustainability of modern cyber-physical
systems. We have designed and thoroughly evaluated process-aware
defenses, which are increasingly recognized as a modern security
methodology for the highly connected industry.

The main contribution of this thesis is introducing a model-free
process-aware attack-detection technique based on a novel time-
series analysis methodology. The technique is lightweight, noise
tolerant, and has been shown more capable than existing methods
of detecting subtle changes caused by stealthy attacks. In addition,
the thesis presented both theoretical and practical developments of
the mentioned technique to make it scalable, adaptable to various
system settings, and suitable for modern and emerging environments
including IoT. Finally, the practicality of the process-aware detec-
tion technique was scrutinized in real-world settings to investigate
its applicability and better understand deployment challenges.

As future work, interesting challenges to address include investi-
gating how to properly handle alerts issued by the detection system
in terms of up-streaming alerts to the operators, prompt reaction
to a potential attack, and how to automate these procedures for
systems that vary fundamentally in nature and mode of operation.
It will also be interesting to identify the requirements for long-term
deployment of process-aware defenses in industrial environments.
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