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Abstract
Difficulties that commercial vehicles are facing in meeting regulation standards require ad-
hoc solutions. Emissions can be dramatically lowered if the characteristics of the transport
application are known in advance. To tailor the vehicle’s specification towards the use-case,
however, a representative description of the mission, together with the surroundings, is
needed.

Where many conventional approaches fail, the operating cycle format (OC) has shown
promising results in describing road operations in a way which is completely independent
of both vehicle and driver. More specifically, the framework consists of three levels of
representation. The first, called the bird’s eye view, serves mainly as a classification tool,
and makes use of metrics and labels to completely characterise the overall application
of a vehicle during its lifetime. The second description, the stochastic operating cycle
(sOC), condenses the main properties of a road operation using elementary statistics. It
is conceived as an intermediate representation with a higher degree of accuracy. Finally,
the deterministic operating cycle (dOC) is the most detailed description of a transport
mission, and collects deterministic models to be used in simulation.

In previous studies, the OC format was demonstrated to work in theory, but some
margins for improvement could still be identified. Furthermore, the utility and benefits
deriving from the use of the OC in concrete situations was explored only partially.

The main objective of this thesis consists in extending the OC representation to include
stochastic models for weather and traffic, which were missing in the original formulation.
The new models are built to be parsimonious and to allow ease of parametrisation and
implementation starting from real data. This enables to reproduce and simulate realistic
environments where a transport mission can take place, with a substantial gain in accuracy.

The second purpose of this work is to showcase how the OC concept can be used in
practical applications involving real customers. A case study is presented to exemplify the
advantages connected with the use of the OC description in product selection, prospecting
a potential reduction of fuel consumption and emission of about 10%.

Keywords: operating cycle, transport application, road mission, stochastic models,
autoregressive models, energy estimation.
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Part I

Introductory chapters





Chapter 1

Introduction

Fundamental research does not necessitate to be relevant from a practical perspective. It
can be agreed, in fact, that it only needs to be sufficiently intriguing for someone to be
done. However, the content of this thesis – which marginally touches upon some topics in
vehicle dynamics – cannot be counted as fundamental research. Therefore, it is extremely
important to place it into the right context.

1.1 Motivation and background
An appealing way to frame this thesis is to invoke some recently published data which
demonstrate with striking evidence the prevalent anthropogenic contribution to the green-
house effect. To cite a few documents, one can look at the technical reports authored by
Callery (2019), Cook et al. (2013), Hausfather (2020), and Tol (2014), and those drafted by
the C. C. C. Service (2019), European Environmental Agency (2019), Eurostat (2019), G.
C. Project (2017), U. S. E. P. Agency (2019), and Union of concerned scientists (2019). A
conspicuous contribution comes from the release of equivalent CO2 emissions from human
activity and, in particular relating to the transportation sector. This incentivised the
European Commission (2014a,b, 2017, 2019) to adopt several strict measures contrasting
the alarming trend of increasing temperature and pollution. More specifically, emission
thresholds have been set for heavy-duty and passenger vehicles. Preliminary tests are
aimed at ensuring compliance with these limits, and can be carried out physically or
by using simulation tools. In this context, emissions can be significantly lowered if the
vehicle’s operating conditions are known in advance. Indeed, performance can be signifi-
cantly enhanced depending on the mission characteristics, driver’s behaviour, and external
settings1. All these factors correlate with both the usage itself and the surrounding in
which the transport operation takes place. Since major variation may occur depending on
the location and the time2, the vehicle’s specifications should be tailored to meet not only
the transport application, but also the relative boundary conditions. To investigate how
these influence the vehicle’s response, however, it is necessary to formulate mathematical
models. These should of course be realistic, and ideally sufficiently simple to allow a

1Just to mention a few: topography, wind and traffic conditions in primis.
2We can refer at first instance to the effect exerted by seasonal trends.

3



4 1.1. Motivation and background

fundamental understanding of the problem. Limiting the attention to the vehicle and
driver as separate entities, several models have been developed over the years with different
goals in mind. On the other hand, a synthetic but complete description of a transport
operation has been rarely attempted in literature. One obvious difficulty encountered
when defining a transport operation relates to the notion per se, which might appear to
be rather obscure and vague. Provided that this first obstacle can be overcome, another
question to address is how to identify all the relevant features, and then represent them in
a useful manner, and in a way such they are independent of the vehicle itself. We will
refer to this as the representation problem.

Accurate modelling of transport operations may also serve different purposes than the
ones outlined so far. For heavy-duty vehicles, an important aspect to consider is that
virtual testing is often required before a physical prototype can be built. One reason for
that relates to the immense degree of diversification that can be achieved in the actual
configuration. Indeed, whilst only few predetermined alternatives are available for passenger
cars, the panorama of different combinations is virtually infinite for trucks. Considering
the combinatorial nature of the problem, it becomes soon obvious that physical testing is
prohibitive in terms of both costs and times, and other options should be preferred.

Tailoring the vehicle for the right mission – or spectra of missions – is an extremely
delicate process. Besides, if all the relevant factors are not accounted properly, a solution
derived analytically, or even numerically, can easily result in a suboptimal configuration in
practice.

A preliminary answer to the representation problem has been formulated by Pettersson
(2019) and formalised in the so-called operating cycle (OC) format. This type of description
tries to capture the essential of the transport mission and the environment in a way which is
completely independent of both the vehicle’s and driver’s characteristics. Therefore, unlike
other common approaches, the OC framework enables a direct comparison between different
vehicle configurations. Indeed, any contamination in the representation originating from
the intrinsic dynamics of the vehicle is automatically avoided. In previous studies, the OC
format has been demonstrated to be capable of reproducing a transport operation accurately
and in a realistic way. At present, the implementation delivered by Pettersson, Johannesson,
et al. (2019) is promising, and outperforms conventional descriptions. Nonetheless, it still
has margins of improvements. Furthermore, the application of the OC framework has been
manly limited to a theoretical domain. The scope of this thesis is hence to extend the
OC format to incorporate new features, including weather and traffic, and to demonstrate
how it can be used in practice. The research output is similar to an extended collection
of formal tools which can be used to describe mathematically a transport operation, test
virtual prototypes and algorithms, and make statistical inference.

1.1.1 Previous works
The aspects outlined so far are themselves sufficient to legitimate the enormous research
effort lavished on addressing the representation problem. One well established approach
consists of describing a transport mission using a driving cycle. Intuitively, a driving
cycle is a map from the vehicle’s position along its trajectory to a speed profile, which
should capture the salient features of the operation. For an interested reader, a more
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formal definition in mathematical terms can be found in Silvas (2015). In this context,
speed profiles can be synthesised by using different types of information, and several
approaches have been proposed in literature. In particular, there exist two main variants of
a driving cycle: modal and transient. The former type is usually employed to for standard
tests regulated by legislation, as in VECTO (Fontaras et al. 2013), since it allows for
straightforward comparison. However, such driving cycles are not very realistic, and are
becoming rapidly obsolete. Indeed, the main shortcoming of using them resides in the
fact that performance is inherently built into the model, and there is no clear separation
between the vehicle and driving cycle itself.

Transient cycles are often preferred for powertrain optimisation and design purposes,
which require accurate feasibility studies, as the one performed by Åsbogåard et al. (2007),
Basso, Kulcsár, Egardt, et al. (2019), Basso, Kulcsár, and Sanchez-Diaz (2021), Ghandriz
(2018), Ghandriz, Hellgren, et al. (2016), and Ghandriz, Jacobson, Laine, et al. (2020). In
this context, a crucial aspect for efficient design is the accurate description of a transport
operation, with exhaustive information about the surroundings. Indeed, to correctly
replicate real-world performance, it is necessary to take into account all the external
factors and stimuli which may affect the vehicle’s behaviour. These include road and
mission properties, but also weather and traffic conditions (Llopis-Castelló et al. 2018;
Sciarretta 2020; Sentoff et al. 2015; Wyatt et al. 2014).

How to synthesise representative transient cycles is an interesting and open question,
and different approaches have been explored over the years. In particular, it is possible to
distinguish between rule-based methods and statistical ones. Rule-based methods are very
sensitive to experts’ opinion and aim to replicate a limited number of characteristics from
the measured driving cycles (Naghizadeh 2003; Zou et al. 2004). Such a criterion may
be represented by the percentages of city, suburb, and highway speeds. By contrast, the
advantage of resorting to statistical techniques resides in the fact that generated synthetic
speed profiles correlate with certain operating conditions of the vehicle, e.g. cruising, idling,
acceleration or braking events. This enhanced approach makes use of Markov chains or
machine learning techniques, and combines different information (mostly inferred by speed
and acceleration signals) to reflect the characteristics of real-driving scenarios. Improved
algorithms also account for external sources of excitation (for example road grade) which
are anticipated to have a major influence on a vehicle’s overall performance (Amirjamshidi
and Roorda 2015; Ashatari et al. 2014; Brady and O’Mahony 2016; Kamble et al. 2009;
T. K. Lee and Filipi 2011; T. Lee et al. 2011; Lin and Niemeier 2002; Nyberg 2015;
Silvas 2015; Silvas et al. 2016; Tazelaar et al. 2009). Traffic conditions are also modelled
empirically, often based also on the characteristics of a certain road type (Sciarretta 2020).

1.1.2 The operating cycle representation

At this point, there are two main arguments which may be raised against these conventional
driving cycles. The first is that their pathological nature makes them inadequate to compare
different vehicles. With "pathological", we mean that there exists an implicit correlation
between the reference vehicle and the speed profile. This intrinsic contamination may
jeopardise the general validity of the resulting speed profile. Another demerit point is
that, when a driving cycle is recorded, all the external effects (due to e.g. traffic or wind
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conditions) are automatically incorporated. This is done implicitly, meaning that their
influence cannot be understood or examined. Intuitively, we shall then argue that a general,
reliable representation should be independent of both the vehicle and the driver.

The operating OC introduced by Pettersson (2019), Pettersson, Berglund, et al. (2019),
and Pettersson, Johannesson, et al. (2019) certainly fulfills these requirements. In fact,
this type of representation is not based on the concept of driving cycle, and therefore no
speed profile needs to be prescribed as an input to the longitudinal vehicle mode. On the
contrary, the properties of both the mission and the external surroundings are modelled
separately, and then a driver model is used to translate dynamically the external stimuli
into a desired speed. This allows to circumvent the need to incorporate the information
coming from the surroundings into the speed profile.

The OC consists of three main levels of representation, each of them designed to a
specific role. Before commenting on their relative function, we shall clarify the notions of
transport application, transport operation and transport mission according to Pettersson
(2019). In particular, Pettersson (ibid.) defines the transport application as the overall
purpose of a vehicle during its lifetime. This is something antecedent to the vehicle itself,
and towards which the specifications should be tailored. The difference between transport
operation and mission is less formal: the former consists of a finite number of tasks along
a given route, the latter integrates the operation with details from the surroundings. Both
the operation and the mission presume the existence of a vehicle to make sense, i.e. are
defined a posteriori.

Given the definitions above, our intuition suggests that having a realistic description
of a transport mission is not sufficient to characterise the application. There are two
additional requirements which we shall impose. The first one relates to existence of
different sorts of relationships between individual representations. In nature, things can
be grouped and labelled into different categories depending on certain common properties.
Identifying differences and similarities between transport missions is crucial when it comes
to defining the overall application. If transport missions can be classified based on some
well-defined metrics, then the complexity of the problem decreases significantly. This
need for a classification system is referred to as the classification problem. The second
aspect connects to the variation problem. Indeed, provided that we are able to identify
suitable metrics, even missions which belong to the same transport application cannot be
expected to be identical when interpreted as individual realisations. Ideally, we would like
to quantify the variation inside each category in a simple way. This implies, however, the
need for an intermediate description, which should be ideally built around this principle
and make use of elementary statistical tools.

The three levels of representation introduced by Pettersson (ibid.), namely the bird’s
eye view, the stochastic operating cycle (sOC) and the deterministic operating cycle (dOC),
respond exactly to these needs.

Descending the hierarchical ordering existing between the descriptions, the bird’s eye
view collocates on the top of the pyramid. It is the answer suggested by Pettersson (ibid.)
to address the classification problem. It characterises the entire application, and makes
use of simplified metrics and labels. At the mid-level, the sOC summarises the statistical
properties of a transport mission, and consists of a collection of stochastic models and
parameters. It is conceived as a tool to investigate the variation problem. Finally, the
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dOC is the representation with the highest level of detail, and is the envisioned solution
to the representation problem.

In the sOC and dOC descriptions, every physical quantity may be described using
statistical or deterministic models, respectively.

1.2 Research objectives
Two main research objectives can be identified for the present thesis.

The first deals with the pure representation problem, as defined by Pettersson (ibid.),
and relates to the features to be included when describing a transport operation. Some
of these – like wind and traffic conditions – were already indicated in Pettersson (2019),
Pettersson, Berglund, et al. (2019), and Pettersson, Johannesson, et al. (2019) and
anticipated to have a major impact upon energy efficiency. However, their influence was
deliberately omitted for the sake of convenience. A major goal of this thesis is therefore
to extend the OC representation initiated by Pettersson, Johannesson, et al. (2019) to
include stochastic weather and traffic parameters. The approach is similar to the one
proposed in Pettersson, Johannesson, et al. (ibid.), with every model being independent of
the others. This allows to construct a modular framework in which virtual prototypes can
be tested and different configurations evaluated.

The second research objective is to explore more deeply the relationship between the
different levels of representation. The conceptual connection established by Pettersson was
certainly consistent in theory, but its usefulness needs to be confirmed by some concrete
application. An attempt to partially address this issue is made in Paper 1, in which it
has been demonstrated how the three-level OC description can be used in practice when
dealing with a customer.

1.3 Scientific contributions
The main scientific contributions of this thesis are:

• A first case study on the modelling of energy usage for heavy-duty vehicles using the
operating cycle format. This has been the main object of Paper 1, where real log
data have been used to parametrise the stochastic models for the road and mission
categories.

• In Paper 2, an enhanced version of the sOC has been proposed which includes new
stochastic models for the weather and traffic categories. It must be remarked that the
stochastic models for weather and traffic do not constitute a novelty when considered
in isolation, since a great deal of research has been already lavished on dedicated
studies. Instead, the main contribution of the present work should be sought in that
it makes this collection of stochastic models useful for studies in vehicle dynamics.

• A sensitivity study of the influence from seasonal and traffic settings upon the CO2
emissions of a heavy-duty truck (Paper 2).
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• Based on the general brush theory developed by Romano et al. (2020a,b), an improved
understanding of the transient dissipation mechanisms connected with tyre slip losses
(Paper 3).

• A new version of the open source platform VehProp, a simulation environment
developed for studies of longitudinal vehicle dynamics. The current implementation
includes novel models for weather and traffic, and a driver which reacts dynamically
to the traffic density.

1.4 Theory and methods
With a little bit of intuition, one can realise that this is not a conventional thesis in vehicle
dynamics. Quite the opposite, the focus is more on what surrounds the vehicle. More
specifically, in the sOC description, the modelling of the operational environment is mainly
based on stochastic processes. These, together with other elementary tools borrowed
from the disciplines of probability and statistics, constitute the true core of the present
research. In the main part of the thesis, we will however prefer a rather friendly approach
to the topic, with emphasis on the physical aspects. A more rigorous introduction to the
stochastic processes used in the building of the sOC format is given in Appendix A.

Conventional models for (longitudinal) vehicle dynamics are mainly based on systems
of differential-algebraic equations (DAE). The reader is presumed to be familiar with
the topic, which is not covered explicitly in the thesis. On the other hand, the results
advocated in Paper 3 are based on the classic theory for linear PDEs, for which there
exists a boundless amount of literature. Two useful references are the almost all-embracing
book by Evans (2010) and the more gentle introduction by Ockendon et al. (2003). The
findings of Paper 3 will be only briefly mentioned throughout the thesis, and hence no
appendix is dedicated to the topic.

1.5 Limitations
Being the scope of the present research extremely broad, some assumptions have been
introduced to simplify the analysis. This has inevitably led to some limitations.

In particular, from a pure vehicle modelling perspective, the analysis has been confined
to longitudinal dynamics. The effect from suspension compliance has also been neglected
systematically. The influence from tyre slip losses has been investigated mainly theoretically
in Paper 3 and also numerically in Romano et al. (2021), but has been disregarded otherwise.
In Paper 3 it was also shown that considering the transient behaviour of the tyre during
acceleration and deceleration phases may lead to different results than the ones advocated
in other studies, but, to the best of the author’s knowledge, a proper model to account for
the non-steady state slip losses has not been developed yet.

Some limitations are strictly connected to the stochastic models introduced in the
operating cycle description. In particular, the physical quantities labelled in the road
and weather categories have been assumed to only depend either on the space or time,
respectively. Furthermore, the proposed traffic model is based on the assumption of
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stationary flow and homogeneous road conditions, as discussed extensively in Sec. 2.3.4
and in Paper 2. Weather and traffic models have been built in isolation and parametrised
using real data available from external databases. For both, the fitting procedures have
been chosen such as to minimise the error between the model prediction and measurements.
However, no experimental validation has been conducted with respect to signals available
from log-data, mainly due to lack of information.

The examples used throughout the thesis deal with heavy-duty trucks equipped with
diesel engines. However, the OC format has been conceived to be generally applicable
to any (road) vehicle category, provided that a suitable model is available. Lastly, the
driver model employed in this thesis is based on a simple PID controller and tries to
replicate a human driver. Simulation results seem to suggest a realistic behaviour, but no
experimental validation has been conducted.

1.6 Outline
The rest of this thesis is structured as follows: Chap. 2 is dedicated to the description of
the OC format, and covers all the three levels of representation. A preliminary analysis
is attempted do deduce mathematically which quantities to include when modelling the
environment. The core of the chapter focusses on the novel features introduced in the
sOC. In Chap. 3, the practical usage of the OC format is exemplified starting from the
investigation conducted in Paper 1. The discussion is integrated with additional comments
on some technical aspects which concern the parametrisation and the implementation of
the stochastic models added in the thesis. Chapter 4 concludes the thesis summarising
what done, and opening possible perspectives for future studies. The tone of the discussion
is deliberately kept informal in the main chapters, but an introduction on the statistical
tools used to build of the sOC can be found in Appendices A and B.





Chapter 2

The operating cycle description

This chapter is dedicated to the mathematical description of a road transport mission in
terms of an operating cycle. We will try to understand which physical quantities affect
the behaviour of a road vehicle, and how to model them in a way which is useful for the
representation. The aim of the operating cycle is threefold, and should satisfy the needs
for classification, variation and simulation. In this chapter, the focus is mainly on energy
efficiency, but the results drawn in the subsequent paragraphs hold very generally. We shall
start from an elementary set of equations for longitudinal vehicle dynamics, from which the
most salient features to be included in such a description may be deduced. The idea is to
consider in isolation the contribution of each physical quantity to the instantaneous power
demand required to the propulsion, and hence, by straightforward integration, to the total
energy. The analysis proposed in this chapter follows the one reported in Pettersson (2019)
and Pettersson, Johannesson, et al. (2019), with few slightly more involving steps.

Once all the relevant factors have been identified, it is crucial to formulate adequate
models to account for them. As already seen, this is a nontrivial task, which many
conventional approaches have only partially succeeded in accomplishing. The operational
cycle description proposed by Pettersson (2019) tries to overcome the issues encountered
so far by introducing a dynamic description of the transport mission which is independent
of the vehicle. Therefore, in the second part of the chapter, we will introduce in detail the
three levels of representation upon which the complete operating cycle is built: the bird’s
eye view, the stochastic operating cycle (sOC) and the deterministic operating cycle (dOC).
These three descriptions complement each other and attempt to address the classification,
variation and simulation problems, respectively. In what follows, we will review them in
order, with particular emphasis on the sOC, whose new features constitute the core of the
present work. All the models presented in this chapter may be found in similar form in
Pettersson (2019) and Pettersson, Johannesson, et al. (2019) and in Paper 2.

2.1 Longitudinal dynamics and energy consumption
To understand which factors must be included when dealing with energy efficiency studies,
it is necessary to formalise the problem mathematically. To limit the scope of the present
analysis, we will only deal with the longitudinal problem, i.e. neglect the lateral dynamics
and vertical energy dissipation.

11
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For a rigid truck1, the complete set of equations governing the system dynamics may
be easily inferred starting from Newton’s Second Law as follows:

0 = −mv̇x +
n∑
i=1

Fix − Fgrade − Fair, (2.1a)

0 =
n∑
i=1

Fiz −mg cosα, (2.1b)

0 =
n∑

i=nf+1
liFiz −

nf∑
i=1

liFiz − hG
n∑
i=1

Fix − (hair − hG)Fair, (2.1c)

0 = Twi −RδiFix − frRδiFiz − Jwiω̇wi. (2.1d)

The above Eqs. (2.1a), (2.1b) and (2.1c) are the equations governing the longitudinal,
vertical and rotational equilibrium for the entire vehicle in the (O, x, z) plane, whilst (2.1d)
prescribes the rotational equilibrium of the ith wheel, i = 1, . . . , n. The axles have been
numbered from i = 1, . . . , n, starting from the first one at the extreme right. The number
of axles located to the right of the centre of gravity (CoG) is nf, whilst the axles behind
the CoG are nr. The total number of axles is given by n = nf + nr. In Eq. (2.1a), we
have denoted by Fix the longitudinal forces exerted at the tyre-road interface, by Fgrade
the longitudinal component of the gravitational force, and by Fair the air resistance. The
terms hair and hG appearing in Eq. (2.1c) represent the height of the air resistance and
centre of gravity with respect to the road, or, more precisely, to the contact points of the
tyres; li is the longitudinal distance of the ith axle from the centre of gravity G. Finally,
in Eq. (2.1d), Twi is the total torque applied to the wheel i, Jwi its rotational inertia, and
Rδi , Rwi − δi the deformed radius of the tyre, where Rwi is the nominal wheel radius
and δi the maximum vertical deformation due to the normal load Fiz. The quantity fr,
here assumed constant for each tyre, represents the rolling resistance coefficient.

The generic torque acting on the wheel i may be separated into a component due to
braking, namely Tbi, and another one coming from the prime mover Tdi, i.e. Twi = Tdi+Tbi.
By doing so, under the assumption of negligible internal losses, the power needed to move
the vehicle may be computed as

Pd =
n∑
i=1

Tdiωwi = vx
n∑
i=1

Tdi

Rri (1− σix)
, (2.2)

where σix is the theoretical longitudinal slip, defined as:

σix ,
ωwiRri − vx
ωwiRri

, (2.3)

and Rri is the so-called rolling radius. In general, it is greater than the deformed radius
of the tyre and reads in first approximation Rri ' Rδi + 2δi/3 for small camber angles.

1For a rigid truck, we may fairly assume to have only one grade angle α. The set of equations for
the case of an articulated vehicle is much more involving and derived in Ghandriz (2020) and Ghandriz,
Jacobson, Nilsson, et al. (2020).
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Combining Eqs. (2.1a), (2.1d), (2.2) and (2.3) yields, after some manipulations,

Pd = vx

 n∑
i=1

RδiFix + frRδiFiz + Tbi

Rri(1− σix)
+
∑n
i=1 Fix − Fgrade − Fair

m

n∑
i=1

Jwi

R2
ri(1− σix)2



− v2
x

n∑
i=1

Jwi

[
Ṙri(1− σix)−Rriσ̇ix

]
R3

ri(1− σix)3 .

(2.4)

The expression above is quite complicated, but may be simplified by introducing some
additional assumptions. The main argumentation is that, in normal driving conditions,
the last summation appearing in Eq. (2.4) is negligible when compared to the first
two, and shall be disregarded henceforth. This simplifications approximately holds when
sufficiently small changes in the slip occur2 and the tyres work in the linear range of their
normal characteristic. The latter conditions imply small vertical deformations δi and hence
Rδi ' Rri ≡ Rwi. Therefore, we may write:

Pd ' vx

 n∑
i=1

RwiFix + frRwiFiz + Tbi

Rwi(1− σix)
+
∑n
i=1 Fix − Fgrade − Fair

m

n∑
i=1

Jwi

R2
wi(1− σix)2

. (2.5)

To analyse the expected amount of power to be delivered during an acceleration phase, we
may comment on the remaining terms. Starting from the last one, the summation

χm ,
1
m

n∑
i=1

Jwi

R2
wi(1− σix)2 > 0 (2.6)

may be interpreted as an additional inertial term which adds to the real mass. It
depends not only on the inertial and geometric parameters of the wheels, but also on the
longitudinal slip variables σix. These are, in normal driving conditions, usually smaller
than a critical value. i.e. |σix| < σcr

i (Fiz, µi) < 1. The critical slip σcr
i (Fiz, µi) depends

on many parameters, included the vertical load Fiz acting on each axle and the friction
coefficient µi. The denominators in the first term are hence positive, and so are the
quantities frRwiFiz and Tbi.

Under steady-state conditions, the longitudinal forces themselves are a function of the
slip, and concordant with it, i.e.

Fix = fi(σix, Fiz, µi) =
∣∣fi(σix, Fiz, µi)∣∣ sgn σix. (2.7)

Owing to Eq. (2.7), it may be easily verified that

n∑
i=1

Fix
1− σix

≥
n∑
i=1

Fix, (2.8)

2A situation where this condition is not fulfilled is, for example, acceleration from standstill in presence
of nonzero road grade.
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since the previous condition may be restated as
n∑
i=1

Fixσix
1− σix

=
n∑
i=1

∣∣fi(σix, Fiz, µi)∣∣|σix|
1− σix

≥ 0, 0 ≤ σix < σcr
i , (2.9)

or equivalently
n∑
i=1

Fixκi =
n∑
i=1

∣∣fi(κix, Fiz, µi)∣∣|κi| ≥ 0, 0 ≤ κi < κcr
i , (2.10)

where we have introduced the notion of practical slip3 κi = σix/(1 − σix), as defined in
Pacejka (2012). It is worth noticing that, when multiplied by the longitudinal speed vx, the
practical slip κi returns the macro-sliding velocity of the tyre, and therefore the summations
in Eqs. (2.9) and (2.10) actually represent the total slip losses in conditions close to steady-
state4. These contribute partially to the overall energy dissipation (Beckers et al. 2019, 2020;
Kobayashi, Katsuyama, Sugiura, Hattori, et al. 2020; Kobayashi, Katsuyama, Sugiura,
Ono, et al. 2017, 2018; Torinsson et al. 2020), but are often erroneously neglected.

Taking into account (2.8) and assuming, for the sake of simplicity, Tbi = 0, it is possible
to deduce:

Pd ≥ vx
(
Fgrade + Fair + Froll − Finertia

)
, (2.11)

where the inertial term Finertia = −m∗v̇x accounts for the effective mass m∗ = m(1 + χm)
and the effective total rolling resistance Froll , fr

∑n
i=1 Fiz/(1−σix) include the contribution

due to the longitudinal slips5. The final expression to the right-hand side of Eq. (2.11)
should be now very familiar, since it coincides formally with the classic one obtained for
zero longitudinal slip, i.e. σix = 0.

An additional amount of power may be required to supply the request from standard
auxiliary devices, or from specific mission equipment. Denoting them by Paux and PPTO,
the total power to be delivered by the prime mover is given by

Ptot = Pd + Paux + PPTO. (2.12)

We continue now by commenting on each term showing in Eq. (2.11) separately. In
particular, the following contributions can may identified:

• Finertia = −m∗v̇x. This term is proportional to the vehicle’s acceleration and to the
augmented mass m∗ = m+ χm. Therefore, it includes implicitly any factor which
may cause the vehicle to change its speed dynamically. Depending on the traffic and
weather conditions, a driver may choose the desired speed based on the following
quantities: traffic density, precipitation and asphalt properties. According to Eq.
(2.6), the total inertial force is also influenced by the slip variables σix, and therefore
by the mechanical properties of the tyres.

3We have implicitly assumed that sgn κi = sgn σix, which is always true for conventional driving
scenarios.

4In transient conditions, the calculation of power slip losses based on a global equilibrium approach
turns out to be fallacious, as discussed extensively in Romano et al. 2020a.

5In general, it is not obvious that
∑n

i=1 Fiz/(1− σix) ≥ mg cosα.
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• Fgrade = −mg sinα, where α is the road grade angle and the vehicle coordinate
system defined according to ISO 8855. The slope angle is often described as a
road gradient measured as a percentage. It is a road parameter and an exhaustive
description may be found in Pettersson (2019) and Pettersson, Johannesson, et al.
(2019).

• Froll = fr
∑n
i=1 Fiz/(1 − σix), in which fr is the rolling resistance coefficient. The

previous equation models empirically the energy loss due to viscoelastic properties
of the tyre in its interaction with the road surface6. The road properties depend on
the road properties, ground type and weather conditions. The longitudinal slips σix
also contribute to the rolling resistance.

• Fair = ρairCdA
∣∣∣vrel
x

∣∣∣ vrel
x /2, with ρair the air density, Cd the drag coefficient, A the

effective frontal area and vrel
x is the relative speed between the vehicle and the

wind. The square dependence on the speed emphasises the need for the properties
mentioned in the inertial term. Also, there are different physical quantities which
are relevant to correctly take into account the contribution of the drag force. The
first thing to be noticed is that the speed in question is the relative one between
vehicle and wind; hence, a wind model is needed. Furthermore, the air density ρair is
a function of the air pressure pair and temperature Tair. The simplest model which
accounts for this interaction is that of an ideal gas:

ρair = pair

RTair
. (2.13)

Equation (2.13) justifies the necessity of detailed models for the air temperature
and pressure. As a secondary effect, the external temperature might also influence a
combustion engine’s efficiency.

The terms identified above constitute a solid basis for a preliminary understanding of what
should be included when representing a transport operation. It must be pointed out that
there are several others factors to consider which do not appear explicitly in Eqs. (2.11)
and (2.12). For example, the influence of side slip angle could be noteworthy to taken into
account7, but it requires more sophisticated in-plane models. Mechanical losses also take
place in other components, e.g. suspensions and internal transmissions. The contribution
from some external effects, due for example to traffic or weather conditions, may necessitate
of an intermediate step to be interpreted and modelled properly, as discussed later. In the
subsequent paragraphs, we will introduce the three level of description which constitute
the complete OC representation.

2.2 The bird’s eye view
The bird’s eye view is the less detailed level of an operating cycle description. It is conceived
to be very general, allowing for straightforward classification of transport applications

6For an exhaustive review of analytical tyre models, the reader is referred to the classic theories treated
in Guiggiani (2018) and Pacejka (2012), or to the more recent works by Romano et al. (2020a,b).

7As also explained in Ghandriz (2020) and Ghandriz, Jacobson, Nilsson, et al. (2020).
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based on few statistical indicators. These should be ideally chosen to be representative of
some variation in usage, performance or properties.

At present, the formal description has only been sketched by Pettersson, Berglund,
et al. (2019), and no scientific way of setting labels and metrics has been fully explored. A
rigorous attempt to connect the bird’s eye view to already-existing classification systems
may be found in Pettersson, Johannesson, et al. (2019) and indirectly in Paper 1, where
the GTA system (Edlund and Fryk 2004) is used as a starting point to proceed to mission
classification. Later on, in Sect. 2.5, we will comment briefly on the connection between
the three levels of representation making the OC.

As an example, for the topography parameter, the GTA system specifies four different
levels:

1. FLAT if the slopes with gradient of less than 3% occur during more than 98% of the
driving distance, and the maximum gradient is 8%.

2. P-FLAT if the slopes with gradient of less than 6% occur during more than 98% of
the driving distance, and the maximum gradient is 16%.

3. HILLY if the slopes with gradient of less than 9% occur during more than 98% of the
driving distance, and the maximum gradient is 20%.

4. V-HILLY if the other criteria are not fulfilled.

The thresholds set in the above list are however ambiguous, and there is no guarantee that
they can reflect any significant variation in usage or performance.

One main advantage of such a vague description, on the other hand, resides in its
colloquial tone. Indeed, the bird’s eye view is the most appropriate description when
interfacing the customer, which is not expected to have a deep understanding of stochastic
models and parameters.

2.3 The stochastic operating cycle
The stochastic operating cycle (sOC) may be considered as a mid-level description of a
transport mission. In its general formulation, it should ideally consist of a complete set of
stochastic models grouped into four different categories: road, weather, traffic and mission.
However, the current implementation only collects models for the first three categories.

Each sOC model is provided with its own set of stochastic parameters, which are chosen
to condense the relevant statistical properties (mean, variance, ecc.) of the corresponding
physical quantity. These may also be themselves related to physical entities, but the
interpretation is often less straightforward. The structure of the sOC is conceived to be
as simple as possible, and the models are thought to be independent of each other. In a
more formal way, the complete set of sOC parameters may be defined mathematically as:

OCs = {Rs,Ws, Ts,Ms}, (2.14)

where Rs, Ws, Ts and Ws are the sets containing all the sOC parameters marked as
road, weather, traffic and mission, respectively. Models and parameters for the road have
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been introduced by Pettersson, Johannesson, et al. (2019), whilst the traffic and weather
categories have been developed by the author in Paper 2 and constitute the novel features
of the sOC.

We remark that the overall framework is built with the philosophy of being as simple
as possible. This means that complicated multivariate distributions are avoided, thus
requiring each individual model to be treated as a separate entity. Disregarding such
mutual interaction guarantees modularity and allows for ease of implementation. At the
same time, to balance complexity and realism, a certain level of interaction between each
model is preserved by arranging the sOC itself in a hierarchical fashion. Parsimony is thus
achieved by defining two separate set of models: primary and secondary ones (subordinate).
In this way, it becomes possible to achieve a modular structure equipped with a high level
of diversification. The (main) obvious disadvantage is that the number of effective values
needed for each stochastic parameter also increases.

2.3.1 Primary models

Primary models are introduced to simplify the mathematical description of the format.
At present, they include stochastic model for road type and seasonality falling within the
road and weather categories, respectively.

The road type per se is an abstract notion, which cannot be measured or classified
directly. The solution envisioned by Pettersson, Johannesson, et al. (ibid.) is hence to
connect this concept to something which can be more easily understood and quantified:
the speed limit (Ntziachristos and Samaras 2018). A stochastic model is then constructed
by modelling the road type as piecewise constant function of the speed limit, which, in
turn, is a piecewise constant function of the vehicle’s position on the road. The resulting
model is a marked Poisson process, as explained in detail in Sect. 2.3.2.

On the other hand, the model for seasonality is much simpler and only based on the
stationary distribution for each season. In this context, it is worth noticing that, in the
sOC, the seasons are regarded as meteorological ones.

Once a mathematical formulation for both primary models has been established, the
secondary ones inherit their sets of sOC parameters accordingly. In particular, the sOC
parameters for the secondary models in the road and weather categories are supposed to
only depend on the corresponding primary counterpart. On the contrary, the stochastic
parameters for the secondary traffic model are determined by the specific combination of
road type and season. An illustration of the resulting composite edifice is shown in Fig.
2.1, where the hierarchical structure comprising primary and secondary models is shown.

In the following, the secondary models for the road, weather and traffic categories will
be discussed in detail.

2.3.2 Secondary road models

The road parameters have been developed completely by Pettersson, Johannesson, et al.
(2019), but are recalled here to give a complete overview of the sOC.
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OCs

Road type Season

Traffic densityCurvatureTopography Temperature Wind speed

Primary models

Secondary models

Figure 2.1: Hierarchical structure of an sOC. Road type and season are both primary
models and influence the value of the statistical parameters for the secondary models.
Whilst the (secondary) road and weather parameters depend only on the respective pri-
mary model, the traffic ones are determined by the road type and season simultaneously.
Figure adapted from Paper 2.

Stop signs, give way signs, traffic lights and speed bumps

These entities are introduced simultaneously, since they behave in a similar way (Pettersson
2019; Pettersson, Johannesson, et al. 2019). They may be regarded as discrete entities
and modelled in three parts: location, recommended speed and standstill time.

Starting from the sign locations, the collection of consecutive positions may be modelled
as a sequence of random variables {Xk} and treated as events scattered randomly between
the start and end points. In this model, the road is partitioned into short segments, and
thus the probability of occurrence of an event is only determined by the length of each
segment. The simplest stochastic model with this property is the Poisson process (see
Eq. (A.22) in Appendix A for further clarifications). The position of the events may be
characterised by considering the difference between two consecutive occurrences:

Xk+1 −Xk ∼ E(λs), (2.15)

where E is the exponential distribution and λs is the intensity, interpreted as the mean
number of events per unit of distance. Naturally, there is one intensity for each property.

At any given location k, the event has two additional properties: standstill time Tk and
recommended speed Vk. For both the parameters, Pettersson, Johannesson, et al. (2019)
propose to use a uniformly-distributed random number. In particular, the standstill time
is allowed to range between a minimum tmin and maximum tmax:

Tk ∼ U
(
tmin, tmax

)
. (2.16)
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Similarly, the recommended speed is uniformly-distributed between a minimum vmin and
maximum vmax:

Vk ∼ U
(
vmin, vmax

)
. (2.17)

The five numeric values describing the intensity, standstill time bounds and recommended
speed bounds fully describe the give way sign model. The stop sign model is fully
parametrised by the intensity and standstill time bounds values.

Speed signs and ground type

These road properties behave as piecewise constant, right-side continuous functions of the
position. Since the same stochastic model is used for both entities, we will only discuss the
speed signs. These are treated as a random process V = V (x) along the position x ∈ R
on the road. The variable V (x) is only allowed to take discrete values in the state space
SV = {v1, ..., vnv}, where nv denotes the finite number of possible speed limits. The entire
process is then split in two parts and modelled as a sequence of positions {Xk}, with the
locations of the signs, and a sequence of speeds {Vk}.

It is also assumed that the current speed limit exerts the greater part of the influence
on the upcoming limit. Therefore, we may approximate the probability of the speed limit
occurrence as follows:

P
(
Vk+1 = vi,k+1

∣∣∣V1 = vi,1, V2 = vi,2, . . . , Vk = vi,k
)
≈ P

(
Vk+1 = vi,k+1

∣∣∣Vk = vi,k
)
. (2.18)

The above Eq. (2.18) satisfies the Markov property A.2.1, and enables us to model the
sequence as a Markov chain (the reader is referred to the Appendix A for a friendly
introduction to the topic). Like the continuous process V (x), the state space of {Vk} refers
to the possible speed limits already mentioned. Furthermore, since every new speed limit
requires a sign to announce it, the model is embedded in that of the sign locations, so
k ∈ N.

The Markov probability matrix PV ∈ Rnv×nv fully characterises such a chain. An entry
pV ij describes the probability of transitioning from state i to state j. This description
may be reduced further by noticing that the speed limit model is embedded in that of the
locations and there are no self-transitions, so all diagonal elements vanish, i.e. pV ii = 0.
The off-diagonal elements may then be described as the observed number of changes fV ij
between states i and j:

pV ij = fV ij
nv∑
j=1

fV ij
. (2.19)

The speed sign locations may be modelled as in Eq. (2.15). However, each state is
expected to have its own intensity: nv states introduces nv intensities λ1, ..., λnv . Lastly,
we introduce the mean length Lmi of speed limit vi,

Lmi = 1
λi
. (2.20)

Thus, the complete description consists of the matrix fV ij and the nv mean lengths Lmi.
The modelling of the road type follows automatically. It may be represented as a

stochastic process starting from the speed limit (Ntziachristos and Samaras 2018). If
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Road type

Urban Rural Highway

Curviness
λC , σ2

C , . . .

Stop signs

λs, tmax, tmin

Speed signs

Lmi, fV ij

Topography

Lh, σ2
Y

. . .

Primary model
Define the sequences
of road types

Secondary models
Define the model parameters
in each road type

Figure 2.2: The road type is the primary road model. The other parameters are treated
as ancillary and inherit their values depending on the road type. Figure adapted from
Paper 1.

we postulate the existence of nr different road types {r1, ..., rnr}, there need to be nr − 1
characteristic speeds {v1, ..., vnr−1}, ordered in ascending magnitude. The road type rt at
any point x would then be given by the speed limit v(x) at this point through

rt(x) =


r1, v ≤ v1,

ri, i : vi−1 < v ≤ vi, i = 2, ..., nr − 1,
rnr vnr−1 < v.

(2.21)

The road type itself becomes a piecewise constant function of the speed limit, and the
speed limit sign is a piecewise constant function of the position. Therefore, the road type is
modelled analogously to the speed sign, and is fully parametrised by the nr mean lengths
Lmi and the hollow matrix Fr ∈ Rnr×nr , whose entries are elements frij similarly defined
as those in Eq. (2.19).

In Fig. 2.2 a schematic of the hierarchical structure of the sOC is shown graphically
for nr = 3 (urban, rural and highway).

Topography

The models for topography are borrowed from Johannesson, Podgórski, and Rychlik (2017)
and Johannesson, Podgórski, Rychlik, and Shariati (2016). The road is partitioned into
short segments k and the road gradient {Yk} is treated as a random variable on each k.
The topography is then modelled by using a first order autoregressive AR(1) process as
follows:

Yk = φY Yk−1 + eY,k, eY,k ∼ N
(
0, σ2

eY

)
, (2.22)
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where N denotes the normal distribution and φY and σeY are the two characteristic
parameters. The autoregression parameter φY may be written in terms of a hill length Lh:

Lh = 4π
π − 2 arcsinαLs. (2.23)

The error variance σeY may be also expressed as a topography amplitude:

σ2
Y =

σ2
eY

1− φ2
Y

. (2.24)

The parameters Lh and σ2
Y are sufficient to parametrise the topography model.

Curviness

A curve may be modelled as an independent event having a location, curvature (inverted
radius) and length. Pettersson, Johannesson, et al. (2019) refer to this type of description
as the curviness of the road and denote the sequence by {Xk, Ck, Lk}. The locations X
are modelled as a Poisson process obeying Eq. (2.15), with intensity λC . The curvature C
is modelled as a modified log-normal distribution:

R′ = 1/C − rturn, logR′ ∼ N
(
µC , σ

2
C

)
, (2.25)

with parameters λC , σ2
C and minimum curve radius rturn. The curve length L is then

modelled as a log-normal distribution of the type

logL ∼ N
(
µL, σ

2
L

)
, (2.26)

with parameters µL and σ2
L. Together, these six values fully parametrise the curviness

model.

Road roughness

The model for road roughness is not treated here and the reader is referred to Johannesson,
Podgórski, and Rychlik (2016) for additional details.

2.3.3 Secondary weather models

At present, the secondary weather models include ambient temperature, atmospheric
pressure, precipitation, wind velocity and relative humidity. These models have been
introduced by the author in Paper 2. The major assumption is that the weather properties
can be assumed to remain (approximately) constant in space. Therefore, only the explicit
dependence on time is modelled.
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Season
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Atm. pressure

cP , φPj , θPi, . . .

Relative humidity

µΨ, φΨ, σ2
eΨ , . . .

Temperature
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Define the season

Secondary models
Define the model parameters
for each season

Figure 2.3: The season is the primary weather model. The other parameters are treated
as ancillary and inherit their values depending on the season.

Air temperature and relative humidity

Air temperature and relative humidity exhibit seasonal trends which are deterministic in
nature (Eymen and Köylü 2019; Liu et al. 2018). Therefore, for both physical quantities,
whose sequences are denoted by {Tair,k} and {ΨRH,k} respectively, a distinction is made
between a deterministic component (which tries to capture the diurnal and seasonal trends)
and a stochastic one (which replicates the random variations occurring during the day).
The complete models are thus assumed to be of the form:

Tair,k = µT + Td sin
(
ωddd[t] + ϕTd

)
+ Ty sin

(
ωydy[t] + ϕTy

)
+ T̃k, (2.27a)

ΨRH,k = µΨ + Ψd sin
(
ωddd[t] + ϕΨd

)
+ Ψy sin

(
ωydy[t] + ϕΨy

)
+ Ψ̃k, (2.27b)

where ωd = 2π/24 and ωy = 2π/365 are the daily and annual frequencies of the periodic
signal, and dd[t] and dy[t] are the daily mod and annual ceiling operators (Liu et al. 2018),
defined respectively as:

dd[t] = (tmod 24), (2.28a)

dy[t] =
⌈
t

24

⌉
. (2.28b)

In Eqs. (2.27), the quantities µT and µΨ represent the average temperature and humidity
over the year; the amplitudes Td, Ty and Ψd, Ψy model the daily and annual deterministic
trends, whilst the random variables T̃k and Ψ̃k capture the residuals (Box et al. 2015).
More specifically, a simple AR(1) process is used to model the stochastic components, i.e.

T̃k = φT T̃k−1 + eT,k, eT,k ∼ N
(

0, σ2
eT

)
, (2.29a)
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Ψ̃k = φΨ Ψ̃k−1 + eΨ,k, eΨ,k ∼ N
(

0, σ2
eΨ

)
, (2.29b)

where the characteristic parameters are φT , σ2
eT

and φΨ , σ2
eΨ
.

It is worth pointing out that the deterministic components for both models are
calculated over the year, and therefore the parameters µT , µΨ , Td, Td, Ψd, Ψy, ϕTd , ϕTy and
ϕΨd , ϕΨy are independent of the seasonal settings. Conversely, the stochastic parameters
φT , φΨ , σ2

eT
and σ2

eΨ
inherit their values from the specific season, which is the primary

weather model.

Atmospheric pressure

The model for atmospheric pressure is based on that by La Rocca et al. (2010) and consists
of an ARIMA(p, d, q) process:

φP (L)(1− L)dPair,k = cP + θP (L)eP,k, eP,k ∼ N
(

0, σ2
eP

)
, (2.30)

where φP (L) is a stable degree p AR lag operator polynomial and θP (L) is an invertible
degree q MA operator polynomial. To summarise, the model for atmospheric pressure is
fully parametrised by the constant term cP , the autoregressive coefficients φPj, j = 1, . . . , p,
the moving average coefficients θPi, i = 1, . . . , q and the innovation variance σ2

eP
.

Precipitation occurrence and amount

The sequence for the atmospheric precipitation is modelled in a two-step process. In the
first step, the occurrence of the event {Hp,k} is simulated, and then a suitable probability
distribution is used to fit the intensity {Λp,k}, which corresponds to the precipitation
amount. The occurrence is modelled using a Markov chain with fixed interval length,
similarly to what done in Chin (1977) and Gabriel and Neumann (1962). The stochastic
variable Hp,k is allowed to take states from the discrete space {1, 2}, where 1 and 2 are the
labels for the dry and wet events, respectively. In analogy to Eq. (2.18), the precipitation
occurrence is also assumed to satisfy the Markov property A.2.1:

P
(
Hp,k = hp,k

∣∣∣Hp,1 = hp,1, Hp,2 = hp,2, . . . , Hp,k−1 = hp,k−1
)

≈ P
(
Hp,k = hp,k

∣∣∣Hp,k−1 = hp,k−1
)
.

(2.31)

Furthermore, for the case under consideration, we have only two states, and hence the
Markov matrix associated to the process PH ∈ R2×2 collects four entries in total. From
Eq. (A.21), we may easily deduce:

pH12 = 1− pH11, (2.32a)
pH21 = 1− pH22. (2.32b)

Thus, only the transition probabilities pH11 and pH22 need to be estimated to completely
characterise the model. The estimation may be carried out considering the two ratios

pH11 = fH11/(fH11 + fH12), (2.33a)
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pH22 = fH22/(fH21 + fH22). (2.33b)

The interpretation in physical terms of the coefficients fHij appearing in (2.33) is quite
straightforward. For example, the coefficient fH11 represents the number of dry intervals
preceded by dry intervals, whilst fH12 the number of wet intervals preceded by dry ones.
Therefore, the coefficient fHij are used to parametrise the precipitation occurrence, since
they are easier to understand.

Finally, when the wet event occurs a Gamma distribution is used to model the intensity
of the precipitation (Husak et al. 2007; Kumar et al. 2017):

Λp,k ∼ Ga
(
αΛp , βΛp

)
. (2.34)

The precipitation model is hence described fully by the coefficients fHij and the shape
and rate parameters αΛp and βΛp .

Wind speed and direction

For wind modelling, different approaches have been proposed in the literature, including
hybrid and complex multivariate formulations (Cadenas et al. 2016; Hocaoğlu et al. 2010).
The main complication when dealing with this parameter is that wind speed and direction
often exhibit a strong correlation. Hence, the two signal need to be modelled properly
by taking into account their mutual interaction. A natural (and simple) possibility is to
resort to a VAR model, which extends the standard notion of an autoregressive series by
coupling different random processes. It may be written:

Φw(L)Yw,k = cw + ew,k, (2.35)

where the vector Yw,k =
[
Vw,k Θw,k

]T
collects the wind speed Vw,k and direction Θw,k

at each discrete time step k, the parameter cw ∈ R2 represents a constant offset and
ew,k ∈ R2 is the vector of normally distributed innovations with covariance matrix given
by Σew ∈ R2×2. Finally, the matrix operator Φw(L) reads

Φw(L) = I−
p∑
j=1

ΦwjL
j, (2.36)

in which every Φwj ∈ R2×2 is a matrix of AR coefficients. An intermediate step is needed
for the wind direction, which is a circular variable. This require the knowledge of the mean
wind direction µΘw . Further details are are given in Erdem and Shi (2011) and Fisher
(1993). To summarise, the wind model is fully described by the average direction µΘw , the
constant term cw, the error covariance matrix Σew and the autoregressive matrices Φwj,
j = 1, . . . , p.

2.3.4 Secondary traffic model
Average characteristics of vehicular traffic are important when it comes to assessing energy
efficiency (Sciarretta 2020). The customary approach consists of describing traffic by
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means of macroscopic variables. The three main variables to consider are the traffic density
ρt(x, t), expressed as a number of vehicles per distance, the traffic speed vt(x, t), and the
traffic flow qt(x, t) = ρt(s, t)vt(x, t), usually measured in number of vehicles per unit of
time.

The secondary traffic model has been developed in Paper 2 under the assumption
of stationary flow. In this case, density and speed are correlated, and thus only one
independent variable is needed to completely describe the traffic state. In our case, the
chosen quantity is the traffic density. This is characterised by a deterministic diurnal
component and thus, for each combination of road type, speed sign and season, the
sequence {ρt,k} is modelled as follows:

ρt,k = µρ + ρd sin
(
ωddd[t] + ϕρd

)
+ ρ̃k, (2.37)

where µρ is the average density on a specific road segment during the season, ρd is the
amplitude of the daily variation, ωd = 2π/24 is again the the daily frequency, ϕρd the
initial phase and ρ̃k represents the stochastic component. For the latter, a simple AR(1)
process is used, i.e.

ρ̃k = φρρ̃k−1 + eρ,k, eρ,k ∼ N
(

0, σ2
eρ

)
. (2.38)

Assuming the traffic to be stationary and homogeneous on each road segment between
the two discrete times k and k + 1, an equilibrium relationship between the traffic density
and speed may be then postulated in the form vt(x, t) = ve(ρt(x, t)) = f(ρt(x, t)). The
relationship ve(ρt(x, t)) = f(ρt(x, t)) constitutes the so-called fundamental diagram of the
traffic flow and is specifically given for a road type. In the literature, different possible
models have been proposed to capture the dependency of the equilibrium speed on the
traffic density, mostly based on empirical fitting (see Kessels (2019) for an introduction).
Specifically, the simplest possible model, known as Greenshield’s fundamental diagram,
yields

ve
(
ρt(s, t)

)
= vf

(
1− ρt(s, t)

ρc

)
, (2.39)

where vf represents the free-flow speed, i.e. the traffic speed corresponding to have almost
no vehicle on the road, and ρc is the critical density. Equation (2.39) has been used in Paper
2, but other choices are also possible. However, if more complex formulations are preferred,
the number of parameters might increase. Assuming Eq. (2.39) for the equilibrium
relationship, the traffic density model is described completely by the parameters µρ, ρd,
ϕρd and σ2

eρ , which are function of both the road type and season, and the fundamental
ones ve and ρc, which only vary depending on the road properties.

The stochastic models for road, weather and traffic are finally summarised in Tab. 2.1.

2.4 The deterministic operating cycle
Compared to the first two types of representation already discussed, the deterministic
operating cycle (dOC) describes the mission and the external environment with higher
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Table 2.1: Summary of sOC parameters.

Model Category Model type Number Number
of states of parameters

Road type Road Markov process nr n2
r

Stop signs Road Marked Poisson Continuous 3
Give way signs Road Marked Poisson Continuous 5
Traffic lights Road Marked Poisson Continuous 5
Speed bumps Road Marked Poisson Continuous 3
Speed signs Road Markov process nv n2

v

Topography Road Gaussian AR(1) Continuous 2
Curviness Road Marked Poisson Continuous 6
Road roughness Road Laplace AR(1) Continuous 2
Temperature Weather Deterministic Continuous 5

Gaussian AR(1) Continuous 2
Relative Weather Deterministic Continuous 5
humidity Gaussian AR(1) Continuous 2
Atmospheric Weather Gaussian ARIMA(p, d, q) Continuous 2 + p+ q
pressure
Precipitation Weather Markov process 2 4

Gamma distributed − 2
Wind speed Weather Gaussain VAR(p) Continuous 6 + 4p
and direction
Traffic Traffic Deterministic Continuous 5
density Gaussian AR(1) Continuous 2

accuracy. The dOC is the most adequate way of modelling an operating cycle when it
comes to simulation. The central idea is that it may serve as a virtual environment for
realistic prediction of road vehicles performance, virtual testing and design of control
algorithms and development of ad-hoc functions.

In the dOC, the same four different categories defined for the sOC, namely the road,
traffic, weather and mission, are kept. For each of them, a different set of parameters is
used. These correspond to the physical quantities which were regarded as models in the
sOC representation8, and are defined as discrete functions of time and position. Some
parameters are only made dependent on either the position or the time, some others, like
the ones marked in the traffic category, depend on both. Additionally, each parameter
may be represented by a scalar or a vector-valued signal (see dimensionality in Tab. 2.2).
Any value in between two different discrete times (or positions) may be computed by
interpolation using the corresponding model in Tab. 2.2. For the motivation behind the
choice of the specific interpolation strategy for individual parameters, the reader is referred
to Pettersson, Berglund, et al. (2019). To formalise the dOC format mathematically,
the four categories (see Tab. 2.2) may be defined as the sets containing the parameter

8The relationship between the role of a physical quantity in the sOC and dOC representations is
perhaps better understood from Tab. 2.2, where each entity is labelled under model for the sOC and
parameter for the dOC.
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Table 2.2: Stochastic (secondary) models and deterministic parameters (dOC parameters)
for the sOC and dOC representations. Linear and constant refer to linear and right-side
continuous piecewise constant interpolation models, respectively. The mathematical
model of Dirac delta occurs when the parameter is regarded as an isolated event.

Model Category Type Interpolation Dim Quantity
or parameter model
Speed signs Road Function Constant 1 Speed limit
Altitude Road Function Linear 1 Vertical coordinate
Curvature Road Function Linear 1 Curvature
Ground type Road Function Constant 2 Surface type, cone index
Roughness Road Function Constant 2 Waviness, roughness coeff.
Stop signs Road Event Dirac delta 1 Standstill time
Traffic lights Road Event Dirac delta 1 Standstill time
Give way signs Road Event Dirac delta 1 Standstill time
Speed bumps Road Event Dirac delta 3 Length, height

angle of approach
Longitude Road Function Linear 1 WGS84 longitude
Latitude Road Function Linear 1 WGS84 latitude
Ambient temperature Weather Function Linear 1 Temperature
Atmospheric pressure Weather Function Linear 1 Pressure
Precipitation Weather Function Constant 1 Precipitation amount
Wind velocity Weather Function Constant 2 Velocity vector
Relative humidity Weather Function Linear 1 Humidity
Traffic density Traffic Function Constant 1 Density
Mission stops Mission Event Dirac delta 1 Standstill time
Cargo weight Mission Function, Linear, 1 Payload

event constant
Power take-off Mission Function Linear 1 Output power
Charging power Mission Function Constant 1 Input power
Travel direction Mission Function Constant 1 Driving direction

sequences: Rd is the set containing all sequences labelled as road, Wd for weather, Td for
traffic andMd for mission. Then, the dOC format may be defined mathematically as the
collection of sets:

OCd = {Rd,Wd, Td,Md}, (2.40)
and interpolation may be defined as an operator acting on the elements in the sets. However,
Eq. (2.40) is only an elegant formalism: it describes the dOC as an algebraic structure,
but does not bring much more information about it. The deterministic parameters are
simply defined on different spaces, where the relative interpolation operators are allowed
to act.

The dOC format provides a detailed view on individual transport operations without
making any assumptions about the driver or the vehicle. Furthermore, it is built in a
modular way such that parameters may be easily modified, added or removed. To be
useful in simulation, the dOC format must be integrated with suitable dynamic models for
vehicle and driver. In the context of this thesis work, this has been done by resorting to
the VehProp environment, which is an open platform9. This has been firstly conceived by

9Available from: http://www.chalmers.se/en/departments/m2/research/veas/Pages/VehProp.
aspx.

http://www.chalmers.se/en/departments/m2/research/veas/Pages/VehProp.aspx
http://www.chalmers.se/en/departments/m2/research/veas/Pages/VehProp.aspx
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Jacobson et al. (n.d.) and then further extended by Pettersson and the author himself to
support the dOC framework. A detailed description of VehProp is beyond the scope of this
thesis, but it might be beneficial to briefly comment on how the dOC parameters may be
used in practice to reflect variation in usage. A straightforward way to consider the influence
from the different physical entities listed in Tab. 2.2 is to use an interpretative driver
model, which reacts to the external stimuli and sets his reference speed accordingly. This
idea, borrowed from Eriksson (1997) and Michon (1985), has been refined by Pettersson
(2019). In this context, the complete set of functions currently used to feed the driver
model is listed in Pettersson (ibid.) and not reported here for brevity. Limiting ourselves
to an illustrative example, we shall refer to Eq. (2.39) to account for variation in (desired)
speed due to external traffic conditions. Looking at the structure of Eq. (2.39), it becomes
obvious that the driver’s reference speed reduces as the vehicular density increases. An
analogous reasoning may be extended to any dOC parameter which correlates with a
corresponding target speed, provided that a suitable model has been formulated.

2.5 Relationship between the representations
The three levels of representation discussed so far are intrinsically related, and ordered in
a pyramidal structure, as shown graphically in Fig. 2.4.

The first connection which we shall explore is that between the bird’s eye view and
the sOC. They are both statistical descriptions, but with considerably different resolution.
Indeed, whilst the bird’s eye view is mainly limited to encompass an entire transport
application, the sOC targets individual missions. The formal relationship existing between
the two levels may be clarified by looking at the GTA classes introduced previously. With
the topography as an example, it is possible to estimate the process variances which yield
the thresholds set by the GTA classification system. The calculations have been carried
out by Pettersson, Johannesson, et al. (2019) and are not reported here, but the results
are listed in Tab. 2.3. Given an sOC, we may thus deduce the corresponding GTA class

Table 2.3: Equivalence between GTA topography class and topography amplitude in
the sOC description.

Variance GTA class
σ2
Y < 1.66 FLAT

1.66 ≤ σ2
Y < 6.65 P-FLAT

6.65 ≤ σ2
Y < 14.98 HILLY

14.98 ≤ σ2
Y V-HILLY

directly by inspection of Tab. 2.3. The inverse operation is not possible since, for a
predetermined GTA class, there exist infinite different sOCs. This kind of non-bijective
relationship in the descending direction also persists at the lower level between the sOC
and dOC representations. Indeed, a dOC may be interpreted as a single realisation of an
sOC, given a set of stochastic parameters. Two dOCs originating from the same sOC are
thus equivalent in a statistical sense, but can be significantly different in practice. This
implies again that the map between an sOC and a dOC is never bijective. The relationship
in the opposite direction is simple to grasp: given a dOC, it is possible to estimate the
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corresponding stochastic parameters and hence obtain an equivalent description in terms
of an sOC, as illustrated also in Fig. 2.4. The connection between the sOC and dOC

GTA topography
Hilly

OCs

σ2
Y = 6.65

OCs

σ2
Y = 14.98

OCd OCdOCd OCd OCd OCdOCdOCdOCd

The bird’s eye view

The sOC format

The dOC format

unique
interpretation

unique
estimation

example
selection

random
generation

Figure 2.4: Schematic representation of the pyramidal structure of an OC. All the
missions being equivalent in the sense of a GTA class belong to the same transport
application (the bird’s eye view). The individual statistical properties may however
differ within the transport application (sOC). Finally, transport missions can be statis-
tically equivalent but significantly different in practice. This is captured by the dOC
representation.

descriptions plays a fundamental role in product development and selection, since an
sOC may be translated into a multitude of deterministic representations. This is done by
generating synthetic dOCs whose parameters are interpreted as individual realisations of
the corresponding stochastic models. In turn, each dOC may be used in combination with
virtual models for vehicle and driver, allowing for accurate prediction, design optimisation
and function development.





Chapter 3

A case study in product selection

We have outlined the theoretical foundation of the operating cycle format, and the
relationships existing between the three levels of representation. Conceptually, the edifice
constructed so far seem to be solid and well-grounded, but its concrete potential still
deserves to be exemplified. The applicability of the OC description extends to a wide
variety of applications, spacing from theoretical studies, like pure optimisation, to more
practical situations requiring a strict interaction between the stakeholders. In this context,
the aim of the present chapter is to illustrate how the OC framework can be used in
practice. Optimisation problems cover a domain which is immensely vast per se, and the
benefits of using the OC descriptions are not explored here. Instead, we shall consider
the simpler example of product selection. The following discussion retraces what already
investigated in Paper 1.

3.1 Background
Let us think of a road operator which is mainly active in the construction sector within a
large area around Göteborg, Sweden. The owner needs to purchase a new vehicle. The
current truck is a Volvo FH16 750, and is mainly used to load and unload gravel, and often
it comes equipped with a trailer. In replacing the current vehicle, the road operator aims
at saving as much fuel as possible and minimising the emissions. The candidate vehicles
are another (identical but new) Volvo FH16 750, and a Volvo FH13 540, equipped with a
smaller engine. The complete specifications of both configurations are not reported here
for brevity, but can be found in the Volvo datasheets1.

From February to May 2020, the truck delivers a bunch of files logged during its
daily transport operations, covering a wide spectrum of road missions, with different
characteristics. The log data collected from the truck can be converted into mathematical
descriptions, statistical or deterministic, as already explained in Chap. 2. This conversion
may be carried out sequentially, starting with the bird’s eye view description which is
used to select reference transport applications. These are translated into a dOC, and
then back again to the upper hierarchical level into an sOC. From the sOC description,

1Available from: https://www.volvotrucks.se/sv-se/trucks/trucks/volvo-fh16/
specifications/data-sheets.html.
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https://www.volvotrucks.se/sv-se/trucks/trucks/volvo-fh16/specifications/data-sheets.html
https://www.volvotrucks.se/sv-se/trucks/trucks/volvo-fh16/specifications/data-sheets.html
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new transport missions – in the form of synthetic dOCs – may be generated which share
the same statistical properties of the original one. This enables to create a statistical
representation of the vehicle usage, which may be employed to investigate both usage and
variation.

Once a mathematical description of a road transport mission is available, a comparison
amongst different vehicle designs may be made to assess their performance. In our case,
the aim is to investigate which configuration – FH16 750 or FH13 540 – exhibits lower
fuel consumption and the CO2 emissions, given a known dataset of road operations.

In the iter outlined above, the most delicate part is perhaps to carefully select the
reference missions such that they are representative of the overall usage. From a statistical
viewpoint, this translates into the more formal problem of finding suitable metrics and
thresholds which completely describe the transport application. Another aspect to consider
is that the classification problem grows with combinatorial complexity. Therefore, it may
be beneficial to systematically exclude from the analysis those parameters which are
expected to only have a small influence upon the identified metrics. In some cases, as in
Paper 1, an heuristic approach might eventually be preferred, but more scientific ways of
selecting such missions should also be explored.

In the following we will explain how to take advantage of the three levels of represen-
tation – the bird’s eye view, the sOC and the dOC – to fully characterise the transport
application in a simple and efficient way.

3.2 A three-level description
The first step should consist of a preliminary analysis about the statistical distribution
of the available road missions. This allows to identify a restricted number of transport
applications, to which the vehicle’s design may be tailored.

The brid’s eye view and the sOC play both a major role in this process. As already
discussed, there exists a non-bijective relationship between the two levels of descriptions,
which enables to classify a transport mission based on its statistical properties. As an
example, let us consider only three parameters, as done in Paper 1: road grade, mission
length and duration (in time). With reference to the first property, it has been shown
that, when an AR(1) process is used to model to topography, each GTA class sets lower
and upper bounds only on the variance σ2

Y . Therefore, estimating the value of σ2
Y for a

mission is automatically equivalent to label it under one of the classes listed in Tab. 2.3.
This can be done also for the other parameters, resulting into a matrix which condenses
the statistical properties of different transport applications.

In Tab. 3.1, the final distribution from 163 files delivered by the truck operator are
grouped into a matrix-like fashion. An alternative (graphical) representation is illustrated
in Fig. 3.1, together with three selected reference missions.

From Tab. 3.1, it emerges that, for the case-study under consideration, there is
approximately the same number of P-FLAT and HILLY missions, whereas the V-HILLY
missions are slightly fewer. Recalling the example of Paper 1, it seemed legitimate to select
one mission from each topography class. Furthermore, the first cell, i.e. the cell with the
shortest distance and duration, is the mode cell for all classes and thus a reference mission
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Figure 3.1: A 3D stacked bar chart displaying the mission distribution based on the
classification description. A mission have been picked from each suggested bar marked
in green. Figure adapted from Paper 1.

Table 3.1: Characteristics of the reference missions.

Mission 1 Mission 2 Mission 3
Topography: V-HILLY HILLY P-FLAT
Distance: 39 km 67.2 km 17.4 km
Duration: 0.9 h 2.15 h 0.6 h

from that combination was also picked. The corresponding blocks are highlighted in light
green in Fig. 3.1.

Once the reference missions have been selected, the corresponding dOCs can be built
starting from the deterministic models listed in Tab. 2.2. The estimation procedure
for the sOC parameters might differ considerably depending on the category. For some
parameters, like topography and curvature, the estimation may be carried out starting from
available signals measured by on-board sensors using the WAFO2 package implemented in
MATLAB R©. This approach is the one also followed in ibid. and in Paper 1.

On the other hand, the extraction of parameters like legal speed, stop sign, traffic light
and give way sign must be usually retrieved manually. Analogously, detailed information
about weather and traffic conditions is often not available directly from log data, and must
be supplemented using external sources. This can be certainly done if the GPS coordinates
and the exact daytime of the mission are known. The most intuitive and simple choice is

2Available from: http://www.maths.lth.se/matstat/wafo/.

http://www.maths.lth.se/matstat/wafo/


34 3.2. A three-level description

perhaps to resort to external databases which offer data free to download. Some examples
are the SMHI service3 and Trafikverket database4, which collect weather and traffic data
at a fixed time resolution (usually one hour). This is particularly practical when it comes
to analysing transport operations which take place within a well-defined geographical
area, for which the weather parameters can be assumed remain approximately constant.
If the road operations extend into a larger area, an option is to build a weather map by
combining information collected from several station. The practical aspects connected
with the parametrisation of the weather and traffic models are omitted here for brevity,
but discussed extensively in Paper 2.

For each fully parametrised dOC, there is an equivalent statistical description in the
form of an sOC, as already explained in Sect. 2.5. The relationship between the dOC and
sOC representations is injective the ascending direction, and therefore a unique set of sOC
parameters can always be determined starting from a given dOC. This allows to construct
new sequences by generating random numbers from known probability distributions. Figure
3.2 illustrates schematically the typical workflow which synthesises a reference dOC starting
from the corresponding statistical description.

The primary models for road and weather are firstly generated over a specified mission
distance, which is prescribed by the user and later on included amongst the mission
parameters. To allow for fair comparison, the mission length may be defined so as to
match the original distance travelled by the vehicle in the reference mission. The number
of days to be simulated is another input to the process, which accordingly generates the
weather and traffic timeseries over a finite horizon. For this operation, the time resolution
must be the same as the one used to parametrise each sOC model. The primary models
are also generated simultaneously, since no explicit interaction is expected between the
primary weather and traffic categories. It is worth mentioning that, whilst the overall road
consists of a sequence of road types, the season can be generally assumed to be constant
over the mission. Both models are simulated depending on their stationary distribution,
which may be deduced from the models introduced in Sect. 2.3. Finally, the timeseries
for the secondary models are simulated. This step is carried out using again the ad-hoc
WAFO package and the Econometric Toolbox5. The sequences obtained by means of
this procedure need to be converted into the dOC language. For example, curvature and
topography are translated into curviness and altitude; similarly, wind speed (in magnitude)
and direction are instead reformulated in terms of velocity vector, where the components
are specified. Furthermore, the wind speed is usually measured at weather stations at
approximately 10 m above the ground, and therefore the value must be converted to
ground level. This usually done employing empirical relationships such as the logarithmic
speed profile (Tennekes 1973). From the signed curvature, the actual road profile and the
tangent vector to the trajectory are also deduced by numerical integration. This step is
crucial since it allows to compute the relative direction between the vehicle and the wind
velocity vector. The dOC parameters, plus their location in either space or time (or both
for the traffic density), are finally encoded in the dOC description and tabulated.

3Available from: https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,
proxy=wpt-a,tab=vader,param=t.

4Available from: https://vtf.trafikverket.se/SeTrafikinformation.
5Available from: https://se.mathworks.com/products/econometrics.html.

https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=t
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=t
https://vtf.trafikverket.se/SeTrafikinformation
https://se.mathworks.com/products/econometrics.html
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Figure 3.2: Process of generation of a deterministic operating cycle (dOC) from a
stochastic one (sOC). The mission category is assigned a priori and matches the
characteristics of the reference dOC. All the other models are generated stochastically.
It must be noticed that a conversion is needed between the sOC models and the
corresponding dOC parameters. Figure adapted from Paper 2.

In Paper 1, 200 new cycles (which we can think of as individual realisation) were
generated from each sOC, summing up to 600 synthetic missions in total. The dOCs were
also mirrored to ensure the preservation of the total potential (gravitational) energy.

3.3 Simulation results
The dOCs (either original or synthetic) may be used as an input to a complete simulation
model for longitudinal vehicle dynamics, for example the already mentioned VehProp
environment (Pettersson, Jacobson, et al. 2016). This allows for straightforward comparison
between different configurations, in our case the two trucks FH16 750 and FH13 540. In
the example taken from Paper 1, the chosen metric was the fuel consumption, expressed
as l 10−1km−16.

Here we adopt the same criterion for comparison. The distribution in performance may
be obtained by considering the output from each simulated dOC as a different realisation
of the process, as represented schematically in Fig. 3.3. In this context, it is expected that
different vehicle designs produce different distributions of fuel consumption. Simulation

610 km correspond to one Swedish mil.
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Figure 3.3: A stochastic operating cycle (sOC) can be used to synthesise different
deterministic realisations (dOCs) which share the same statistical properties. The
distribution in fuel consumption produced by a specific combination of sOC parameters
and vehicle’s specification can be evaluated by simulating each dOC and clustering the
output data. Figure adapted from Paper 2.

results confirm this prediction, as it may be observed by looking at Fig. 3.4, where the
histograms refer to the numbers originating from the synthetic operating cycles. These are
modelled exactly in the same way, without any kind of contamination from the vehicle itself.
Generally speaking, it was possible to conclude that the FH13 540 (orange histograms)
outperforms the FH16 750 (blue histograms) in terms of energy efficiency. In particular,
the mean value µ is lower for the FH13 540 for all the reference missions. In the case study
of Paper 1, it could then be concluded that, using the fuel consumption as unique metric
for comparison, the FH13 540 configuration would be preferable to purchase. There are of
course, other important criteria to consider when comparing the two trucks. These were
accounted also for in Paper 1.

The example presented in this chapter demonstrates that the simulation concept with
the OC format can work in practice. It also shows that each level of description fulfills its
own function: the bird’s eye view can be used as a classification method to group individual
missions into transport applications; the sOC representation allows to predict any spread in
performance which can be expected depending on the vehicle design; the dOC description
is the natural connection between the abstract model and the real operation, and serves
as main tool for both estimation and validation purposes.
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Figure 3.4: Dual histogram of the generated mission distributions for fuel consumption
for both trucks. Blue: FH16 750; orange: FH13 540. Figure adapted from Paper 1.





Chapter 4

Discussion, conclusions and future
research

In this chapter we summarise the main results of the thesis, with an outlook to future
research.

4.1 Discussion and conclusions
In the introduction, two main research objectives were identified. The first was related
to the pure representation problem and was mainly theoretical in nature; the second
concerned the practical usefulness of the OC description, in conjunction with its concrete
applicability.

To address the first issue, we have extended the OC format to include new stochastic
parameters for the weather and traffic categories. These have been introduced in Paper 2
and discussed in more general terms in Chap. 2. To establish a continuity with the original
sOC formulation, simple autoregressive models have been preferred. The outcome is an
enriched collection of stochastic models and parameters, which can be used to describe the
statistical properties of a transport mission. The enhanced framework has been conceived
to allow for modularity, and to preserve the mutual independence between the preexisting
road model and the new ones. At the same time, parsimony has been achieved by defining a
new primary model for the weather category: seasonality. In this way, it has been possible
to introduce a high level of diversification without resorting to complicated multivariate
formulations.

Starting from the novel sOC description, synthetic operating cycles may be generated
which are able to reproduce dynamically the weather and traffic characteristics. These
may be used as a virtual environment for detailed vehicle dynamics simulations. An
investigation on the effect of the weather and traffic settings on the vehicle’s performance
has been presented in Paper 2. More specifically, a categorical analysis has been made
to assess the influence from seasonality and traffic regime (free or congested) on the CO2
emissions. It has been shown that both factors play a major role in determining the
vehicle’s response, but simulations results have not been corroborated experimentally. The
principal reason for which the study has been limited to the theoretical domain is that
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information about weather and traffic conditions is generally not available from log-data,
and needs to be supplemented from external databases.

The main goal of the second part of the thesis was to illustrate how the framework
can be used when it comes to practical applications. The potential of the OC format
was exemplified in a real-world case-study, where all the three levels of descriptions were
employed to different purposes. More specifically, both the bird’s eye view and the sOC
representation were used to address the need for classification. In fact, the strategy
presented in Paper 1 heavily relied on the natural connection between the two levels of
description. Metrics and labels were firstly borrowed from an already existing classification
system (the GTA), and then used to group individual missions into larger classes of
transport applications. This allowed to considerably reduce the complexity of the problem.

At a lower-level, the non-bijective relationship between the sOC and dOC descriptions
was used to synthesise a large number of operating cycles starting from few carefully selected
missions. These dOC were statistically equivalent, but very different in practice. This
intrinsic variation was obviously reflected in the distribution in the vehicle’s performance.
In Paper 1, a comparison between two different truck configurations prospected a potential
saving in fuel consumption (around 10%) for the road operator.

In the case study, the simulation results found a robust confirmation from the experi-
mental data.

Another topic which has been investigated in Paper 3, but only briefly touched upon
in this thesis, relates directly to the physical principles which cause energy loss during
the vehicle’s motion. In particular, the analysis conducted in Paper 3 dealt with the
friction mechanisms taking place at the tyre contact patch. It was shown that the common
approach which estimates the related energy losses by multiplying the longitudinal forces
for the corresponding tyre sliding speeds may be fallacious when severe transients occur.
The phenomenon is rather complex, and deserves to be explored fully.

4.2 Future research
Thus far, this thesis may appear to be an apology of the operating cycle description. Quite
the contrary, it should be regarded instead as a constructive criticism to the OC concept.
Indeed, there are still numerous issues to tackle, and enormous margins of improvement.

To start, one of the greatest limitation of this work is connected with the obvious
lackness of a scientific, exhaustive method to classify road transport missions. The duality
between the bird’s eye view and the sOC has been explored to a large extent, but it is still
unclear whether this approach is generally good, or can be significantly improved. The
metrics and labels used so far have been demonstrated to be representative of variations
in usage, but this is not necessarily reflected upon variations in performance. One obvious
example is the mission length: the total fuel consumed during a trip clearly increases
with the travelled distance, but the fuel consumption is measured per unit of length.
Besides, Pettersson (2019) has shown analytically that the expected fuel consumption is
invariant with respect to the mission length. This may eventually suggest to exclude the
distance from the panorama of useful indicators. Similar considerations might be valid for
other parameters, which anticipate the opportunity of greatly reducing the combinatorial
dimension of the problem.
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How to choose metrics and thresholds is an open and interesting question. One choice
could be to formalise it as an optimisation problem, and then solve it analytically or
numerically. There are different mathematical tools to do that, and different directions
may be explored.

Descending the hierarchical ordering of OC representations, another intriguing option
concerns the stochastic modelling of the mission properties. So far, statistical models have
been introduced almost exclusively for the road, weather and traffic categories. A first
attempt to develop an equivalent description for the mission properties has been made by
Nordström (2020), but only a limited number of features is available at present. With
few exceptions (Kivekäs, Vepsäläinen, and Tammi 2018; Kivekäs, Vepsäläinen, Tammi,
and Anttila 2017), stochastic approaches are not common in this context, and therefore
this could potentially represent a research topic even in isolation. Furthermore, there
is the tangible risk that stochastic models for the mission cannot be developed to be
completely independent on the vehicle itself. Indeed, whilst the road, the weather and
the traffic are separate entities which exist before the transport operation, vehicles are
developed with a specific purpose in mind. From this perspective, the problem complicates
soon when considering that the mission properties should probably be estimated from
log-data, implying unavoidably some sort of contamination. The question seems to be
rather delicate, and dedicated approaches may be required to overcome these difficulties.
Eventually, the same building principles of the OC description might contrast with the
need for a stochastic modelling of the mission. Another important add-on to the current
version of the framework include the external infrastructure, in primis fuel and charging
stations. Whether to include these features amongst the road parameters is debatable,
but the need for stochastic models is quite obvious, especially in conjunction with the
possibility of using the OC format for optimisation analyses (see e.g. Ghandriz 2018, 2020;
Ghandriz, Hellgren, et al. 2016; Ghandriz, Jacobson, Laine, et al. 2020).

In respect to the dOC description, there are several chances of improvement. All
the vehicle models used in this thesis are in fact very simple, with a reduced number of
components. There is nothing really new in this direction however, and the development
of more realistic models should definitely not represent the true core of future research.
The driver constitutes perhaps the unique exception. At present, the model is split
into a tactical and operational part. The former interprets the external stimuli coming
from the environment, and translates them into a desired speed input. Mathematical
relationships have been derived only for some dOC parameters (curviness, speed bumps,
legal speed, traffic density), but other factors might be influential as well. We can think,
for example, to precipitation amount: a driver may prefer to travel slower in case of heavy
rain. Understanding the correlation existing especially between some weather parameters
and the speed set by the driver is an involving task. It can be anticipated that some
relationships will need to be established starting from empirical evidence rather than
deductive principles. In this context, it would be crucial to collect large amount of data to
make statistical inference, or to perform dedicated experiments. Virtual settings built in
a driver simulator are mainly effective to study the influence from road parameters, but
other approaches could be advantageous when it comes to weather or traffic. A preliminary
effort has been already made in this sense, but both aspects need to be explored more in
detail.
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The operational module of the driver is instead based a simple PID controller, which
tries to replicate the human behaviour during normal driving conditions. A possible
direction for future research would be to account for different driving styles. In fact,
several studies have shown that it is possible to distinguish amongst different driver
categories (aggressive, mild, et cetera), but at present only one generic set of parameters
is used.

The last direction which should be indicated is more broadly connected with the overall
idea behind the OC concept. As remarked throughout the whole thesis, the format has
been conceived to assist vehicles manufacturer in product development, from the early
stage to sale phases. We have to some extent illustrated a possible application in the
context of product selection, but a fundamental part of the process is entailed by the pure
development phase. From this perspective, it is clear that the potential of the OC when it
comes to optimisation purposes must still be tested. There are two macro-areas of research
to explore. The first one concerns the possibility of using the OC format offline. The
inspiration comes from mainly recent studies, for example the ones authored by Ghandriz
(2018, 2020), Ghandriz, Hellgren, et al. (2016), and Ghandriz, Jacobson, Laine, et al.
(2020). In most cases, only information about the road grade is included in the modelling
of the environment, whilst it would be beneficial to exploit all the stochastic models
developed so far. This would allow to optimise the vehicle’s configuration considering all
the relevant factors.

The second research opportunity resides in the possibility of using the OC description
(or some methods and tools borrowed from it) for online estimation. The idea has only
been formulated in embryonic form, but can be worthy of further investigations.
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Appendix A

Stochastic processes

The aim of this appendix is to give a more formal introduction to the notation and the main
mathematical tools used in the building of the sOC. In particular, in the derivation of the
models illustrated in Chapter 2, a pivotal role is played by some simple stochastic processes.
There are three main classes of stochastic processes used in this thesis: autoregressive
processes, Markov processes and Poisson processes.

The two main references for the notation and the theory introduced here are Box et al.
(2015), Grimmett and Stirzaker (2020), and Lütkepohl (2010).

A.1 Autoregressive processes
A time series can be seen as a sequence of random variables, i.e. a family {Xk : k ∈ K}
indexed by some set K, where each Xk is a random variable which takes value in a set
called state space and denoted with SX . In this thesis, we will consistently use the short
notation {Xk} = {Xk}Nk=0 = {X0, X1, . . . , XN}.

Linear models constitute a class of particularly relevant stochastic processes, which are
relatively easy to study and parametrise. These assume that time series are generated by
linear aggregation of random innovations (Box et al. 2015). Parsimonious representations
can be achieved with relatively low effort by employing autoregressive-moving average
(ARMA) terms.

Intuitively, a stationary process {Xk} is a process whose statistical properties do not
vary over the time, or, more precisely, are unaffected by a change of time origin. This
property can be formalised mathematically as follows.

Definition A.1.1. A stochastic process is said to be stationary if the joint probability
distribution associated with m observations Xk1 = xk1 , Xk2 = xk2 , . . . , Xkm = xkm at
any set of times t1, t2, . . . , tm is the same as the associated with m observations Xk1+h =
xk1+h , Xk2+h = xk2+h , . . . , Xkm+h = xkm+h made at times t1 + h, t2 + h, . . . , tm + h .

Moreover, for m = 1, the stationarity property A.1.1 also implies that the process
mean and variance µ and σ2

X , given respectively by

µ = E(Xk), (A.1a)
σ2
X = E

[
(Xk − µ)2

]
. (A.1b)
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are the same for all k ∈ K. A very special class of stochastic processes is the one of
normal or Gaussian processes, i.e. stochastic processes whose probability distributions are
multivariate normal or Gaussian distributions for any set of times. It can be demonstrated
that such processes are always stationary. We will introduce in details three types of
stationary models whose practical relevance is well documented in literature. These are,
in order: autoregressive models, moving-average, and autoregressive moving-average.

A.1.1 Autoregressive models
One of the simplest stochastic processes used to practically represent a timeseries is an
autoregressive model. In this model, the current value of the process is expressed as a
linear combination of p previous states, plus an innovation term ek which follows a known
distribution1. In short notation, an autoregressve process of order p is therefore referred
to as AR(p). Denoting the value of a process at equally spaced times k, k − 1, k2, ... by
Xk, Xk−1, Xk−2, ..., then we have in formulae

Xk = c+ φ1Xk−1 + φ2Xk−2 + · · ·+ φpXk−p + ek. (A.2)

The above Eq. (A.2) can restated more succinctly after defining the lag operator L such
that LiXk = Xk−i ad the degree p AR lag operator polynomial φ(L):

φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp. (A.3)

Combining Eqs. (A.2) and (A.3) yields

φ(L)Xk = c+ ek. (A.4)

For a Gaussian AR(p) model, i.e. with ek ∼ N (0, σ2
e), an alternative representation of

Eq.(A.4) is given by
Xk = µ+ ψ(L)ek, (A.5)

where µ is the unconditional mean of the process reading

µ = φ(L)−1c = E
[
φ(L)−1(c+ ek)

]
, (A.6)

and ψ(L) = φ(L)−1 is a rational, infinite-degree lag operator. For a generic AR(p), on the
other hand, the computation of the variance is more involving and requires the knowledge
of the theoretical autocorrelations. The reader is referred to e.g. Box et al. (ibid.) for
a detailed discussion. The analytical expression for the process variance considerably
simplifies for the case of an AR(1) model, yielding

σ2
X = σ2

e

1− φ2
1
. (A.7)

1Throughout this thesis, we will implicitly assume that the innovation term is normally distributed
with zero mean, i.e. ek ∼ N (0, σ2

e). This requirement, together with opportune restrictions on the values
assumed by the coefficients φi in Eq. (A.2), ensures the model to be stationary. The only model treated
in this thesis which does not satisfy the above criteria is the stationary Laplace model used for the road
roughness used in Chapter 2 and developed by Johannesson, Podgórski, and Rychlik (2016). This, however,
will not be discussed in detail.
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The relationship between the innovation and process variances σ2
e and σ2

X , respectively, is
of particular interest when it comes to the estimation and interpretation of the statistical
properties of a model, since σ2

X may happen to be more easily inferred from actual
data. A Gaussian AR(p) model is fully characterised by p + 2 parameters, for example
µ, φ1, φ2, . . . φq and σ2

e
2.

A.1.2 Moving average models
The moving average model also plays a fundamental role in the representation of stochastic
timeseries. It assumes that the current observation Xk depends linearly on a combination
of q previous innovations. A moving average process is thus abbreviated as MA(q) and
described mathematically as follows:

Xk = c+ ek + θ1ek−1 + θ2ek−2 + · · ·+ θqek−q. (A.8)

Defining the moving average operator of order q by

θ(L) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q, (A.9)

we can recast Eq. (A.8) more conveniently as

Xk = c+ θ(L)ek. (A.10)

It becomes quite obvious from Eq. (A.10) that for a MA(q) model the process mean
is given simply by µ = c independently of the order q. In this case, the model is fully
parametrised by the q + 2 coefficients µ, θ1, θ2, . . . , θq and σ2

e .

A.1.3 Autoregressive moving average model
This model is obtained by combining an autoregressive AR(p) model with a moving-average
MA(q). Therefore, it immediately follows that

Xk = c+ φ1Xk−1 + · · ·+ φpXk−p + ek + θ1ek−1 + · · ·+ θqek−q, (A.11)

or equivalently
φ(L)Xk = c+ θ(L)ek. (A.12)

Remark A.1.1. An alternative representation of an ARMA(p, q) model is given by

Xk = µ+ ψ(L)ek, (A.13)

where µ is the unconditional mean of the process reading

µ = φ(L)−1c, (A.14)

and ψ(L) = φ(L)−1θ(L) is a rational, infinite-degree lag operator.
2The choice is not unique, since another possible parametrisation consists in using c in place of µ.
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A.1.4 Vector autoregressive processes
The notions of autoregressive model AR(p), moving-average MA(q) and mixed autoregres-
sive moving-average ARMA(p, q) can be extended to a vector-valued stochastic process
{Xk} (Lütkepohl 2010), called VARMA(p, q). In this case, the equivalent notation using
the lag operator is

Φ(L)Xk = c + Θ(L)ek, (A.15)
where c ∈ Rn is a constant offset and

Φ(L) = I−
p∑
j=1

ΦjL
j, (A.16a)

Θ(L) = I +
q∑
i=1

ΘiL
i. (A.16b)

In Eqs. (A.16a) and (A.16b), respectively, each Φj ∈ Rn×n is a matrix of AR coefficients,
and each Θi ∈ Rn×n is a matrix of MA coefficients. A VARMA(p, q) model is fully
characterised by 2n+ n2(p+ q) parameters.

A.1.5 Nonstationary models
Many real processes encountered in nature do not vary around a fixed mean. Such
behaviour can be captured eventually using a nonstationary model. Autoregressive models
describing nonstationary timeseries are also called autoregressive integrated moving average
processes and abbreviated ARIMA(p, d, q). In formulae, we have

φ(L)(1− L)dXk = c+ θ(L)ek, (A.17)

where, as usual, φ(L) and θ(L) are stable autoregressive and moving average operators.
Defining (1− L)dXk , Wk, Eq.(A.17) can be restated as

φ(L)Wk = c+ θ(L)ek. (A.18)

It is seen from Eq. (A.18) that a nonstationary autoregressive process can be interpreted
as a stationary one when considering the difference up to the dth order.

A.2 Markov processes
Markov processes can be either discrete or continuous in time. We will only review the
discrete version, since it is the one used in the building of the models of Chapter 2. In
this context, a Markov processes describes sequences of events in which the probability of
each event only depends on the state attained in the previous event. This property, called
Markov property, is formalised mathematically below.
Definition A.2.1. Let {Xk} be a discrete stochastic process which takes its values in a
state space SX = {x1, x2, . . . , xn} and let xi ∈ SX . If

P
(
Xk+1 = xik+1

∣∣∣ X1 = xi1 , X2 = xi2 , . . . , Xk = xik
)

= P
(
Xk+1 = xik+1

∣∣∣ Xk = xik
)
,

(A.19)
then {Xk} is called a discrete Markov process.
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In the following definition we introduce the notation for the probability pij of taking a
step from the current state xi to the next state xj.

Definition A.2.2. Consider a Markov process as in Def. A.2.1. The probability pij of
taking a step from current state xi ∈ SX to a next state xj ∈ SX is given by

pij = P
(
Xk+1 = xj

∣∣∣ Xk = xi
)
. (A.20)

The transition probabilities pij , ∀xi, xj ∈ SX , are collected in the transition probability
matrix, or Markov matrix, denoted here with P ∈ Rn×n, where n is the number of states.
The entries of the Markov matrix are all non-negative, i.e. pij ≥ 0, and satisfy the following
property.

Property A.2.1. Consider a Markov process as in Def. A.2.1. Then, every entry pij of
the Markov matrix P satisfies:∑

j

pij =
∑
j

P
(
Xk+1 = xj

∣∣∣ Xk = xi
)

= 1. (A.21)

The Markov properties listed above can be extended to cover a more general class
of processes. For example, two and three-dimensional Markov processes are discussed
extensively in Silvas (2015).

A.3 Marked Poisson processes
Another stochastic process which may be useful to introduce is the marked Poisson. We
will give a quick illustration of a Poisson process assuming the time t as independent
variable, but the discussion can be extended immediately if we think instead of a generic
position x. With the premises above, a Poisson process N(t) with intensity λ can be
interpreted as the number of events observed up to time t, given that the inter-arrival
times are independent exponentials with parameter λ. In formulae:

P(N(t) = k) = Pλ(t) = (λt)k
k! e−λt, k ≥ 0, (A.22)

where we have denoted with Pλ(t) the Poisson distribution with parameter λ. Since
exponential holding times are memory-less, we also deduce that a Poisson process satisfies
the Markov property A.2.1 in the continuous time setting.

An interesting relationship holds between the Poisson distribution Pλ(·) and the
exponential one. In fact, whist the Poisson distribution provides a description of the
number of occurrences per interval of time, the exponential provides a description of the
length of time between two subsequent occurrences. This can be understood by considering
that, if an event occurs on average at the rate of λ per unit of time, then there will be
on average λt occurrences during an interval of length t. Indeed, the probability that an
event occurs during t units of time is given by

P(T ≤ t) = 1− P(N(t) = 0) = 1− e−λt, (A.23)
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which is the CDF of the exponential distribution E(λ) = e−λt. A marked Poisson process
{Xk, Yk} is composed of a point process with associated mark(s). It be interpreted as a
sequence of random variables {(Xk, Yk) : k ∈ K} indexed by some set K, where both Xk

and Yk are random variables taking values in their respective state spaces, denoted with
SX and SY , respectively. We can think of Xk as a location either in time or space, and to
Yk as a mark.



Appendix B

Probability distributions

Some useful distributions used in the building of the OC format are reported here for
convenience.

Uniform distribution

A uniform distribution with parameters −∞ < a < b <∞ is denoted with U(a, b). The
PDF of a uniform distribution is given by

f(x; a, b) =


1

b− a
, a ≤ x ≤ b,

0, x < a, x > b.
(B.1)

Normal distribution

A normal distribution with mean µ ∈ R and variance σ2 > 0 is denoted with N (µ, σ2) and
its PDF is given by

f(x;µ, σ) = 1
σ
√

2π
e−

1
2(x−µ

σ )2

, x ∈ R. (B.2)

Exponential distribution

An exponential distribution with parameter λ > 0 is denoted with E(λ) and its PDF is
given by

f(x;λ) =

λe−λx, x ≥ 0,
0, x < 0.

(B.3)

Poisson distribution

A Poisson distribution with parameter 0 < λ <∞ is denoted with P(λ) and its PMF is
given by

f(k;λ) = P(X(t) = k) = (λt)ke−λt
k! , k ∈ N0. (B.4)
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Gamma distribution

A gamma distribution with shape and rate parameters α, β > 0, respectively, is denoted
by Ga(α, β) and its PDF is given by

f(x;α, β) = βα

Γ(α)x
α−1e−βx, x > 0, (B.5)

where the gamma function Γ(·) is defined as

Γ(z) =
∫ ∞

0
xz−1e−x dx, Re(z) > 0. (B.6)
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