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ABSTRACT: The synthesis and thermoresponsive properties of surface-attached poly(N-
isopropylacrylamide)-co-N,N’-methylene bisacrylamide (PNIPAM-co-MBAM) networks
are investigated. The networks are formed via SLARGET-ATRP (“grafting-from”) on thiol-
based initiator-functionalized gold films. This method is reliable, well controlled, fast, and
applicable to patterned surfaces (e.g., nanopores) for networks with dry thicknesses >20

nm. Surface-attached PNIPAM-co-MBAM gels are swollen below their volume phase 5|

transition temperature but above collapse without complete expulsion of water (retain ~50
vol %). The swelling/collapse transition is studied using complementary SPR and QCMD
techniques. The ratio between swollen and collapsed heights characterizes the
thermoresponsive behavior and is shown to not depend on network height but to vary
with MBAM content. The higher the proportion of the crosslinker, the lower the
magnitude of the phase transition, until all responsiveness is lost at 5 mol % MBAM. The
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temperature range of the transition is broadened for more crosslinked PNIPAM-co-MBAM
gels but remains centered around 32 °C. Upon reswelling, less crosslinked networks display
sharp transitions, while for those containing >3 mol % MBAM, transitions remain broad. This tunable behavior persists for gels on
nanostructured gold surfaces. Investigating PNIPAM-co-MBAM networks on gold plasmonic nanowell arrays is a starting point for

expanding their scope as thermo-controlled nanoactuators.

B INTRODUCTION

Poly(N-isopropyl acrylamide) (PNIPAM) is a particularly
well-studied thermoresponsive polymer due to its biocompat-
ibility and biologically relevant lower critical solution temper-
ature (LCST) of ~32 °C in aqueous media (ie., close to
physiological temperature).”” Above this critical solution
temperature, the unfavorable entropic contribution from the
hydrophobic effect to the free energy of mixing dominates over
exothermic hydrogen bonding, decreasing the solvent quality
of water to the point where the polymer undergoes a sharp
transition from a hydrated, extended coil conformation to a
hydrophobic, collapsed structure (which maximizes intra- and
interchain interactions). By exploiting these responsive proper-
ties, PNIPAM hydrogels have been used in drug delivery
systems,3 cell culturing,4 and artificial muscles.” PNIPAM
brushes, formed by end-tethered chains on a variety of
surfaces, have served as thermo-controlled nanoactuators (such
as valves,® pumps,” and filters®) in microfluidic devices.”'® The
extent of the thermally induced collapse of the polymer
brushes depends on grafting density and molecular weight,'"'*
both of which can be controlled by surface-initiated (also
termed “grafting-from”) atom transfer radical polymerization
(SI-ATRP)."*"** The LCST is known to remain essentially the
same as for coils in solution (+1 °C) regardless of the grafting
strategy.

The magnitude of the thermoresponsive transition can be
controlled by introducing crosslinks between polymer chains.

© 2021 The Authors. Published by
American Chemical Society
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For nonresponsive gels on substrates, crosslinkers significantly
diminish the extent to which networks can swell.”>~>> This has
been exploited to vary the mechanical and swelling properties
of poly(acrylamide) (PAAM)** and furthered to include pH-
responsive polyelectrolyte brushes.”® Investigations into cross-
linking PNIPAM brushes grafted from nanoparticles noted the
change in volume phase transition temperature (VPTT),
network mesh size, and permeability.”” To more comprehen-
sively study the effect of crosslinker content on swelling
behavior, Harmon et al. prepared PNIPAM gels via common
free radical polymerizations prior to spin-coating on silica
substrates.”® However, swelling factors varied even within
samples containing the same proportion of crosslinker. This
was thought to occur due to stress-induced orientation
introduced to the PNIPAM networks in the spin-coating
process. Additionally, surface-attached networks prepared via
free radical polymerizations have been shown to have an
inhomogeneous crosslinking density, especially compared to
gels synthesized via a controlled/living radical polymerization

Received: December 14, 2020
Revised:  February 24, 2021
Published: March 15, 2021

https://dx.doi.org/10.1021/acs.langmuir.0c03545
Langmuir 2021, 37, 3391-3398


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sophia+Thiele"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="John+Andersson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andreas+Dahlin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rebekah+L.+N.+Hailes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.langmuir.0c03545&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03545?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03545?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03545?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03545?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03545?fig=abs1&ref=pdf
https://pubs.acs.org/toc/langd5/37/11?ref=pdf
https://pubs.acs.org/toc/langd5/37/11?ref=pdf
https://pubs.acs.org/toc/langd5/37/11?ref=pdf
https://pubs.acs.org/toc/langd5/37/11?ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c03545?ref=pdf
https://pubs.acs.org/Langmuir?ref=pdf
https://pubs.acs.org/Langmuir?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

Langmuir

pubs.acs.org/Langmuir

Scheme 1. Chemical Structure of the ATRP Initiator on Gold, Reacting with PNIPAM and the Crosslinker,N,N’-

Methylenebisacrylamide, to Give Brush Networks

ATRP

\

techniques, for example, ATRP.”” Besides homogeneous
crosslinking, ATRP provides further advantages in surface
functionalization: the transfer agents used are commercially
available and show a high functional group tolerance, and the
reaction is applicable to various surfaces (patterned or smooth)
by choosing appropriate initiators.”” To circumvent limits
imposed by the oxygen-sensitive nature of ATRP, a more
tolerant option dubbed “activators regenerated via electron
transfer” ATRP (ARGET-ATRP) is often used.’”*' To the
best of our knowledge, there are no studies on the influence of
crosslinking on the swelling/collapsing behavior of PNIPAM
brushes, partly as determining the accurate brush heights in the
solution is challenging.’>** It should be noted that the degree
of swelling is expected to depend on the geometry and
orientation of the chains. For instance, in a brush on a planar
surface (compared to a gel in 3D), there is only one spatial
dimension available for expansion.

In this work, we varied the amount of a covalent crosslinker,
N,N’-methylene bisacrylamide (MBAM), and reported its
influence on the thermoresponsive behavior of PNIPAM
brushes prepared via surface-initiated ARGET-ATRP (SI-
ARGET-ATRP) on planar and patterned gold surfaces. Taking
advantage of the metallic support, heights in the solution above
and below the characteristic VPTT were obtained from SPR
measurements using our previously reported non-interacting
probe method.”* Quartz crystal microbalance with dissipation
monitoring (QCMD) experiments support these results and
give further insights into the phase transition temperature
range. We discuss our results in the context of physisorbed and
spin-coated PNIPAM-co-MBAM gels of similar thick-
nesses,”>>>3¢ PNIPAM networks on nanoparticles,27 and
other types of crosslinked polymer brushes grafted from planar
substrates via ATRP.***®

B EXPERIMENTAL SECTION

Chemicals. All chemicals were purchased from Sigma-Aldrich and
used as received unless stated otherwise. H,0, (30%) was from
ACROS, N-isopropyl acrylamide (NIPAM) and NH,OH (28—30%)
from Fischer, H,SO, (98%) and EtOH (99.5%) from SOLVECO,
and @-mercaptoundecyl bromoisobutyrate from ProChimia. Water
was of ASTM research grade type 1 ultrafiltered water (Milli-Q
water). Buffers were based on phosphate-buffered saline (PBS) tablets
(0.01 M phosphate, 0.13 M NaCl, pH 7.4).

Monomer NIPAM (99%) was recrystallized from hexane at 85 °C
and stored under N,. The polymerization solvent MeOH was dried
over 3 A molecular sieves (Merck) and then stored under N,.
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Surface Cleaning. Prior to surface functionalization, SPR and
QCMD sensors were cleaned in piranha wash (H,SO,/H,0,, 3:1 v/
v) for 30 min and then rinsed in Milli-Q. The sensors and nanowell-
patterned surfaces were then cleaned in RCA1 wash (H,0/H,0,/
NH,OH 5:1:1 v/v) at 80 °C for 30 min, rinsed in Milli-Q and EtOH,
and then dried with N,.

SAM Formation. Clean gold surfaces were immersed in a 3 mL
EtOH solution containing the ATRP initiator @-mercaptoundecyl
bromoisobutyrate (3 yL, 2 mM) and shaken (50 rpm) for 18 h. After
incubation, the substrates were rinsed in EtOH and dried under N,.

SI-ARGET-ATRP. PNIPAM brushes and PNIPAM-co-MBAM gels
were prepared under the same reaction conditions. Reactions were
carried out using standard Schlenk line techniques under an inert
atmosphere of N,. The amount of MBAM supplied in the monomer
feed varied between 0 mol % (for brushes) up to 10 mol %.
Depending on the desired crosslinker content, varying amounts of
both monomers were used so that the total monomer concentration
was always 0.96 M. An example synthesis of PNIPAM-co-MBAM,, is
described below.

In one flask, monomer NIPAM (1.076 g, 9.5 mmol, 792 equiv),
crosslinker MBAM (14.8 mg, 0.096 mmol, 8 equiv), and MeOH (8
mL) were added to the inhibitor remover. The solution was degassed
with N, for S min. In a second flask, CuBr, (2.7 mg, 0.012 mmol, 1
equiv) was added to PMDETA (26.7 pL, 0.128 mmol, 10.7 equiv).
The monomer solution was filtered (0.2 ym PTFE syringe filter) into
the second flask, and the light blue solution obtained was degassed for
a further 20 min. Separately, ascorbic acid (8.5 mg, 0.048 mmol, 4
equiv) was added to MeOH (10 mL) and degassed for 20 min. Gold
sensors with SAM were removed from the initiator solution, washed
with EtOH, dried, and placed in a Schlenk flask. The light blue
reaction solution was transferred to this flask via cannula. To initiate
the polymerization, 2 mL of ascorbic acid solution was added. The
reaction was then shaken (50 rpm), and an additional 1 gL min™"
ascorbic acid solution was continuously supplied via a syringe pump
and a PTFE tube until the reaction was quenched by exposure to air.
Finally, the sensors were rinsed with Milli-Q water and EtOH and
dried.

Measurements. Details of IR-RAS, QCMD, SPR, and nano-
plasmonic measurements can be found in the Supporting Information.

B RESULTS AND DISCUSSION

PNIPAM-co-MBAM networks were prepared on gold surfaces
initiated with an @-mercaptoundecyl bromoisobutyrate self-
assembled monolayer (SAM) via SILARGET-ATRP (Scheme
1), taking inspiration from previously described proce-
dures.””*%*"=*! The chemical composition of networks with
varying amounts of crosslinker were confirmed by infrared
spectroscopy (Figure S1), which proved in line with the
reported spectra.”” The appearance and growth of a band at

https://dx.doi.org/10.1021/acs.langmuir.0c03545
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Figure 1. In situ ATRP (MeOH, 0.48 M) monitored in QCMD yields PNIPAM-co-MBAM,,,. (A) Change in frequency and dissipation over time.
(B) Layer thickness over time calculated by Voigt modeling and curve fitting of multiple frequency and dissipation overtones.
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Figure 2. (A) Dry heights of PNIPAM-co-MBAM networks polymerized in 24 h (0.96 M, MeOH) decrease with increasing crosslinker content.
(B) The swell/collapse height ratio decreases with increasing crosslinker content in the PNIPAM brushes. (C) Decrease in swollen height at 25 °C
and constant collapsed height at 35 °C. (D) Refractive index of PNIPAM-co-MBAM networks with varying crosslinker content in PBS (pH 7.5) at

25 and 35 °C.

1725 cm™" with increasing crosslinker content was attributed
to a C=O0 stretch from MBAM and confirmed the
incorporation of the crosslinker.

To study the kinetics of polymerization, reactions with an
NIPAM/MBAM molar ratio of 99:1 (0.96 M) were carried out
in methanol for up to 30 h at ambient temperature. The
resulting polymer network heights were measured in air using
surface plasmon resonance (SPR). The polymerization
proceeded quickly initially: after 1 h, 28 nm-thick networks
were observed. However, the gel thickness remained constant
after this (up to 30 h, Figure S2), presumably due to the
significant termination reactions caused by low local monomer
concentration, radical combination, or catalyst loss, in line with
what has been previously observed.”*** For all reaction times,
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the SPR angle (fspr) and thus the dry height of any particular
surface remained constant (Adryavmge = 1.0 nm) across two
different positions (Table S2), indicating a homogeneous gel
thickness. For better control over thin networks, the ATRP
kinetics can be slowed by lowering the monomer concen-
tration.”> Thus, an in situ polymerization of PNIPAM-co-
MBAM,,, was monitored at a lower concentration (0.48 M)
using QCMD (Figure 1A). The initial decrease in frequency
(increase in coupled mass) and simultaneous increase in
dissipation occur due to the formation of a viscoelastic layer,
that is, polymerization initiation. This was followed by linear
growth until ~2 h. The dissipation starts to flatten after ~1 h,
indicating the formation of a more rigid layer compared to
initially, potentially due to enhanced crosslinking. In general,

https://dx.doi.org/10.1021/acs.langmuir.0c03545
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Figure 3. Non-interacting probe method in SPR using PEG (35 kDa, 10 mg mL™") at 25 and 35 °C. PEG injections are indicated by reversible Ogpy
changes of ~0.1°. @gpy increases with rising refractive index caused by a collapsing network at 35 °C and is fully reversible upon cooling.
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Figure 4. QCMD plot (left: resonance frequency, right: dissipation) of PNIPAM-co-MBAM with 0.5 mol % (dark green), 1 mol % (green), 3 mol
% (orange), 4 mol % (red), and 10 mol % (purple) crosslinker content.

given the relatively low-frequency signals, the flattening curves
again point toward termination reactions, similar to more
concentrated polymerizations as discussed above. While
modeling viscoelastic layers is often challenging,*"* we were
able to apply Voigt-based models to quantitatively determine
the layer thickness evolution by fitting changes in frequency
and dissipation at multiple harmonics (Figure $3).*™* A
frequency-independent PNIPAM-co-MBAM layer density of
860 kg m™ (20% polymer brush and 80% methanol) and
standard methanol density and viscosity”’ were assumed. The
maximum gel thickness measured was 21 nm at 3.5 h (Figure
1B). This is lower than heights measured by SPR but is not
unrealistic as despite measures to maintain an inert
atmosphere, some inhibition due to oxygen is expected
compared to ex situ polymerizations (e.g, as PTFE tubing is
permeable).

Crosslinked brushes with different fractions of MBAM were
prepared in polymerizations of 24 h (the percentage
crosslinker indicated is that from the reaction mixture, which
we assume represents the percentage in the brush over these
reaction durations). With a constant reaction time, the
polymer network dry thickness decreased with increasing
crosslinker content (Figure 2A). This is not unexpected, as
crosslinkers are suspected to increase early termination
reactions,” and acrylic monomers can interact with the
catalytic Cul/PMDETA complex, hindering ATRP.!

Using polyethylene glycol (PEG) (35 kDa, 10 mg mL™") as
a non-interacting probe in SPR,”* we measured “swollen” and
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“collapsed” exclusion heights, that is, the characteristic height
at which the probe molecules are expelled from the brush, of
PNIPAM-co-MBAM brushes in PBS at 25 and 35 °C,
respectively (Figure 3). The linear relation between the total
internal reflection angle (which corresponds to bulk effects)
and the SPR angle (which responds to both bulk and surface
effects) confirms the non-interacting nature of PEG (Figure
S4) and indicate that the change in SPR signal only
corresponds to changes in the bulk refractive index.**
Collapsed gel networks were not free of water but contained
roughly 45—50% by volume, calculated from the ratio of
collapsed film thickness (in PBS at 35 °C) to dry film thickness
in air. The ratio between swollen and collapsed heights, that is,
the difference in wet height for the same surface at different
temperatures (25 and 35 °C, respectively), is one important
aspect of the thermoresponsive behavior of the PNIPAM
networks, and how we define such behavior in this work. As
this ratio approaches 1, thermoresponsive behavior is deemed
to be lost. It was not observed to be a function of network
height, but instead this ratio gradually decreased with
increasing crosslinker content (Figure 2B). This is a direct
consequence of decreasing swollen heights in more crosslinked
networks as the collapsed heights remain constant (Figure
2C). Notably, the thermoresponsive behavior is almost
completely lost in networks containing 5 mol % or more
MBAM (swell/collapse factor ~1.2) in a similar manner to
PNIPAM-co-MBAM microgels deposited on solid substrates.*®
The same trend is observed in the refractive indices: constant

https://dx.doi.org/10.1021/acs.langmuir.0c03545
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Figure S. Monitoring shifts in peak (black) and dip (orange) position of a nanowell-patterned sensor coated with PNIPAM-co-MBAM,,; upon a
temperature increase (35 °C, grey background) and subsequent decrease. The collapse and reswelling of the gel layer, opening and closing the

pores respectively, is illustrated on the right.

at 35 °C regardless of MBAM content (supporting that the
networks are equally dense in the collapsed state), but
increases at 25 °C in more crosslinked networks (Figure
2D). The lack of thermoresponsive behavior shown here is
quite different from that reported for 5% ene-modified
PNIPAM spin-coated and simultaneously crosslinked through
thiol—ene click chemistry on a silica substrate (swelling factor
~2.7 in water).” Grafted-from gel networks are presumably
influenced more by crosslinking as the applied shear in the
spin-coating process might orient the networks preferentially in
one direction®® and thereby reduce geometrical constraints
that reduce the swollen thickness. Our crosslinked PNIPAM-
co-MBAMy,, networks retained some hydrogel characteristic
with swollen heights of approximately double the dry heights
and ~60 vol % water content above the VPTT (35 °C).

The reversible nature of the volume phase transition was
confirmed by SPR (Figure 3). Upon expelling water when
heating to 35 °C, the refractive index of the layer close to the
surface increased, simultaneously causing a shift in Ocpr.>*
Cooling back to 25 °C resulted in a reswelling of the gel to the
same extent as before the first collapse, indicated by a shift in
Ospr back to the original position.

Integrated real-time temperature output with QCMD
revealed further details on the temperature range in which
the phase transition occurs. Upon heating to 35 °C, the
networks expel water (ie, lose mass) and the resonance
frequency increases. Simultaneously, the layer rigidifies, as
evident by a decrease in dissipation (Figure 4). The phase
transition is less pronounced in networks with a higher
crosslinker content and is nonexistent in gels containing 10
mol % MBAM. The collapse takes place in a broad
temperature regime between 27 and 34 °C for all crosslinker
contents investigated (Figures 4 and SS). A different trend is
visible in the reswelling of the layers upon cooling back to 22
°C: for networks containing up to 1 mol % MBAM, frequency
and dissipation remained constant until 26 °C, followed by a
sharp change within 2 °C, whereas more crosslinked layers
transitioned gently within a 6 °C range (between 28 and 22
°C). Previously, differences between swelling and collapsing
cycles were attributed to a “conformational memory effect”:
inter- and intramolecular H-bonding in the collapsed state
which suppresses rehydration.’>>® Crosslinking generally
hinders hydration of surface-attached networks;*>™*° thus,
the gentle reswelling in our more crosslinked networks could
result from a combination of a more pronounced memory
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effect and a slight VPTT increase in more crosslinked
networks.”” Cycling between collapse and reswelling more
slowly than the current rate (~0.3 °C s') would likely
decrease this hysteresis.”* Again, these results differ from the
spin-coated PNIPAM gels (5% crosslinker) for which a sharp
transition between 33 and 36 °C was observed.*

Looking toward applications on nanostructured surfaces,”
we studied the behavior of PNIPAM-co-MBAM thermores-
ponsive gels on thin gold films containing plasmonic nanowell
arrays (diameter: 90 nm) with optical properties discussed in
detail in a previous report by our group.” Briefly, such
plasmonic structures display characteristic extinction spectra
(absorption + scattering) with resonance features originating
from the apertures in the thin metal film. Shifts in peak and dip
position of the asymmetric resonance (Figure S6) correspond
to refractive index changes on the surface and inside the
nanowells, respectively.>>>® The thermoresponsive swelling
behavior of our gel networks was retained on the patterned
surfaces and mirrored that from the planar surfaces: more
crosslinked networks swelled less (Figures S and S7). Thus, we
propose that PNIPAM-co-MBAM brush networks are suitable
for implementation on porous supports. They display tunable
thermoresponsive behavior when surface confined and provide
a logical next step beyond the PNIPAM brushes that have been
investigated previously inside porous membranes.””*

B CONCLUSIONS

In conclusion, PNIPAM-co-MBAM networks were synthesized
via a simple and reliable SIFARGET-ATRP strategy on gold
films with thiol SAMs. At 0.96 M, the polymerization
proceeded with fast reaction kinetics, giving networks with
dry thicknesses >25 nm within 1 h. For better control over
networks, the ATRP could be slowed by lowering the reaction
concentration as demonstrated by an in situ QCMD experi-
ment. The thermoresponsive phase transition of PNIPAM-co-
MBAM gels is characterized by the swollen/collapsed height
ratio. The ratio was not dependent on network height but
could be tuned by varying the crosslinker content between 0
and 10 mol %. Investigations in SPR and QCMD showed that
swollen gel heights (below VPTT) decreased with increasing
crosslinker content, while collapsed heights (above VPTT)
remained constant. This caused loss of thermoresponsiveness
in gels containing at least S mol % MBAM, a significantly
different behavior than observed in previous studies on spin-
coated or bulk PNIPAM-based networks.”**>***" A broader
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transition range was also evident for more crosslinked
networks. In all, we have demonstrated a reliable method for
tuning the swelling behavior of PNIPAM networks grafted
from planar surfaces and then expanded this to patterned thin
gold films containing nanowell arrays. By studying the behavior
of PNIPAM-co-MBAM gels on nanostructured surfaces, we
have paved the way for expanding their scope as thermo-
responsive devices.
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