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Abstract. A method of controlled generation of metal suboxide films is proposed, basing on 
low-current ion sputtering of native oxides of ultra-thin metallic films and XPS chemical and 
phase depth profiling. Niobium suboxide ultra-thin films are generated and controlled using this 
approach. 

1. Introduction 
Metal-suboxide ultra-thin films are used for manufacture of memristors [1]. Memristors are the base for 
memory cells and/or bidirectional selectors for resistive random access memory (RRAM) [2]. To 
generate an oxide layer, various methods are used, i.e. electrostatic spray deposition (ESD) and atomic 
layer deposition (ALD) [3]. However, controlled production of suboxide layers of a certain thickness is 
a matter of significant difficulties. In [4], Ar+ sputtering of a natural metallic oxide layer for generation 
of a suboxide layer was used and the results of sputtering were observed with the help of X-ray 
photoelectron spectroscopy (XPS). For interpretation of results, standard methods were used that didn’t 
enable to determine the film thicknesses and oxide phases. 

In our research, we used low-current ion sputtering of native oxides on ultra-thin metal films. After 
each stage of sputtering, depth chemical and phase profile of multi-layer films was controlled by our 
new method [5]. This approach enabled us to choose sputtering parameters for generation of ultra-thin 
suboxide films of desired profiles. 

2. Experimental Details 
In this work, surface oxide structures of a Nb-O system generated by ion modification with Ar. An air-
oxidized ultra-thin niobium film was studied by means of XPS. This film 10 nm thick was deposited 
onto a silicon substrate by magnetron sputtering using the setting Pfeiffer Vacuum SLS630G. The film 
thickness was controlled during the sputtering process by the known deposition rate. 

The photoelectron spectra were recorded by the electron and ion spectroscopy module of the Nanofab 
25 (NT-MDT) platform with its hemispherical energy analyzer SPECS Phoibos 225. During the 
experiment, the residual pressure in the analytical chamber was controlled with a Bayard-Alpert gage 
and a secondary ion mass spectrometer and it was about 10−7 Pa. The X-ray source was SPECS XR 50 
with a double Al/Mg anode generating photons with energies of 1486,6 eV and 1253,6 eV 
correspondingly and located at an angle of to the analyzer axis. 

Suboxide structures in the ultra-thin film were generated by Ar+ ion sputtering. The sputtering 
procedure was performed with the ion source SPECSIQE 12/38 with an energy of 500 eV at an angle of 
70° to the surface normal. The sputtering ion beam was low-current: the ion current was 50 nA, the 
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duration of each stage of sputtering was 10 minutes, the fluence equaled 3⋅1015 ions/cm2. In this 
operation mode of the ion gun, selective sputtering of oxygen in the film took place (the sputtering rate 
of oxygen is few times more than that of niobium) and the film itself was depleted of oxygen and 
suboxide were generated in it. Such delicate sputtering enabled a rather exact approach to the desirable 
oxide distribution in the film. 

3. Depth profiling 
One of the most prospecting non-destructive methods for ultra-thin film profiling is XPS with probing 
depth about 10 nm. The standard XPS method consists in elemental analysis of the film and calculation 
of relative atomic concentrations based on assumption of the target’s depth homogeneity. However, 
nearly all real subsurface regions are inhomogeneous and multi-component. 

For ultra-this films study, we use a non-destructive XPS depth profiling method considering that 
structures of target surfaces are multilayer, multicomponent and multiphase and enabling to get a 
chemical and phase depth profile of the surface [5]. This advanced XPS method used by us takes account 
of multilayer, multicomponent and multiphase structures of target surfaces and enables to obtain surface 
depth profiles. This method is based on the following features: by background subtraction, difference of 
surface and bulk energy losses is considered; using of constant parameters for background and line shape 
calculation in all the range of photoelectron spectra; using of peak shape parameters of the spectra from 
the Handbook of X-Ray Photoelectron Spectroscopy [6] for pure homogeneous targets; simultaneous 
interpretation of different peaks of the same element using the same model. 

4. Results and Discussion 
In this work, surface oxidized structures of Nb-O were studied. For analysis of the Ta-O system, XPS 
data were taken from [4]. 

Phase depth profiling was performed by the photoelectron spectra. It enabled to identify chemical 
compounds in the sample and determine the sequence of layers [7]. For this purpose, an XPS peak was 
decomposed into partial peaks. The structure of such peaks is complex due to spin-orbit interaction, 
chemical shift, satellite peaks, etc. The values of binding energies and spin-orbit interaction energies for 
chemically pure elements were taken from the experimental data of the Handbook of X-ray 
Photoelectron Spectroscopy [6]. More, peaks may overlap and their shape and width depend on various 
factors. Peak shapes were described with the Doniach-Sunjich expression and the Voigt function. For 
peak deconvolution, we used the method described in [8]. 

Figures 1 and 2 show the deconvolution results of XPS spectra for oxidized systems of Nb 10 nm 
thick before and after ion sputtering and Ta after two stages of sputtering [4]. 

 
(a) 

 
(b) 
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Figure 1 (a, b, c, d). Detailed photoelectron spectra of line Nb 3d of the system NbOx/Nb/Si: (a) 
prior to modification; (b) after the first stage of modification (10 minutes); (c) after the second stage 
of modification (20 minutes); (d) after the third stage of modification (30 minutes). Circles: 
experimental data; solid line: calculation results; filled areas: partial peaks of chemical compounds. 

 
(a) 

 
(b) 

Figure 2 (a, b). Detailed photoelectron spectra of line Ta 3d of the system TaOx/Ta: (a) prior to 
modification; (b) after the first stage of modification (10 minutes); (c) after the second stage of 
modification (20 minutes); (d) after the third stage of modification (30 minutes). Circles: 
experimental data; solid line: calculation results; filled areas: partial peaks of chemical compounds.  

As a result of sputtering of the Nb-O system, it was found that the doublet structure of line Nb-3d 
changed significantly: the Nb2O5 peak (the binding energy is approx. 210 eV) softened and disappeared 
by further sputtering; the peak value of the metallic Nb increased and became more impressive in 
comparison with the initial value; presence of any chemical compounds was variable. By phase profiling 
of the Ta-O system before and after sputtering, similar changes of the oxide structure were found. 

In Tables 1 and 2, calculation results for surface layer thicknesses of Nb-O and Ta-O systems by ion 
sputtering are shown. The sequence of suboxide layers in the target prior to ion beam irradiation is 
determined on the base of the following assumptions. As far as the upper layer contacts with the 
environment, it is oxidized till the highest rate. Deep into the target, the diffusion constant decreases so 
each following layer is of smaller oxidation rate than the previous one. A mirror sequence of layers is 
observed in targets after ion modification. During the first stage of sputtering, the upper oxide layer is 
subject to the greatest modification. Layers of decreasing oxidation rate in direction to the surface of the 
sample are generated. This assertion is confirmed by the data of [4]. By further sputtering of targets, 
layer of various suboxide structures and thicknesses are generated. 
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Table 1. Chemical and Phase Depth Profiling of a NbOx/Nb/Si Target 
 Before sputtering After 1st sputtering After 2st sputtering After 3st sputtering 

d (nm) Formula d (nm) Formula d (nm) Formula d (nm) Formula 

6 – – 0.1 CxHy – – – – 
5 1.3 CxHy 2.3 0.91 Nb2O3 + 0.09 NbO 1.9 NbO 1.1 Nb2O 
4 7.0 Nb2O5 3.0 Nb2O5 3.3 Nb2O3 1.7 NbO 
3 0.7 NbO2 0.7 NbO2 1.4 Nb2O5 2.2 Nb2O3  
2 1.6 Nb2O 2.1 Nb2O 0.4 NbO2 1.1 0.73 Nb2O5 + 0.27 NbO2 
1 – Nb – Nb – Nb – Nb 
Sub. SiO2/Si  SiO2/Si  SiO2/Si  SiO2/Si 

 

Table 2. Chemical and Phase Depth Profiling of a TaOx/Ta Target 
 Before sputtering After 1st sputtering After 2st sputtering 

d (nm) Formula d (nm) Formula d (nm) Formula 
3 – – 1.7 TaO 1.9 TaO 
4 – – 3.5 Ta2O3  2.6 Ta2O3  
3 – – 0.5 TaO2 0.4 TaO2 
2 8.1 Ta2O5 2.8 Ta2O5  2.0 Ta2O5  
1 3.3 Ta2O 4.1 Ta2O 4.8 Ta2O 
Sub. – Ta – Ta – Ta 

By sputtering of the Nb-O system, it was found that the present hydrocarbon layer prevented full 
sputtering. During the first stage of sputtering, a larger part of the Nb2O5 layer (that was equivalent to 
3–3.5 nm thickness) changed its structure. As a result, the subsurface area of the sample was modified, 
the thicknesses of the initial Nb2O5, Nb2O changed and new Nb2O3, NbO layers were generated. The 
surface structure underwent the greatest changes during the first stage of sputtering. 

During the second stage of sputtering, the hydrocarbon layer was totally sputtered that led to more 
effective sputtering and mixing of other layers due to deeper penetration of argon ions. It was found that 
a Nb2O was fully absent: this layer had been dissolved and probably transformed into NbO and Nb2O3 
layers. It is possible that rapid generation and growth of the Nb2O3 layer during two stages of sputtering 
took place due to its low density compared with other suboxides and its close location to the Nb2O5 layer 
which suffers the greatest change of thickness to its decrease. 

During the third stage of sputtering, the thickness of the Nb2O5 layer decreased to 0.8 nm. The Nb2O3 
thickness decreased. It was caused by selective sputtering of oxygen: most part of it moved up 
participating in generation of the Nb2O layer thick. As a result of sputtering, small decrease of NbO 
thickness to 1.7 nm was observed. The thickness of this layer suffered minor changes during the 
sputtering process by certain constant parameters. 

During phase profiling of the Ta-O system, it was found that the Ta2O layer thickness increased 
insignificantly from 3.3 nm to 4.8 nm that confirmed penetration of oxygen into deeper layers that is 
oxygen was “driven”. The TaO2 layer was generated during the first stage of sputtering and its thickness 
didn’t really change after the second stage; it probably confirmed that the structure of this compound 
was stronger and its sputtering rate lesser. The TaO layer thickness changed insignificantly; it confirmed 
diffusion of oxygen from deeper suboxide layers upwards. The results for oxide and suboxide layer 
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thicknesses calculated by us coincide have a good agreement with the results reported in [4] with the 
help of transmission electron microscopy (TEM). 

Our investigation shows that the structure of generated suboxide Nb films is always complex, 
depending on initial film thickness, sputtering conditions. Information about chemical and phase depth 
profiles of films by certain sputtering parameters will enable to generate films of desired structures for 
memristors. 
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