
Is it possible to disregard obsolete requirements? a family of
experiments in software effort estimation

Downloaded from: https://research.chalmers.se, 2021-08-31 16:52 UTC

Citation for the original published paper (version of record):
Gren, L., Berntsson Svensson, R. (2021)
Is it possible to disregard obsolete requirements? a family of experiments in software effort
estimation
Requirements Engineering, In Press
http://dx.doi.org/10.1007/s00766-021-00351-7

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/475662822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Vol.:(0123456789)1 3

Requirements Engineering
https://doi.org/10.1007/s00766-021-00351-7

ORIGINAL ARTICLE

Is it possible to disregard obsolete requirements? a family
of experiments in software effort estimation

Lucas Gren1,2,3 · Richard Berntsson Svensson3

Received: 3 April 2020 / Accepted: 23 March 2021
© The Author(s) 2021

Abstract
Expert judgement is a common method for software effort estimations in practice today. Estimators are often shown extra
obsolete requirements together with the real ones to be implemented. Only one previous study has been conducted on if such
practices bias the estimations. We conducted six experiments with both students and practitioners to study, and quantify,
the effects of obsolete requirements on software estimation. By conducting a family of six experiments using both students
and practitioners as research subjects (N = 461), and by using a Bayesian Data Analysis approach, we investigated different
aspects of this effect. We also argue for, and show an example of, how we by using a Bayesian approach can be more confi-
dent in our results and enable further studies with small sample sizes. We found that the presence of obsolete requirements
triggered an overestimation in effort across all experiments. The effect, however, was smaller in a field setting compared to
using students as subjects. Still, the over-estimations triggered by the obsolete requirements were systematically around twice
the percentage of the included obsolete ones, but with a large 95% credible interval. The results have implications for both
research and practice in that the found systematic error should be accounted for in both studies on software estimation and,
maybe more importantly, in estimation practices to avoid over-estimations due to this systematic error. We partly explain
this error to be stemming from the cognitive bias of anchoring-and-adjustment, i.e. the obsolete requirements anchored a
much larger software. However, further studies are needed in order to accurately predict this effect.

Keywords Systematic error · Software effort estimation · Expert judgement · Family of experiments

1 Introduction

In all types of project, the planning phase includes some
kind of effort forecasting. Since the 1940s, researchers have
been investigating the use of expert opinion in connection
to getting as accurate estimations as possible [20]. Many
aspects have been studied in relation to software cost estima-
tion due to an explosion of software-related projects in the
last decades [11]. Many of these studies have empirically

investigated the impact of irrelevant information (i.e. infor-
mation that is not needed for the estimations) on software
effort estimations. In Jørgensen and Sjøberg [16], the results
show that pre-planning effort estimates may have an impact
on the detailed planning effort estimates, despite subjects
being told that the early estimates are not based on historical
data. Furthermore, Jørgensen and Sjøberg [17] report that
despite that the subjects were told that customer expectation
is not an indicator of the actual effort,1 irrelevant information
about the customer’s expectations affects the cost estimates.
In addition, the results in Jørgensen and Grimstad [15] indi-
cated that the length of the Requirements Specification had
an impact, however small, on the effort estimates. Finally, in
a study by Aranda and Easterbrook [1], the results show that
information that is clearly marked as irrelevant (i.e. not to be
taken into account) in a requirement specification has a large
impact on software cost estimates. The results in Aranda

 * Lucas Gren
 lucas.gren@bth.se

 Richard Berntsson Svensson
 richard@cse.gu.se

1 Blekinge Institute of Technology, Karlskrona, Sweden
2 Volvo Cars and Chalmers, University of Gothenburg,

Gothenburg, Sweden
3 Chalmers University of Technology and The University

of Gothenburg, Gothenburg, Sweden

1 We use the terms “effort”, “cost”, and “time” interchangeably when
discussing estimation in this paper because the main driver for cost
is typically the effort in connection to software development, which
takes time from employees that is paid for by the organizations.

http://orcid.org/0000-0001-5488-9894
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00351-7&domain=pdf

 Requirements Engineering

1 3

and Easterbrook [1] could not be explained by the subjects’
experience of cost estimations. Aranda and Easterbrook [1]
explicitly tested the cognitive bias of anchoring and con-
cluded that an estimate from a clearly stated non-expert was
still influencing the judgement of the participants. In general,
the above-mentioned studies have shown that introducing
irrelevant information may lead to an increased estimation
error, but with a small sample sizes of around 20 participants
in each study, which implies low statistical power.

One aspect that has not been studied, except for an initial
study [10], is the effect of obsolete requirements, i.e. require-
ments that are somehow marked as not to be included in the
estimations but still visible to the assessors when estimat-
ing. The reason why this aspect should be studied more, is
that the way software development practice often deals with
requirements that should not be implemented now is to mark
them as “obsolete” or the like [30], which is a special type
of irrelevant information. In our experience, most compa-
nies have too many requirements and it is not possible to
implement all of them in the coming product/project/release,
or in the next sprint for companies using an agile software
development processes. It is, of course, then important to
make accurate estimates of the ones that actually are to be
implemented. If current approaches misguide the effort esti-
mation, the practices must of course change or at least be
informed by the impact of showing obsolete requirements
to estimators.

1.1 Previous research and motivation

The first study conducted on the topic of obsolete require-
ments was published in Gren et al. [10]. In order to clarify
the experimental set-up (more details are available in Gren
et al. [10]) the authors distributed three different tasks to
three groups of students in the same class. The first group
(group A) was to estimate how long time it took to imple-
ment 4 requirements in weeks. Group B was given the same
4 requirements plus one extra (a total of 5 requirements).
Group C was given the same 5 requirements as Group B
but was instructed to leave the last requirement out of the
estimation.

The study was conducted with 150 university students
and showed that adding obsolete requirements to the require-
ment specification heavily distorted the students and manip-
ulated them into providing higher estimates for the exist-
ing requirements (i.e. they provided much lower estimates
without any requirements marked as obsolete next to them).
Before the experiment started, a pre-questionnaire was given
to the students to collect the students experiences and knowl-
edge in relation to the English language, experience from
software development in industry, and experience in effort
estimation. The study was conducted during one lecture in
the mandatory course.

In total, the experiment lasted for one hour, including
introduction, explanations, pre-questionnaire, and complet-
ing the tasks. The actual time spent on the tasks, including
read the instructions and performing the estimation, was
10-20 minutes. The task groups, i.e. A, B, and C, were not
overlapping. That is, the 150 students were divided into
three groups for the three different estimation tasks. Mean-
ing, 50 students performed task A (was in Group A), 50
students performed task B (Group B), and 50 performed task
C (Group C). A more detailed description of the experiment,
the experimental material, subjects, and set-up, is available
in Gren et al. [10].

Intuitively, if the same specification is used, but some
additional requirements are market as obsolete in one group,
these estimates should be similar, and preferably be esti-
mated as if those requirements were not there since they
were explicitly marked as obsolete. However, the result
showed that the estimates instead increased heavily. The
authors tried to explain the effect by suggesting that two
different cognitive biases could play a role, namely the rep-
resentativeness heuristic [18] or the decoy effect [31]. How-
ever, none of these explanations helped in quantifying the
effect of obsolete requirements, which is why we decided to
investigate how the found estimation bias functions in more
detail by conducting further experiments.

1.2 Research goal and research question

The aim of this current family of experiments is to investi-
gate the effects of obsolete requirement in software effort
estimation further through a set of six experiments. The
experiments comprise of both student participants estimat-
ing real requirements individually (Experiments 1, 2, and
3), industry practitioners doing the same (Experiment 4),
and industry practitioners estimating their own requirements
(Experiment 5), and the same industry practitioners as in
Experiment 5 estimating their own requirements in teams
over time in sprints (Experiment 6). Therefore, the overall
research question we looked at from different angles is:

RQ: Do obsolete requirements, explicitly stated or marked
to be excluded from the effort estimation, have an impact of
the size of the total estimates? and if so, how much?

1.3 Contribution

This paper contributes with a family of six experiments to
show the effect of obsolete requirements in different context
and with different requirements specifications, which was
large across all experiments. Moreover, this paper shows
how Bayesian Data Analysis (BDA) can be used to statisti-
cally analyze studies without the use of statistical signifi-
cance. By using BDA, this paper enables replications with

Requirements Engineering

1 3

very small sample sizes since new experiments can use what
have already been learned about the parameters in this study.

The remaining paper is organized as follows. In the next
section (Sect. 2), we provide a brief introduction to Bayesian
Data Analysis (BDA). Section 3 presents an overview the six
experiments conducted in this current study and if/how we
changed the experimental set-up after each experiment. In
Sect. 4 we show the output from each experiment. In Sect. 5
we discuss the findings from all the experiments, in Sect. 6
we discuss threats to validity, and in Sect. 7, we conclude
the paper and suggest future work.

2 Bayesian data analysis

We have lately followed the development in statistics with
great interest (e.g. Munafò et al. [23]), but a great summary
that inspired the data analysis used in this study is the recent
publication by McShane et al. [22] where they argue for
researchers to abandon statistical significance completely.
Their remedy is the use of something that can be denoted
a “fully” Bayesian Data Analysis (BDA) with no threshold
values but an open and honest presentation of prior beliefs,
data, and all the analyses conducted. In 2019, a first paper
was published in software engineering critiquing current
statistical practice and suggesting BDA as a potential solu-
tion [7].

Any statistical investigation has data from a random
variable from a probability distribution P. In most software
engineering research, this distribution if often assumed to
be normal (i.e. Gaussian), and if not, assumed to not exist
and instead researchers use statistical tests based on ranks
[24]. However, this is a pity since there are many probabil-
ity distributions that could create much better models for
the collected data (e.g. Binomial, Beta, Poisson, lognormal,
etc.). All these distributions can be described by parameters,
� s. When researchers have conducted a study, some data D
are collected, but assumptions need to be made, or prefer-
ably, trying to find the best fitting distribution for the data.
It is important to stress here that any statistical inference
eventually makes use of Bayes’ theorem [21], but a Bayes-
ian Data Analysis approach uses this theorem more gener-
ally and in connection to parameters and models. Bayes’
theorem yields:

where P(� ∣ D) is the probability of the parameter � given
the data. This is called the posterior distribution and is what
should be obtained in the end for all the parameters of inter-
est. Once the posterior is obtained, it is possible to analyze
it from different perspectives and make inferences. P(D|�) is

(1)P(� ∣ D) =
P(D|�) × P(�)

P(D)

the likelihood that the data actually came from the assumed
parameter. It is important to try different likelihoods, i.e. sta-
tistical models including different statistical distributions for
each parameter, and compare how these different scenarios
affect the posterior. P(�) is the prior information about the
parameter, which is then not connected to the obtained data.
P(D) is simply a standardizing constant, expressed as the
average likelihood.

It is rarely possible to exactly calculate the posterior dis-
tribution, which is why we instead sample from the posterior
using Markov Chain Monte Carlo simulation. This is one of
the reasons BDA was less used before modern computers
with enough computing power for such sampling methods
[21].

As mentioned, BDA is not about Bayes’ theorem, but
about quantifying uncertainty much more than the frequen-
tist approach. We can try different likelihoods, use the prior
information about parameters and integrate all these into
a model that include all the uncertainty for all the param-
eters. An controversy in BDA is the choice of priors since
they will affect the results to a very large extent. Therefore,
one uses weakly informative priors if no prior information
exists and then uses the posterior from earlier studies in the
future. What should also be done, since practical significant
is the ultimate goal in research, is to use experts to provide
this prior information [27]. For a short background of BDA
and why it is useful for software engineering research, we
refer to Furia et al. [7]. For an example of a good text from
another research field, see Van de Schoot et al. [26].

We would recommend readers interested in learning
BDA to first read the book by McElreath [21] and try our
R package Rethinking,2 and then go from defining models
in Rethinking to brms [4], which is faster and simpler to do
more advanced analyses, but less pedagogical. Both pack-
ages build on R3 and Stan.4

Other researchers lead the development of BDA, and we
will only apply it in this paper. We followed the steps below,
which can be read about in much more detail in Wilson and
Collins [29] (some of which can be followed in Supplemen-
tary Material):

1. Always plot the raw data to get an initial idea of what
the distributions might be for what we have collected.

2. Create an initial statistical model and check how it
behaves without looking at the data (i.e. a sensitivity
analysis).

2 https:// github. com/ rmcel reath/ rethi nking.
3 https:// www.r- proje ct. org/.
4 https:// mc- stan. org/.

https://github.com/rmcelreath/rethinking
https://www.r-project.org/
https://mc-stan.org/

 Requirements Engineering

1 3

3. Create different models and obtain posterior distribution
for all of them (i.e. the models in light of the data) and
validate them against each other.

4. Check how the chains behave in the Markov Chain
Monte Carlo simulations to find the posteriors.

5. Plot and look at the real distributions of the posteriors
to assess the results.

6. Calculate a Bayesian R2 statistic [9] to assess variance
explained by the model, but by using the posterior.

3 A family of experiments

In order to investigate the estimation bias, we conducted six
experiments (in addition to the experiment conducted by
Gren et al. [10] from whom we obtained the raw data) with
both students and practitioners (N = 461) to see whether
obsolete requirements explicitly stated to be excluded
from the effort estimate had an impact on the size of these
estimates.

Hereinafter, we denote the experiment published in
Gren et al. [10] as Experiment 0 since it was the first one
to be conducted on this topic but not a part of this current
paper. Assessing the validity threats of Experiment 0 [10],
there is an evident problem with instructing subjects to
exclude requirements on their paper next to the require-
ments, which is why we replicated the experiment in a set
of different settings in this paper. In more detail, it may
be confusing to read the phrase “Requirement x should
not be implemented”, which is why the experiment was
replicated in an as realistic setting as possible (Experi-
ment 6). Regarding Experiment 0, first, it is not known

whether the results from Experiment 0 replicates with
exactly the same set-up (addressed in Experiments 1 and
2). Second, it was not possible to know whether the length
of the requirement specification is a confounding factor
(addressed in Experiments 3 and 4) or whether the effect
might disappear by conducting the estimation in teams
(addressed in Experiments 6), which many companies do.
Also, having students estimate requirements (Experiments
1, 2, and 3) they know they will not implement for a sys-
tem they are unfamiliar with has, of course, a great risk of
being a toy problem. Experiment 4, therefore, comprised
of industry participants, but they still estimated require-
ments they were not to implement by themselves after-
ward. Experiments 5 and 6 looked at this aspect by being
fully in context of developers that both estimated and later
implemented the requirements.

Furthermore, the first set of experiments (Experiments
0–3) did not investigate the accuracy of the estimates since
we did not compare to an actual implementation effort (we
did not obtain “true” student implementation times). It could
have been the case that the obsolete requirements helped
the subject to decrease the estimation error. Therefore, in
Experiment 4, we conducted the same experiment but with
professional software developers in industry and compared
the result to the true implementation time, as implemented
later by their colleagues. Experiment 5 was conducted in a
field setting using the industry teams’ own requirements. In
Experiment 6, we used the same teams’ own backlogs and
sprints with requirements that they themselves implemented
afterwards. We also collected qualitative data through inter-
views asking the teams why they thought the estimations
were inaccurate.

Table 1 Summary of the setting for each experiment

Experiment Subjects # req / obsolete req Type of replication Reason

1 150 Bachelor’s students 4-5 / 0-1 Exact internal replication of
Experiment 0

To see whether the results from
Experiment 0 still holds

2 149 Bachelor’s students 4-5 / 0-1 Exact internal replication of
Experiment 0 and 1

To see whether the results from
Experiments 0 and 1 still holds

3 60 Master’s students 8-10 / 0-2 The same design as in Experiment
2, otherwise a differentiated
replication

To study if twice as many require-
ments and obsolete requirements
would influence the estimates

4 75 industry practitioners from two
companies

8-10 / 0-2 The same design as in Experiment
2, otherwise a differentiated
replication

To investigate whether the results
from Experiments 1–3 would
hold true for practitioners in
industry using real requirements
from their companies

5 27 industry practitioners from
three companies

10-22 / 0-5 Similar structure and design as in
Experiment 4, but a conceptual
replication

To see if the effect exists when
practitioners estimate require-
ments from their own context.

6 27 industry practitioners from
three companies

139-304 / 0-60 Based on Experiment 5, but a
conceptual replication

To see whether the effect exists
when teams estimate their own
requirements.

Requirements Engineering

1 3

Table 1 provides a summary of the six experiments
(Experiments 1–6), including subjects, number of require-
ments and obsolete requirements, type of replication accord-
ing to the taxonomy by Baldassarre et al. [2], and the reason
for conducting the experiment. The set-up and design of
each experiment is described in detail in Sect. 3.1, while
the subjects and the selection of subjects are described in
Sect. 3.2.

3.1 Design and experimental material

The aims of Experiments 1 and 2 were the same as for
Experiment 0, i.e. to see whether obsolete requirements
explicitly stated to be excluded from the effort estimation
have an impact of the size of the estimates. The reason
for performing Experiments 1 and 2 was to investigate if
the results from Experiment 0 still hold by exactly repli-
cating Experiment 0 as reported in Gren et al. [10]. Thus,
the design of Experiments 1 and 2 was exactly the same as
for Experiment 0 (i.e. an internal replication). The first and
second experiments had a sample size of 150 and 149 stu-
dents, respectively. In Experiments 1 and 2, three different
tasks (A, B, and C) were designed and randomly distributed
to three groups of students (Group A—performing Task
A, Group B performing Task B, and Group C performing
Task C) in the same class. The groups were not overlap-
ping, i.e. in Experiment 1, 50 students performed Task A,
50 students performed Task B, and 50 performed Task C.
The first group (Group A) was to estimate how long time,
in weeks, it took to implement four requirements. The four
requirements were:

• R1: The system shall receive uncompressed data and
shall compress and save the data to desired JPEG size

• R2: The maximum delay from a call answer is pressed to
opened audio paths is X ms

• R3: The system shall have support for time shift (play-
back with delay)

• R4: The system shall have a login function that consists
of a username and a password

Group B was given the same four requirements as Group
A plus one extra added requirement; hence, Group B had
five requirements to estimate the total effort it would take
to implement the requirements. The fifth requirement was:

• R5: It shall be possible to dedicate a host buffer in RAM
that is configurable between X and Y MB for HDD

Since all of the five requirements were from one of our
industrial partners, we had to replace the real values with
“X and Y” in this paper due to confidentiality reasons. How-
ever, the students had the real values in their tasks. Group

C was given the same five requirements as Group B, but
was instructed to leave the last requirement (R5) out of the
estimation.

Both Experiments 1 and 2 were conducted during one
lecture in a mandatory course. The students were given an
introduction followed by a problem description. Then, a
pre-questionnaire was handed out to the students to collect
the students experiences and knowledge in relation to the
English language, experience from software development
in industry, and experience in effort estimation. After the
pre-questionnaire was filled in by the students, the assign-
ments and its instructions were given to the students. At
this point, the students had time to read the instructions and
to complete the estimation task. The effort estimation task
was designed and conducted individually by the students.
In total, the experiment lasted for about one hour, including
introduction, explanations, pre-questionnaire, and complet-
ing the tasks. The actual time spent on the tasks, including
reading the instructions and performing the estimation, was
between 10 and 20 minutes. Since we also conducted Exper-
iment 0, we present an analysis of all these three experiments
(0, 1, and 2) jointly (see Sect. 4.1).

The results in Jørgensen and Grimstad [15] indicated that
the length of the requirements specification had an impact
on effort estimations; therefore, it was of interest to study
the degree to which twice as many requirements and obso-
lete requirements would influence the estimates. Thus, in
Experiment 3, we decided to double the number of require-
ments for all three tasks (A, B, and C) and to conduct the
experiment with a different set of students from a different
university. The third experiment had a sample size of 60
students. Since the task in each group was different from the
previous experiments, we could not compare the result with
the results from Experiments 0–2. The design of Experi-
ment 3, including the random distribution of students into
groups, was exactly the same as for Experiments 1 and 2
(i.e. a differentiated replication), except for the number of
requirements and obsolete requirements, which had been
doubled in size. That is, instead of using four requirements
in Group A, we had eight requirements, while the number of
requirements for Group B increased from five to 10 require-
ments. Finally, for Group C the number of requirements
increased from five to 10 where the students were told to
not to take the last two requirements (instead of only one as
in the previous experiments) into account when performing
the estimation.

Experiments 1–3 were conducted with student subjects
that did not have any knowledge/expertise about the require-
ments, the domain or the product of which the requirements
belong to, nor did they have any extensive industrial experi-
ence of software development and effort estimation. There-
fore, the aim of Experiment 4 was to investigate whether
the results from Experiments 1–3 would hold true for

 Requirements Engineering

1 3

practitioners in industry using real requirements from their
companies that were to be implemented in their coming
sprints shortly after Experiment 4 (note that the selected
requirements in Experiment 4 were not yet implemented at
the time of the experiment). Experiment 4 had exactly the
same number of requirements as in Experiment 3, but since
the context was very different, we did not compare students’
result to the result of the industry participant. Moreover,
another aspect that Experiments 1–3 do not address is the
investigation of the accuracy of the estimates since we did
not compare to an actual implementation effort. Therefore,
when the requirements used in Experiment 4 had been
implemented, we collected the actual effort it took to imple-
ment the requirements. The fourth experiment had a sample
size of 75 industry practitioners from two different compa-
nies. Experiment 4 was a differentiated replication of Exper-
iment 3 and the design of Experiment 4 was exactly the same
as for Experiment 3, except for the used requirements and
having industry practitioners instead of student subjects. The
main criteria used when selecting the 10 requirements were
that they should be implemented in a real project after the
experiment (to know the actual effort), and that the require-
ments should be understandable for all participating indus-
try practitioners. Due to confidentiality reasons, the used
requirements are not allowed to be revealed. Moreover, the
questions asked in the pre-questionnaire differed from the
ones used in Experiments 1–3. In Experiment 4, we asked
questions about the subjects total years of experience in soft-
ware development, total years of experience at their current
company, and total years of experience with requirements
engineering and effort estimation. These numbers were
known for the sample as a whole and averaged out the effect
of experience by randomizing the industry participants into
the different group A, B, and C anyways.

Although the subjects in Experiment 4 comprised
of industry practitioners, the subjects did not estimate

requirements that they were to implement. Instead, the
requirements in Experiment 4 were implemented by other
practitioners in the companies. Hence, the effect might
only exist in contexts where an outsider, i.e. someone
that will not actually implement the requirements, con-
duct the estimation. Therefore, Experiment 5 looked into
this aspect by being fully in the context of developers that
both estimated and later implemented the requirements.
Experiment 5 was conducted in a field-setting using the
industry teams’ own requirements. The effort estimation
in Experiment 5 was based on the industry practitioners’
real requirements from their real product and sprint back-
logs. The fifth experiment had a sample size of 27 industry
practitioners from five complete teams at three different
companies. For Experiment 5, we searched among our
industrial collaboration network for software developing
companies that would be interested in participating in the
experiment. Three companies (hereafter named as Com-
pany C, Company D, and Company E) and five complete
teams (three from Company C and one each from com-
panies D and E, as shown in Table 3) were interested in
the effort estimation work and decided to participate in
Experiment 5. To set up and plan the experiment and to
identify industry practitioners for participating in Experi-
ment 5, we contacted three “gate-keepers” (one from each
company).

Experiment 5 followed a similar structure and design as
Experiment 4 (i.e. a conceptual replication), but with real
requirements from the teams’ real projects where the number
of requirements and obsolete requirements varied. Figure 1
illustrates what level of details the requirements had (written
as user stories, natural language requirements, and use cases)
in Experiments 5 and 6. Note that the requirements in Fig. 1
are not the real requirements that were used in Experiments
5 and 6 (due to confidentiality reasons, the used require-
ments are not allowed to be revealed).

As an administrator I want to be able to add
3:rd party apps so I can use the full potential
of a smartphone. The administrator shall also
be able to allow the end user to download
apps.

Acceptance criteria:
1) The system administrator must be able to
add 3:rd party apps.
2) The distribution of apps should be handled
centrally if possible and the administrator
should be able to select which to use.

As an administrator I want to have the follow
ing functions:

All data needs to be encrypted when sent
from system to device to prevent unautho
rised persons to view data.

As a user I want to be able to login to the device as easy as possible so that I can use any
phone but still get all my messages, calls, and my personal setting/data.

Acceptance criteria:
This personal data should be available:
1) Contacts
2) Assignments
3) Messages
4) Chat

Comments:
Pin code can be one alternative but even easier would be drawing a pattern or using normal
access card.

Suggested solution
The solution shall o er two variants:
1) When strong security. Preferred is to use access identify card to identify who the user is.
The user enters password credential in same way as when loggin on to other applications.
Alternative is to identify with user name instead of access card before password is entered.
2) If the system services are not reached from internet the authentication service shall allow
for user name and PIN code to login.

The system shall be compliant with framework X

The system shall be able to add agreement services

This Use Case is executed in an agreement. The
purpose is to add agreement service X including Y
and Z. The agreement service X generates transac
tions for activation on platforms. Activation is done in
the window for the agreement of service X according

and must be activated before the activation of Z. Y is
selectable to add X. Each sub-Y is added in the plat
forms and invoicing will start at a given start date.

Change: On the service X it should be possible to
mark a sub-Y. When this is marked, the sub-Y will be
available to connect from the service X.

The system shall support multi-link
The system shall receive encrypted data and being
able to decrypt and save the data to a desired

XYZ seconds to accomplish the whole process.

Fig. 1 Example of what level of details the requirements had in Experiments 5 and 6

Requirements Engineering

1 3

For each team, the estimation effort was performed
individually over two or three sprints where the number
of requirements and obsolete requirements differed, both
between the teams and in the sprints for each team. The
reason for this difference was based on input from the
“gate-keepers” at each company. After each sprint, the real
requirements were implemented and then we collected the
actual implementation effort in order to compare with the
individual estimates. The main criteria used when selecting
the requirements were that they should be real requirements
from the team’s product and/or sprint backlog, and that the
requirements should be implemented in the coming sprint.
Before the estimation of the requirements in the first sprint,
the industry practitioners were given the same introduction,
problem description, and pre-questionnaire as the subjects
in Experiment 4. After the pre-questionnaire was filled in by
the industry practitioners, the assignment (the selected real
requirements from their coming sprint, which was selected
by the “gate-keepers”) and its instructions were given to
the industry practitioners. This was done before the esti-
mations of sprint 1. The industry practitioners completed
the estimation work and implemented the requirements. At
the beginning of sprint 2 and sprint 3, the selected require-
ments for each sprint were given to the industry practition-
ers. Again, the “gate-keepers” selected which requirements
to include for sprint 2 and sprint 3. Please note that there
was no introduction and pre-questionnaire for the second
and third sprints. In total, the estimation work for each sprint
lasted for about 30 minutes, while the introduction before
sprint 1 lasted about 20 minutes. The “gate-keepers” col-
lected the actual implementation effort from each sprint and
informed the second author about the actual effort.

After conducting Experiment 5, it was not possible to
decide whether the effect was due to the tasks being inter-
preted as unrealistic. Moreover, many industry practitioners
perform their effort estimations by discussion in teams; thus,
it was unknown whether group discussions may mitigate the
error. In addition, there were no details/results of how the
subjects reasoned when performing the estimations where
obsolete requirements were visible. All of these issues were
addressed in Experiment 6. The sixth experiment had exactly
the same subjects and companies as in Experiment 5.

The purpose of Experiment 6 was to create a set-up that
was exactly the same as when the teams work in their daily
work. Moreover, the number of requirements in the previ-
ous experiments, did not reflect the number of requirements
in real projects and real sprints. Therefore, we discussed
with the “gate-keepers” at each company about modify-
ing (i.e. “marking” requirements as obsolete requirements)
some real requirements in the real product backlogs for the
teams, without the teams knowledge that they were still part
of the study. We obtained approvals from the companies and
the “gate-keepers” to do this in order to study the affect of

obsolete requirements in real situations without the possible
bias from the subjects that they are aware of being part of a
study. In Experiment 6, no modifications were made to the
companies or the teams processes, ways of working, how
requirements end up in different backlogs, decisions-making,
implementation of requirements, or how estimations were
done. The only modification of the companies and the teams
processes and requirements was that the “gate-keeper” at
each company modified some of the already existing require-
ments in the teams’ product backlogs by “marking” a num-
ber/selection of requirements as obsolete as they are usu-
ally marked in their real product backlogs. For example,
by stating that a requirement is “obsolete”, “not included”,
“out of scope” or simply by marking a requirement with
red colour. Figure 2 illustrates three examples how obsolete
requirements were marked, and how they were presented
to the teams together with non-obsolete requirements. Note
that the requirements in Fig. 2 are not the real requirements
that were used in Experiment 6. Each team worked in their
normal product and sprint backlogs in their real projects
and performing the estimations and prioritization as they
normally do. That is, they looked into their product back-
logs (that both contained requirements and obsolete require-
ments) to estimate and select which requirements should be
included in the next sprint and added the selected require-
ments to their sprint backlog. Then, the teams implemented
the requirements from the sprint backlog. All the teams had
access to their product backlog, which means that they saw
(and could access) all the requirements, including the added/
modified obsolete requirements. What the team decided to
implement in a sprint was a subset of the product backlog
and discussed in the sprint planning meeting. After each
sprint was completed, the “gate-keepers” sometimes added
and/or changed the number of obsolete requirements, which
always happens according to them. The number of obsolete
requirements for each team and in each sprint was decided
by each “gate-keeper” to make it as realistic as possible.
That is, the researchers did not influence the percentage of
obsolete requirements in the product backlogs. The used
requirements in Experiment 6 had the same level of details
as in Experiment 5 (see Fig. 1). Due to confidentiality rea-
sons, the used requirements are not allowed to be revealed.
In addition, after the requirements from the sprint backlog
was implemented, the “gate-keepers” collected the actual
implementation effort for the requirements in order to com-
pare the actual effort with the estimations. Then the process
was repeated for each sprint. In total, this process lasted
for three sprints for each team. After the three sprints, the
second author went back to the companies to interview the
team members about their experiences. The interviews used
a semi-structured approach and lasted between 10 and 30
minutes. In each interview, which was conducted face-to-
face at each company, one industry practitioner and the

 Requirements Engineering

1 3

second author participated. During the interviews, notes
were taken. Experiment 6 lasted for three sprints for each
team; thus, the total time (in weeks) for Experiment 6 was
between six and nine weeks (depending on the sprint length
for each team).

3.2 Subjects

Experiment 1 comprised of Bachelor’s students from the
course Software Engineering Process—Economy and Qual-
ity at Lund University, Sweden. The course was a manda-
tory course for third-year students offered to students at the
Computer Science and Information program. In total, 150
students participated in Experiment 1, which was conducted
after Experiment 0. As in Experiment 0, we distributed a
pre-questionnaire. The results from the pre-questionnaire
in Experiment 1 showed a small variation in the English
language, ranging from “very good knowledge” to “fluent”.
Out of the 150 subjects, six had industrial experience of
software development (between four and eight months), and
five of these six subjects had about one-month experience
of effort estimation.

The subjects in Experiment 2 were Bachelor’s students
from the course Software Engineering Process—Soft Issues
at Lund University, Sweden. The course was a mandatory
course for second-year students offered to students at the
Computer Science and Information program. In total,
149 students participated in Experiment 2. Experiment
2 was conducted in the same year as Experiment 1. The

pre-questionnaire (the same as in Experiment 1) showed that
the students’ English language knowledge varied between
“good knowledge” and “fluent”. Only one student had expe-
rience from software development in industry (about five-
month experience), while none of the students in Experiment
2 had any experience of effort estimation.

The subjects in Experiment 3 were Master’s students
from the course Requirements Engineering at Chalmers |
University of Gothenburg, Sweden. The course was a man-
datory Master’s-level course for students at the educational
Master’s programs of Software Engineering and Interaction
Design and Technologies. In total, 60 students participated
in Experiment 3. Experiment 3 was conducted after Experi-
ment 2. In Experiment 3, the result of the pre-questionnaire
revealed a variation in the English language knowledge,
ranging from “good knowledge” to “fluent”. For experi-
ences from software development in industry, most of the
students reported no experience at all (52 out of 60), and
for experience of effort estimation 53 out of 60 students
reported no experience. For the students that reported that
they had experiences from software development in industry,
the experiences varied between five months up to one year.
The reported experiences of effort estimation were about
one month.

The subjects in Experiments 4, 5, and 6 were industry
practitioners from five different companies. For the indus-
trial subjects, we contacted one “gate-keeper” at each of
the five companies. The “gate-keepers” identified industry
practitioners that (s)he thought were the most suitable and

It shall be possible to use function A and service Y
at the same time

Dropped: The system shall be compliant with
framework X

The system shall be able to add agreement services All data needs to be encrypted when sent
from system to device to prevent unautho
rised persons to view data.

As an administrator I want to have the follow
ing functions:

OUT OF SCOPE: As an administrator I want
to be able to add 3:rd party apps so I can use
the full potential of a smartphone. The admin
istrator shall also be able to allow the end
user to download apps.

Acceptance criteria:
1) The system administrator must be able to
add 3:rd party apps.
2) The distribution of apps should be handled
centrally if possible and the administrator
should be able to select which to use.

The frame rate change shall be variable between 15
and 5 fps.

The system shall support multi-link

All data needs to be encrypted when sent
from system to device to prevent unautho
rised persons to view data.

Not Included: The system shall be com
pliant with framework X

The system shall be able to add agree
ment services

As an administrator I want to have the follow
ing functions:

Not Included: The system shall be able to
handling an incoming requests without
delays

The frame rate change shall be variable
between 15 and 5 fps.

The system shall support multi-link
The system shall receive encrypted data
and being able to decrypt and save the

shall not take longer than XYZ seconds to
accomplish the whole process.

It shall be possible to use function A and
service Y at the same timeThe system shall receive encrypted data and being

able to decrypt and save the data to a desired

XYZ seconds to accomplish the whole process.

Fig. 2 Three examples of how obsolete requirements were marked and mixed with non-obsolete requirements in Experiments 5 and 6

Requirements Engineering

1 3

representative of the company to participate in this study, i.e.
the “gate-keepers” knew that the research was about effort
estimation of requirements and were to select participants
that perform such work within the organization. That is, the
researchers did not influence the selection of the industry
practitioners, nor did the researchers have any personal rela-
tionship to the industry practitioners. The “gate-keepers”
selected software professionals that work with require-
ments engineering and perform estimation work. None of
the industry practitioners were students working part-time
at the companies. All of the industry practitioners were fully
employed by their respective company at the time of the
experiments. For Experiment 4, the “gate-keepers” identified
individual industry practitioners, while for Experiments 5
and 6, instead of identifying individual industry practition-
ers the “gate-keepers” identified complete teams that work
together at the companies in their real projects. Moreover,
in Experiments 5 and 6, the “gate-keepers” selected industry
practitioners that, in addition to working with requirements
engineering and perform estimation work, also were respon-
sible for implementing the requirements. In the industrial
settings (Experiments 4-6), the pre-questionnaire asked
questions about the subjects total years of industrial experi-
ences in software development, total years at their current
company, and total years of experiences of requirements
engineering and effort estimation.

In total, 75 industry practitioners participated in Experi-
ment 4, 21 from Company A and 54 from Company B. For
the industry practitioners from Company A, the subjects had
between 2 and 15 years of professional experience in soft-
ware development, between 1 and 15 years of experiences
at Company A, between 2 and 9 years of experiences in
requirements engineering, and 2 and 6 years of experiences
with effort estimations. For the industry practitioners from
Company B, they had between 1 and 25 years of profes-
sional experience in software development, between 1 and
17 years of experiences at Company B, between 1 and 21
years of experiences in requirements engineering, and 1 and
18 years of experiences with effort estimations. The two
companies, both from the telecommunication domain, varied
in size around 250 employees at Company A and more than
2,700 employees at Company B. Both companies used agile
development methods where Company A performed effort
estimations individually, while Company B performed effort
estimations in teams. Both companies used hours as their
effort estimation unit. More details about the two companies
are not revealed for confidentiality reasons.

In total, 27 industry practitioners from five teams at three
different companies participated in Experiment 5 and 6, as
shown in Table 2. From Company C, 18 industry practi-
tioners from three teams participated in Experiment 5. The
industry practitioners from Company C had between 3 and
15 years of professional experience at Company C and

between 3 and 20 years of professional experience in soft-
ware development. From Company D, four industry practi-
tioners from one team participated in the experiment. The
industry practitioners from Company D had between 4 and
10 years of professional experience in software development
and between 3 and 6 years of experiences at Company D.
From Company E, 5 industry practitioners from one team
participated in Experiment 5. The industry practitioners
from Company E had between 1 and 8 years of professional
experience at Company E and between 1 and 15 years of
professional experience in software development.

The three companies (Company C, D, and E) are in dif-
ferent domains and varied in size in terms of number of
requirements in their backlogs, product backlogs, and sprint
backlogs (as shown in Table 3). Company C, from the Tel-
ecommunication domain, had about 10,000 requirements
in their backlog. For the three teams (C.1, C.2, and C.3 in
Table 3) from Company C, the product backlogs varied
between 150 and 400 requirements, while the sprint back-
logs varied between 5 and 30 requirements. For all three
teams, the sprint length was two weeks. In Team C.1, the
requirements are specified using natural language (about
75% of the requirements) and user stories (about 25%). In
Team C.2, all of the requirements are specified as natu-
ral language requirements. Team C.3 used four different
specification techniques for their requirements, about 40%
of the requirements were specified using natural language
and 40% as use cases. About 15% of the requirements were
specified as user stories and 5% as sequence diagrams. For
Company D, which is a consultancy company, the product
backlog had about 10,000 requirements. The product back-
log for Team D.1 from Company D had between 100 and
400 requirements, while their sprint backlog varied between
15 and 20 requirements. The sprint length for Team D.1 was
two weeks. Team D.1 specified all of their requirements as
natural language requirements. For Company E, from the
consumer electronics domain, their backlog had about 4,000
requirements, while the product backlog for Team E.1 varied
between 140 and 180 requirements. Team E.1’s sprint back-
log varied between 10 and 20 requirements, and the length of
their sprint was three weeks. Team E.1 specified all of their
requirements as user stories.

All three companies (Company C, D, and E) used agile
development methods where the effort estimations were per-
formed in teams using hours as the estimation unit at all five
teams. More details about the three companies and the five
teams are not revealed due to confidentiality reasons.

4 Results

In this section, we first present the results from the separate
analyses conducted and then we analyze all of them together.

 Requirements Engineering

1 3

4.1 Experiments 0, 1, and 2

We start by plotting our raw data of the estimations
obtained for each of the Groups A, B, and C. In Fig. 3, we
can see that we have quite normally distributed raw data
and there seems to be a difference in that A < B < C . The
likelihood functions and our weakly informative priors [3]
used when the first data were analyzed were the following:

(2)Estimate
i
∼ Normal(�

i
, �)

(3)�
i
= �

A
A

i
+ �

B
B
i
+ �

C
C
i

(4)�
A
∼ Normal(0, 1)

(5)�
B
∼ Normal(0, 1)

Table 2 Industry subject
characteristics—Experiments
5 and 6

Company Team Subject/Role Number of years of experi-
ence in current company

Number of years of experi-
ence in software develop-
ment

C C.1 Developer 1 6 10
Developer 2 8 12
Developer 3 6 10
Developer 4 4 4
Product owner 5 15
Senior engineer 8 8

 C.2 Developer 1 5 7
Developer 2 3 3
Developer 3 3 3
Product owner 15 19
Software designer 11 20

 C.3 Developer 1 8 13
Developer 2 9 10
Developer 3 5 5
Product owner 9 9
Senior engineer 4 10
Software designer 6 9
Software architect 7 16

D D.1 Developer 1 4 4
Developer 2 3 5
Developer 3 4 5
Project manager 6 10

E E.1 xDeveloper 1 2 2
Developer 2 1 1
Developer 3 2 5
Project manager 8 15
Product owner 1 5

Table 3 Company
characteristics—Experiments
5 and 6

Company Domain # require-
ments in
backlog

Team # requirements
in product
backlog

require-
ments in sprint
backlog

Sprint
length (in
weeks)

 C Telecom 10,000 C.1 200–300 15–20 2
C.2 150–200 10–30 2
C.3 200–400 5–15 2

D Consultant 10,000 D.1 100–400 15–20 2
E Consumer electronics 4,000 E.1 140–180 10–20 3

Requirements Engineering

1 3

Note that we have a model without any intercept (3). We
could use an intercept as Group A, but if we model like
this, we get much more straightforward output from brms
(see Supplementary Material). The priors above need some
explanation. The response variable is always assumed to be
Gaussian (i.e. normally distributed) in linear regression [21]
which is why our estimate variable is assumed to be Gauss-
ian with a �

i
 , and � (2). Figure 3 also supports this claim.

We obtain a posterior distribution for each of the groups,
which makes them very easy to compare (4–6). When using
BDA and explicitly defining our statistical model like this,
it makes it possible to directly observe our hypothesis about
the experiment since we could use our subjective knowledge
as priors in the statistical model. In our case, not much was
known about the prior distribution; however, our assumption
was that the estimates given for group A should be larger
than zero and not have more extreme values than 100 (the
max value obtained in our data was 14.5), which will cover
extreme values. It is hard to assess how a model behaves
without simulating output, which is done in a sensitivity
analysis (see Supplementary Material). In brief, we tested
different models and chose the one above since the simulated
values of the estimate were much larger than 100. We used
a standard weak informative prior for sigma (7), the Half-
Cauchy prior with a standard deviation of 5 [8].

Figure 4 shows the sampled posterior distributions,
which confirms the result that was previously published,
i.e. there is a significant difference between all the three

(6)�
C
∼ Normal(0, 1)

(7)� ∼ HalfCauchy(0, 5)

mutually exclusive estimation groups (A: 4 require-
ments, B: The same 4 requirements but a fifth one added,
C: The same 5 requirements as in B but the fifth was
marked “Please note that requirement 5 should not be
implemented”).

Table 4 shows the parameter statistics for each Group
A, B, and C. We see that all the Groups are different and
we obtained much higher estimates in Group C where one
requirement was marked as obsolete.

By simply looking at Figure 4 or reading Table 4, we see
that all the groups were significantly different from each
other too since almost no values even overlap. However, a
measurement of effect size overall was important to calcu-
late. The Bayesian R2 was 53.8%, which mean that around
54% of the variance in estimations can be explained by
Group, which is very high considering so many other con-
founding factors when people make estimations of require-
ments. By this we mean all the unexplained variance present
in a behavioural context that should be averaged out instead
of blocked. This is why effect sizes in psychological science
are considered high with quite low percentage of explained
variance [5], because they are not low in a complex system.

4.2 Experiment 3

Since it was not possible to know how the longer require-
ments specifications with 8 and 10 requirements would
affect the estimations, we used weak priors again for the
third experiment, i.e. we started our data analysis with
exactly the same model and priors as in the previous data
analysis. Based on the results from the previous experi-
ments, we could have assumed group C to be larger than
A and B; however, with the new and longer requirements

Fig. 3 Density plots of the raw
data of the estimates for the
different groups in Experiments
0 to 2

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Estimates

D
en

si
ty

A

B

C

 Requirements Engineering

1 3

specification we opted to be very conservative and careful
regarding the effect of C.

We start again by plotting our raw data of the estimations
obtained for each of the Groups A, B, and C. In Fig. 5, we
can see that we have quite normally distributed raw data
and there seems to be a difference in that A < B < C , just
like before.

We updated our model from the previous experiments
into a lognormal distribution due to our sensitivity analysis

(see Supplementary Material).

Fig. 4 Sampled posterior distri-
butions in Experiment 0–2 for
groups with median and 95%
credible interval (note that the
sigma is not included)

Table 4 Means and 95% credible interval for the groups parameters
and the sigma used in the likelihood model

Mean l-95% CI u-95% CI

Group A 4.43 4.15 4.70
Group B 5.87 5.59 6.15
Group C 9.41 9.13 9.69
Sigma 1.83 1.72 1.95

Fig. 5 Raw data for the different
groups in Experiment 3

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Estimates

D
en

si
ty

A

B

C

Requirements Engineering

1 3

Figure 6 shows the sampled posterior distributions, and
Table 5 shows the parameter for each groups with a con-
nected 95% credible interval. As we can see, the estimations
for the groups, all the estimates increase and we see a similar
pattern as in the previous experiments. The true implementa-
tion time for students was not known; however, it is expected
that A has increased simply because more requirements
should take more time to implement. Our main conclusion
is still that the pattern of obtaining even larger estimates
when told to exclude requirements still holds.

In the case of the third experiment our Bayesian
R
2 = 0.72 , which means that around 75% percent of the

variation in the estimations can be explained by which
group (A, B, or C) the subjects were part of. We interpret
this effect size as extremely high.

(8)Estimate
i
∼ LogNormal(�

i
, �)

(9)�
i
= �

A
A

i
+ �

B
B
i
+ �

C
C
i

(10)�
A
∼ Normal(0, 1)

(11)�
B
∼ Normal(0, 1)

(12)�
C
∼ Normal(0, 1)

(13)� ∼ HalfCauchy(0, 5)

4.3 Experiment 4

Experiments 0–3 were conducted with student subjects that
did not have any knowledge/expertise about the require-
ments, the domain or the product of which the requirements
belong to, nor did they have any extensive industrial experi-
ence of software development and effort estimation. These
issues were addressed in Experiment 4.

Since this is the first experiment in industry, the analy-
sis used the same weak prior knowledge as before. One of
the biggest threats to the previous experiments was that it
could be seen as a toy problem that would not exist in the
real world where estimations are conducted. Hence, weakly
informative priors were used again.

We start, as always, by plotting our raw data of the esti-
mations obtained for each of the Groups A, B, and C. In
Fig. 7, we can again see that we have quite normally dis-
tributed raw data and there seems to be a difference in that
A < B < C.

For the same reason as in previous experiment, we use
a lognormal distribution due to our sensitivity analysis (see
Supplementary Material).

Fig. 6 Sampled posterior dis-
tributions in Experiment 3 for
groups with median and 95%
credible interval (note that the
sigma is not included)

exp(b_groupC)

exp(b_groupB)

exp(b_groupA)

5.0 7.5 10.0 12.5Estimate

A

B

C

Table 5 Means and 95% credible interval for the groups parameters
and the sigma used in the likelihood model

Mean l-95% CI u-95% CI

Group A 4.90 4.53 5.26
Group B 7.85 7.32 8.50
Group C 10.80 9.97 11.59
Sigma 1.19 1.15 1.23

 Requirements Engineering

1 3

(14)Estimate
i
∼ LogNormal(�

i
, �)

(15)�
i
= �

A
A

i
+ �

B
B
i
+ �

C
C
i

(16)�
A
∼ Normal(0, 1)

(17)�
B
∼ Normal(0, 1)

(18)�
C
∼ Normal(0, 1)

Fig. 7 Raw data for the different
groups in Experiment 4

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Estimates

D
en

si
ty

A

B

C

Fig. 8 Sampled posterior
distributions in Experiment 4
for groups with median and
95% credible interval and the
two actual implementation
times (the left one for A and
C, and the right dashed line for
B). Note that the sigma is not
included

exp(b_groupC)

exp(b_groupB)

exp(b_groupA)

4 6 8 10

Actual time B

Actual time
A and C

A

B

C

Estimate

Table 6 Means and 95% credible interval for the groups parameters
and the sigma used in the likelihood model

Mean l-95% CI u-95% CI

Group A 4.62 4.22 5.00
Group B 6.69 6.17 7.31
Group C 8.33 7.61 9.12
Sigma 1.25 1.21 1.30

Requirements Engineering

1 3

The results of the experiment conducted in an industrial
setting showed the same pattern again. Table 6 shows the
means, standard deviations, and credible interval just like
in the previous experiments. Figure 8 shows the posterior
distribution including two lines. The left line represents the
actual implementation time for task A (3.5 weeks), and the
right line (dashed) represents the actual implementation time
for tasks B and C (5 weeks). We can see that in all cases
the practitioners overestimated the implementation times.
However, the over-estimations in A are lower (around 1.4
weeks) as compared to the estimates of more requirements
in B (almost 2 weeks). The worst over-estimations were due
to the marking of two requirements as obsolete increased the
overestimation to close to 4 weeks.

In the case of the fourth experiment R2 = 0.527 , which
means that around 53% percent of the variation in the esti-
mations can be explained by which group (A, B, or C) the
subjects were part of. We interpret this effect size as high
again.

4.4 Summary of Experiments 1–4

We have now analyzed the first four experiments and can
conclude that the fact that obsolete requirements have an
effect of the estimations is clear (Experiments 1 and 2).
From Experiment 3, the results show that the same effect
was found using a twice as big requirements specifications
including twice as many obsolete requirements. However,
from the student experiments (Experiments 1–3) it is not
possible to know if the students over- or under-estimated.
From Experiment 4, the results show that the effect existed
in industry where practitioners estimated real requirements
later implemented by someone else at the company, and that
it resulted in a gross over-estimation.

The found effect sizes were 0.54, 0.75, and 0.54. Since
we opted to not use any knowledge between these three sets
of experiments (only between 0, 1, and 2, which led us to
analyze all experimental data together), we need to be care-
ful when comparing them or even averaging the effect. All
the results shown is that the effect exists and is large, even
larger for larger requirements specifications and lower again
in an industrial setting. The effect might only exist in con-
texts where an outsider, i.e. someone that will not actually
implement the requirements, conducts the estimation. This
was addressed in Experiment 5.

Based on the results until this point, it would be good
to create a model that can predict the over-estimations by
knowing the percentage of obsolete requirements. Unfor-
tunately, only a small subset of our data includes any infor-
mation of the true implementation time and the percentage
of obsolete requirements. More specifically, only Group C

(19)� ∼ HalfCauchy(0, 5)

in Experiment 4 includes that information. The data from
Experiment 4 (closest to a real setting) show that the true
implementation time for Group C was 5 weeks (see Fig-
ure 8). In Experiment 6, we collected more data of that kind.

4.5 Experiment 5

Experiment 5 did not include a large enough sample from
different groups who partly estimate the same requirements
(only three teams from Company C). Therefore, it is not pos-
sible to assess the different levels of the effect much further.
However, this was not the main aim. The aim was instead to
see whether obsolete requirements have a similar effect of
distorting estimates when practitioners themselves estimate
requirements from their own work. In Experiment 5 all par-
ticipants conducted the estimations individually, and we then
calculated a mean value for each team, as shown in Table 8.

The three teams from Company C had a common product
backlog, so we tested the same requirements (but in different
order and different ones marked as obsolete) with all of them
before one team then implemented them. For each team,
the estimation effort was performed individually in two or
three sprints where the number of requirements and obsolete
requirements differed, as shown in Table 7.

The results from Experiment 5 are shown in Table 8. The
three teams from Company C partly estimated the same
requirements but different ones marked as obsolete. Overall,
the results show an effect of introducing obsolete require-
ments, cf. Tables 7 and 8. Without any obsolete require-
ments the estimations are quite accurate, but when obsolete
requirements are introduced, the individuals systematically
conduct over-estimations.

Table 7 Number of requirements in Experiment 5

Team Sprint # require-
ments

obsolete
requirements

total #
require-
ments

Percent
obsolete
reqs

 C.1 1 15 0 15 0%
2 20 4 24 17%
3 10 1 11 9%

 C.2 1 15 3 18 17%
2 20 2 22 9%
3 10 0 10 0%

 C.3 1 15 2 17 12%
2 20 0 20 0%
3 10 2 12 17%

D.1 1 15 4 19 21%
2 17 0 17 0%

E.1 1 15 5 20 25%
2 18 0 18 0%

 Requirements Engineering

1 3

We now have some more individual data on both the
percentage of obsolete requirements and the resulting over-
estimations. The requirements specification used in Experi-
ment 4 all included 20% obsolete requirements and had an
actual implementation time of 3.5 weeks. As can be seen in
Table 8, we obtained some more data from Experiment 5.
This additional data comprised of individual estimates from
several sprints in a real industrial setting.

Based on all the collected data with the percentage of
obsolete requirements and the over-estimations, we created
a model for predicting new values using a posterior distri-
bution and tested that model against the values obtained in
Experiment 6. We have very few data point per percentage of
obsolete requirements; thus, it is not expected that our model
would be precise. The main reason for providing it here is to
show a first model that can later be trained with more data
by us or other researchers.

All the details of this model is in Supplementary Mate-
rial, but we have 70 data points to use as data. The per-
centage of obsolete requirements was obtained by dividing
the number of obsolete requirements by the total amount of
requirements included. The over-estimation was obtained by
dividing the provided estimate by the actual implementation
time.

4.6 Experiment 6

As previously mentioned, we tweaked Experiment 5 in
Experiment 6 and injected obsolete requirements into their
current sprint planning without their knowledge (with per-
mission from the “gate-keepers”). We injected different sets
of obsolete requirements over a period of three real sprints.
The set-up of this part of the experiment with number of
requirements and obsolete ones is shown in Table 9. For
example, Team C.2 started with 189 requirements, of which
38 were “marked” as obsolete requirements, in their product
backlog (Sprint 1). From the product backlog, 12 require-
ments (of which 0 was obsolete requirements) were selected
to be included in the sprint backlog for Sprint 1, and all
12 requirements were implemented. In the beginning of
Sprint 2, the product backlog contained 177 requirements
of which 18 were “marked” as obsolete requirements. The
“gate-keeper” in Company C changed the number of obso-
lete requirements in the product backlog according to how
this is always done in Company C. From the product back-
log, 18 requirements, including 2 obsolete requirements,
were selected by Team C.2 to be included in Sprint 2. Dur-
ing the implementation of the selected requirements, Team
C.2 realized that two obsolete requirements were selected
and thus did not implement these requirements. Hence,
16 requirements were implemented in Sprint 2. Two other
teams, D.1 in Sprint 3 and E.1 in Sprint 2, did also select
obsolete requirements from the product backlog to their

Table 8 Individual and team estimations of the teams’ own subset of
real requirements in Experiment 5

NA: Not Applicable, meaning teams D.1 and E.1 only performed
estimations in two sprints

Team Role/Team average/actual
implementation and % actual
overestimation

Sprint 1 Sprint 2 Sprint 3

 C.1 Developer 1 370 600 465
Developer 2 345 605 460
Developer 3 320 595 470
Developer 4 330 620 460
Product owner 350 645 450
Senior engineer 356 612 455
Team average 345 613 460
Actual implementation 340 473 414
% actual overestimation 1.5% 30% 11%

 C.2 Developer 1 455 520 400
Developer 2 435 545 390
Developer 3 490 500 420
Product owner 415 495 395
Software designer 445 535 415
Team average 448 519 404
Actual implementation 340 473 414
% actual overestimation 32% 10% -3%

 C.3 Developer 1 410 490 510
Developer 2 405 450 505
Developer 3 395 495 530
Product owner 425 495 500
Senior engineer 435 480 515
Software designer 430 505 535
Software architect 395 500 525
Team average 414 519 517
Actual implementation 340 473 414
% actual overestimation 21% 3% 25%

 D.1 Developer 1 480 360 NA
Developer 2 495 350 NA
Developer 3 535 330 NA
Project manager 550 390 NA
Team average 515 358 NA
Actual implementation 369 351 NA
% actual overestimation 40% 1.9% NA

 E.1 Developer 1 776 484 NA
Developer 2 796 528 NA
Developer 3 783 515 NA
Project manager 785 498 NA
Product owner 703 529 NA
Team average 769 511 NA
Actual implementation 575 503 NA
% actual overestimation 34% 1.5% NA

Requirements Engineering

1 3

sprint backlog. In the same way as Team C.2, both these
teams realized this during their sprint and did not implement
the obsolete requirements.

The data were analyzed in the same way as in Experi-
ment 5, but based on three real sprints per team with
injected obsolete requirements in some of the sprints.
We calculated a predicted impact (i.e. overestimation) by

drawing from our posterior distribution for each percent-
age of obsolete requirements we wanted to predict. Since
it was expected the teams would to try to adjust their esti-
mates, qualitative data were collected by interviewing the
teams after each sprint. We wanted to know how the teams
were reasoning about their estimation accuracy in each
sprint. What was being said in the interviews was noted

Table 9 Number of requirements in Experiment 6

Team Sprint # requirements in
product backlog

obsolete requirements
in product backlog

requirements in
sprint backlog

obsolete requirements
in sprint backlog

implemented
requirements in
sprint

 C.1 1 252 0 16 0 16
2 239 24 15 0 15
3 232 46 17 0 17

C.2 1 189 38 12 0 12
2 177 18 18 2 16
3 163 0 25 0 25

C.3 1 304 31 7 0 7
2 299 0 8 0 8
3 294 60 8 0 8

D.1 1 287 0 12 0 12
2 275 56 14 0 14
3 263 56 18 1 17

E.1 1 147 30 14 0 14
2 139 30 20 2 18
3 142 30 25 0 20

Table 10 Results and
predictions in Experiment 6

*The team decided to add 30% to the third sprint based on Sprints 1 and 2. **The team changed their esti-
mation technique for sprint 3 into longer and more in-depth discussions and being more optimistic in their
estimates. However, in Sprint 3 without any obsolete requirements, they underestimated grossly and needed
an extra 150 hours (in the coming sprint) to complete what they had planned

Team Sprint % obsolete reqs in
product backlog

Estimated
effort (hours)

Actual effort
(hours)

Median predicted
overestimation [CI]

% actual
overestima-
tion

C.1 1 0% 460 454 0% 1.3%
2 10% 455 372 22% [0,91] 22%
3 20% 465 337 27% [0,94] 38%

C.2 1 20% 380 275 27% [0,94] 38%
2 10% 385 300 22% [0,91] 28%
3 0% 520 355 0% 46%*

C.3 1 10% 540 395 22% [0,91] 37%
2 0% 550 570 0% -4%
3 20% 545 335 27% [0,94] 63%

D.1 1 0% 300 310 0% -3%
2 20% 295 203 27% [0,94] 45%
3 21% 320 231 28% [0,91] 39%

E.1 1 20% 589 590 27% [0,94] 47%
2 22% 630 464 29% [0,88] 36%
3 21% 600 590 28% [0,91] 1.7%**

 Requirements Engineering

1 3

immediately and summarized by the second author after
each interview.

Table 10 shows a simplified table as compared to Experi-
ment 5, since the unit for the estimations, etc., were exactly
the same. Table 10 only shows the real sprints for each team
(3 per team), the percentage of obsolete requirements they
had in their product backlog when estimating the coming
sprint, the estimated effort to implement the selected require-
ments in each sprint (see column # requirements in sprint
backlog in Table 9), the actual implementation effort of
the implemented requirements (see column # implemented
requirements in sprint in Table 9), the predicted overesti-
mation based on our prediction model with a 95% credible
interval, and the actual over-estimations made by the teams.

Overall, the results show that our model’s median val-
ues are more accurate for 10% obsolete requirements than
for 20%, as shown in Table 10. However, the 95% credible
interval says that we would expect values to lie within < 0
(we adjusted negative values to 0) to 94, which indicates a
lot of uncertainty in our predictions. With such large uncer-
tainty interval, we could instead create a best guess based
on the latest data obtained in Experiment 6. The results
show that the over-estimations triggered by the obsolete
requirements were systematically twice the percentage of
the included obsolete requirements, i.e. the percentage of
obsolete requirements can be multiplied by two to get an ini-
tial idea of the potential over-estimation, at least for around
10% obsolete ones. However, we should be careful with this
model since there is much uncertainty connected to it. All
that can be concluded is that obsolete requirements seem to
trigger a nonlinear over-estimation.

4.6.1 Qualitative results

In order to understand the reasons for the difference between
estimates vs. actual effort, we went back to the companies
to interview the team members. In general, the results from
the interviews show that the teams do not know why the
estimates turned out the way they did. The teams were very
surprised and could not explain why they over-estimated.
The results from the interviews for each team are presented
below.

Team C.1 did not reflect much on their over-estimations
after the second sprint. They did not think it mattered even
if they were a bit surprised. Their reasoning was that if this
happens just once it could be due to the properties of the
features. They had the same reasoning even after sprint 3,
even if it had happened twice in a row then.

Team C.2 were very surprised by the results after the first
sprint that they were done with everything so fast. They dis-
cussed a bit about it, but decided that they were unlucky and
this could happen from time to time. For sprint 2, Team C.2
did include obsolete requirements in their sprint backlog.

Team C.2 explained that they did not check whether the
requirements were marked as obsolete or not, they simply
included the obsolete requirements without reading if they
were obsolete. After sprints 1 and 2 they had decided to add
30% more to implement, but with no obsolete requirements
in sprint 3 they still grossly overestimated the time needed
for what they selected to implement.

Team C.3 explained that they did not reflect on their over-
estimates at all. Team C.3 just continued as usual without
any reflections or discussions.

Team D.1 was extremely surprised after sprint 2 and
brought it up in the sprint meeting where they discussed
what happened; however, they could not understand what
happened or why it happened. After sprint 3, they were
equally surprised again and could not understand why they
grossly overestimated the implementation time twice, espe-
cially since this has not happen for Team D.1 before.

Team E.1 had the same number of obsolete require-
ments in all their 3 sprints. After their first sprint, team E.1
increased the number of included features for sprint 2. How-
ever, during the second sprint, team E.1 realized that they
included two features that should not be implemented, i.e.
the two features were marked as obsolete. Therefore, before
including features for sprint 3, team E.1 double checked the
features (to make sure that they were not obsolete features),
had longer and more in-depth discussions, and were more
optimistic in their estimates. This led to that the time it took
to decide which features to include in sprint 3 took twice as
long as it usually does. As a result, team E.1 included 25
features in sprint 3, but only managed to implement 20. The
five features that were not implemented took another 150
hours to implement in the coming sprint.

5 Discussion

Overall, the six experiments have shown that having obsolete
requirements visible when estimating software development
effort, has a large effect on the size of the estimations in that
they increase substantially. In the industry samples, where
we also had an actual implementation time, the obsolete
requirements were shown to result in gross over-estimations.
The results from Experiments 1 and 2 show that the effect
is very large when students do the estimations and that their
study year (second or third year at the software engineering
Bachelors’ program) did not effect the estimates. The results
from Experiment 3 show that the effect was even larger with
students estimating more requirements and being exposed to
even more obsolete ones. The main finding of Experiment
4 was that the effect was also present in an industrial set-
ting with the same pattern as before. Thus, the experience
of software estimation or software development does not
remove the effect. In addition, the results from Experiment

Requirements Engineering

1 3

4 show that the effect is in form of an over-estimation and
quite a large one. From Experiment 5, the results show that
the effect also exists when practitioners estimate their own
organization’s requirements individually. In Experiment 6,
the results show that the effect also appeared when teams
estimate their own work for their near-future implementa-
tion work, that the team discussion did not remove the effect
and that the participants were oblivious to it. We call this
effect the obsolete requirements effect (or the Gren-Sven-
sson error), which is a bias due to the presence of obsolete
requirements during effort estimation.

There was no big differences in results across the experi-
ments, which is in favour of there being a real effect. There
were different levels of experience in subjects between
experiments, but they are hard to use as a moderator vari-
able in our conceptually very different replications. The
comparison can instead be done between experiments, and
we did find an effect even with industry participant who
have much more experience, on average, than students. The
effect of experience (and other moderating variables) within
each experiment was averaged out since we randomized the
participants into groups A, B, and C. The moderating vari-
ables we did not succeed in averaging out were addressed by
changing design or context (like length of the requirement
specification or using industry participants). One parameter
to take into account in the first analysis was study year for
students (second or third year at university). Adding this
variable did not create a better model (see Supplementary
Material). Moreover, the effect is smaller, but still exists,
the closer we get to a field setting, which is no surprise (Jør-
gensen and Grimstad [15]).

With such a large sample (N = 461) and inclusion of both
students and practitioners from industry, there are good rea-
son for generalizing the findings to the larger population of
people working with requirements written in natural lan-
guage or in form of user stories. The over-estimations inves-
tigated in Aranda and Easterbrook [1] could not be explained
by the subjects’ experience of cost estimations, and results
in this study were also apparent both in an industrial setting
and by using students at the university.

By using both students and practitioners in different set-
tings, one recommendation is that obsolete requirements
should not be visible in estimation exercises, even if we do
not know the details of their effect in each specific case. This
has the implications that both researchers and practitioners
should take the obsolete requirements effect into account
when researching/working with requirements and avoid or
block that effect. Requirements not needed for the estimation
will still affect the decision-makers assessment of, maybe,
the complexity and therefore also the estimates. Therefore,
a specific definition and a further quantification of this error
could be helpful to both practitioners and researchers even
if it could be seen as a special case of the anchoring effect.

Specific adjustment of this systematic error would then be
possible by simply adjusting the estimates systematically,
which could be done by updating our prediction model with
more data.

Another great advantage of using BDA is that we share,
not only our raw data, but also our posterior distributions
for all parameters (see Supplementary Material). Since our
posteriors then can be used as prior information in further
studies, one can find effects in very small random samples.
BDA also implements the fact that extraordinary claims
then require extraordinary evidence and we do not reset our
parameters after each replication.

5.1 Psychological explanations

Gren et al. [10] offered two different psychological expla-
nations for their found effect in a sample of 150 students.
The first one was the representativeness heuristic, which
is a mental shortcut to lessen the cognitive load. When the
needed information is not available when having to make a
decision, people use similar or previous experiences instead.
This often works well, but not always [19]. The representa-
tiveness heuristic is based on two components that are used
to assign a subjective probability: (1) its similarity in char-
acteristics to the parent population and (2) its reflection of
the salient features of the process by which it is generated.
In the case of these experiments, the larger requirements
specification in Group C would be more probable since it is
then more representative of a larger system [28]. Although
this is an interesting explanation, it is not an obvious expla-
nation of the entire effect found.

The second explanation given in Gren et al. [10] is the
decoy effect, which is more in relation to categorical choices
than extra information. The axiom of independence of irrel-
evant choices states that extra irrelevant options visible to
the decision-maker should not affect the choice, but in some
contexts, it does [13]. Since the decision in this case is not
about choosing between options, this explanation is quite far
away from the context of this current study and we do not
think it explains any aspect of the effect found.

The more obvious choice not mentioned in Gren et al.
[10], is the cognitive bias called anchoring-and-adjustment,
first published in Kahneman and Tversky [18]. This bias
appears when a random number (the anchor) is presented to
the decision-maker before the actual task, which then sys-
tematically influences the following decision toward that
number. Kahneman and Tversky [18] state that the anchor
is usually numerical, which implies that it does not have
to be. In the case of the experiments in this study, obsolete
requirements might have anchored a larger implementa-
tion effort in the subjects and their following estimations.
This would explain the whole effect found if Groups C and
B were the same in Experiments 1–4; however, Group C

 Requirements Engineering

1 3

was also significantly higher than B. Perhaps, the effect is
a combination of the representativeness heuristic and the
anchoring effect in that the obsolete requirements became
anchors, but a software system with changes in requirements
became more representative of a software project prone to
change even more in the future. It is important to note that
these explanations are still speculative and need deeper
investigation into the mental process of the subjects. The
qualitative results of this study, i.e. asking the participants to
explain their thought-process (see Sect. 4.6.1), showed that
people exposed to obsolete requirements cannot articulate
an explanation. The participants were clueless and tried to
adjust their estimations based on other or no information on
what caused the estimation error. Therefore, more detailed
and focused psychological experiments are needed to fully
understand the results of this study from a psychological
perspective.

5.2 How to avoid the pitfall of large estimation
errors

Even if the exact mental process behind the error is still not
yet known, there are quite many findings within psychology
and management of how to deal with estimation error in
general to mitigate its effects (see, e.g. Hoch and Schkade
[12]) and even some studies within the software develop-
ment effort estimation (see, e.g. Connolly and Dean [6]). The
former suggests that a linear decision model is to be used
together with a computerized database of historical data (a
more statistical approach) for more accurate forecasts in gen-
eral. The latter suggests a more hands-on approach to not
conducting overestimation in the software development case.
Such an approach includes a couple of (decomposed) esti-
mates instead of one (holistic) estimate. Instead of connect-
ing the given estimation task to one single other representa-
tive experience in mind, the assessor instead had to reassess
the situation and present a confidence interval with at least
a lower, most probable, and upper bound. This significantly
gave better estimates according to Connolly and Dean [6].
They also showed that the quality of the estimates declined
with increased task difficulty [6]. Other known approaches
to forecasting could be group forecasting, like, e.g. the Del-
phi technique [25]. In this study, the results show that even
with group forecasting, decomposed tasks or historical data
in the model, we would not avoid the Gren-Svensson error
since it affects all these techniques when the estimations are
conducted. Decomposing tasks would work if that implies
to not show any obsolete tasks next to the decomposed ones.

Practitioners should probably spend extra time clean-
ing requirements specifications and backlogs from obsolete
requirements, but also always give decomposed estimates
and, through this process, think more in terms of probabili-
ties instead of only efforts. For some practical guidelines

on how to do this in the context of expert-judgement-based
software effort estimation, see, e.g. Jørgensen [14].

6 Threats to validity

Despite our efforts in addressing the validity threats after
each experiment, there are still potential threats to our study.

In this study, the artefacts, i.e. the requirements to esti-
mate, could have negatively affected the experiment and
thus the outcome for the student subjects. Since the require-
ments used in the student experiments were real require-
ments from industry, the students may not be experts in the
area of the requirements. However, this threat was mitigated
in two ways, (1) the used requirements for the students were
general requirements from a domain that the students were
familiar with, and (2) the last set of experiments in this
study included industry subjects with requirements from
their companies and domains. Another threat could be the
selection of the student participants, which may influence
the results since the student subjects were not volunteers
as the experiment was performed as part of their courses.
However, the results of the experiment did not affect the
grading in the courses.

Performing experiments with only students as subjects
may be a large threat concerning the representatives when
compared to industry professionals. Therefore, we also car-
ried out experiments with industry professionals as close to
their real setting as possible to mitigate this threat. Another
threat concerns the number of requirements used in the
experiments. The first set of experiments only included four
and five requirements, which is not a realistic set of require-
ments. Therefore, we increased the number of requirements
in several steps and in the final experiment (Experiment
6) we used the real and complete product and sprint back-
logs that are used in the companies. In Experiment 6, one
threat to the results could be the modification, i.e. to mark
a set of requirements as obsolete, of the requirements in the
product backlogs. This threat was mitigated by having the
“gate-keepers” at each company to modify the requirements
in exactly the same way as they always mark/state that a
requirement is obsolete. Thus, we believe that this threat has
a limited effect on the results of Experiment 6.

In order to mitigate the conclusion validity, i.e. the ability
to draw correct conclusions, we performed statistical analy-
sis of the gathered data. By using BDA we model uncer-
tainty both in parameters and in our models, which increases
the confidence in the result. Another threat to conclusion
validity may be the number of participants in the experi-
ments. This threat was mitigated in this study by having 461
participants in total, of which 359 were student participants
and 102 industry participants. However, one threat to the
results of this study is that the industrial sample is much

Requirements Engineering

1 3

smaller than the student sample (102 versus 359); thus,
more studies with subjects from industry are needed. Note
here that the industry participants who estimated in teams
in Experiment 6 were the same individuals as in Experiment
5. Thus, we only counted them once, even if they provided
data, first as individuals and then in their teams.

7 Conclusions and future work

This paper set out to investigate whether obsolete require-
ments have an effect on effort estimations in software
development. Through a family of six experiments with
both students and practitioners, the results show that having
visible obsolete requirements to an assessor results in over-
estimation. Thus, this obsolete requirements effect (or the
Gren-Svensson error) should be taken into account when
researching or conducting effort estimation. These findings
are important contributions to both research, but perhaps
primarily, practice since over-estimations due to obsolete
requirements could possibly be avoided.

An interesting next step for this research would be to see
what kind of extra requirements increases (or decreases)
the effort estimates. There are undeniably cognitive aspects
that influence software effort estimation that are not taken
into consideration enough. Future research includes testing
the suggested decomposed estimation method presented by
Connolly and Dean [6] in a replication of this experiment.
Then, it would be possible to see if the estimates are more
accurate or, if at least, get larger variance in the decom-
posed estimates that could be used to trigger alarm bells for
decision-makers in context. Further replications that make
use of our posterior distributions and help quantify the found
effect further are needed.

Finally, it would be interesting to analyze whether the
same effect appears in the context of a tender or down-bid-
ding since the contexts of the estimation in this current study
did not have that kind of cost-cutting demand.

Funding Open access funding provided by Blekinge Institute of
Technology.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Aranda J, Easterbrook S (2005) Anchoring and adjustment in soft-
ware estimation. In: Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, ACM, New York, NY, USA, ESEC/FSE—13, pp 346–355,
https:// doi. org/ 10. 1145/ 10817 06. 10817 61

 2. Baldassarre MT, Carver J, Dieste Tubio O, Juristo Juzgado N
(2014) Replication types: Towards a shared taxonomy. In: Pro-
ceedings of the 18th international conference on evaluation and
assessment in software engineering, ACM, p 4

 3. Bernardo JM (1975) Non-informative prior distributions: a sub-
jectivist approach. Bull Int Stat Inst 46:94–97

 4. Bürkner PC et al (2017) brms: An r package for bayesian mul-
tilevel models using stan. J Stat Softw 80(1):1–28

 5. Cohen J (1992) Quantitative methods in psychology - a power
primer. Psychol Bull 112(1):155–159

 6. Connolly T, Dean D (1997) Decomposed versus holistic esti-
mates of effort required for software writing tasks. Manag Sci
43(7):1029–1045

 7. Furia CA, Feldt R, Torkar R (2019) Bayesian data analysis in
empirical software engineering research. IEEE Trans Softw
Eng. https:// doi. org/ 10. 1109/ TSE. 2019. 29359 74

 8. Gelman A, Jakulin A, Pittau MG, Su YS et al (2008) A weakly
informative default prior distribution for logistic and other
regression models. Ann Appl Stat 2(4):1360–1383

 9. Gelman A, Goodrich B, Gabry J, Vehtari A (2019) R-squared
for bayesian regression models. Am Stat 73:307–309. https://
doi. org/ 10. 1080/ 00031 305. 2018. 15491 00

 10. Gren L, Svensson RB, Unterkalmsteiner M (2017) Is it possible
to disregard obsolete requirements?: an initial experiment on
a potentially new bias in software effort estimation. In: Pro-
ceedings of the 10th international workshop on cooperative and
human aspects of software engineering, IEEE Press, pp 56–61

 11. Halkjelsvik T, Jørgensen M (2012) From origami to software
development: a review of studies on judgment-based predictions
of performance time. Psychol Bull 138(2):238–271

 12. Hoch SJ, Schkade DA (1996) A psychological approach to deci-
sion support systems. Manag Sci 42(1):51–64

 13. Huber J, Payne JW, Puto C (1982) Adding asymmetrically domi-
nated alternatives: Violations of regularity and the similarity
hypothesis. J Consum Res 9:90–98

 14. Jørgensen M (2005) Practical guidelines for expert-judgment-
based software effort estimation. Softw, IEEE 22(3):57–63

 15. Jørgensen M, Grimstad S (2011) The impact of irrelevant and
misleading information on software development effort esti-
mates: A randomized controlled field experiment. IEEE Trans
Softw Eng 37(5):695–707. https:// doi. org/ 10. 1109/ TSE. 2010.
78

 16. Jørgensen M, Sjøberg DI (2001) Impact of effort estimates on
software project work. Inf Softw Technol 43(15):939–948. https://
doi. org/ 10. 1016/ S0950- 5849(01) 00203-8

 17. Jørgensen M, Sjøberg DI (2004) The impact of customer expecta-
tion on software development effort estimates. Int J Proj Manag
22(4):317–325. https:// doi. org/ 10. 1016/ S0263- 7863(03) 00085-1

 18. Kahneman D, Tversky A (1974) Subjective probability: a judg-
ment of representativeness. In: The Concept of Probability in
Psychological Experiments, Springer, pp 25–48

 19. Kahneman D, Slovic P, Tversky A (1982) Judgement under uncer-
tainty: Heuristics and biases. Cambridge U.P, Cambridge

 20. Landeta J (2006) Current validity of the delphi method in social
sciences. Technol Forecast Soc Change 73(5):467–482

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1081706.1081761
https://doi.org/10.1109/TSE.2019.2935974
https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1109/TSE.2010.78
https://doi.org/10.1109/TSE.2010.78
https://doi.org/10.1016/S0950-5849(01)00203-8
https://doi.org/10.1016/S0950-5849(01)00203-8
https://doi.org/10.1016/S0263-7863(03)00085-1

 Requirements Engineering

1 3

 21. McElreath R (2016) Statistical rethinking: a Bayesian course with
examples in R and Stan. CRC Press Taylor & Francis Group, Boca
Raton

 22. McShane BB, Gal D, Gelman A, Robert C, Tackett JL
(2019) Abandon statistical significance. Am Statistician
73(sup1):235–245

 23. Munafò MR, Nosek BA, Bishop DV, Button KS, Chambers CD,
Du Sert NP, Simonsohn U, Wagenmakers EJ, Ware JJ, Ioannidis
JP (2017) A manifesto for reproducible science. Nat Human
Behav 1(1):0021

 24. de Oliveira Neto FG, Torkar R, Feldt R, Gren L, Furia CA, Huang
Z (2019) Evolution of statistical analysis in empirical software
engineering research: Current state and steps forward. J Syst
Softw 156:246–267

 25. Rowe G, Wright G (1999) The delphi technique as a forecasting
tool: issues and analysis. Int J Forecast 15(4):353–375

 26. Van de Schoot R, Kaplan D, Denissen J, Asendorpf JB, Neyer FJ,
van Aken MA (2014) A gentle introduction to Bayesian analysis:
Applications to developmental research. Child Dev 85(3):842–860

 27. Stefan AM, Evans NJ, Wagenmakers EJ (2020) Practical chal-
lenges and methodological flexibility in prior elicitation. Psychol
Methods. https:// doi. org/ 10. 1037/ met00 00354

 28. Tversky A, Kahneman D (1974) Judgment under uncertainty:
Heuristics and biases. Science 185(4157):1124–1131

 29. Wilson RC, Collins AG (2019) Ten simple rules for the computa-
tional modeling of behavioral data. eLife 8:e49547

 30. Wnuk K, Gorschek T, Zahda S (2013) Obsolete software require-
ments. Inf Softw0 Technol 55(6):921–940

 31. Zhang T, Zhang D (2007) Agent-based simulation of consumer
purchase decision-making and the decoy effect. J Bus Res
60(8):912–922

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1037/met0000354

	Is it possible to disregard obsolete requirements? a family of experiments in software effort estimation
	Abstract
	1 Introduction
	1.1 Previous research and motivation
	1.2 Research goal and research question
	1.3 Contribution

	2 Bayesian data analysis
	3 A family of experiments
	3.1 Design and experimental material
	3.2 Subjects

	4 Results
	4.1 Experiments 0, 1, and 2
	4.2 Experiment 3
	4.3 Experiment 4
	4.4 Summary of Experiments 1–4
	4.5 Experiment 5
	4.6 Experiment 6
	4.6.1 Qualitative results

	5 Discussion
	5.1 Psychological explanations
	5.2 How to avoid the pitfall of large estimation errors

	6 Threats to validity
	7 Conclusions and future work
	References

