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Abstract—Fast charging is an enabling technique for the 

large-scale penetration of electric vehicles. This paper 
proposes a knowledge-based, multi-physics-constrained 
fast charging strategy for lithium-ion battery (LIB), with a 
consciousness of the thermal safety and degradation. A 
universal algorithmic framework combining model-based 
state observer and a deep reinforcement learning (DRL)-
based optimizer is proposed, for the first time, to provide a 
LIB fast charging solution. Within the DRL framework, a 
multi-objective optimization problem is formulated by 
penalizing the over-temperature and degradation. An 
improved environmental perceptive deep deterministic 
policy gradient (DDPG) algorithm with priority experience 
replay is exploited to trade-off smartly the charging rapidity 
and the compliance of physical constraints. The proposed 
DDPG-DRL strategy is compared experimentally with the 
rule-based strategies and the state-of-the-art model 
predictive controller to validate its superiority in terms of 
charging rapidity, enforcement of LIB thermal safety and 
life extension, as well as the computational tractability. 
Keywords— Fast charging, deep deterministic policy 

gradient, thermal safety, battery health, lithium-ion battery 
 

I. INTRODUCTION 
 

ithium-ion batteries (LIBs) have gained rapid popularity in 
electrified transportation due to their appealing features of 

high gravimetric and volumetric densities. Associated with the 
fast and foreseeable growth of electric vehicles (EVs) and LIB 
utilization, the past years have witnessed substantial research 
on battery management system (BMS), such as state estimation 
[1, 2], health prognostic [3, 4], and fault diagnostics [5, 6]. 
Charging of LIBs is recognized as a vital technology of future 
prosperity of EVs. However, the pursuit of utmost charging 
speed risks the violation of critical physical limits companied 
by the unexpected thermal/stress buildup and side reactions. 
Direct consequences of this include efficiency reduction, quick 
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depletion, and even safety hazards in the most severe case. 
Charging control has been a vast area of intensive studies, 

incubating a myriad of methods that can be categorized broadly 
into two groups. The first group is characterized with heuristic 
rule-based strategies which are model-free and widely adopted 
in real applications. Famous candidates include the constant-
current-constant-voltage (CCCV) charging protocol [7] and a 
variety of variants, such as the multistage constant current 
(MCC) [8], multistage CCCV [9], and boost charging [10]. In 
spite of the low complexity, such methods are empirical without 
sufficient insight into the battery dynamics and physical 
constraints. Hence, such protocols are far away from optimality 
with respect to the charging speed and the enforcement of 
battery safety or longevity. This has motivated the exploration 
of the second group of methods, i.e., model-based strategies. 

Model-based charging has the merit of more guaranteed 
optimality and higher robustness. The modeling techniques for 
LIB, which underlies this type of strategies, include the 
electrochemical model (EM) [11] and equivalent circuit model 
(ECM) [12]. Based on a coupled electro-thermal (CET) model, 
an optimized MCC strategy was proposed in [13], where the 
thermal and polarization effects were well confined. In [14], the 
CCCV strategy was optimized using a similar CET model and 
a multi-objective evolutionary approach. Within the same 
framework, the aging model was further incorporated to enable 
the health awareness [15]. Such methods plan the charging 
trajectory before the practical adoption via offline optimization, 
thus they are named as trajectory generator in this paper. It is 
feasible to embed the trajectory generator into the BMSs, where 
the user can select different charge patterns. 

Unlike the aforementioned trajectory generator, model-based 
online controllers optimize the charging behavior in real time, 
and theoretically, they are most robust to the external 
disturbances. In particular, EMs were frequently used to 
describe the complex dynamics inside the LIB, enabling health-
conscious fast charging control by either open-loop 
optimization [16], or online approaches such as proportional-
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integral-derivative (PID) control [17], nonlinear programming 
[18], or model predictive control (MPC) [19-21]. However, the 
intractable computation of nonlinear partial differential 
equations is a potential barrier for their real-world applications. 
To mitigate this challenge, a reduced-order EM was proposed 
to determine the limiting current of LIB in [22], which is 
insightful to the realization of fast charging control. 

Compared to EMs, ECMs enjoy better computational 
tractability, thus have been used for charge optimization 
combing the objectives of fastness, limited temperature buildup, 
and health retention [23, 24]. Within similar frameworks, the 
user-involved optimal charging was further achieved in [25] by 
enabling the objective specification. Recently, a hierarchical 
architecture combining ECM-based offline trajectory generator 
with online path tracking controller has been proposed, which 
allows a cost-effective charge control of both battery cells and 
packs [26, 27]. Most recently, an ECM-based explicit MPC 
controller was proposed for LIB fast charging, to reduce the 
complexity rooted in the constrained optimization [28].  

The model-based charging strategies have two major 
drawbacks. First, they are sensitive to the accuracy of the 
battery model, while an intrinsic paradox is that an improved 
accuracy always compromises the computational tractability. 
Second, even by using reduced-order models accounting only 
for the lumped dynamics, the computation is still expensive due 
to the need of nonlinear optimization. A fast charging approach 
with the merits of both multi-objective optimality and online 
tractability is thereby highly desired. 

Reinforcement learning (RL) is an efficient machine learning 
approach used for solving a broad range of optimization 
problems. Unlike the supervised/unsupervised learning, RL 
algorithms give memorable feedback on the cost function and 
search for the optimal solution automatically [29]. Attributed to 
the end-to-end characteristic, a high potential can be expected 
for the RL to be used on optimal charging control. The model-
free feature is also favorable for ruling out the model sensitivity 
problem of model-based methods. RL-related studies have been 
disclosed in the field of charging plan of plug-in electric cars 
[30], vehicle charging station management [31], and the energy 
storage arbitrage [32]. Nonetheless, RL-based EV charging 
optimization is still in infancy. The exploitation of RL in LIB 
fast charging with thermal and aging consciousness has never 
been attempted beforehand.  

This paper bridges the aforementioned gaps and proposes a 
novel knowledge-based, multi-physics-constrained fast charge 
strategy for LIBs. The strategy consists of an observer for state 
of charge (SOC) and internal temperature joint estimation, and 
a deep RL (DRL) controller for thermal- and health-aware fast 
charging. Four primary contributions are made.  

First, the DRL is introduced for the first time to solve the LIB 
fast charging problem. A universal algorithmic framework 
incorporating the model-based state observer and the learning-
based optimizer is proposed.  

Second, a multi-constrained least costly objective is 
formulated by augmenting penalties for the over-temperature 
and degradation, to allow accounting for the thermal safety and 
life fading of LIB during the charging control.  

Third, an environmental perceptive, fast-converging deep 
deterministic policy gradient (DDPG) algorithm, with priority 
experience replay, is exploited to improve the performance of 
multi-objective optimization in the formulated framework. 

Lastly, unlike most of fast charging works that use real-time 
simulation for validation, real-world long-term experiments are 
performed to validate the proposed strategy more faithfully. 

The contributions eventually give rise to a smart, thermal- 
and health-aware fast charging strategy. To the best of our 
knowledge, this is the first attempt to use machine learning 
techniques for the fast charging of LIB. 

The remainder of the paper is organized as follows. An 
electro-thermal-aging model of LIB is presented in Section II. 
Section III details the proposed DDPG-DRL strategy. Results 
are discussed in Section 0, while the major conclusions are 
drawn in Section V. 
 

II. BATTERY MODELING 
 

A. Electro-Thermal Modeling for LIB 
A coupled electro-thermal model is established, as shown in 

Fig. 1, to predict the electrical and thermal dynamics of the 
investigated A123 LiFePO4 cylindrical battery. The model 
comprises a second-order RC model and a two-state thermal 
model. In terms of the electrical model, the voltage source 
describes the SoC-dependent open-circuit voltage, while 𝑅! is 
the ohmic resistance. The two RC branches simulate 
polarization effects including charge transfer, diffusion, and 
passivation layer effect on electrodes. The governing equations 
of the second-order RC model are given by: 

                                (1) 

                      (2) 

                     (3) 

        (4) 
where 𝐼 is the load current, 𝑉" is the terminal voltage, 𝐶# is the 
nominal capacity of the battery, and 𝑉$%  and 𝑉$&  are the 
polarization voltage across the two RC branches. 

The thermal-energy conservation principle defines: 

           (5) 

 (6) 

where 𝑇!, 𝑇"	and 𝑇# are battery surface, internal average, and 
ambient temperature, respectively, 𝑅$  and 𝑅%  are thermal 
resistances due to the heat conduction inside the battery and 
the convection at battery surface, 𝐶$  and 𝐶!  are equivalent 
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thermal capacitances of the battery core and surface. 𝐻 is the 
heat generation rate. 

Specifically, the heat is generated from three sources, i.e., the 
ohmic heat, polarization heat and the irreversible entropic heat. 
The heat generation rate can be calculated by: 

               (7) 

where 𝐸#  denotes the entropy change during electrochemical 
reactions. Subsequently, the core temperature is given by: 

                               (8) 
The employed model is widely explored in the literature, and 

thus the values of involved model parameters are not elaborated 
herein for briefness. However, more details can be referred to 
[33], where the calibration environment, protocols, and results 
are given systematically. 
 

 
Fig. 1.  Electro-thermal model of A123 LiFePO4 cylindrical battery. 
 

B. Aging Model of LIB 
The energy-throughput-based model has been well validated 

for the A123 LiFePO4 (26650) cylindrical battery in use [34], 
thus is used to quantify the capacity loss herein. The throughput 
model assumes the LIB can withstand a certain amount of 
charge flow, equivalent to cycles of charge and discharge, 
before it reaches the end-of-life.  

The C-rate (c) and battery internal temperature have large 
impact on the capacity fade. The Arrhenius equation-based 
capacity loss is given by: 

                        (9) 
where ∆𝐶#  is the percentage of capacity loss, 𝐵  the C-rate-
dependent pre-exponential factor which can be referred to 
TABLE I [34], 𝑅 the ideal gas constant, 𝑧 the power-law factor 
equals to 0.55, 𝐴ℎ the accumulated ampere-hour throughput, 
and 𝐸' the activation energy (J / mol) defined by: 

                        (10) 
LIBs reach the end-of-life when 𝐶#  drops by 20%. Being 

aware of this, and referring to (9), 𝐴ℎ  and the total cycling 
number before reaching the end-of-life (𝑁) can be derived as: 

             (11) 

                       (12) 
Afterward, the drop of state of health (𝑆𝑜𝐻) under multiple 

stresses is given by: 

                          (13) 

where ∆t is the lasting time of current. 
 

TABLE I 
DEPENDENCE OF PRE-EXPONENTIAL FACTOR TO C-RATE 

c 0.5 2 6 10 
B(c) 31630 21681 12934 15512 

 

III. FAST CHARGING STRATEGY 
The proposed charging strategy is comprised of a model-

based observer used for estimating the unmeasurable states of 
LIB, and a DDPG-DRL optimizer for online charging control. 
The involved sub-algorithms are elaborated in this section.  

 

A. State Observer 
A model-based state observer is devised to estimate the 

unmeasurable 𝑆𝑜𝐶  and 𝑇(  and thus enable the state-feedback 
control framework. The electro-thermal functions (1)-(8) are 
utilized to build a state-space model, where the state variables 
are 𝑉$%, 𝑉$&, 𝑆𝑜𝐶, 𝑇( , and 𝑇!, the system input is 𝐼, while the 
system outputs are 𝑉"  and 𝑇!. Considering the nonlinearity of 
the system, an extended Kalman filter (EKF) is used to design 
the state observer in this paper. The algorithmic procedures of 
EKF are summarized in TABLE II [35], where 𝛴) and 𝛴*are 
the covariance matrix of process and measurement noises.  

 
TABLE II 

ALGORITHMIC PROCEDURE OF EKF 
Initialization: 𝑥"!, 𝑃!, 𝛴", 𝛴# 

Definition:  

for k = 1, 2, … 
Prior state update:  

Prior error covariance update:  

Kalman gain update:  
Posteriori state update:  

Posteriori error covariance update:  

 

B．Optimization Problem Formulation  
It is favorable that a charging solution can make an optimal 

balance among conflicting objectives of charging rapidity, 
thermal safety, and life extension. In this paper, the optimal 
control is realized by minimizing the following cost function: 

  (14) 
where 𝜔% , 𝜔& , 𝜔+ , 𝜔,  and 𝜔-  are weights describing the 
importance of different targets.  
𝐶!.( describes the charging time and is given by:  

       (15) 
where 𝑆𝑜𝐶" and 𝑆𝑜𝐶"'/ denote the present SoC and the target 
SoC at the end of charge. The RL agent sets the expectation on 
overall rewards with respect to future time steps as its objective. 
Hence, this term means that an action suppressing this deviation 
(high current) will be awarded, while a conservative action 
causing large deviation (low current) will be penalized. In this 
way, the RL agent is guided to pursuit high charging currents 
during the training, and thus shortens the charging time.  
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𝐶0.1" and 𝐶23'" denote the safety-violating cost with respect 

to over-voltage and over-temperature of LIB. Particularly, the 
terminal voltage and internal temperature of LIB are desired to 
be controlled below a specific threshold. Using hard constraints 
potentially disrupt the exploration process of DRL considering 
the high possibility of constraint violation. Therefore, the 
following soft penalties are instead employed: 

        (16) 

     (17) 

where 𝑉" , 𝑉"'/_5$$ , and 𝑉"'/_1.)  are the present, upper and 
lower limit terminal voltage, respectively, 𝑇'," and 𝑇"'/ are the 
present and upper limit internal temperature of LIB, 
respectively. The over-voltage should be avoided to ensure the 
safety of LIB in practical applications. Hence, a large weighting 
factor (three order of magnitude higher than the rest) is used for 
𝜔&  to ensure a compliance to the voltage constraint without 
overshooting. 
𝐶!.2 denotes the aging cost of LIB given by: 

        (18) 
where ΔSoHt is the drop of SOH as a consequence of the present 
control action. Note that 𝜏%, 𝜏& and 𝜏+ are transition coefficients 
enforcing 𝐶0.1" , 𝐶23'"  and 𝐶!.2  dimensionally comparable to 
𝐶!.(.  

The charging current is desired to be controlled smoothly in 
real applications. In this regard, 𝐶!7.."2 describing the cost of 
control effort is given by:  

             (19) 
 

C．Improved DDPG Algorithm  
Derived from the actor-critic structure, the DDPG algorithm 

is devised with two deep neural networks (DNNs), i.e., a value 
(critic) network 𝑄 and a policy (actor) network 𝜇. The policy-
network behaves as an actor to map the state-space composition 
to a continuous action 𝛿, while the value-network behaves as a 
critic, which timely evaluates the policy function’s performance 
and gives feedback for improvement. Target networks 𝑄′ and 
𝜇′  are used to track the original 𝑄  and μ network, so as to 
mitigate the effect of incorrect evaluation. Note that the target 
networks possess the same structures and initial weights, yet 
update the network parameters more robustly.  

The determination of action of DDPG in a specific timestep 
t considered both exploration and the inherent policy, which is 
given by:  

     (20) 
where 𝑠" is the state space, and 𝜃8 is the parameters of network 
𝜇, and 𝜀 is the Gaussian noise which exists only in the training 
stage. 

Since the policy is determined in the training stage, the 
principles of offline training are clarified hereafter. The policy 
evaluation is performed based on the Bellman’s principle as: 

     (21) 

where 𝑄∗ denotes the optimal value function, 𝑟 the single-step 
reward and 𝛾 the discount factor.  

Equation (21) reveals that the optimal evaluation of present 
composition of states and actions can be obtained recursively. 
It is expected that the deep networks 𝑄 and 𝑄: can approximate 
this iterative task accurately. To realize it, the updating error of 
value network 𝑄 can be calculated by: 

(22) 

         (23) 

where the first two terms in (22) denote the expected 𝑄 value 
referring to (21), and the last term refers to the actual output of 
current value network. In this way, the squared error can be 
obtained, and the gradient-descent updating method can be 
performed to improve the policy evaluation ability. 

An ideal value network is expected to output the accurate 
evaluation of policy, so that the actor network can adjust its 
policies accordingly to discard the actions with bad 𝑄  value 
feedback. Therefore, the performance objective of policy 
network, represented by 𝜙, can be defined as: 

            (24) 
where 𝐸(∙) denotes the expectation operator. 

The policy network keeps updating itself towards the 
direction of promoting the performance objective. Therefore, 
the updating error can be expressed as the gradient of objective 
with respect to network 𝜇: 

 (25) 
A soft updating strategy is adopted for the target networks 𝑄: 

and 𝜇:, given by: 

        (26) 

The experience replay method is further adopted for the 
DDPG algorithm to avoid the back-forth correlation of trained 
networks. Different from the simple random sampling adopted 
by conventional DDPG, the improved DDPG algorithm endows 
the importance weights to experience sample. This mechanism 
is inspired from the fact that the highly rewarded or painful 
experiences are more informative than the plain ones. The 
experience replay method, which emphasizes those impressive 
experiences, is hence expected to improve the efficiency and 
stability of learning. 

The probability of the sampled experience 𝑗	can be described 
as: 

         (27) 

where ∑ (∙);  denotes the total index in the experience pool, and 
𝛼 is the hyperparameter to determine priority degree, ranging 
from 0 to 1. Lower 𝛼 tends to uniform sampling of conventional 
DDPG, 𝑟𝑎𝑛𝑘	(⋅) is the importance degree of a set of experience, 
which can be calculated by: 

         (28) 
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By adopting the experience replay, those experiences causing 

more significant changes to the policy evaluation will be 
assigned more weights, and therefore, are more likely to be 
chosen and replay in the training process. 
 

D．Continuous DRL-Based Charging Control 
To solve the optimization problem suggested by (14) in the 

continuous DRL framework, the reward function has to be 
expressed alternatively by: 

        (29) 
where 𝑏 is a user-defined bias to adjust the range of reward 
function, and 𝑓#./(∙)  denotes a sigmoid-based normalization 
function, which contributes to consolidating the physical 
variables into a unified range of [-1,1]. 

In this work, the state space is defined as: 
      (30) 

where 𝑉"  is directly measurable, while 𝑆𝑜𝐶  and 𝑇(  can be 
estimated online using model-based observer in Section III-A.  

The DDPG-DRL strategy is expected to control the charging 
current in a continuous manner, thus the action space can be 
defined as: 

       (31) 
where the upper limitation of 6 C is determined based on the 
specification of the investigated LIB.  

With the afore-defined reward function, state and action 
space, the architecture of the DDPG-DRL fast charging strategy 
has been put forward. Particularly, the diagram of the DDPG-
DRL strategy is shown schematically in Fig. 2, while the 
associated hyperparameters are listed in Table IV. For clarity, 
the procedures of training and real-time implementation are 
detailed in TABLE IV and TABLE V, respectively.  
 

 
Fig. 2.  Implementation of the DDPG-DRL fast charging strategy. (a) 
training process and its principles, and (b) real-time application process. 
 

TABLE III 
HYPERPARAMETERS USED FOR THE PROPOSED DDPG-DRL STRATEGY 
Parameter  Description (unit) Value 
NE  Experience pool size 384000 
M Training total steps 500000 

Tl  Maximum episode length (s) 2000 
Nb Minibatch size 128 
𝑙𝑟$ Initial learning rate (policy network) 0.001 
𝑙𝑟% Initial learning rate (value network) 0.002 
𝛾 Discount factor 0.99 
𝜏 Soft updating factor 0.01 
 

TABLE IV 
TRAINING PROCEDURE OF DDPG FAST CHARGING STRATEGY 

DDPG-based ageing- and heating- aware fast charging algorithm 
1. Inputs: initial policy parameters 𝜃&  and 𝜃&! , value parameters 𝜃'  and 
𝜃'!, empty experience replay buffer 𝐷. 
2. While 𝑒𝑝𝑜𝑐ℎ	 < 	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
     Initialize the battery model. 
     While not terminate: 
         Obtain the state space 𝑆( , which is consisted of normalized state 
variables 𝑠(, from the battery model. 
         Select action 𝑎 = 𝜇(𝑠() + 𝜀 , mapping the action into the expected 
charging current 𝐼(. 
         Execute the 𝐼( in the battery model. 
         Observe next state 𝑠()*, reward 𝑟( 
         Store transition {𝑠(, 𝑎(, 𝑟(, 𝑎()*} in the priority experience buffer 𝐷. 
         Retrieve a batch of transitions, 𝐵 = {𝑠+ , 𝑎+ , 𝑟+ , 𝑠+)*} from 𝐷 according 
to the probability of the priority experience mechanism. 
         Update the value network with: 
         𝐿'(𝑡|𝜃') = EF𝑟(𝑠(, 𝑎() + 𝛾𝑄′(𝑠()*, 𝑎()*H𝜃'

′) − 𝑄(𝑠(, 𝑎(|𝜃')JK
,
 

         Update the policy network with: 
𝐿&(𝑡|𝜃&) = 𝛻-"𝜙(𝜃&) = 𝛻$𝑄(𝑠(, 𝜇(𝑠()|𝜃')𝛻-"𝜇(𝑠(|𝜃&) 

         Update the target networks with: 
𝜃'′ ← 𝜏𝜃' + (1 − 𝜏)𝜃'′ 	
𝜃&′ ← 𝜏𝜃& + (1 − 𝜏)𝜃&′ 

         If 𝑠()* triggers the episode terminated condition: 
             𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1 
3. Save parameters of the policy network 𝜃& for real-time applications. 
 

TABLE V 
REAL-TIME CONTROL PROCEDURE OF DDPG FAST CHARGING STRATEGY 
DDPG-based ageing- and heating- aware fast charging algorithm 
1. Construct the state observer, config the input/output of the LIB system. 
2. Load the trained parameters of the policy network of the DDPG agent, set 
constrained thresholds for the input/output variables of the policy network. 
3. While not terminate: 
     Send the state variable of the present time step 𝑠( to the policy network 
     Obtain the network’s output of the present time step 𝑎(. 
     Map the network’s output into the expected charging current 𝐼(. 
     Check if the termination condition is satisfied. 

 

IV. RESULTS AND DISCUSSION 
A. Validation of Battery Modeling 

The A123 26650 LIB cell is cycled with 2 C, 4 C and 6 C 
using Arbin testing system, which consists of the programmable 
electrical load and power supply. The ranges of sensors are 10 
A and 5 V, while the error limits are both within 0.05%. The 
test cell is placed in a programmable thermal chamber to control 
the ambient temperature at 25oC during the experiment. At the 
same time, three thermocouples are attached to different surface 
locations of the cylindrical cell along the axial direction, and 
the averaged readings of them are treated as the surface 
temperature. The modeled battery terminal voltage and surface 
temperature are plotted against their experimental benchmarks 
in Fig. 3. It is shown that the modeled results resemble the 
ground truth closely at different C-rates. The corresponding 
statistical errors are summarized in TABLE VI. The observed 

( , ) ( )t t nor ir s a f b J= -

( ) ( ){ }, ,nor c nor tS SoC f T f V=

{ (0,6 )}t tA c c C= Î



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
low modeling errors validate the high fidelity of the presented 
model for describing the electro-thermal dynamics of LIB. 
 

 
Fig. 3.  Results of model validation: terminal voltage of (a) charge, and 
(b) discharge, surface temperature of (c) charge, and (d) discharge. 
 

TABLE VI 
MODELING ERRORS AT DIFFERENT C-RATES 

 Terminal voltage (V) Surface temperature (℃) 
2 C 4 C 6 C 2 C 4 C 6 C 

MAE 0.0199 0.0294 0.0146 0.150 0.080 0.260 
RMSE 0.0297 0.0349 0.0242 0.164 0.102 0.296 

 

B. Validation of Training Process 
The training performance as a key measure of the proposed 

DDPG-DRL charging strategy is evaluated in this section. The 
episodic average reward value is illustrated in Fig. 4 (a). 
Explicitly, an increased reward value implies the improvement 
of trained charging strategy from the optimality point of view. 
The physical indicators are depicted in Fig. 4 (b-d) for further 
validation. It is shown that the mentioned early termination is 
attributed to the overcharging, i.e., the end SOC exceeds the 
upper threshold. As the training proceeds, the end SOC is 
suppressed towards the target SOC, which reveals the 
compliance to the constraints. Meanwhile, the terminal voltage 
and battery temperature are both confined to reasonable levels. 
All the results have validated the convergence and potential 
feasibility of the trained policy. 
 

 
Fig. 4.  Indicators of training for each episode: (a) average reward, (b) 
end SOC, (c) average terminal voltage, and (d) average cell 
temperature. 

 

C. Thermal and Health-Conscious Validation: Simulation 
The proposed strategy manifests itself with the LIB over-heat 

protection and life extension by penalizing the high temperature 
and degradation in the cost function. To justify this merit, it is 
compared with a baseline strategy, i.e., its counterpart without 
thermal and health constraints, while the other configurations 
are kept consistent. To rule out the effect of model uncertainty 
and give a theoretical validation, the strategies are carried out 
in a simulation environment herein. In particular, the presented 
electro-thermal-aging model is used as a “virtual battery” and 
implant to the OPAL-RT real-time simulator, while the 
strategies are executed with the embedded processor. It is 
shown that the occupied execution cycle is only 5.45 μs, and no 
overrun is reported, which validates the real-time tractability. 

The comparative results are shown in Fig. 5. It is shown that 
the proposed strategy needs 699 s to charge the LIB to the target 
SOC, which is 4.43% longer than using the baseline strategy. 
The more conservative charging is rooted in the restriction of 
charging current to ensure the expected thermal and 
degradation performance. As shown in Fig. 5 (c), the internal 
temperature of LIB increases to over 45℃ by using the 
baselined strategy. In contrast, the proposed strategy keeps the 
internal temperature well below the defined threshold. This is 
within expectation as a high temperature introduces extra “cost” 
by the penalty imposed, while an excessively low temperature 
compromises the charging speed inevitably.  
 

 
Fig. 5.  Comparative results of DDPG-DRL strategies: (a) SOC, (b) 
terminal voltage, (c) core temperature, and (d) charging current of LIB. 
 

 
Fig. 6.  The SOH drops by using different DDPG-DRL strategies. 
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A long-term simulation consisting of 1000 charging cycles is 

performed to evaluate the proposed strategy in terms of battery 
life extension. The SOH drops by using different strategies 
under different surrounding temperatures are illustrated in Fig. 
6. Three conclusions can be drawn. First, as expected, the 
degradation accelerates with elevated temperature, due to the 
enhanced aging modes like the SEI growth. Second, the 
proposed strategy suppresses the aging rate compared to the 
baseline strategy, attributed to the penalties to over-temperature 
and quick degradation. Third, the anti-degradation potential of 
the proposed strategy becomes more prominent with the rise of 
surrounding temperature. It can be inferred that within a colder 
environment, the temperature rise is not sufficient to trigger the 
over-temperature penalty, so that the difference is hardly 
observable. In contrast, the temperature easily breaks the upper 
limitation under a relatively high temperature like 40℃. In this 
case, both the two penalizing mechanisms in the proposed 
strategy take effect, leading to a superimposed and thus stronger 
effect of anti-degradation. 
 

D. Comparison of Strategies: Experimental Validation 
This section goes further to compare the proposed strategy 

with the state-of-the-art benchmarks, i.e., the rule-based and 
model-based ones. It is worth noting that the model mismatch 
can decline the performance of the proposed strategy in practice. 
The strategies are hence applied on real-world batteries for 
experimental validation. The validation environments are 
consistent for different strategies to ensure a fair comparison.  

The CCCV charging as a rule-based strategy is most-widely 
used in practical applications. The experimental charging 
results by using 2C, 4C, 6C CCCV strategies and the proposed 
strategy are shown comparatively in Fig. 7. The time consumed 
to charge the LIB to different charge levels, i.e., 80%, 90% SOC 
and fully charge, are summarized in TABLE VII. With respect 
to the CCCV strategies, it is explicit that a trade-off always 
exists between the charging speed and the threshold compliance. 
Although the 2C CCCV strategy ensures a favorable thermal 
condition, its charging is much slower than the other strategies. 
As the CC rate increases to 6 C, the charging time has been 
reduced largely. However, the accelerated charging is at the 
expense of over-temperature, which is unfavorable from the 
safety and longevity point of view. It is hence concluded that 
the CCCV strategy is far from optimality, since it fails to control 
the charging smartly to fulfill multiple objectives. 

By comparison, the DDPG-DRL strategy shows to manage 
the trade-off smartly. It is shown that the estimated internal 
temperature of LIB is well confined to the threshold of 45℃, 
which is quite similar to the case of 4C CCCV strategy. 
However, its charging time is 36.7%, 33.7% and 28.6% shorter 
than the 4C CCCV strategy for the three end charging points. 
Compared to the 6C CCCV strategy, the charging time is quite 
approaching, but the risk of battery over-heat is strictly avoided. 
Overall speaking, the proposed DDPG-DRL strategy succeeds 
to find a balanced solution between the 4C and 6C CCCV 
strategy by accounting for conflicting objectives of both the 
charging rapidity and the physical constraint compliance. 
 

 
Fig. 7.  Comparison of the proposed strategy with CCCV strategies: (a) 
current, (b) SOC, (c) terminal voltage, and (d) LIB core temperature. 
 

TABLE VII 
COMPARISON OF CHARGING SPEEDS FOR DIFFERENT STRATEGIES 

Strategy DDPG-
DRL 

2C 
CCCV  

4C 
CCCV  

6C 
CCCV MPC 

To 80% SOC, s 475 1515 743 490 521 
To 90% SOC, s 554 1703 836 552 608 
Fully charge, s 926 2283 1297 914 1054 

 
The MPC as a typical model-based optimization method is 

further compared with the proposed DDPG-DRL strategy, and 
the experimental results are shown in Fig. 8. It is shown that the 
charging currents given by the two strategies follow a similar 
trajectory, i.e., maintaining at the highest allowable value at 
early stage while heading downwards as the charging proceeds, 
to keep the critical variables within expected ranges. As seen 
from TABLE VII, the charging speed is similar for the two 
strategies. Moreover, the LIB internal temperature is controlled 
well within the imposed thresholds for both of the two strategies. 
It is worth noting that the MPC gives a more conservative 
solution, witnessed by the under-shot temperature against the 
threshold of 45℃ and the slightly longer charging time. This is 
more likely caused by the model mismatch which distorts the 
control trajectory to some extent compared to the ideal 
condition. Such slight deviations, however, cannot promise any 
virtual difference of the two strategies. It is thereby validated 
that the DDPG-DRL strategy performs equivalently with the 
state-of-the-art MPC strategy. Despite the similar optimality, 
the online tractability of DDPG-DRL strategy is much more 
favorable than the MPC, which will be discussed in detail in 
following sections. 
 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
Fig. 8.  Comparison of strategies from different categories: (a) charging 
current, (b) SOC, (c) terminal voltage, and (d) LIB core temperature. 
 

Long-term cycling experiments are further performed to 
evaluate the health-conscious properties of different strategies. 
The candidates for comparison herein include the 6C CCCV, 
MPC, and DDPG-DRL strategy. The selection is made based 
on the fact that, these strategies share similar charging speeds, 
thus the difference in health degradation rate can be a strong 
measure of their optimality. Specifically, the strategies are 
applied on real-world batteries for charging, while a consistent 
0.3 C discharge is applied to deplete the LIB. The described 
cycles are repeated to observe the causal effects of different 
strategies on the battery degradation.  

The results of LIB capacity fade using different strategies are 
summarized in TABLE VIII. Explicitly, the experimental and 
calculated SOH drops disclose a consistent trend over different 
strategies, albeit an average deviation of 0.30% exists between 
the modelling and experiment due to the intrinsic error of aging 
model. The observed error is acceptable as the highly nonlinear 
aging path of LIB is extremely difficult for accurate modeling. 
From the health-conscious point of view, the proposed strategy 
and MPC show lower degradation rates, attributed to the well-
constrained temperature and C-rate. By comparison, the 6C 
CCCV strategy incurs vastly faster degradation. Specifically, 
the proposed strategy can elongate the LIB life time by 14.8% 
compared to the 6C CCCV strategy when the charging speed is 
approximately equivalent. The faster LIB degradation under 6C 
CCCV mode can be explained by that the aging-dependent 
stress variables have been left unregulated 

To attest this conjecture, the operating points distributed in 
the aging severity factor map are plotted comparatively in Fig. 
9 (a). It is shown that the operating points are more likely 
distributed at the upper right quarter of the map with high aging 
severity by using 6C CCCV strategy. By observing the boxplot 
of severe factor in Fig. 9 (b), the 6C CCCV strategy gives rise 
to an average severe factor of 5.46, while the highest severe 
factor reaches up to 7.88. By comparison, the DDPG-DRL and 

MPC strategy control the average severe factor at 5.15 and 5.13, 
respectively, suggesting a much-relieved aging stress. These 
results reveal the distinct aging paths of LIB, which is the 
underlying reason of life extension of the proposed strategy. In 
summary, the slower aging with similar charging speed well 
supports the superiority of DDPG-DRL and MPC strategy. 

Since the training of strategy is based on the built electro-
thermal-aging model, any model mismatch can be transferred 
to the optimality of strategy. Therefore, meticulous model 
parameter calibration should be performed before the training 
to provide a mathematical guarantee on the control performance. 
With respect to the present case, moderate model deviations can 
be observed in Fig. 3 and TABLE VI due to the errors of 
parameters. In accordance, evident differences exist between 
experimental results (Fig. 7, Fig. 8 and TABLE VIII) and 
simulation results (Fig. 5 and Fig. 6). However, the practical 
control validates to guarantee an expected performance in the 
charging rapidity, as well as the thermal and health protection. 
In the severest case, slight constraint violation can occur due to 
the model mismatch, but this can be easily corrected by pre-set 
rules to comply better to the constraints. 
 

TABLE VIII 
SOH DROPS FOR 100 CHARGING CYCLES USING DIFFERENT STRATEGIES 
SOH drop DDPG-DRL MPC  6C CCCV  
Experimental 0.88% 0.86% 1.01% 
Calculated  1.21% 1.17% 1.27% 

 

 
Fig. 9. Comparison of anti-aging performance: (a) operating points 
distributed in severity factor map, and (b) boxplot of severity factors. 
 

E. Computing Complexity 
The computational complexity is critical to evaluate the 

feasibility of strategies in practical applications. The counting 
of floating-point operations is known as a crude method to 
measure the order of computational complexity via the big-O-
notion. In this regard, the MPC controller has cubic complexity 
considering the need of matrix multiplication and inversion. 
The multi-step optimization task within the control horizon 
further aggregates the numerical complexity. By comparison, 
the vast majority of computing cost of DDPG-DRL strategy 
comes from the offline training stage, where the latent mapping 
between state space and control policy is built and the time 
consumption is not critical. Once trained successfully, the 
DDPG-DRL strategy involves only computationally easy 
matrix manipulation within the neural networks, which enjoys 
linear computational complexity. Therefore, in spite of the 
time-consuming training, the practical implementation of 
DDPG-DRL strategy is quite tractable.  
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Alternatively, the absolute CPU time per algorithmic step is 

a more direct measure of the computational complexity. Tests 
are hence performed on a laptop with a 2.30 GHz CPU and 16 
GB DRAMs. The CPU times for performing the two strategies 
are shown in TABLE IX. It is shown that the CPU time 
consumption of the DDPG-DRL strategy is three orders of 
magnitude lower than that of the MPC controller, suggesting an 
overriding superiority of the DDPG-DRL strategy in terms of 
real-time tractability.  

It should be noted that a lumped electro-thermal model is 
used in this paper, and accordingly, only the SOC, polarization 
voltage and temperature are involved in the state space of MPC 
controller. Nevertheless, a full consideration of other physical 
states, like the side reaction potential, solid/liquid phase Li+ 
concentration at both electrodes, etc. are demanded for the 
advanced control of LIB. In this case, a high-order physics 
model with drastically expanded state space has to be used, and 
thus the feasibility of MPC controller becomes questionable 
considering its cubic complexity. In contrast, the DDPG-DRL 
strategy is expected to still keep an affordable computing cost 
thanks to its linear complexity. The application of the proposed 
strategy associated with more complex physics models will be 
an interesting topic for future investigation. 
 

TABLE IX 
CPU TIMES BY USING DIFFERENT STRATEGIES 

 DDPG-DRL strategy MPC-based strategy 
CPU time 297.2 μs 195.5 ms 

 

V. CONCLUSION 
A DRL-based strategy has been proposed for the thermal- 

and health- conscious fast charging of LIB. A multi-objective 
optimization problem has been formulated by penalizing the 
LIB over-temperature and degradation. Further, an improved 
environmental perceptive DDPG algorithm with priority 
experience replay has been exploited to smartly trade-off the 
charging rapidity and the compliance to physical constraints. 
The major conclusions are summarized as follows: 

(1) The DDPG-DRL strategy validates to fully charge the 
LIB in 926s without violating the physical constraints.  

(2) The CCCV strategy either slows down the charging or 
recurs the over-heat and quick wear of LIB. Compared to the 
6C CCCV strategy, the DDPG-DRL strategy extends the LIB 
life time by 14.8% with an equivalent charging speed.  

(3) The DDPG-DRL strategy performs equivalently with the 
state-of-the-art MPC controller in the charging rapidity and the 
compliance to physical constraints. However, the three orders 
of magnitude lower computational complexity promises a much 
better potential for real-time utilization. 
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