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It is well-known that the carbon dioxide

gas generated by burning fossil fuels in automobiles contributes

to climate change. This is however not their only exhaust and

they also generate other troublesome gases; primarily carbon

monoxide, nitrogen oxides, and small amounts of partially burnt

fuel. These gases in turn contribute to smog, heart and lung

conditions, cancer, and other diseases. These toxic emissions

are a byproduct of the combustion process and unavoidable

even when non-fossil fuels are used. The Three-Way

Catalyst (TWC) is one component that can be used to reduce

the level of harmful emissions by converting them to non-toxic

carbon dioxide, water, and nitrogen gas. The TWC has

been very effectively utilized, and can under ideal conditions

eliminate nearly all the emissions from gasoline engines.

However, the TWC is only effective at removing these emissions

when sufficiently hot. This leads to a large initial release

of emissions every time the engine is started with a cold TWC.

This thesis focuses on the intersection of optimal control methods and dynamic modeling with the

goal of reducing the generated emissions and consumed fuel, particularly in hybrid vehicles. This

thesis introduces new variants of general optimal control methods as well as models of the dynamics

found in the TWC and hybrid vehicle engines. Using these methods with the developed models

allows both for constructing controllers that reduce the level of emissions generated during

cold-starts as well as reducing the fuel consumption during changes in the engine’s speed. The

presented controllers can in the future be implemented in production vehicles, as they do not require

any complex calculations to be performed.
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Towards Optimal Real-Time Automotive Emission Control
Jonathan Lock
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The legal bounds on both toxic and carbon dioxide emissions from automotive
vehicles are continuously being lowered, forcing manufacturers to rely on
increasingly advanced methods to reduce emissions and improve fuel efficiency.
Though great strides have been made to date, there is still a large potential
for continued improvement. Today, many subsystems in vehicles are optimized
for static operation, where subsystems in the vehicle perform well at constant
operating points. Extending optimal operation to the dynamic case through
the use of optimal control is one method for further improvements.

This thesis focuses on two subtopics that are crucial for implementing optimal
control; dynamic modeling of vehicle subsystems, and methods for generating
and evaluating computationally efficient optimal controllers. Though today’s
vehicles are outfitted with increasingly powerful computers, their computational
performance is low compared to a conventional PC. Any controller must
therefore be very computationally efficient in order to feasibly be implemented.
Furthermore, a sufficiently accurate dynamic model of the subsystem is needed
in order to determine the optimal control value. Though many dynamic models
of the vehicle’s subsystems exist, most do not fulfill the specific requirements
set by optimal controllers.
This thesis comprises five papers that, together, probe some methods of

implementing dynamic optimal control in real-time. Two papers develop
optimal control methods, one introduces and studies a cold-start model of
the three-way catalyst, one paper extends the three-way catalyst model and
studies optimal cold-start control, and one considers fuel-optimally controlling
the speed of the engine in a series-hybrid. By combining the method and
model papers we open for the potential to reduce toxic emissions by better
managing cold-starts in hybrid vehicles, as well as reducing carbon dioxide
emissions by operating the engine in a more efficient manner during transients.

Keywords: Automotive emissions control, optimal control methods, hybrid
vehicles, dynamic programming, three way catalyst modelling.
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CHAPTER 1

Introduction

The combustion engine has been used for over 100 years in the history of
automotive applications. Though optimizing a given engine to run efficiently
for stationary operation in “ordinary” combustion modes is a fairly solved
problem, there are many sources of dynamics (e.g. temperatures, rotational
speeds, and gas flows) that can complicate the task of transitioning the engine
from one operating point to another. This holds even more so if we wish to
ensure that the engine is operated in a way that is in some sense optimal during
the transient. With ever-tightening efficiency and emissions requirements the
transient-control problem becomes all the more relevant to study. This leads
to the overarching research questions that we discuss in this thesis

Question 1 How should we operate the engine during transients in a close-to
optimal manner?

Question 2 Assuming we know how to operate the engine, how can we
practically do this in real-time using the limited computational
perower available in today’s vehicles?

Addressing these three questions touches on many different fields of research,
including system modeling, optimal control methods, and computationally
efficient control schemes.

3
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Chapter 1 Introduction

Paper A Paper B Paper D

Paper C Paper E

Figure 1.1: Hierarchical relationship of the appended papers. Paper C builds on
Paper B and studies a problem similar to Paper A. Paper E builds on
Paper B and Paper D.

1.1 Thesis outline
This thesis is divided into two parts. Part I constitutes the introductory
chapters, where Chapter 2 starts off by briefly introducing the concepts and
methods necessary for understanding the remainder of the thesis. This is
followed by Chapter 3 which summarizes the main contributions of the papers
appended to the thesis. Afterwards, Chapter 4 provides a concluding discussion
and indicates relevant future research directions. Finally, Part II comprises the
five appended papers, which constitute the primary contribution of this thesis.

1.2 Thesis aim and scope
The appended papers consist of two papers on numerical methods for solving
optimal control problems (Papers A and B), one paper on modeling the
three-way-catalyst (TWC) during a cold-start (Paper D), one paper that
extends the previous TWC model and generates and benchmarks a real-time
implementable optimal cold-start control strategy (Paper E), and one paper
on applied optimal control of the combustion engine and generator in the
series-hybrid (Paper C). These papers vary significantly in their scope. The
method papers (Papers A and B) are general and have the potential for use
in a wide range of optimal control applications, including ones beyond the
automotive applications discussed here. The TWC papers (Papers D and
E) are slightly more specific, with applications primarily in the context of
computationally efficiently modeling and controlling the temperature evolution
of the TWC during a cold-start. Finally, the series-hybrid optimal control
paper (Paper C) has the most limited scope, and exemplifies the improvement
given by implementing an on-line real-time controller. It is by this chain of

4



1.2 Thesis aim and scope

papers that build on each other (as illustrated in Figure 1.1) that this thesis
expands on and contributes to the above research questions. Finally, this
thesis does not propose to completely answer the research questions, but is
rather a step on the way towards a higher degree of optimality in commercial
automobiles.

The scope of optimal control applications studied in this thesis is primarily
limited to hybrid (i.e. electric and combustion-engine powered) passenger
automobiles with a conventional gasoline (i.e. spark-ignited (SI) homogeneous-
charge (HC)) engine and TWC aftertreatment system. Though there are many
factors that influence the total performance of an automobile, this thesis focuses
on the fuel efficiency and emissions generated during transient operation of
the combustion engine and TWC cold-starts.

5
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CHAPTER 2

Preliminaries

This chapter briefly introduces the theory, concepts, and methods used by
the included papers. Section 2.1 introduces the basic concepts of hybrid
electric automotive vehicles, and Section 2.2 introduces automotive exhaust
aftertreatment of conventional gasoline combustion engines. This is followed
by Section 2.3, which introduces the particular type of optimal control method
used in the included papers. This is done by first discussing the concept of
dynamical systems, followed by the dynamic programming graph optimization
method, and then finally showing how dynamic programming can be used to
solve optimal control problems.

2.1 Hybrid electric vehicles
The hybrid electric vehicle (HEV) extends on the conventional, purely combustion-
engine powered vehicle, by the augmenting it with an additional electric drive-
train. The addition of an additional electric drivetrain allows for increasing
the vehicle’s fuel efficiency, performance, or a combination of both. There
are a wide range of different types of hybrid vehicles, both with respect to
the drivetrain structure as well as the degree of hybridization. This section

7
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Figure 2.1: In the parallel hybrid, the ICE and EM can separately apply traction
power. Opening the clutch allows for the EM to drive the vehicle while
the combustion engine is turned off. Electric power flow from the EM
to power electronics and battery is illustrated by dotted blue lines, and
fuel to the combustion engine by the dotted brown line.

will briefly outline the main categories, benefits, and drawbacks of hybrid
drivetrains by highlighting the most commonly found structures and degrees
of hybridization. More extensive details covering the contents of this section
can be found in nearly any introductory textbook on HEV’s, see for instance
[1], [2], or [3].

2.1.1 Parallel hybrid
The parallel hybrid structure has an ICE and an EM that can both indepen-
dently propel the vehicle. In some cases this is implemented simply "through
the road", where the front wheels are typically powered from the ICE and
the rear wheels from the EM, giving the additional benefit of allowing for
four-wheel-drive. In other common structures the EM is instead coupled to the
driveshaft, sometimes before and sometimes after the clutch [1, p. 72]. This
requires a minimum of additional hardware and in the former case allows the
EM to replace the conventional starter motor and alternator (reducing system
cost) and in the latter case allowing for the EM to power the vehicle while the
ICE is switched off (allowing for pure-electric operation). An illustration of
the latter case is shown in Figure 2.1.

8



2.1 Hybrid electric vehicles

Figure 2.2: In the series-hybrid, the ICE powers a generator, which in turn delivers
power to the battery and/or traction motor.

One drawback of the parallel hybrid structure is that the rotational speeds of
the ICE and EM are not independent of the vehicle’s speed. More specifically,
just like a conventional vehicle the ICE’s (and EM’s) angular velocity is
proportional to the vehicles speed and selected transmission gear ratio. Most
significantly, this implies that the ICE’s angular velocity cannot be arbitrarily
controlled, and can be forced to operate at speeds with lower a lower fuel
efficiency.

2.1.2 Series-hybrid
In the series-hybrid, the ICE is not mechanically coupled to the wheels, but
instead drives an electric generator which in turn supplies power to a battery
and/or electric motor which in turn drives the wheels as shown in Figure 2.2.
A similar structure, apart from not including a battery, is also commonly used
in diesel-electric trains and large ships. By using an “electric” transmission
together with a battery, the ICE is free to operate at any velocity and power
independently of the vehicle’s velocity and traction power (with excess power
stored or removed from the battery as needed). This decoupling between
the ICE and vehicle velocity and power allows for improved fuel efficiency,
particularly in stop-and-go traffic, as the engine can be run at the angular
velocity and power level that maximizes its efficiency.

9
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Figure 2.3: In the series-parallel-hybrid, the ICE and EM are connected to the
wheels with a power-split device (here shown with a planetary gearset),
which allows operation both as a series-hybrid and as a parallel-hybrid.

One drawback with the series-hybrid structure is that the power electronics
and traction EM need to be sized for the power demands of the entire vehicle,
rather than supplementing the ICE power as in the parallel-hybrid case.
Furthermore, the efficiency tends to be lower than the parallel-hybrid when the
ICE is heavily utilized, as the losses in each power conversion stages (generator,
power electronics, battery losses, traction EM) accumulate.
Some vehicles primarily marketed as (nearly) purely electric vehicles are

configured with a large traction EM and battery, as well as a small ICE referred
to as a range extender[1, p 104] that is typically only operated when the battery
is depleted. These vehicles are typically realized with a series-hybrid structure,
thus gaining their benefits and drawbacks.

2.1.3 Series-parallel hybrid
The series-parallel hybrid combines some of the properties of the series- and
parallel-hybrid drivetrains, as shown in Figure 2.3. As in the parallel-hybrid
case, both the ICE and EM are mechanically connected to the wheels, giving
a relatively high total efficiency. However, the ICE (though typically not the
EM) retains the ability to control its speed independently of the vehicle’s speed

10



2.1 Hybrid electric vehicles

as in the series-hybrid case. This is attained through the use of a power-split
device, which acts as a form of continuously-variable transmission, transferring
the mechanical power from the ICE and EM to the wheels. There are several
different realizations of a power-split device, one of the simpler solutions being
a planetary gearset where the ICE, EM, and wheels are connected to the sun,
planet, and carrier gears. By correctly choosing the speed of the EM, the ICE
can be (close-to) free to rotate at any speed while delivering power to the wheels.
This structure maintains the freedom of choosing the ICE speed independently
of the vehicle velocity, while also avoiding the need for as powerful an EM as
in the series-hybrid case. One drawback of the series-parallel hybrid is that
the power-split device is typically realized using two (or more) EM’s, which
increases the system’s cost.
Another method of categorizing hybrid vehicles is by instead considering

their degree of hybridization. Typically, a hybrid vehicle will fall into one of
three categories.

Mild Hybrid Essentially a conventional vehicle with a moderate-sized electric
motor that replaces the starter and alternator of a conventional vehicle,
i.e. a parallel-hybrid structure. This is typically combined with a battery
with high specific power (capable of delivering a large amount of power)
and small capacity (low total stored energy). The primary benefit of
this structure is regenerative braking, which allows for capturing the
kinetic energy during deceleration and storing it in a battery, and electric
boost, wherein the electric motor assists the combustion engine during
acceleration. A start/stop scheme is also commonly used, where the
combustion engine is turned off when the vehicle is braking, coasting,
or stationary. During these intervals accessories run on the energy
stored in the battery. This level of hybridization is fairly inexpensive, as
there are few additional components, but with limited potential for fuel
consumption improvement or performance increases.

Full Hybrid A full hybrid is made using an ICE and electric drivetrain that are
each powerful enough to drive the entire vehicle for a meaningful distance,
and can be found with all the structures listed above. A battery with
high capacity is typically needed in order for the vehicle to be powered
purely electrically for reasonable distances. This structure improves on
the fuel efficiency and performance of the mild hybrid, but typically
at increased complexity and cost. Furthermore, though purely electric
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operation is possible, all the energy stored in the battery ultimately
originates from the ICE, limiting the total system efficiency.

Plug-in Hybrid A plug-in hybrid extends on a full hybrid by also including
the ability to charge the battery by a connection to an external electrical
source, as well as typically using a battery with even larger energy
capacity. This allows for operation as a purely electric vehicle within the
energy and power limitations of the electric drivetrain, and improves on
the system efficiency of the full-hybrid.

Regardless of the structure or degree of hybridization, all HEV’s require
some form of energy management system (EMS) to control when and how
much power is delivered from the ICE and electric subsystem respectively.1
A well-designed EMS should therefore select the power-split ratio (i.e. ratio
of ICE power to electric power) in an efficient manner. Typically, an EMS
will tend to use the electric subsystem predominantly at lower speeds and
in stop/go traffic, which makes good use of the regenerative capabilities of
the electric subsystem, avoids exhaust emissions in cities, and consumes the
battery’s energy at a moderate rate. Similarly, an EMS will typically operate
the ICE more during periods of highway operation, which utilizes the ICE in a
region where it is efficient and the battery would otherwise drain more quickly.
The specific design of the EMS is therefore crucial in order to achieve good
vehicle performance and fuel efficiency.

The contents of this thesis can be broadly categorized as studying two aspects
of EMS design. One topic concerns controlling the ICE and electric generator
in the series-hybrid. Though it is fairly easy to determine the stationary ICE
and generator speed that results in the best fuel efficiency for a constant load,
it is more difficult to determine how to dynamically transition the engine’s
speed from one to another when the electrical load changes (i.e. which torques
to apply from the ICE and generator with the goal of reaching the new optimal
speed). This problem is studied in more detail in Paper C, and builds on
Papers A and B. The second topic concerns how to effectively control the
ICE in situations where the exhaust aftertreatment system is cold, which is a
subject we will introduce in the following section.

1This is not the case in a conventional (non-hybrid) vehicle, where the ICE torque is
directly controlled by the driver.

12



2.2 Automotive exhaust aftertreatment

2.2 Automotive exhaust aftertreatment
The combustion engine in an automotive vehicle burns a fuel which consists of
a mixture of different hydrocarbon molecules. As the combustion engine burns
the fuel in air, the majority of its exhaust consists of non-toxic nitrogen gas
(N2), carbon dioxide (CO2), and water (H2O). However, some byproducts are
unintentionally generated which are harmful to humans and the environment
in the concentrations typically present (on the order of 100 ppm to 2%). These
harmful emissions are typically categorized as

CO carbon monoxide; produced by the incomplete oxidation of a carbon atom
in the fuel,

NOx nitrogen oxides; primarily formed by the spontaneous combination of
the nitrogen and oxygen present in air,

THC gaseous total unburnt hydrocarbons, produced by the incomplete com-
bustion of the fuel, and

PM particulate matter, which is primarily unburnt fuel in the solid phase,
i.e. soot.

In this thesis we will limit the scope to the gaseous emissions (i.e. CO, NOx,
and THC) from spark ignited (SI) homogeneous charge (HC) combustion
engines, i.e. conventional gasoline ICE’s. Though PM emissions are increasingly
becoming more important, these emissions are beyond the scope of this thesis.
There are legally mandated emission restrictions that serve to limit the

emissions generated by automotive vehicles. These restrictions have been
successively tightened over time2, and the automotive industry has had to
undertake actions that keep the emissions below these ever-stricter limits.
Several methods have been used to reduce the level of emissions, and can
broadly be categorized as

• reducing the level of emissions generated by the engine,

• converting the emissions to harmless gases by using an exhaust aftertreat-
ment system (EATS), and

2In the EU, the relevant emission standards are labeled EURO 1 through EURO 7 (https://
dieselnet.com/standards/eu/ld.php). Other regions have similar emissions standards,
e.g. Tier 1 through Tier 3 in the USA and China 1 through China 6b in China.

13
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Figure 2.4: The underside of a performance passenger car with exposed EATS
highlighted. This particular vehicle has two sequential TWCs per
cylinder bank, for a total of four TWCs. Most passenger cars have one
or two TWCs.

• using electrification to run the ICE in operating regions where fewer
emissions are generated and/or limiting the relative amount of time that
the combustion engine is used.

This section will give a brief outline of the EATS typically used with gasoline
engines to limit emissions, namely the three way catalyst (TWC). Several
excellent textbooks go into considerably more detail on the formation and
treatment of emissions, e.g. the classic [4, p. 567], as well as for instance [5, p.
277] or [6, p. 164].

The TWC became widespread in the 1980’s, after which new gasoline vehicles
were in most countries required to use a TWC to reduce the level of harmful
emissions. The TWC converts these emissions to harmless gases (water,
nitrogen, and carbon dioxide) by passing the exhaust gas over catalytically
active materials (typically a mixture of platinum, palladium, and rhodium).
Early TWC’s converted ≈ 95% of the emissions generated by the engine, while
modern TWC’s convert ≈ 99.9% the emissions, ultimately giving a tailpipe
exhaust output with toxic emissions several orders of magnitude lower than
the engine-out exhaust. The TWC is thus a crucial component in meeting the
emissions legislation, and will likely continue to be so in the future.

14



2.2 Automotive exhaust aftertreatment

A photo of a typical TWC in a small passenger vehicle is shown in Figure 2.4.
The outside of the TWC is thermally insulated for reasons we will discuss
shortly, so we can not directly see the internal workings of the TWC. Figure 2.5
shows an opened TWC instrumented with many temperature sensors. We
can identify catalytically active sections (two in this specific TWC), which are
shown in more detail in Figure 2.6. We can in these photos start to see the
characteristic structure of the conventional TWC, which consists of a large
number of long and narrow channels that the exhaust gases are forced to
travel through, see Figure 2.7. The channel walls are constructed using either
a metallic or ceramic substrate (as previously shown in Figure 2.6), which
is then coated with a washcoat. The washcoat serves several purposes, but
primarily carries the catalytically active materials and is microscopically rough
and porous, i.e. has a large the exposed surface area. It is this catalytically
active material that ultimately catalyses the reactions where the emissions are
converted into safe compounds (Figure 2.8).
There are several conditions that must be met for the TWC to maintain a

high conversion efficiency. One of the most noticeable is the TWC’s temperature
dependence. A conventional TWC has virtually no effect on the gas composition
when at room temperature, converts approximately 50% of the emissions at
≈ 350°C, and reaches full conversion efficiency when above ≈ 500°C. This
strong temperature dependence in turn implies that any cold start, i.e. starting
the engine when the catalyst is at the ambient temperature, is associated with
a high level of emissions during a transient period of approximately 10 – 100
seconds. The total amount of generated emissions during this critical time is
typically equivalent to 20 – 30 minutes of normal operation, and a great deal
of work has been performed to reduce the cold start emissions.
There are several other effects that also influence the conversion efficiency.

One example is the air-fuel ratio in the engine, where only a very small range of
air-fuel ratios near stoichiometry3 give full conversion of all species4. Further-

3The HC SI engines studied in this thesis are designed to run at near-stoichiometric
conditions, i.e. where the ratio of air to fuel is balanced such that both the fuel and
oxygen is completely consumed in the combustion process. In the ideal case this would
result in exhaust containing neither any unburnt fuel nor any remaining oxygen. It is
typically difficult to maintain stoichiometry during high load conditions as well as during
dynamic engine operation, i.e. when the engine power is rapidly changed.

4The highest conversion efficiency is achieved when the air-fuel ratio is repeatedly switched
between slightly rich (excess fuel) and lean (excess air) conditions. See [4] for a brief
description on the switching scheme and [7] for more details on why this improves the
conversion efficiency
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Figure 2.5: A commercial TWC instrumented with many temperature sensors. This
TWC has two separate catalytically active sections, the first one seen
inside the opening to the lower right, and the second exposed to the
left. The entire TWC is approximately 20 cm wide.

Figure 2.6: Close up of first (metallic) and second (ceramic) sections.

16



2.2 Automotive exhaust aftertreatment

Figure 2.7: A typical TWC, with a cutout region showing the characteristic small
channels.

Figure 2.8: A representative slice of the TWC, with catalytically coated walls that
convert incoming CO, NOx , and THC to CO2, N2, and H2O.

17
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more, TWC aging (where older TWC’s typically show reduced performance),
TWC poisoning (where specific contaminants in the fuel can eventually reach
the TWC and permanently reduce its conversion efficiency), and the residence
time in the TWC (where slower-moving exhaust spends a longer time in the
TWC, leading to improved conversion efficiency) also influence the conversion
efficiency [4].

Though the HEV has several attractive properties compared to conventional
vehicles, including the potential for fuel-efficiency improvements as described
in Section 2.1, it is not clear how the level of generated emissions compares.
In conventional vehicles, the ICE is continuously operated, keeping the TWC
warm and thus generating one cold start per trip. However, HEV’s have
the ability to turn the ICE off during extended intervals (which can for
instance occur during low-power city driving), causing the TWC to cool
down. This in turn leads to repeated cold- (or semi-warm) starts when the
combustion engine is subsequently turned on. Whether or not the increase
in emissions from additional cold starts in the HEV outweighs the small but
continuously generated emissions from conventional vehicles is difficult to
determine. However, we can exploit the HEV structure to improve on the
cold- and warm-start emissions. By virtue of the electric machine we gain
freedom in the choice of power delivered by the ICE. A cold-start-aware EMS
can thereby have the ability to, within limits, select e.g. the combustion engine
speed, torque, and ignition timing5 in a manner that conventional (non-hybrid)
vehicles cannot.

The second aspect of EMS design studied in this thesis focuses on laying
the groundwork for solving the the cold-start problem in HEV’s as an optimal
control problem that can be run in real-time. We study this problem in Paper
D, where we develop a model of the combustion engine and the TWC that
captures the engine’s exhaust gas composition and the temperature dynamics
in the TWC. Furthermore, by developing the method of Paper B we create a
foundation for generating an optimal controller that can in turn be implemented
in the limited hardware available in a vehicle. Finally, with Paper E we extend
the TWC model of Paper D and simulate the performance improvements made
by using an EATS-aware EMS. These contributions thus lay the groundwork

5Adjusting the specific time when combustion is started in the cylinder allows for trading
off fuel efficiency and exhaust gas temperature, allowing for heating the TWC more
quickly at cost of increased fuel consumption
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for generating a routine for heating the TWC in an efficient manner, both from
a completely cold state as well as the likely scenario of a halfway-warm state.

2.3 Optimal control
Optimal control is a branch of control theory that focuses on finding the
control (i.e. actuator) signal for a dynamic system that optimizes an objective
function. A wide range of applications are found in science and engineering.
For example, the dynamical system might be a car with the control being
the traction power, and the objective being to minimize the fuel consumption
while maintaining a distance range to another vehicle (i.e. optimal adaptive
cruise control). However, there exist many possible applications beyond the
automotive field studied in this thesis. For instance, the dynamical system
might be a fish farm with the control being when and how many fish to harvest,
with the objective being to maximize the fish production. Alternatively, the
dynamical system could be an aircraft with the control of engines, rudder,
aileron, and elevator, the objective being to travel from point A to point B
using as little fuel as possible. Other applications can be more abstract, for
instance choosing a time-varying economic policy with the goal of minimizing
unemployment. In this thesis focus on automotive applications, and primarily
consider controlling the combustion engine and TWC.
We will represent optimal control problems using the general form

(x∗, u∗) = arg min
x,u

J (2.1a)

J∗ = min
x,u

J (2.1b)

with the cost function

J =
N∑

n=0
c(xn, un, n) (2.1c)

subject to the constraints
xn+1 = d(xn, un, n) (2.1d)

g(xn, un, n) ≤ 0. (2.1e)

Here, xn and un denote the system state and control signal at time sample
n = [0, 1, 2, . . . , N ] respectively. Similarly, x∗ and u∗ denote the optimal states
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and controls for a given problem formulation. Intuitively, we can view un as
the control signal we chose at any given time, and xn captures the information
needed to determine the future behavior of the system based on the present.
For instance, in the fish farm example we could let xn indicate the number of
fish in the farm and un indicate the number of fish harvested at any given day
n.
The functions c, d, and g represent the cost, dynamics, and constraints of

the problem. The systems dynamics d describes the evolution of the system
state, i.e. what the next state will be given the current state, control signal,
and time sample. The constraint g and cost c are functions that we as design
engineers chose to mathematically represent our optimization goal. g allows
us to place hard constraints on the system state and control that must not be
violated, while c assigns a cost to any given state and control combination at
any given time sample.

At its core, the optimization problem consists of determining a control signal
u (a parameter we can directly control) and associated state trajectory x

(which is given once u is chosen) that minimizes the total cost J . Much of the
complexity of the optimization problem arises from the system dynamics d, in
the sense that the choice of u at any given time will typically affect x at all
future times. Ultimately, solving eq. (2.1), assuming a unique solution exists,
gives the optimal cost J∗, control u∗, and state trajectory x∗ that minimizes
the accumulated cost J while satisfying g ≤ 0.

More formally, we will let xn ∈ Rl and un ∈ Rm, which in turn implies that
c : Rl × Rm × R→ R, d : Rl × Rm × R→ Rl, and g : Rl × Rm × R→ R. We
will for ease of discussion assume that c, d, and g are continuous and bounded,
but may otherwise be arbitrarily nonlinear. Similarly, we will for now assume
that c and d are well-defined for all arguments, i.e. their domain is Rl and
Rm respectively. We will later see that Dynamic Programming (DP), the
class of method we introduce to solve the optimal control problem, can easily
handle the case where this does not hold and thus avoids undefined regions
elegantly. Similarly, we will for convenience assume that J and u∗ are unique
and exist, but will also see that DP easily detects and can handle the existence
of multiple solutions or the lack of a solution.

Wrapping up some loose ends, we will define x0 as the initial condition and
view it as a given value. Furthermore, note that eq. (2.1) is a discrete-time
control problem, while the physical system we wish to control typically resides
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in the continuous-time world. We resolve this by letting the continuous-time
control signal u(t), from time tn to time tn+1, be parameterized by un. Most
commonly this is done by letting u(t) be a piecewise constant function, constant
during each interval of time tn to tn+1 (i.e. zero-order hold reconstruction).
This particular choice is motivated as many practical digital control systems
operate at a fixed sample rate, i.e. they are configured to output a control
signal un at a given (constant) rate.

2.3.1 Dynamic systems
In this section, we will briefly cover the concept of dynamic systems and
introduce the phase portrait as a visualization tool, which we will later use to
connect Dynamic Programming (DP) and optimal control.
An illustration of an idealized pendulum is shown in Figure 2.9 with a

support point, a rod, and a bob (the mass at the end of the rod). Here, we
assume that the rod is massless and of constant length, all motion occurs in
two dimensions, there is no friction or air resistance, the gravitational field is
constant and uniform, and the support does not move. We define the torque τ
to be some given function of time that we can freely choose, i.e. we can view it
as the control input. Furthermore, we will also keep track of the number of
turns that the pendulum has rotated clockwise or counterclockwise, i.e. the
case where θ = 0 is distinct from the case where θ = 2π even though the weight
is directly below the support in both cases.

Figure 2.9: Illustration of a simple pendulum.

The idealized pendulum is one example of a dynamic system, i.e. a system
whose state (in this case the angle θ and angular velocity θ̇) varies over time.
By generating a mathematical function that describes the evolution of these
states over time we can then analyze the behavior of the pendulum, which will
be necessary for subsequently applying optimal control.
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As the pendulum is a simple system, we can analytically determine the
function that describes the system dynamics. Applying Newton’s second law
to the system gives

F = −mg sin θ − τ

l
(2.2)

which in turn implies that the acceleration of the bob along the arc of motion
is

a = −g sin θ − τ l

m
. (2.3)

Define s to be the position of the bob along the arc of motion (where s = 0
implies that the bob and support are vertically aligned). This gives

s = lθ. (2.4)

If we take the derivative of eq. (2.4) twice with respect to time we can see that

a = s̈ = lθ̈. (2.5)

Combining eq. (2.3) and eq. (2.5) gives a second order ODE

θ̈ = −g
l

sin θ − τ

m
. (2.6)

Notably, eq. (2.6) fully defines the change in the pendulum’s angle θ over time.
Introducing the notation x = [θ θ̇]T , u = τ allows us to represent the

continuous-time dynamics eq. (2.6) as a system of coupled first-order ODEs

ẋ = f(x, u) (2.7a)

=
[

θ̇

− g
l sin θ − u

m

]
. (2.7b)

Solving eq. (2.7) is difficult analytically, but by assuming a constant sample
time ts and letting u(t) be constant between sample times, i.e.

u(t) =





u0 for 0 ≤ t < ts

u1 for ts ≤ t < 2ts
u2 for 2ts ≤ t < 3ts
...

(2.8)
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we can numerically solve the pendulum’s set of first-order differential equations.
We can represent this solution as a function of form

xn+1 = dpend(xn, un), (2.9)

which matches the structure of eq. (2.1d).
For the remainder of this thesis, all illustrations of system behavior will be

shown for g = 1, l = 1, m = 1, and ts = 0.1.

The phase portrait

The phase portrait is a graphical representation of a dynamic systems evolution
in phase space, i.e. the space spanned by the system’s state variables. A phase
portrait of the undriven (i.e. u = 0) pendulum dynamic system is shown in
Figure 2.10. Blue arrows indicate how the state transitions from one sample
to the next, i.e. the base of an arrow is located at xn, while the point is
located at the associated next location xn+1 (i.e. the state ts = 0.1 seconds
later). Solid lines show the state trajectories for a few initial conditions, where
the large dot indicates the initial condition x0 and smaller dots are placed at
x(t) = [1, 2, 3, . . . ].

Time-optimal pendulum control

We will now show one example of optimal control, specifically bringing the
pendulum to a vertical standstill as quickly as possible while limiting the
magnitude of the applied torque at any given time instance (un) and state at
any given time instance (xn). We can express this problem as minimizing the
number of samples where the pendulum is not at the desired state,

Jpend = lim
N→∞

N∑

n=0

{
0 if x = 0
1 otherwise

(2.10a)

subject to
xn+1 = dpend(xn, un) (2.10b)
|un| ≤ 0.5 (2.10c)
|θ| ≤ 1.5π (2.10d)
|θ̇| ≤ π. (2.10e)
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Figure 2.10: Phase portrait of the pendulum for u = 0. The blue solid line shows
“ordinary” low-angle pendulum behavior with near-sinusoidal angle
and velocity, while the red line shows the behavior when the pendulum
nearly reaches the upside-down vertical state, and the yellow line shows
the case when the pendulum velocity is large enough to rotate in the
same direction indefinitely, i.e. limn→∞θn = −∞.
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Figure 2.11: Control law for solution to eq. (2.10). The two large regions coded by
u∗ = 0 can never be steered to x = 0 without violating the constraints
eqs. (2.10c) to (2.10e).

Using the DP-based method we will shortly describe, we can generate an
approximate solution to the above problem. An illustration of the generated
control law is shown in Figure 2.11. As it turns out, the optimal control u∗
for this problem is a function of solely the current system state and can be
represented as the control policy u∗(x), i.e. explicit, nonlinear, time-invariant
state feedback. We will later see that there are many optimal control problems
whose solution can be formulated as time-invariant state-feedback, and Paper
B details a general numerical method for generating control laws. This is of
great practical relevance, as it allows for subsequently implementing a real-
time controller if the current system state is measurable by simply storing a
look-up-table of the optimal controls to apply. A controller can thus generate
an approximation of the optimal control signal by simply consulting the control
policy (i.e. table of system states) and interpolating the stored optimal control
from among the nearby tabulated states. For example, in Figure 2.11 the
optimal control law is shown for a discrete number of points (pixels). If the
measured system state were to not lie exactly on one of these points, we can
consult the stored signal at neighboring points to approximate the optimal
control signal. We will return to this topic in more detail in Section 2.3.3.
Figure 2.12 illustrates the phase portrait of the dynamic system when the

optimal controller is applied, showing how several different initial conditions
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Figure 2.12: Phase portrait of DP solution. Points that can never be steered to
x = 0 are indicated with red arrows.

all reach the desired state x = 0 (compare with Figure 2.10). Red arrows
indicate states where there does not exist a solution that satisfies the problem
constraints Equations (2.10c) to (2.10e). Their evolution is shown for u = 0,
and we can see that trajectories in this region eventually violate the problem
constraints (this violation would occur regardless of the choice of u). We will
later see that this information is also directly generated by the DP method.
An illustration of the set of initial conditions that have a solution (i.e. cor-

responding to the region with blue arrows in Figure 2.12 and nonzero u in
Figure 2.11), and their time evolution is shown in Figure 2.13. The set bound-
ary is shaped like a funnel, showing that all initial conditions that have a
solution eventually reach the point x = 0.

2.3.2 Dynamic programming
Dynamic programming (DP) is a family of optimization methods developed by
Richard Bellman in the 1950’s that have found applications in a wide range of
fields, including optimal control. Regardless of the specific field, a DP method
solves an optimization problem by recursively breaking it down into simpler
sub-problems. This section will briefly introduce the concept of dynamic

26



2.3 Optimal control

F
ig

ur
e

2.
13

:
T
he

hu
ll
of

fe
as
ib
le

st
at
es

ev
ol
ve
s
ov
er

tim
e
an

d
ev
en
tu
al
ly

re
ac
he
s

[0
0]
.
T
he

ph
as
e
po

rt
ra
it

an
d
a

re
pr
es
en
ta
tiv

e
so
lu
tio

n
is

sh
ow

n
fo
r
re
fe
re
nc
e.

27



5

5

4

4

3

8

5

9

3

7

5

1

Chapter 2 Preliminaries

programming. The classic [8] and [9, p. 131] cover dynamic programming and
optimization respectively in more detail. A concise derivation is also given by
[10, p. 44], with a focus on many of the same topics brought up in this thesis.

One fundamental requirement for applying a DP method is that the problem
satisfies Bellman’s principle of optimality, i.e. that:

An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision.[8, Chap III.3]

An example of a problem that satisfies the principle of optimality is finding
the fastest route between two cities by car. If for instance the shortest path
between Stockholm and Gothenburg passes through Jönköping and then Borås,
then the shortest path between Jönköping and Gothenburg must also pass
through Borås. Essentially, for problems that satisfy the principle of optimality
the optimal choice at any given time does not depend on the history of how
we arrived to the current situation, but only depends on the present situation
(i.e. state). The type of problem we will study in this section — graph
optimization — does satisfy the principle of optimality, as we will see shortly.
An example of a problem that does not satisfy the principle of optimality

is that of finding the least expensive airline tickets between two locations.
Assume that the cheapest flight from Stockholm to Gothenburg were to include
layovers in Jönköping and Borås. Unlike the car example, it is not necessarily
true that the cheapest flight from Jönköping to Gothenburg would also pass
through Borås, as airline ticket prices are not usually the sum of each individual
flight.

Ultimately, DP is a structured method of finding and storing the best path
between connected “locations” (in a general sense) in an efficient way. Despite
this simplicity, or perhaps because of it, DP is a very powerful tool that is
used in a wide range of applications. In this section we will show how to use
DP as a method for solving optimal control problems.

DP in graph optimization

The perhaps most straightforward application for DP is solving a given graph
optimization problem. A graph is structure with a set of vertices, connected
by edges with an associated cost, denoted as the stage cost (i.e. the cost of
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moving from one vertex to a neighbor). A subway map is one example of
a graph commonly seen in day-to-day life, with stations (vertices) that are
connected to each other by different subway routes (edges), and the stage
cost for instance defined as the time it takes to travel from one station to its
neighbor. In the context of dynamic programming for optimal control we will
be specifically interested in directed graphs, where edges only allow traveling
from one vertex to another in one direction.

An example of the particular type of directed graph that we will use for DP
is shown in Figure 2.14. Vertices are indicated with circles, each painted with
one of three different colors that the DP method will later make use of; yellow
– unvisited, blue – valid, red – invalid. Edges are shown with gray arrows,
with arrowheads indicating permissible directions of movement. For ease of
introducing the DP method, we will graphically place the vertices on a grid,
with an equal number of vertices in each column and row. Importantly, the
edges are constructed to allow traversing the graph from left to right, and any
given path will successively pass through each column, while the path through
rows is arbitrary. Assume our goal is to determine how to optimally move
from one vertex in the leftmost column of vertices to the blue vertex in the
rightmost, where each edge has an associated stage cost. For this goal, DP is
one method of generating the optimal route (also referred to as the optimal
decision policy) that minimizes the total cost of traveling through the graph.

Figure 2.14: Initial directed graph. The stage cost is not shown here to reduce clut-
ter. The back-calculation phase of the DP method we will introduce
will make use of the different vertex colors.

The DP process can be divided into two stages. The first is commonly referred
to as the back-calculation phase, where the optimal edges are determined for all
vertices in the graph. In the second stage, referred to as the forward-calculation
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phase, the previous results are used to give the optimal path from any given
initial vertex6.

Back-calculation phase

In the back-calculation phase the optimal path for any vertex in the graph is
determined iteratively, starting with the last column of unvisited vertices and
successively approaching the first column of vertices.

In the first iteration, we compute the cost from the last column of unvisited
vertices (the fourth column in Figure 2.14) to all subsequently connected valid
vertices (the rightmost column in Figure 2.14).

For each vertex we check if any connected vertices are valid, and if so store
the edge with the lowest total cost to reach the last column of vertices and
its associated cost value, which we will denote as the cost-to-go. For the first
iteration, the cost-to-go is simply the stage cost (as we immediately reach the
last column of vertices). In Figure 2.15 and Figure 2.16, only one connected
node is valid, so we store the edge that leads to the valid node and the stage
cost (shown above the highlighted edge) of the chosen edge is stored (shown
under the marked vertex).

5

(a) Only one edge is valid...

5

5

(b) ... so we chose it, storing the cost-to-go.

Figure 2.15

6Though most DP methods start with a back-calculation and end with a forward-calculation
phase, this is not strictly necessary and one could construct a DP method that operates
in the reverse order. We will start with the back-calculation phase as this allows us to
generate the optimal path for any initial vertex (analogous to the initial condition), in
contrast to a reversed method where we could instead generate the optimal path for any
terminal vertex.
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5

5

4

(a) Only one edge is valid...

5

5

4

4

(b) ... so we chose it, storing the cost-to-go.

Figure 2.16

If no connected vertices are valid (2.17a) we mark the vertex as invalid (2.17b).

5

5

4

4

(a) No edges are valid...

5

5

4

4

(b) ... so we mark the vertex as invalid.

Figure 2.17

In the second, and all successive iterations, the total cost becomes the sum of
the stage and previously stored cost-to-go. In Figure 2.18 we are presented
with two options: choosing the upper edge would result in a total cost of
3 + 5 = 8, while the lower edge would result in a total cost of 9, indicating
that the optimal choice is to choose the upper edge.
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5

5

4

4

3

5

(a) The upper edge gives a lower total cost...

5

5

4

4

3

8

(b) ... so we chose it, storing the cost-to-go.

Figure 2.18

It is possible that the total cost is identical for several edges from a single
vertex. There are several ways of managing this scenario, but as both choices
are equally good one simple method is to arbitrarily select one edge, as shown
in Figure 2.19.

5

5

4

4

3

8

5

4

(a) The edges have identical total cost...

5

5

4

4

3

8

5

9

(b) ... so we here just choose one.

Figure 2.19

Notably, the result from the back-calculation phase has several very strong
properties;

• The fully solved graph (Figure 2.20) contains the optimal edges to follow
for any point in the graph.

• We know if any given vertex can or cannot lead to the final vertex — a
vertex marked blue is guaranteed to reach the final vertex, while we are
ensured that a red-marked vertex can not reach the final vertex.
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A flipbook animation of the entire back-calculation phase is shown along the
bottom edge of the left pages this thesis. View it by holding the thesis in your
left hand and flipping through the pages starting from the table of contents.

Forward-calculation phase

Once the backward-calculation phase has been completed and all vertices have
been marked as either valid or invalid, the (trivial) forward calculation phase
can be performed. Here, we can start from any position in the graph and
simply follow the edges that were stored in the back-calculation phase to find
an optimal path. For example, in Figure 2.20a we start at the second vertex in
the first column (marked green). We can then follow the stored path through
the graph and are ensured that we will end up at the rightmost valid vertex
with a cost-optimal path (Figure 2.20b).
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(a) Start from any vertex...
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(b) ...and follow the stored edges.

Figure 2.20: First (2.20a) and last (2.20b) forward-calculation iteration, shown
with green vertices and edges.

2.3.3 DP in optimal control
Recall our original problem eq. (2.1) of solving an optimization problem whose
dynamics are of form

xn+1 = d(xn, un). (2.11)

As x ∈ Rl and u ∈ Rm they are thus continuous-valued. We can refer to
eq. (2.11) as a continuous-value (CV) problem.

The previously-defined DP method defined allows us to solve an optimization
problem for a directed graph, which is a discrete problem (i.e. there are a
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finite number of vertices and edges). We must thus first approximate the CV
problem as a discrete-value (DV) problem, i.e. a problem where xn and un are
discretized, in order to use DP to solve the approximated problem.

In this section we will perform this conversion by limiting xn and un to be
taken from finite discrete sets of evenly-spaced points, i.e. we demand

xn ∈ X (2.12a)
un ∈ U (2.12b)

where
X = {(x1, x2, . . . , xl)|x1 ∈ X 1, x2 ∈ X 2, . . . , xl ∈ X l} (2.12c)
U = {(u1, u2, . . . , um)|u1 ∈ U1, u2 ∈ U2, . . . , ul ∈ Um} (2.12d)

and
X i = {x̄i, x̄i + ∆xi, x̄i + 2∆xi, . . . , x̄i +Nxi∆xi} (2.12e)
U j = {ūj , ūj + ∆uj , ūj + 2∆uj , . . . , ūj +Nuj∆uj}. (2.12f)

Using this definition, where i indicates the i’th dimension of , X and
U are the Cartesian product of l and m sets of discrete evenly-spaced values
respectively. We can thus view X and U as l- and m-dimensional grids of
points, evenly spaced, with different spacing in each dimension. For now,
assume that xn+1 = d(xn, un) also lies in X . We will return to the typical
case where this does not hold in the following section.
With xn and un discretized, we can thus construct the associated graph

problem by assigning each element of X to a vertex and each element of U
to an edge. From a given state configuration (i.e. vertex) we can thus use a
control (i.e. edge) to bring us to a new state (another vertex) given by the
system dynamics d and with an associated cost given by c.
An illustration of this is shown in Figure 2.21a for l = 2 and X 1 = X 2 =
{1, 2, 3} (i.e. x̄1 = x̄2 = 1, Nx1 = Nx2 = 3, and ∆x1 = ∆x2 = 1). Blue, red,
and yellow-colored vertices here correspond to samples n = 1, n = 2, and n = 3
respectively. Edges from n = 0 to n = 1, shown for x1 = 3, x2 = 1, exemplify
four possible transitions for four different control signals u1. Edges from n = 1
to n = 2 show representative optimal edges. The stage cost for each edge is
not shown to reduce visual clutter.
We can now make an important intuitive connection between the graph

used by DP and the evolution of the dynamic system. If we project the edges
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(a) Graph structure for problem with two
state variables.
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(b) The time-optimal pendulum phase portrait, repeated from
Figure 2.11.

Figure 2.21: The graph structure used by the DP solver and the phase portrait are
similar representations of what can be seen as the same process.
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associated with any pair of consecutive samples n in Figure 2.21a onto the
plane, we will generate a phase portrait analogous to Figure 2.21b. In the
case of Figure 2.21a, where the optimal edges vary with the sample n, this
corresponds to a sample-varying phase portrait. Finally, note that though
the positions of the vertices in Figure 2.21a help for our understanding of the
problem, the position of a node in a graph is ultimately cosmetic — a graph is
fundamentally only influenced by the connections between vertices.
Returning to the control problem, we can encode the constraint eq. (2.1e)

by augmenting the cost function as

c′(x, u, n) =
{
c(x, u, n) for g(x, u, n) ≤ 0
∞ otherwise.

(2.13)

Clearly, by assigning an infinite cost to impermissible state and/or control
configurations we are ensured that the resulting control will never violate
g(x, u, n) ≤ 0 if a valid solution exists. This also allows us to manage the case
where c, d, and/or g are undefined for some arguments, and can simply set
c′ =∞ to avoid a solution entering a problematic region.

With this construction we can thus directly apply the DP method described
in Section 2.3.2. Furthermore, we can draw conclusions as to the nature of the
solution while performing the back-calculation phase. If the total cost J∗ was
infinite, there no solution exists that satisfies g(x, u, n) ≤ 0. Furthermore, if
at any stage during the back-calculation phase we had a situation where two
paths were associated with the same cost (as in Figure 2.19) then we know that
the solution is not unique (and vice-versa otherwise know that the solution is
unique).
To summarize, we can use DP to generate a solution to the DV-optimal

control problem of form eq. (2.1), as follows;

1. Choose a state and control grid X and U . An appropriate choice of
X and U (i.e. the discretization of xn and un) is problem-dependent,
a reasonable initial might be to let Nxi and Nuj be on the order of
10–1000, and let the spaces X i and U i span be given by the space where
g(x, u) ≤ 0.

2. Perform the back-calculation phase of DP. This will typically be compu-
tationally demanding, but can be done off-line, and the results stored as
a graph or table.
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2.3 Optimal control

3. When the controller is used, we perform the forward-calculation step
in real-time, looking up the optimal control to apply using the current
state and sample. This is computationally inexpensive (just a table
look-up), requiring very little in the way of computational power, and
little memory when l and m are small (we will return to how the memory
demand scales with l and m later).

Approximate Dynamic Programming

In this section we will introduce one method in the Approximate Dynamic
Programming (ADP) family. The family of ADP methods are a subset of
DP methods, and are typically used to resolve cases where some form of
information is missing or uncertain. In this thesis, we will use an ADP method
that uses interpolation to generate an approximation of the cost-to-go and
optimal control functions. See for instance [10, p. 137, p. 144] for more details
on interpolation in ADP. For a more general introduction to ADP and it’s
range of applications in general, the classics [11], [12] are excellent, as is [13].
One unresolved issue with the previous scheme of using DP for solving an

optimal control problem is that even if xn ∈ X and un ∈ U , we will typically
have d(xn, un) /∈ X . This is problematic, as if the system evolves to points that
are not in X then we do not know the cost-to-go value in the back-calculation
phase and the optimal control in the forward-calculation phase. One method of
resolving this is to use interpolation to generate approximations of the cost-to-
go and optimal control functions with continuous domains. This is exemplified
in Figure 2.22a, where a representative cost-to-go (as computed in the back-
calculation phase) is shown for the discrete points in a representative X . Using
interpolation allows us to approximate a cost-to-go function with continuous
domain as shown in Figure 2.22b. There are many different interpolation
schemes that can be used (linear, polynomial, spline, etc), but this thesis
uses multi-linear interpolation to reduce the computational demand of the
interpolation operation.

Naturally, the accuracy of the interpolated cost-to-go depends on the nature
of the “true” (continuous-domain, and hard to determine) cost-to-go function,
but tends to improve as the discretization ∆xi decreases. This is illustrated in
Figure 2.23a, where the number of discretized points is increased by a factor of
three for each state variable. For this cost-to-go function, we can see that the
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Figure 2.22: Cost-to-go for the discrete and continuous-domain (i.e. interpolated)
cases at a given back-calculation iteration.

(a) Tripled resolution (b) “True” cost-to-go

Figure 2.23: Increasing the state resolution gives an interpolated cost-to-go that is
closed to the true cost-to-go.

38



2.3 Optimal control

case with improved resolution in Figure 2.23a is closer to the “true” cost-to-go
in Figure 2.23b than the base case in Figure 2.22b.

Much as with the cost-to-go, we will also face a similar issue in the forward-
calculation phase when we need to determine the optimal control signal to
apply, as the stored optimal controls are only known at the discrete points in
X . This can be resolved by using interpolation in the same manner as above,
where an (approximately) optimal control signal is generated by interpolating
among the computed controls.
More formally, for any (continuously-valued) state and control we can

approximate the cost-to-go and control as

cctg,interp(x) =
∑

x′∈X
hc(x, x′)cctg,stored(x′) (2.14)

u∗interp(x) =
∑

x′∈X
hu(x, x′)uopt(x′) (2.15)

where hc and hu are the weighting functions for the chosen interpolation
method and cctg,stored and uopt are the stored cost-to-go and optimal control
from the back- and forward-calculation phases respectively.

Example problem

Consider the optimal control problem

(x∗, u∗) = arg min
x,u

J (2.16a)

J∗ = min
x,u

(2.16b)

where

J =
6∑

n=0
|xn| (2.16c)
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subject to
xn+1 = xn + un (2.16d)
x7 ≥ 1 (2.16e)
xn ≥ −1 (2.16f)
xn ≤ 2 (2.16g)
|un| ≤ 1 (2.16h)

where x and u are scalars. By augmenting the cost function we can express
this problem as

(x∗, u∗) = arg min
x,u

J (2.17a)

J∗ = min
x,u

J (2.17b)

where

J =
6∑

n=0
c(x, u, n) (2.17c)

c(x, u, n) =





∞ if n = 7 and x < 1
∞ if x < −1
∞ if x > 2
∞ if |u| > 1
|x|otherwise.

(2.17d)

subject to
d(x, u) = x+ u. (2.17e)

Now, we must select the sets X and U . It is prudent to chose these sets so
that their elements satisfy the constraints in eq. (2.16). We can do this by for
instance defining X = {−1, 0, 1, 2} and U = {−1, 0, 1}. (The low number of
elements in X and U is intentional in this specific example.)
With this particular graph construction we arrive at a graph problem that

looks similar to the introductory example eq. (2.1). We can select elements in
X and U and (except for the case x = −1, u = −1 and x = 2, u = 1) applying
them to d will result in a new state that also lies in X .
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2.3 Optimal control

The solution to eq. (2.17) using DP and the sets X , U as defined above is
shown in Figure 2.24. We can identify that x∗[0,1,...,6] = 0 (giving the smallest
possible cost during this interval), while x∗7 = 1 (satisfying the terminal
inequality) and is achieved using u[0,1,...,5] = 0, u6 = 1. This matches our
intuition of minimizing |x|, and this solution is in fact the true optimal solution.
However, the optimality of our solution is dependent on our selection of X and
U .

0 2 4 6

-1

0

1

2

Figure 2.24: Solution to optimal control problem eq. (2.17) for X = {−1, 0, 1, 2}
and U = {−1, 0, 1}. Blue arrows show the back-calculation results,
while the forward-calculation results are shown in green.

In the previous example we chose X and U to (except for boundary cases)
give xn+1 = d(xn, un) ∈ X . If we had instead used U = {−1,−0.5, 0, 0.5, 1}
then u = ±0.5 would not give a new state in X . An illustration of this is
shown in Figure 2.25, which illustrates the back-calculation phase at x4 = 0,
X = {−1, 0, 1, 2}, and U = {−1,−0.5, 0, 0.5, 1}. This illustration is not
formally a directed graph, as we have two edges that do not lead to associated
vertices. However, with the specific structure of this graph we can interpret
the vertical position as continuously indicating the state value, where vertices
indicate points where the cost-to-go is known.

Applying u4 ∈ {−1, 0, 1} (shown in yellow) to 2.17e gives a result that is in
X , so we can directly use their stored cost-to-go to compute the total cost.
However, for u4 = {−0.5, 0.5}, (shown in red) 2.17e does not give a result that
is in X , meaning that we do not have a stored cost-to-go to use. In our ADP

41



5

5

4

4

3

8

5

9

3

7

1
10

3

12

5

12

1

11

Chapter 2 Preliminaries

0 2 4 6

-1

0

1

2

1

0

1

2

1

0

1

2

Inf

0

1

2

0.5

0.5

Figure 2.25: During back-calculation phase for problem in eq. (2.17), five different
u4 are tested for x4 = 0. Yellow edges align with existing vertices,
allowing for directly consulting the stored cost-to-go (black text), while
red edges do not. Here linear interpolation is used to generate an
approximate cost-to-go for red edges (red text).

method, we use linear interpolation to give an approximate cost-to-go of 0.5
for both cases. Similarly, during the forward-calculation phase we may end up
applying a stored optimal control that brings us to a point that lies “between
vertices” in the psuedo-graph. In this case we can use the scheme to select an
approximately optimal control based on the optimal controls for the nearby
vertices.

Another potential problem we have not yet discussed in depth is that by
selecting X and U we have limited the search range for the problem solution. For
instance, we can never find a solution where xn = 0.5 if X = {−1, 0, 1, 2} and
U = {−1, 0, 1}. This issue is due to the quantization of X and U , and is inherent
when using DP to solve the DV approximation of our initial CV problem. An
example of this is shown in Figure 2.26, where an imperfectly chosen X or
U gives solutions that are suboptimal with respect to the continuous-valued
problem eq. (2.17).

In general, for meaningful non-linear problems, converting the original CV-
problem to a DV-problem will both introduce interpolation and quantization
suboptimality, i.e. our resulting solution will no longer be optimal. However,
if c and d are continuous we can limit the suboptimality by increasing the
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0 2 4 6

-1

0

1

2

(a)

0 2 4 6
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(b)

Figure 2.26: Suboptimal solutions caused by (Figure 2.26a) imperfectly selected
X = {−1,−0.25, 0.5, 1.25, 2} and (Figure 2.26b) imperfectly selected
U = {−1,−0.25, 0.25, 1}. Compare with optimal solution in Fig-
ure 2.24.
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resolution of X and U (i.e. decreasing ∆xi and ∆uj). Note that we can
generate solutions to problems where c and/or d is non-continuous (which
we in fact did for c in eq. (2.17d)), at cost of poor interpolation performance
near the discontinuity. An example of how increasing the resolution of X
and U improves the resulting accuracy is shown in Figure 2.27, where X and
U contain 100 linearly distributed elements in the range [−1, 2] and [−1, 1]
respectively. Notably, U does not contain the “true” optimal element u = 0.
Similarly, X does not contain the “true” optimal elements x = 0 and x = 1.
Despite this, the dense sampling of X and U gives a solution that is close to
the true optimal solution.

In summary, we can approximately solve general non-linear optimal control
problems by approximating them as DV problems, converting them to an
equivalent graph, and then using interpolation (from ADP) to solve the graph
optimization problem. Applying this scheme gives a result that can be seen
as a simple interpolated table look-up. The approximate solution can be a
fairly accurate despite the interpolation and quantization suboptimality so
long as d and c are well-behaved, and interpolating the cost-to-go and optimal
control between points in X and U gives a reasonable approximation of these
functions.

0 2 4 6

-1

0

1

Figure 2.27: As the number of elements in X and U grows the solution suboptimality
decreases, even if X and U are imperfectly selected. Only a subset of
the blue back-calculation edges are illustrated to reduce clutter.
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Revisiting the pendulum

Now that we have established a DP method for solving nonlinear optimal
control problems, we have all the tools needed to solve the pendulum control
problem studied in Section 2.3.1. This section will summarize the numerical
set-up used to generate the previously presented results.
Recall the nonlinear minimum-time problem in eq. (2.10). One issue we

find when converting it to the structure of eq. (2.1) is that the problem is
formulated with an infinite time horizon, in contrast to the explicit time horizon
in eq. (2.1). One method of resolving the time horizon for this specific problem
is to let the horizon N be a large, but finite, value. As the optimal control
for this problem is to drive the pendulum to a vertical stationary state as
quickly as possible, and then keep the pendulum there, the optimal control
will also become stationary for a sufficiently large horizon N . See Paper B for
more details on how (and which) infinite-horizon problems can be converted
to and solved as finite-horizon problems, as well as a more efficient method of
performing this conversion.
We can thus reformulate eq. (2.10) as

(x∗, u∗) = arg min
x,u

J (2.18a)

J∗ = min
u
J (2.18b)

J =
N∑

n=0
c′(x, u) (2.18c)

where

c′(x, u) =





∞ if |u| > 0.5 or |θ| > 1.5π or |θ̇| > π

0 if x = 0
1 otherwise

(2.18d)

subject to
xn+1 = dpend(xn, un) (2.18e)

for a sufficiently large N.
The results in Section 2.3.1 and Figure 2.11 in particular shows the solution

to eq. (2.18) using ADP. Here, U contains 101 linearly distributed points in the
range ±0.5, X contains the outer product of 601 linearly distributed points for
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x1 in the range ±1.5π and 401 linearly distributed points for x2 in the range
±π, and N = 200.

Strengths and weaknesses of ADP

Now that we have introduced ADP in the context of optimal control, it is
worth highlighting some of the strengths and weaknesses of the method.

The strengths of ADP include:

• the ability to solve problems with nonlinear time-varying system dy-
namics, cost, and constraints (so long as the inherent quantization and
interpolation give reasonably correct solutions),

• no need for computing any gradients, Hessians, etc.,

• a solution that approximates the globally-optimal solution (limited by the
error introduced by the discretization and interpolation approximation),

• the capacity to solve hybrid control problems7,

• few tuning parameters (only the selection of X , U , and an interpolation
method),

• and, under some conditions, trivially implemented on-line control by
table look-up8.

However, there are weaknesses with DP methods. As introduced in Sec-
tion 2.3.3, converting the CV problem to a DV problem with ADP typically
approximates the solution due to the quantization and interpolation.
Furthermore, the typically most significant weakness is DP’s exponential

scaling of computational complexity with the number of state and control
variables. This is colloquially referred to as the curse of dimensionality. Recall
that at each sample n in the back-calculation phase all elements of U are
tested at every element of X . This implies that the computational demand
scales exponentially with the sum of the dimensionality of x and u, as adding

7A problem where the state and/or control variables consist of both continuous-valued and
discrete-valued variables.

8For example, in the pendulum example the optimal control signal is determined solely
using the current system state (as shown in Figure 2.11), and the approximately-optimal
control signal can be determined simply by interpolating from the stored (gridded)
optimal control signals
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2.3 Optimal control

a new dimension implies that all combinations of the existing dimensions must
be tested for all points in the new dimension. Though there do exist some
methods that reduce the computational complexity of DP (see for example
Paper A), with today’s computing power there seems to be a practical limit
of 3–6 state+control variables (depending on the resolution of X and U) for
most CV optimal control problems.
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CHAPTER 3

Summary of included papers

This chapter provides a summary of the included papers.

3.1 Paper A
Jonathan Lock, Tomas McKelvey
A Computationally Fast Iterative Dynamic Programming Method for
Optimal Control of Loosely Coupled Dynamical Systems with Different
Time Scales
Published in IFAC-PapersOnLine,
vol. 50, issue 1, pp. 5953–5960, July 2017.
DOI: 10.1016/j.ifacol.2017.08.1498 .

Dynamic programming methods are used to solve a wide range of optimal
control problems. However, one of the more significant drawbacks with dynamic
programming methods is their exponential increase in computational demand
with the number of state variables. This paper introduces a general method
for reducing the computational demand when the state variables are loosely
coupled and display different time scales, i.e. where one state variable is varies
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significantly more quickly than the other and minor changes to the quickly-
varying state variable has only a moderate effect on the slowly-varying state
variable.

The proposed method consists of two stages. In the first stage a simplified
problem is solved where the quickly-varying state variable is viewed as a control
input, i.e. without dynamics. This reduces the dimensionality of the problem,
and makes for a problem that is significantly easier to solve. Importantly,
solving this simpler problem results in a state trajectory for the slowly-varying
state variable. In the second stage we solve the original problem, but can
dramatically reduce the computational demand by limiting the evaluated states
for the slowly-varying state variable to a region near the solution found in
the first phase. Typically this results in a computational speed improvement
on the order of the quotient of the state variable’s time scales. Furthermore,
the method introduces some regularization terms that help reduce the risk of
generating an infeasible solution in the forward-calculation phase of the second
stage, which can occur when interpolating a control signal near the edge of
the set of evaluated states.
The proposed method is in the context of this thesis primarily intended to

be used as a tool to generate off-line control solutions, which can for instance
be used to benchmark a subsequent on-line control scheme. In this paper we
exemplify this by finding the optimal ratio of electrical to combustion engine
power when the battery state of charge and engine-generator crankshaft inertia
dynamics of the series-hybrid are modeled. This problem displays significantly
different time scales, as the battery state of charge typically varies over an
hour, while the crankshaft angular velocity varies over seconds. The proposed
method solves the optimal control problem approximately 2700 times faster
than a direct approach when using typical battery and crankshaft dynamics,
while generating a solution of comparable accuracy.
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3.2 Paper B
Jonathan Lock, Tomas McKelvey
Undiscounted Control Policy Generation for Continuous-Valued Optimal
Control by Approximate Dynamic Programming
Submitted to the International Journal of Control on July 1, 2020
Revised January 7, 2021 and 17 March, 2021.
Preprint available at https://arxiv.org/abs/2104.11093.

One crucial element of this thesis is a method for generating near-optimal
controllers for real-time (i.e. on-line) systems. This paper introduces a general
algorithm for generating a control policy that in turn can be used to implement
a near-optimal real-time controller. The method is based on approximate
dynamic programming and titled Undiscounted Control Policy generation by
Approximate Dynamic Programming (UCPADP). UCPADP is applicable to
undiscounted, constant-setpoint, infinite-horizon, nonlinear optimal control
problems with continuous state variables. The method runs in an off-line phase
and generates a control policy, i.e. a look-up table. Once the control policy has
been generated an on-line controller can subsequently be implemented, where
the optimal control signal can can be determined by a simple table look-up
and interpolation operation, i.e. explicit nonlinear state-feedback. UCPADP is
suited for general optimal control problems where the objective is to optimally
transition a system to a given constant set-point with costs over an infinite
horizon.

UCPADP’s primary contribution is a termination criterion that is amenable
to general undiscounted problems, i.e. problems where the cost function is not
increasingly discounted as time progresses. UCPADP’s termination criterion
requires two conditions to be simultaneously satisfied: first, it requires the
control law to be near-constant over a sufficiently large period (similarly to
the well-studied discounted case); secondly, it also requires the system state
to converge to a sufficiently small region near the target set-point for a large
number of initial conditions spanning the space of feasible initial conditions.

In this thesis, UCPADP is used as a backend for generating optimal real-time
controllers, as exemplified in Papers C and E.
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3.3 Paper C
Jonathan Lock, Rickard Arvidsson, Tomas McKelvey
Optimal Transient Real-Time Engine-Generator Control in the Series-
Hybrid Vehicle
Published in Dynamic Systems and Control Conference,
vol. 2, October 2019.
DOI: 10.1115/DSCC2019-8964 .

This paper studies an application of the UCPADP method introduced in
Paper B. (Note that the UCPADP method was not fully complete at the time of
writing this paper, and the method instead referenced to using the provisional
name MHDP.) Here, we consider the problem of controlling the combustion
engine and electric generator torques in the series hybrid with the goal of
delivering a given electrical power and maximizing fuel-efficiency while taking
the crankshaft angular velocity dynamics into account. Note that this problem
is similar to the example studied in Paper A. The novelty of this controller
lies in the optimality of the torques during the transient interval when the
crankshaft angular velocity is non-stationary. Simulations show a reduction in
fuel consumption of approximately 5–7% during the transient interval. The
resulting controller was implemented natively in the vehicle’s engine control
unit (ECU), requiring only 10–20 CPU instructions per control period, a few
bytes of RAM, and 5–20 KiB of nonvolatile memory. Experimental bench-tests
showed a fuel consumption improvement of 3.7%, which was limited by the
low maximum power of the electric generator and unmodeled turbocharger
dynamics. In the context of this thesis, this paper highlights the potential for
optimal control to improve the performance of just one of many subsystems, as
well as showing the relative ease in which optimal control can be implemented.
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3.4 Paper D
Jonathan Lock, Kristoffer Clasén, Jonas Sjöblom, Tomas McKelvey
A Control-Oriented Spatially Resolved Thermal Model of the Three-Way-
Catalyst
Published in SAE WCX Digital Summit,
April 2021.
ISSN: 0148-7191 .

In this paper we develop a thermal three-way catalyst (TWC) model and
calibrate it with experimental data. Due to the few number of state variables
the model is well suited for fast offline simulation as well as subsequent on-line
control. Using the model could allow an on-line controller to more optimally
adjust the engine ignition timing, the power in an electric catalyst pre-heater,
and/or the power split ratio in a hybrid vehicle when the catalyst is not
completely hot. The model uses a physics-based approach and resolves both
axial and radial temperature gradients, allowing for the thermal transients seen
during heat-up to be represented far more accurately than conventional scalar
(i.e. lumped-temperature) real-time models. Furthermore, it also use a physics-
based chemical kinetics reaction model for computing the exothermic heat of
reaction and emission conversion rate which is temperature and residence-time-
dependent.

We have performed an experimental campaign with a standard spark-ignited
engine and a commercial TWC, where we measured steady-state operation and
cold-start transient behavior. This experimental data allowed us to tune the
model, where we found excellent matching between the measured and modeled
tailpipe emissions. Resolving the radial temperature gradient improved the
relative accuracy of the conversion efficiency by 15% compared to a model
that does not resolve a radial temperature profile, and simulations indicate the
potential for an absolute improvement by 15 percentage points for some cases.
Furthermore, the modeled TWC temperature evolution for a cold-start was
typically within ±10°C of the measured temperature (with a maximal deviation
of 20°C). The proposed model thus bridges a gap between heuristic models
suited for on-line control and accurate models for slower off-line simulation.
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3.5 Paper E
Jonathan Lock, Kristoffer Clasén, Jonas Sjöblom, Tomas McKelvey
Cold-Start Modeling and On-Line Optimal Control of the Three-Way
Catalyst
To be submitted
Preprint available at https://arxiv.org/abs/2104.12390.

In this paper, the TWC model presented in Paper D is extended in several
ways, more extensively tested and validated, and used in combination with
the UCPADP method presented in Paper B to construct a Pareto-optimal
controller suitable for on-line operation. The model in Paper D is extended to
support varying axial discretization lengths, uses tuning parameters expressed
in SI units, models the heat generation from the oxidation of hydrogen gas
generated by the combustion engine, and models a TWC constructed with two
separate monoliths. In this paper we also expand on Paper D by tuning and
validating the TWC using separate training and validation datasets.

Our experimental results show that the cumulative tailpipe emissions for a
cold-start are typically predicted to be approximately -20% to +80% of the
measured emissions. These figures are comparable with those of a significantly
more complex model found in the literature whose cumulative accuracy varies
between ±20% to ±50%. Furthermore, we hypothesize that the measurement
equipment significantly contributes to the modeling error, indicating that the
model’s accuracy may be underestimated.

Using the model with the UCPADP method in Paper B allows for construct-
ing a near-optimal cold-start controller that is Pareto-optimal with respect
to each emission species and fuel-efficiency. The controller is well-suited for
on-line control, as the required non-volatile memory can be kept to under
13.9KiB and the computational operations consist of only a single multi-linear
interpolation and linear filtering operation. We compared the simulated perfor-
mance of an optimal controller with a “reasonable” suboptimal controller that
operates the engine at a constant operating point during the heat-up phase.
With the specific Pareto-optimal emission weighting studied, we found that
the optimal controller generates NOx emissions that are 35% lower than the
suboptimal controller, while the CO and THC emissions and fuel efficiency
are otherwise identical. Though the full potential for the model’s accuracy
and controller’s efficacy is not known, these results indicate that there is the
potential for practically implementing a more effective cold-start controller.
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CHAPTER 4

Concluding remarks and future directions

With an increasing level of available computational power there is a clear
trend towards more complex control schemes. In this thesis, we particularly
look into how near-future EMS systems might improve on the fuel efficiency
and generated emissions of HEV’s. This thesis contains contributions from a
range of topics, from general optimal control methods that can be used for
virtually any purpose, to a model of the TWC found in exhaust aftertreatment
systems, and evaluations of the performance of optimal real-time controllers
for improved fuel efficiency and reduced emissions. Though only scratching
the surface of possible optimal control applications, this thesis shows some
regions where additional work shows promise.

The optimal control methods presented in papers A and B show promise as
general-purpose algorithms. As they are easily used and suited for a wide range
of applications they could, in principle, be included in an optimization toolbox
in MATLAB, Python, Octave, or other numerical computation software. The
catalyst models in papers D and E focus on the TWC, as this is what is
typically found in today’s production HEVs. However, as the models are
physics-based they can in principle be fairly easily adapted to other EATS,
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Chapter 4 Concluding remarks and future directions

such as an electrically heated TWC or the Selective Catalytic Reduction (SCR)
catalyst found in diesel vehicles.
The automotive industry is currently undergoing a large shift, with a very

rapid transition towards increased electrification. In the near future it seems
likely that battery electric vehicles will become a larger proportion of the
vehicle fleet. Though they do not have a combustion engine, there are still a
wide range of possible applications for optimal control, for instance ranging
from energy-optimal adaptive cruise control to improved drivability in semi-
autonomous vehicles. Real-time optimal control is consequently something we
can expect to see more of as time progresses.
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Abstract: Iterative dynamic programming is a powerful method that is often used to solve
finite-dimensional nonlinear constrained global optimal control problems. However, multi-
dimensional problems are often computationally complex, and in some cases an infeasible result
is generated despite the existence of a feasible solution. A new iterative multi-pass method
is presented that reduces the execution time of multi-dimensional, loosely-coupled, dynamic
programming problems, where some state variables exhibit dynamic behavior with time scales
significantly smaller than the others. One potential application is the optimal control of a hybrid
electrical vehicle, where the computational burden can be reduced by a factor on the order of
100 – 10000. Furthermore, new regularization terms are introduced that typically improve the
likelihood of generating a feasible optimal trajectory. Though the regularization terms may
generate suboptimal solutions in the interim, with successive iterations the generated solution
typically asymptotically approaches the true optimal solution.
Note: Full source code is freely available online with an implementation of the solver, some usage
examples, and the test cases used to generate the results shown in this paper.

Keywords: Dynamic programming, Optimal control, Global optimization, Nonlinear control,
Bang-bang control, Efficiency enhancement

1. INTRODUCTION

Non-causal global nonlinear constrained optimal control
is a notoriously difficult problem which, in general, does
not have a known analytical solution. Hence, it is often
necessary to use numerical methods. One method that
is often used for finite-dimensional problems is dynamic
programming (DP). For example, DP is often used for
designing hybrid vehicle controllers, where DP is typically
used to benchmark the quality of simpler, suboptimal,
causal controllers (Liu and Peng (2008); Pérez et al. (2006);
Sciarretta and Guzzella (2007)). DP is guaranteed to
generate the global optimum for problems that can be
represented in a graph. However, DP is computationally
complex for multidimensional problems, where the required
number of computations scales exponentially with the
number of dimensions.

This paper presents a new DP method (and an imple-
mentation of it in Matlab) for multidimensional problems
that can be described as a loosely coupled set of ordinary
differential/difference equations with different time scales.
For problems of this type the presented method significantly
reduces the time required to generate a solution, and

? This work has been performed within the Combustion Engine
Research Center at Chalmers (CERC) with financial support from
the Swedish Energy Agency.

furthermore increases the likelihood of generating a feasible
solution. One example of an application that this method
works well for is that of hybrid vehicle control, where
performance gains on the order of the quotient of the
system’s time scales are realizable. Typically, this gives a
performance improvement on the order of 102 − 104.

In this paper DP is used to solve a discrete-valued, discrete-
time approximation of a continuous-value problem in
discrete- or continuous-time. The DP method used in this
paper starts with a backward-calculation phase where, for
a sample k, each element from a set of system inputs Uk
is exhaustively applied to each element of a set of system
states Xk. The best control uopt [k] and corresponding cost
copt [k] are stored for every system state, where the best
control and cost minimizes the total cost from the current
sample to the final sample. This process is repeated for all
samples starting from the next-to-last sample and working
backwards to the first sample. The optimal control and state
trajectories are generated in a forward-calculation phase,
where for a given initial state the best stored control signal
uopt [k] is successively applied to the system state x [k] for
all samples. Interpolation is used when the system state
x [k] does not exactly match one of the states evaluated
during the back-calculation phase. This directly gives the
optimal control and state trajectories uopt [k] and xopt [k].
A formal definition of DP for optimal control is beyond the



scope of this paper, curious readers are referred to any of
Bellman (1956); Bertsekas (2005); Sundström and Guzzella
(2009).

1.1 Problem definition

For many engineering applications, typical optimal control
problems are continuous-time, continuous-variable (CTCV )
problems. Here, we consider the case where the control
input function u (t) from time tk to time tk+1 is linearly
parameterized with an l-dimensional control variable u [k].
If the function is the step function this representation
is known as zero-order-hold sampling (Åström and Wit-
tenmark, 1997, p. 32). This optimal control problem can
then be represented as a discrete-time, continuous-variable
(DTCV ) problem, defined as

J∗0,Ns
= min

U
L0,Ns (U)

s.t.

L0,Ns =

Ns∑

k=0

c (x [k] , u [k] , k)

x [k + 1] = f (x [k] , u [k] , k) , k = [0, Ns − 1]
bin (x [k] , u [k] , k) ≤ 0, k = [0, Ns]

x [k] ∈ Rm

u [k] ∈ Rl,
(1)

where x [k] is an m-dimensional vector of real-valued state
variables and u [k] is an l-dimensional vector of control
inputs. The total cost function L0,Ns is minimized with
respect to u [k], given the system dynamics f (. . . ) and a
set of inequality constraints bin (. . . ). Here, k is an index
that orders the state and control variable trajectories, and
for the cases considered here is directly proportional to
time.

DP cannot directly be applied to solve (1). Instead, the
problem is further approximated by quantizing the state
and control variables which yields a discrete-time, discrete-
variable (DTDV ) form, i.e. x [k] and u [k] must each
be members of a set with a finite number of elements,
denoted Xk and Uk respectively. Each element of Xk can
be viewed as a vertex in a directed graph (shown in
Figure 1) corresponding to sample k, where the existence
of an edge between an element x [k] ∈ Xk and an element
x [k + 1] ∈ Xk+1 implies that there exists a feasible control
u [k] ∈ Uk so that the constraints in (1) are fulfilled for
x [k], x [k + 1], and u [k].

In (1), the system dynamics model is given in implicit
form — x [k + 1] is generated with the function f (. . . )
given a state x [k] and control u [k] for sample k. This
particular representation is chosen as it is typically difficult
to generate a model in explicit form (i.e. of type u [k] =
g (x [k] , x [k + 1] , k)) in many applications. As a result of
this representation, there is no guarantee in the back-
calculation phase that applying a member of Uk to a
member of Xk will generate a value x [k + 1] ∈ Xk+1.
Similarly, during the forward-calculation phase, if x [k] /∈
Xk then there does not exist an associated stored optimal
control signal uopt [k] to apply. A method that resolves this
issue is to define the existence of on-demand pseudo-vertices
X̄k, where any x [k] /∈ Xk is defined to be an element of
X̄k, and whose numerical values are derived based on the

Fig. 1. Directed graph representation of a DTDV problem.
For the state configuration X 2

k , only the α’th, β’th
and γ’th elements from Uk are feasible and bring the
state to X 1

k+1, X 2
k+1, and X 3

k+1 respectively at the next
sample.

nearby elements in Xk using some suitable interpolation
method. Similarly, a pseudo-optimal control ūopt [k] can be
generated based on the nearby stored optimal controls Uk.
If the elements in Xk are carefully chosen this becomes a
computationally inexpensive gridded interpolation, e.g. nD
linear interpolation (Bellman and Dreyfus (2015); Elbert
et al. (2013)).

1.2 Iterative Dynamic Programming

Iterative dynamic programming (IDP), as defined by Luus
(1990), can be used to solve real-valued optimization prob-
lems, i.e. problems where the state and control variables
take values from the set of real numbers. IDP reduces
the state and control quantization to an arbitrarily small
amount by first searching over a relatively coarse but
large set of system inputs and states using DP, and then
successively generating a denser and narrower search range
centered about the previous result. This successive reduc-
tion in search range is then repeated, eventually allowing
for an arbitrarily small variable quantization. This method
has, for example, been used in the field of hybrid vehicles,
primarily as a solver for limited-horizon nonlinear MPC
control, see Wahl and Gauterin (2013).

IDP can also handle problems where the optimal control
trajectory lies along a boundary of the feasible set —
typically with successive iterations the generated trajectory
asymptotically approaches the optimal one. This is an
important advantage of IDP as compared to DP defined by
e.g. Sundström et al. (2010), which will generate trajectories
that avoid the edges of the feasible set, potentially resulting
in a suboptimal solution.

Recently, Elbert et al. (2013) implemented a non-iterative
DP method that correctly handles problems that lie
along a boundary of infeasibility. However, this method
does not have the additional benefit of reducing variable
quantization.

1.3 Current issues

IDP is a powerful method for solving many types of global
optimization problems. However, previously it has been
unsuitable for certain sub-classes of problems due to issues
with poor feasibility guarantees and large search spaces.
This paper presents a few extensions that can help resolve
these issues.



Poor feasibility guarantees In general, there is no guar-
antee that a feasible control trajectory will be generated
during the forward-calculation phase. It is typically as-
sumed that interpolation of the state and control signal
between elements in Xk and Uk gives a feasible and close-
to optimal control sequence. However, it is possible that
selecting this interpolated control signal will lead to a state
leaving the feasible set. For problems where the optimal
state trajectory lies along the boundary of the feasible set
this issue is particularly problematic.

Large search space For problems where the state variable
dynamics have very different time scales, the search space
quickly becomes unreasonably large for the standard DP
algorithm. For example, consider a system where an electric
vehicle’s velocity and battery state-of-charge (SOC) are
modeled as state variables and the vehicle’s acceleration is
available as an input. Intuitively we expect the velocity to
exhibit dynamics on the order of seconds, while the SOC
shows dynamics on the order of minutes or hours. Solving
this problem directly with IDP requires;

• A time step, 1 second, which is sufficiently small to
resolve the fast dynamics of the vehicle velocity.
• That the set of control inputs is dense enough. For

a 1% discretization error 100 control signals must be
tested for each state configuration.
• A grid density for the vehicle velocity that is dense

enough to ensure reachability ; defined as the ability
to reach at least one feasible neighboring state —
the “nearest” state — at the next sample, given the
entire range of state configurations and control signals
applied to the system at each sample. In this problem,
assuming a velocity grid covering the range 0 – 30 m/s
and a maximum acceleration of 3 m/s2, 11 equidistant
points are required in the velocity grid with the chosen
sample rate. As it is crucial that reachability is ensured
it is generally good practice to inflate this value slightly
to take numerical precision into account. Assume a
grid density of 15 points is sufficient.
• A grid density for the vehicle SOC that is dense enough

to ensure reachability. Assuming a battery capacity
of 30 kWh = 108 MJ and a maximum power demand
of 90 kW, this implies that each grid point must be
separated by at most 90 kW/1 s = 90 kJ. This in turns
implies a minimum of 108 MJ/90 kJ = 1200 points for
the SOC grid. For some added headroom, assume a
grid density of 1400 points.

Solving this problem with IDP results in that for every
sample k there will be 100 · 15 · 1400 = 2.1 · 106 evaluations
of f , bin, and c — the equations that define the system
dynamics, constraints, and cost defined in (1). For a time
horizon of 1 hour, which captures the dynamics of the
SOC, this would imply that the total optimization problem
involves 2.1 ·106 ·60 ·60 ≈ 7.6 ·109 evaluations of the system
model for each IDP iteration.

Note that this problem is “only” a 2+1–dimensional prob-
lem (two state variables, one control variable), and higher-
dimensional problems grow exponentially in complexity. For
systems with radically different time scales this becomes
computationally exhausting as small time-steps are needed
along with a prohibitively large grid for the slowly varying
state variable(s).

2. MULTI-PASS ITERATIVE DYNAMIC
PROGRAMMING WITH REGULARIZATION (IDP-MP)

The following modifications to the standard IDP scheme,
collectively referred to as IDP-MP, mitigate the feasibility
and complexity issues described in Section 1.3.

2.1 Improving feasibility with trajectory regularization

Let Fk denote the feasible set of x [k], i.e. the set of
x [k] where there exists a control trajectory uopt (x [k])
that satisfies the problem’s constraints defined in (1). Let
Gk denote the infeasible set of x [k], i.e. the set of x [k]
where there does not exist a state trajectory satisfying (1).
Define J∗k,Ns

(x [k]) as the minimum total cumulative cost
from sample k to sample Ns when following the optimal
control trajectory from x [k] ∈ Fk. For convenience, define
J∗k,Ns

(x [k]) = ∞∀x [k] ∈ Gk. Finally, define Ok as the

set of values that x [k] is allowed to cover in (1), i.e. the
values of x [k] that satisfies bin (. . . , k). Define a recursive

regularized cost function Ĵ∗k,Ns
and constraint function

b̂in (. . . ) that replaces the terms J∗k,Ns
and bin (. . . ) in (1)

during the back-calculation phase in the DP algorithm as

Ĵ∗k,Ns
(x [k]) = min

u[k]∈Uk
[c (x [k] , u [k] , k)

+Ĵ∗k+1,Ns
(x [k + 1]) + µ]

Ĵ∗Ns,Ns
= min

u[Ns]∈UNs

c (x [Ns] , u [Ns] , Ns) + µ

s.t.

b̂in (u [k] , k) ≤ 0, k = [0, Ns]
x [k + 1] = f (x [k] , u [k] , k)

µ =

{
0 dmin > dthrs ∧ x [k] ∈ Ok

β otherwise
dmin = min

IG∈IG
‖Ix − IG‖ ,

(2)

where β is a sufficiently large additive penalization factor,
Ix is the grid coordinate of a given element x [k], IG
contains the grid coordinates for all elements in Gk, and

b̂in (. . . ) does not depend on x [k] but otherwise has
the same constrains as bin (. . . ) in (1). In essence, (2)
recursively generates the optimal trajectory by removing
any hard constraints on x and instead adding a penalty β
for every sample k ∈ [0, Ns] where the optimal trajectory
J∗k,Ns

(x [k]) either exceeds Ok (i.e. violates the original

constraints bin (. . . )) or the distance between x [k] and the
nearest infeasible state is less than dmin. The dmin > dthrs
term is akin to the use of a barrier function (Bertsekas,
1999, p. 370), though in this application there is no need
for it to be continuous or differentiable.

Figure 2 illustrates example values of dmin for a two-
state problem with a search space of six orthogonal and
uniformly distributed values for each state variable, using
the 2-norm for defining the distance dmin, where the
minimum distance between any two grid coordinates is
defined as 1. In this example, IG = {[1, 1] , [2, 2] , . . . }
(indicated by the red diamonds) and the feasible state grid
coordinates are {[2, 1] , [3, 1] , . . . } (indicated by differently
colored circles). For dthrs = 1.5 the dashed blue line
indicates the boundary between the penalized region (to
the left) and the unpenalized region (to the right).
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Fig. 2. Feasible (round) and infeasible (diamond) elements
for an exemplified Xk with two variables consisting
of six points each, with dmin’s value in (2) for each
feasible element using the 2-norm. The regions cor-
responding to µ = β and µ = 0 are indicated for
dthrs = 1.5.

As the hard constraints on x [k] in (1) are replaced by soft
constraints in (2), the problem feasibility is significantly
improved for problems where the only feasible state
trajectory lies near the state variable bounds (e.g. some
bang-bang-control problems, (E. Bryson and Ho, 1975, p.
112) among others). Note that there is no need to add
soft constraints to u [k] as these values can directly be
chosen, unlike x [k] which evolves over k. (Note that this
constraint replacement method is conceptually similar to
that of (Bertsekas, 1999, p. 281).)

Determining values for the regularization parameters dthrs
and β is not obvious; the examples in this paper use
β = cmax − cmin (where cmax = max c (. . . ) and cmin =
min c (. . . ), i.e. the maximum and minimum possible
sample costs respectively), and 2-norm grid index distances√

2 ≤ dthrs ≤ 5.

Typically, active regularization terms will generate sub-
optimal trajectories. However, with successive iterations,
the suboptimal path typically asymptotically approaches
the true optimal path as

• the suboptimal state and control trajectories intro-
duced by the dmin > dthrs condition generates a
path that is typically at most dthrs grid indices away
from the true optimal path, and with a decreasing
grid extent (i.e. a finer grid) the absolute deviation
decreases in proportion, and
• an optimal trajectory will only leave Ok+1 if there

only exists feasible, but penalized, trajectories from
x [k] (i.e. trajectories that violate the constraints in
(1)). With successive IDP iterations the elements
in Uk and Xk+1 will be more closely spaced and a
control u [k] that brings x [k] → x [k + 1] such that
x [k + 1] ∈ Ok+1 will typically be generated if it exists.

Essentially, with a sufficiently fine grid, and for problems
where the region of feasible trajectories is not pathologically
shaped, the penalization term β will not be applied, and
the initial problem’s constraints, (1), will not be violated.

2.2 Improving feasibility with heuristic increase of grid
search space

Despite the regularization terms used to improve the
feasibility of the problem, as described in Section 2.1, it is
possible that a feasible state/control trajectory is not found
after reducing the grid size (for example, an unfortunately
chosen grid may generate an Xk and/or Uk whose members
are poorly amenable to interpolation). For the p+1’th IDP
iteration, let µdec < 1 and µinc > 1 be the possible factors
to scale Xk and Uk with for each sample k. For a given
scaling factor, center Xk/Uk about the result for the p’th
IDP iteration, while leaving the number of grid elements
unchanged. Here µdec is analogous to 1− ε in Luus (1990).

In this event, a simple heuristic that attempts to eventually
generate feasible trajectories is to scale the grid size by
µdec if the previous iteration generated a feasible result
and by µinc if it did not. A good practice for this value is
to choose a value that only very slightly increases the grid,
i.e. 1 < µinc � 1/µdec, and selecting µinc such that µn

inc 6=
1/µdec ∀n ∈ Z, i.e. select µinc and µdec to inhibit repeating
cyclic sequences of grid sizes given continuously infeasible
iterations after an initially successful iteration. For example,
if µdec = 0.8, one appropriate value is µinc = 1.05
as µn

inc = [1.05, 1.1025, 1.1576, 1.2155, 1.2763, . . . ], which
does not contain 1/µdec = 1.25.

2.3 Solving the m-1-dimensional problem to reduce the
search space

For problems that display loosely coupled states (in the
sense that each state’s dynamics are relatively independent
of the other) and whose dynamics have very different
time scales, one can intuitively expect that the state
trajectory for the slowly varying state variable(s) is similar
to the trajectory generated by solving a simplified problem,
where the dynamics of the quickly-varying state variable(s)
is neglected. (Note that problems that are stiff and/or
chaotic — where the trajectory of the quickly varying state
variable(s) has a large effect on the slowly varying state
variable(s) — do not lend themselves to this method.)

For these types of problems, the execution time for the
optimal control problem can be significantly reduced by,

a solving an approximate lower-dimensional problem
using IDP with a possibly longer sample period,
where the dynamics of the quickly-varying states are
neglected (which is computationally much faster than
the full-dimensional problem with a short sample
period), followed by

b solving the full-dimensional problem with a sufficiently
short sample period and grid spacing density (the
latter due to reachability requirements) using IDP,
where the search space for the slowly varying variable
is limited to some region in the vicinity of the solution
from the low-dimensional problem a.

This procedure allows for significantly reducing the number
of elements in X that correspond to the slowly-varying
variable(s) in stage b, while maintaining optimality so
long as the true optimal control solution for the slowly
varying state variable(s) lies within the range of values
searched in stage b. This method can be easily extended



to m-dimensional problems with n different sets of state
variables with different time scales.

The following exemplifies how stages a and b can be applied
to the vehicle control problem defined in Section 1.3.

Apply stage a; Solve a 1-state/1-input problem using
an equivalent model where the SOC is modeled as a
state variable and the model input is the vehicle power
(corresponding to the power required to maintain a constant
speed). This approximation is equivalent to neglecting
the dynamics related to changes in vehicle velocity, i.e.
neglecting the vehicle’s kinetic energy and allowing the
vehicle velocity to be discontinuous. For a longer sample
period of 2 seconds (which shifts computational burden
from stage a to stage b) reachability implies that a grid
density of 108 MJ/ (90 kW · 2 s) = 600 points is required.
Assuming 700 points are used this gives a total of 700 ·
60 · 60/2 = 1.2 · 106 model evaluations per IDP iteration.
Doubling the sample period for this stage results in reducing
the number of computations in this stage by a factor of
four.

Apply stage b; Solve the full 2-state/1-input problem
(i.e. model SOC and velocity as states with acceleration
as an input) with a reduced SOC search range. For
a 1 second sample rate reachability yields a SOC grid
separation of 90 kJ, though now a smaller SOC range can
be searched compared to the original problem in Section 1.3.
A conservative lower bound for the SOC variable extent is
to require the permissible variation in battery energy ∆E
to be able to accelerate/decelerate the vehicle from zero to
maximum speed or vice versa. For equal sample rates in
stages a and b and a vehicle mass of 1000 kg, this results in
a battery search range of ±∆E ≥ 1

2 · 103 (30)
2

= ±450 kJ
centered about the SOC trajectory determined in stage a.
In this example, the sample period in stage a was twice the
sample period of this stage, suggesting that a search range
on the order of ±450 · 2 = ±900 kJ is sufficient, giving a
minimum of 2 · 900 kJ/90 kJ = 20 grid points (i.e. doubling
the sample period in stage a doubles the computational
burden in this stage). For some added headroom, assume 24
grid points are used. This gives a total of 100·15·24 = 36·103

state/control combinations to test at each sample, which
causes the final two-dimensional problem to consist of
36 · 103 · 60 · 60 = 130 · 106 calls to the system model.

In this example, IDP-MP requires 1.2 · 106 and 130 ·
106 model evaluations in stage a and b respectively, in
contrast to the 7.56 · 109 model evaluations per iteration
for the standard IDP method. The total number of model
evaluations is reduced by a factor of 58, with a similar
reduction in execution time.

In fact, for this particular problem, shifting computational
burden from stage a to stage b worsens the net performance,
as ±∆E is “only” two orders of magnitude smaller than
the total battery capacity. For a 1-second sample rate
in both stages, stage a and b would require 4.8 · 106

and 65 · 106 model evaluations respectively, reducing the
total number of model evaluations by a factor of 108
compared to the standard IDP method. Naturally, the
reduction in computational time is a result of the chosen
numerical values in this example, and it will be shown in

Section 3.2 that some problems may exhibit a much greater
performance improvement.

Note that, in general, determining the minimum search
range for stage b and optimally balancing the computa-
tional burden between stages a and b is beyond the scope
of this paper.

3. RESULTS

This section highlights the benefits of the method presented
in Section 2 by solving two optimal-control problems
using a Matlab implementation of the presented IDP-MP
algorithm.

3.1 Double-integrator

Assume the goal is to optimally control a sampled con-
strained double integrator with different time scales given
by

x2 [k + 1] = x2 [k] + αTsu [k]

x1 [k + 1] = x1 [k] + Tsx2 [k] + αu [k]
T 2
s

2

c [k] =

(
|x1 [k]|+

∣∣∣∣
1

10
x2 [k]

∣∣∣∣
)
Ts

s.t.
Ts = 0.125
Ns = 3/Ts
α = 4

u [k] ∈ [−1, 1]
x2 [k] ∈ [−1, 1]


x1 [0]
−x2 [0]
x1 [Ns]
x2 [Ns]


 ≥




1
0
1
0


 ,

(3)

where α is the difference in time scales between x2 and x1,
Ts is a constant sampling period, and the magnitudes of x1
and x2 are penalized. The penalization terms are selected
so that the resulting optimal trajectory is identical to that
of a problem using the cost function c [k] = |x1 [k]|Ts, while
ensuring numerical stability in regions where this simpler
cost function displays singular control. Several attributes
make this problem a suitable example that illustrates
the benefits of the presented method: the optimal control
solution is known analytically, the state trajectory of the
optimal solution lies on the boundary of the feasible set (as
x2 will be ±1 for some time), and with α = 4 this problem
is relatively loosely coupled with respect to x1 and x2.

Using the IDP-MP method defined in Section 2.3, some
reduction in the search space for x1 is possible if an
approximation of (3) can be generated where the quickly
varying state variable is replaced by a control signal. One
example of a system that does this is

x [k + 1] = x [k] + Tsu [k]
c (x) = |x [k]|Ts s.t.

u [k] ∈ [−1, 1][
x [0]
x [Ns]

]
≥
[

1
1

]
, (4)

where x2 has been directly replaced with an input u. This
system is a good approximation of the dynamics of the
slowly changing state variable in (3), i.e. a constrained
integrator. Furthermore, (4) is easy to solve using an
ordinary IDP algorithm; define x̂ [k] , k = [0, Ns] as the
solution given by IDP.



Now, the two-dimensional problem in (3) can be solved
and the search space can be reduced for x1 by letting

X 1
k =

{
x̂ [k] + ∆x1

n
Ng1

}Ng1

n=−Ng1

. Here, X 1
k is a set of

2Ng1 + 1 linearly distributed elements corresponding to
x1 that will be tested at sample k, ∆x1 is the extent
of the values to test, and x̂ [k] is the generated solution
of the 1-state optimal control problem in (4). The par-
ticular choice of linearly distributed elements in X 1

k is
convenient, but ultimately arbitrary; the range-reducing
method works well for other choices. Xk can be generated
in a number of ways, one practical method is to set Xk =
{

(a, b) |a ∈ X 1
k and b ∈ X 2

k

}
, where X 2

k =
{

n
Ng2

}Ng2

n=−Ng2

.

Setting ∆x1 = (2 · range (x1)) /α = 1.5 results in reducing
the number of model evaluations by a factor of two, and
the reduction is primarily limited by the quotient of the
time scales, α.

The reduced search space decreases the computational
burden of the problem, however, this also reduces the
feasible set. If reduced too aggressively, the optimal solution
will not be completely contained in the search space and
solution optimality may be lost. The feasibility of the
problem can be improved by introducing the regularization
terms defined in Section 2.1. For β = cmax − cmin =
max c (. . . )−min c (. . . ) = 1.1−0 = 1.1, dmin =

√
2, using

the 2-norm for distance, and an increased search space of
x2 ∈ [−1.25, 1.25] the feasibility issues are mitigated in this
example. It is beyond the scope of this paper to determine
the minimum range that can be searched that is guaranteed
to contain the optimal solution.

Solving this problem using IDP-MP gives the state tra-
jectory shown in Figure 3 after 50 iterations, taking
approximately 10 minutes on a typical desktop computer
(primarily CPU-bound, single-core execution on an AMD
FX-6300). The feasible set and optimal trajectories for
sample k = 10 for the first two-dimensional iteration is
shown in Figure 4. As can be seen, the results in both
figures match the well-known optimal bang-bang control
and state space trajectory (E. Bryson and Ho, 1975, p.
112).

Some noteworthy attributes are:

• the optimal control trajectory for states near the
infeasible region tend to exhibit a larger magnitude
(i.e. the system is more quickly brought to a state at
least dmin grid indices away from the infeasible bound
if such a control exists),
• for states where x1 = −0.7 the optimal control

exceeds the soft constraints x2 ∈ [−1, 1], implying
that these states would belong to the infeasible set
had the allowable range not been extended to x2 ∈
[−1.25, 1.25],
• the state [x1, x2] = [−0.6, 1.1] has an optimal tran-

sition to [x1, x2] ≈ [−0.5, 1], i.e. the optimal control
brings the state out of soft constraint violation (i.e.
keeps x2 ∈ [−1, 1]) if there exists a trajectory that
does this.

For more details on the numerical values used and the im-
plementation of the IDP-MP solver, see https://github.
com/lerneaenhydra/dpm.
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Fig. 3. The state and control trajectory solution for the
double integrator (3). This result asymptotically ap-
proaches the analytic solution.

Fig. 4. Optimal trajectory map for the first iteration of the
system defined by (3) for sample k = 10. Each arrow
indicates the optimal state transition from the current
sample to the next sample. The feasible set is shown
in the greyscale region, with darker areas indicating
a larger cost J∗13,Ns

.

3.2 Hybrid vehicle example

Determining the optimal control policy for hybrid vehicles
is one application that often utilizes DP (Liu and Peng
(2008); Pérez et al. (2006)). Typically, this problem is solved
for one state variable, namely the SOC, as the search space
grows prohibitively quickly with additional state or control
variables. However, for a multi-dimensional problem with
loosely coupled states with different time scales, the IDP-
MP method defined in Section 2 can be effectively used.

Consider a passenger car series-hybrid where the combus-
tion engine crankshaft velocity, ω, and SOC are modeled
as state variables. A block diagram illustrating the model
is shown in Figure 5, where the internal combustion engine
torque, generator torque, and total power demand are
model inputs; SOC and ω are state variables; and the SOC
and instantaneous fuel consumption ṁ are model outputs.

As the crankshaft velocity is loosely coupled and exhibits
dynamics several orders of magnitude faster than the SOC,



Fig. 5. Simple model of a series-hybrid vehicle.

this problem is amenable to IDP-MP. Solving for model
parameters that are representative of a typical passenger
car, power requirements given by the US-06 drive cycle
(US Environmental Protection Agency (2008)), a 50% SOC
at the start and end of the cycle, and solely penalizing fuel
consumption gives results shown in Figure 6. (See https://
github.com/lerneaenhydra/dpm for a full definition of
the model set-up.)
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Fig. 6. Internal combustion engine (ICE) operating point
and instantaneous subsystem power for the vehicle
topology defined in Figure 5 subjected to the US-
06 drive cycle. The upper plot shows isolines of
the engine’s brake specific fuel consumption (BSFC)
and operating point at each sample. More frequent
points are colored yellow while less frequent points
are colored blue. The engine is operated mostly along
the optimal-efficiency locus, where the most frequent
operating point is 71 Nm and 164 rad/s. The lower
plot displays the total, battery, and generator power
over time.

This example was solved using both the IDP-MP method
as well as a standard IDP method. Here, IDP-MP used
32 times fewer model evaluations than IDP per iteration,
and the calculation time was reduced by a similar factor
for each iteration. The computational reduction is limited
primarily by the quotient of time scales between the two
state variables. In this example the battery capacity has
been kept as small as possible to let the standard method
generate a solution in a reasonable time frame, and a
battery time scale on the order of 42 seconds was sufficient
(i.e. the battery was sized so that, at maximum power draw,
completely depleting the battery from a full SOC takes 42
seconds). The crankshaft displays a time scale on the order
of one second, so the state variables time-scales differ by a
factor of 42, which matches well with the difference in the
number of model evaluations between IDP-MP and IDP.
Had the battery time scale instead been on the order of

an hour, which is more physically realistic, each IDP-MP
iteration would approximately use 1/ (32/42 · 60 · 60) ≈
1/2700 as many system model evaluations as the standard
IDP method (as reachability implies the battery energy grid
density must be constant while the grid range is increased
by a factor of approximately 60 · 60/42 ≈ 86).

The IDP-MP method has been verified for this particular
example by comparing the results to those given by a
standard IDP method. Figure 7 displays the total cost J∗0,Ns

for successive IDP iterations. The mean relative difference
between the state trajectories of the 7’th iteration of IDP-
MP and 5’th iteration of IDP (which have been selected
due to their similar total cost) is 0.764% and is believed to
primarily be due to the inherent variable quantization of the
states and controls. Even though IDP-MP generates inferior
results for a given number of iterations the significantly
reduced computation time ensures that a result equally
good as that given by IDP is generated after a shorter
execution time.

Fig. 7. Net cost (fuel consumption) for the system topology
shown in Figure 5 for successive iterations. IDP-MP
gives a slightly worse trajectory than IDP for a given
iteration, but eventually surpasses IDP while using
1/32 as many model evaluations per iteration. Only
five IDP iterations are shown due to the prohibitive
execution time, taking approximately ten times as
long to calculate as all the IDP-MP iterations.

4. CONCLUSIONS

It has been shown that the IDP-MP method can greatly
decrease the computational time required to solve optimal
control problems for systems where the system dynamics
are both loosely coupled and display significantly different
time scales. Typically, the execution time is decreased
by a factor on the order of the quotient of the system’s
time scales. As problems with very different time scales
are computationally difficult to solve using IDP, this
method is a significant improvement over IDP as these
problems are where the largest performance gains with
IDP-MP are found. Broadly speaking, the IDP-MP method
described in this paper increases the range of optimal
control problems that DP/IDP is suited for and, as a result
of the large performance improvement, significantly more
complex problems can be considered.
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Sundström, O., Ambühl, D., and Guzzella, L. (2010). On
Implementation of Dynamic Programming for Optimal
Control Problems with Final State Constraints. Oil
& Gas Science and Technology — Revue de l’Institut
Franccais du Pétrole, 65(1), 91–102.

Sundström, O. and Guzzella, L. (2009). A generic dynamic
programming matlab function. In 2009 IEEE Control
Applications,(CCA) & Intelligent Control,(ISIC), 1625–
1630. IEEE.

US Environmental Protection Agency (2008). US06
Dynamometer Drive Schedule. https://www.
epa.gov/vehicle-and-fuel-emissions-testing/
dynamometer-drive-schedules. [Online; accessed
2016-10-31].

Wahl, H.G. and Gauterin, F. (2013). An iterative dynamic
programming approach for the global optimal control of
hybrid electric vehicles under real-time constraints. In
Intelligent Vehicles Symposium (IV), 2013 IEEE, 592–
597. IEEE.



PAPERB
Undiscounted Control Policy Generation for Continuous-Valued

Optimal Control by Approximate Dynamic Programming

Jonathan Lock, Tomas McKelvey

Submitted to the International Journal of Control on July 1, 2020
Revised January 7, 2021 and 17 March, 2021.

Preprint available at https://arxiv.org/abs/2104.11093

https://arxiv.org/abs/2104.11093




1

Undiscounted Control Policy Generation for
Continuous-Valued Optimal Control by Approximate

Dynamic Programming
Jonathan Lock, Tomas McKelvey

Abstract—We present a numerical method for gen-
erating the state-feedback control policy associated
with general undiscounted, constant-setpoint, infinite-
horizon, nonlinear optimal control problems with con-
tinuous state variables. The method is based on ap-
proximate dynamic programming, and is closely re-
lated to approximate policy iteration. Existing methods
typically terminate based on the convergence of the
control policy and either require a discounted problem
formulation or demand the cost function to lie in a
specific subclass of functions. The presented method
extends on existing termination criterea by requiring
both the control policy and the resulting system state
to converge, allowing for use with undiscounted cost
functions that are bounded and continuous. This paper
defines the numerical method, derives the relevant
underlying mathematical properties, and validates the
numerical method with representative examples. A
MATLAB implementation with the shown examples is
freely available.

Index terms— Approximate dynamic programming,
Control policy, Undiscounted infinite-horizon, Optimal
control

I. Introduction
Practical methods for generating the optimal control

policy (i.e. the state feedback function) for general non-
linear optimal control problems are useful tools for con-
trol engineers. If the optimal control policy is known,
a real-time optimal controller can be implemented on
very computationally limited hardware as the optimal
control signal can be generated simply by interpolating
the pre-computed optimal control based on the current
system state. However, one practical difficultly lies in pre-
computing the optimal control policy, which can be very
computationally expensive. Although several methods for
solving this class of problem are well-studied, dynamic
programming (DP) variants being one example, they all
have associated limitations or drawbacks. Policy iteration is
one extensively studied variant of DP (e.g. Bertsekas 2017,
p. 246; Puterman 1994, p. 295; Puterman and Brumelle
1979) that has been used for over 40 years for finding
the optimal control policy for discrete-valued, non-linear,
infinite-horizon problems, i.e. where the state and control
variables are taken from discrete sets.

∗Manuscript submitted to the International Journal of Control July
1, 2020; revised January 7, 2021 and 17 March, 2021.

Approximate dynamic programming (ADP) is another
well-known extension of DP (see for instance Powell (2009)
for a general introduction) that approximates the cost
function using a prescribed set of basis functions. One
group of ADP methods approximate the cost function by
interpolating costs and optimal controls between discrete
gridded points (e.g. Munos and Moore (2002); Santos and
Vigo-Aguiar (1998)). This approach allows for extending
DP to applications with continuous state variables.
Assuming the problem of finding the approximately-

optimal control policy for continuous-valued, non-linear,
infinite-horizon problems, one might attempt to use tra-
ditional policy iteration in concert with ADP. However,
this is problematic as traditional policy iteration requires
the set of states and controls to be discrete (i.e. finite) to
terminate, while the interpolation performed with ADP
leads to a continuous (i.e. infinite) number of possible states
and controls. This has led to the development of several
methods that can be broadly classified as approximate
policy iteration (API) methods, where the termination
criterion of conventional policy iteration is altered in order
to terminate in finite time and generate an approximately
optimal solution.

There are several excellent papers that consider different
variants of API. However, the vast majority of these are
limited to the case where the cost function is discounted,
i.e. where future costs are successively weighted less and
less (Bertsekas, 2011; Santos & Rust, 2004; Scherrer, 2014;
Stachurski, 2008). Though a discounted cost function may
be relevant for some problems and allows for more easily
determining a termination criterion, a sizeable portion
of optimal control problems are better formulated as
undiscounted problems (e.g. minimum fuel/energy/time
problems, or yield maximisation for chemical plants and
cultivation). Guo, Si, Liu, and Mei (2017) introduce one
API method for the undiscounted case from a reinforcement
learning perspective, but this method is limited both in
that the cost function must be a sum of a positive definite
function of the state and a quadratically weighted function
of the controls, and that the state and control cannot be
arbitrarily constrained.
In this paper we will introduce a method similar to

API schemes that approximates the solution to the infinite-
horizon problem by instead solving a finite-horizon problem.
More specifically, the method uses conventional interpolat-
ing ADP to approximate the undiscounted, infinite-horizon,
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non-linear, optimal control problem where the state is
constrained to converge to a unique equilibrium. The
primary contribution of this paper is a termination criterion
that terminates at a suitable horizon without requiring
the presence of a discount factor, while also allowing for
(nearly) arbitrary cost, constraints, and problem dynamics
— a combination that is novel to the best of the authors
knowledge. The method’s sole tuning parameter allows for
controlling the trade off between memory consumption,
computational time, and accuracy. This allows for the
method to be used without in-depth knowledge of the
method. Furthermore, as the method’s output is the
optimal control policy (i.e. the optimal control tabulated
by the system state) subsequent on-line control can be
implemented using a computationally fast interpolation
operation.
The structure of this paper follows; in Section II we

will define the problem studied in this paper and the
structure of the interpolating ADP method we subsequently
base our presented method on. We will assume a working
knowledge of ADP methods for optimal control. Sundstrom
and Guzzella (2009) gives a straightforward introduction
while Bertsekas (2017); Puterman (1994) go into more
detail. This is followed by Section III, where we derive
relevant properties of the studied problem. Though these
properties are mostly already known, by deriving them
we can both highlight some important details, as well
as use a language and notation more commonly seen by
control engineers as compared to existing API literature.
In Section IV we present our method of generating an
approximation of the optimal control policy, as well as
highlight how existing API methods compare with our
method. Finally, in Section V we use two representative
examples to show the results generated by our method. For
ease of reference, a list of the symbols and notation used
in this paper is shown in Table I.

II. Problem formulation

Assume a dynamic system fd : Rn × Rm → Rn whose
associated state evolution is recursively given by

xk+1 = fd (xk, uk) (1)

for the system state xk ∈ Rn and control input uk ∈ Rm
at samples k ∈ [0, 1, 2, . . . ]. Define the infinite sequences

x̄ , [x0, x1, x2, . . . ] (2a)
ū , [u0, u1, u2, . . . ] (2b)

as the state trajectory and control trajectory respect-
ively. Similarly, define the finite sequences x̄N ,
[x0, x1, . . . , xN−1] and ūN , [u0, u1, . . . , uN−1]. In partic-
ular, for both x̄ and x̄N we respectively define x0 as the
initial condition.

A. The infinite-horizon problem
Given x0, introduce

J (x̄, ū) = lim
N→∞

1
N

N−1∑

k=0
fc (xk, uk) (3a)

J∗ = min
x̄,ū

J (x̄, ū) (3b)

(x̄∗, ū∗) = argmin
x̄,ū

J (x̄, ū) (3c)

subject to
(x̄, ū) ∈ S ∩ Vα (3d)

for
S =

{
(x̄, ū) : lim

N→∞
g (xk, uk) ≤ 0

xk+1 = fd (xk, uk) , ∀k ∈ [0, N − 1]
}

(3e)

Vα =
{

(x̄, ū) : lim
N→∞

1
N

N−1∑

k=0
fa (xk, uk) = α

}
(3f)

as the problem we study in this paper. Here, we denote
fc : Rn × Rm → R the cost function, g : Rn × Rm →
Rl the inequality constraint(s), a scalar parameter α ∈
R the average constraint, and fa : Rn × Rm → R the
average constraint function. We define a feasible trajectory
as any trajectory (x̄, ū) that satisfies (3d). The set S gives
a convenient notation for demanding that the “textbook”
problem dynamics and inequality constraints hold, while
the set Vα denotes an additional average constraint.
Crucially, as none of the functions in (3) are explicitly

dependent on k, its solution satisfies the principle of
optimality (Bertsekas 2017, p. 20; Bellman 1954). Bertsekas
(2017, p. 15) shows that this in turn implies that the optimal
control trajectory ū∗ can equivalently be formulated as the
control policy (i.e. state-feedback)

ū∗ = [µ∗0 (x0) , µ∗1 (x1) , . . . ] , (4)

where µ∗k : Rn → Rm are functions that are independent
of the initial condition x0. Note that while x̄ and ū (with
various sub- and super-scripts) are sequences of vectors of
scalars, µ̄ (with various sub- and super-scripts) are instead
sequences of functions. We will refer to µ̄∗ as the optimal
control policy.

Definition 1. Define F ⊆ Rn as the set of initial
conditions with feasible solutions, i.e.

F , {x0 : ∃ (x̄, ū) ∈ S ∩ Vα} . (5)

Assumption 1. For the remainder this paper we assume:
A.1 fc, fd, g, and fa are continuous and bounded.
A.2 The optimal solution (x̄∗, ū∗) associated with x0 is

unique.
A.3 The optimal control policy associated with (3) exists,

and can be expressed as

ū∗ = [µ∗ (x0) , µ∗ (x1) , . . . ] , (6)

i.e. it is not only independent of the initial condition
x0, but also independent of the sample index k. We will
refer to this as a stationary control policy (Bertsekas
& Shreve, 1979).
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Table I: List of used notation, symbols, and first definition.

DP Dynamic programming
ADP Approximate dynamic programming
API Approximate policy iteration
dx (8a) Distance between neighbouring points in X
du (8b) Distance between neighbouring points in U
fc (3a) Cost function
fc,R (17) Relaxed cost function
fd (1) System dynamics function
fα (3f) Average constraint function
F (5) Set of initial conditions with feasible initial condition
F ′k (29) Set of feasible gridded initial conditions after k samples
g (3e) Inequality constraint function
J (3a) Cost
J∗ (3b) Optimal cost
J∗eq (11a) Optimal equilibrium cost
JR (18a) Relaxed cost
J∗R (18b) Optimal relaxed cost
J∗NR (25a) Optimal relaxed N -horizon cost
NM (32a) Finite minimum horizon
N ′M (33b) Finite UCPADP horizon
S (3e) Set of trajectories with feasible dynamics and inequality constraints
uk (1) Control signal at sample k
ū (2b) Control trajectory
ū∗ (3c) Optimal control trajectory

ueq, u
∗
eq (7) Optimal equilibrium control (identical by Theorem 4)

ūR (18a) Relaxed control trajectory
ū∗R (18c) Optimal relaxed control trajectory
ū∗NR (25b) Optimal relaxed N -horizon control trajectory
U (9b) Cartesian grid of sampled controls for ADP routine
Vα (3f) Set of trajectories satisfying average equality constraint
xk (1) System state at sample k
x̄ (2a) State trajectory
x̄∗ (3c) Optimal state trajectory

xeq,x∗eq (7) Optimal equilibrium state (identical by Theorem 4)
x̄R (18a) Relaxed state trajectory
x̄∗R (18c) Optimal relaxed state trajectory
x̄∗NR (25b) Optimal relaxed N -horizon state trajectory
xk,CL (27) Closed-loop state after applying a control policy k times
X (9a) Cartesian grid of sampled states for ADP routine
α (3f) Average constraint

∆k
µ (30) Control policy deviation at sample k

∆k
x (31) State deviation at sample k
εx (32c) State tolerance
εµ (32b) Control policy tolerance
λ (17) Relaxation parameter
µ∗ (6) Optimal stationary control law
µ̄∗NR (26) Optimal relaxed N -horizon control policies
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A.4 F is nonempty, limk→∞ (x∗k) exists and is independent
of x0 for all x0 ∈ F , and x∗k is asymptotically stable
in the sense of Lyapunov for x0 near limk→∞ (x∗k).

Note that A.1 implies that J (x̄, ū) is finite for any
feasible trajectory, and by A.4 we can furthermore view
J∗ as the average (mean) cost.
Definition 2. Assuming A.4 holds, define

(xeq, ueq) , lim
k→∞

(x∗k, u∗k) (7)

as the problem’s equilibrium point.
Note that A.2, A.3, and A.4 may be difficult to determ-

ine a priori for a given problem. We will briefly discuss the
possible effects of them not holding in Section IV.

B. Interpolating ADP
The method we introduce in this paper uses a conven-

tional interpolating ADP scheme, and we will here use the
standard method of gridding x and u into finite Cartesian
sets. We define

dx ∈ Rn (8a)
du ∈ Rm (8b)

as the distance between neighbouring grid points for each
dimension of the states and controls respectively. We also
define

X ⊂ Rn (9a)
U ⊂ Rm (9b)

as the discrete set of state and control grid points resolved
by ADP respectively, separated by dx and du respectively
and bounded by the region(s) where g(x, u) ≤ 0. We then
use conventional multilinear interpolation to approximate
the cost J and optimal control policy µ for the real-valued
states that do not lie in the discrete set X . For example,
assuming x ∈ R2, u ∈ R1, and g(x, u) = |x|1 ≤ 1 ∧ |u| ≤ 1,
choosing the very coarse (but illustrative) dx =[2, 2]T and
du = 0.5 gives the sets

X =
{[
−1
−1

]
,

[
−1
1

] [
1
−1

]
,

[
1
1

]}
(10a)

U = {−1,−0.5, 0, 0.5, 1} . (10b)

III. Infinite-horizon, average-constrained
problem properties

In this section we introduce properties of the undiscoun-
ted, infinite-horizon, average-constrained problem that will
later be utilised by the method we introduce in Section IV.

A. Solution convergence
Definition 3. For x ∈ Rn, u ∈ Rm, using the same
functions as in (3), define

J∗eq = min
x,u

fc (x, u) (11a)
(
x∗eq, u

∗
eq
)

= argmin
x,u

fc (x, u) (11b)

subject to
x = fd (x, u) (11c)

g (x, u) ≤ 0 (11d)
fa (x, u) = α (11e)

∀x0 ∈ F ,∃ (x̄, ū) s.t. lim
k→∞

(xk, uk) = (x, u) (11f)

as the optimal reachable equilibrium operating point(
x∗eq, u

∗
eq
)
. (Note that we have identical states on both

the left- and right-hand side of (11c), i.e. an equilibrium
state.) We can view this as the unique stationary point
of the system with lowest cost that we can reach for any
initial condition in the feasible set F .

Theorem 4. Given A.1 and A.4,

J∗ = J∗eq (12)
(xeq, ueq) =

(
x∗eq, u

∗
eq
)
, (13)

i.e. the equilibrium we reach will be optimal in the sense of
(11).

Proof: For 0 ≤ i < j, define

Ji→j (x̄, ū) ,
j∑

k=i
fc (xk, uk) . (14)

We can then formulate (3b) as

J∗ = min
x̄,ū

lim
N→∞

1
N
J0→i−1 (x̄, ū) + 1

N
Ji→N−1 (x̄, ū) . (15)

As N → ∞, we are guaranteed that 1
N J0→i−1 = 0 for

any fixed i > 0 per our assumption that fc is bounded.
This implies that J∗ is only dependent on Ji→N−1. By
A.4, we can make (x∗i , u∗i ) arbitrarily close to (xeq, ueq) for
sufficiently large i.
Suppose that

(xeq, ueq) 6=
(
x∗eq, u

∗
eq
)
. (16)

By A.4 (xeq, ueq) is unique, implying that J∗ > J∗eq.
However, by (11f) there exists trajectories x̄′ and ū′ such
that limk→∞ (x′k, u′k) =

(
x∗eq, u

∗
eq
)
, with corresponding cost

J ′ < J∗, contradicting (16).
For an alternate view of the same proof, see Bertsekas

(2012, p. 298).
By Theorem 4 we can intuitively view the infinite-

horizon problem’s solution as ignoring any (finite) costs
during the transient phase and driving the state to the
reachable stationary point with lowest cost. This is a
special case of the turnpike property (Trélat & Zuazua,
2015; Zaslavski, 2014), which states that the solution to
problems with a sufficiently long (finite) horizon tends to
display transient dynamic initial and terminal phases, with
a middle stationary phase that is independent of the initial
and terminal conditions. Of course, the infinite-horizon
problem does not have a terminal phase, and we can thus
view the solution to our problem (3) as consisting of an
initial transient followed by stationary operation at the
optimal reachable equilibrium point.
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From a notation perspective, by Theorem 4 we do not
need to make the distinction between xeq and x∗eq. For
consistency, we will use x∗eq from here on out.

B. Average-constraint relaxation
Definition 5. For a fixed, bounded, scalar relaxation
parameter λ ∈ R, define the relaxed cost as

fc,R (x, u) , fc (x, u) + λfa (x, u) . (17)

Now we can introduce the relaxed problem as

JR (x̄R, ūR) = lim
N→∞

1
N

N−1∑

k=0
fc,R (xk, uk) (18a)

J∗R = min
x̄R,ūR

JR (x̄R, ūR) (18b)

(x̄∗R, ū∗R) = argmin
x̄R,ūR

JR (x̄R, ūR) (18c)

subject to
(x̄R, ūR) ∈ S, (18d)

where we view JR (x̄R, ūR) as the relaxed representation
of J (x̄, ū), and J∗R and (x̄∗R, ū∗R) as the optimal relaxed
cost and optimal relaxed trajectories respectively. Note
that (x̄R, ūR), and therefore also (x̄∗R, ū∗R), are not formally
constrained to lie in Vα.
For clarity, we will use the notation x̄R and ūR when

referring to trajectories associated with the relaxed problem.
We will for ease of notation assume that (x̄∗R, ū∗R) is unique
(much as (3c)), though we can in principle use DP (and in
turn the method to be presented) to solve problems with
non-unique solutions.

Lemma 6. For a given α, assume for some λ we have
(x̄∗R, ū∗R) ∈ Vα. Then (x̄∗R, ū∗R) = (x̄∗, ū∗).

Proof: For convenience, introduce ζ∗ , (x̄∗, ū∗), ζ∗R ,
(x̄∗R, ū∗R), ζ , (x̄, ū), ζR , (x̄R, ūR), and

h (ζ) , lim
N→∞

1
N

N−1∑

k=0
fa (xk, uk)− α. (19)

Note that h (ζ) = 0⇔ ζ ∈ Vα.
The weak duality theorem (Andréasson et al., 2016)

ensures that

J (ζ∗) ≥ J (ζ∗R) + λh (ζ∗R) = JR (ζ∗R)− λα. (20)

In (20), by our assumption ζ∗R ∈ Vα we are ensured that
h (ζ∗R) = 0, giving

J (ζ∗) ≥ J (ζ∗R) = JR (ζ∗R)− λα. (21)

As ζ∗R ∈ S ∩ Vα, ζ∗R also minimises (3), allowing us to
replace the inequality in (21) with strict equality. By A.2
ζ∗ and ζ∗R are unique, ensuring that that ζ∗ = ζ∗R. Finally,
as ζ∗R is independent of constant terms we have that

ζ∗ = ζ∗R = argmin
ζ

JR (ζ) . (22)

Theorem 7. Given (3c) and its relaxed counterpart (18c),

R.1 If (18c) is infeasible (i.e. a solution does not exist),
then (3c) is also infeasible (i.e. A.4 is violated).

R.2 For a given λ and feasible (18c), there exists an α
where

(x̄∗R, ū∗R) = (x̄∗, ū∗) . (23)

Proof: R.1: Trivial, as S ⊇ S ∩ Vα .
Proof: R.2: As λ is given and (18c) is feasible, we can

thus find (x̄∗R, ū∗R). Let us now define

α′ , lim
N→∞

1
N

N−1∑

k=0
fa
(
x̄∗R,kū

∗
R,k

)
. (24)

For α = α′ we (by construction) have (x̄∗R, ū∗R) ∈ S ∩ Vα,
trivially satisfying the requirements of Lemma 6.

In essence, for a given λ R.2 ensures us that (x̄∗R, ū∗R) =
(x̄∗, ū∗) for some value of α. We can intuitively view λ as a
tuning parameter, where different values of λ are associated
with different solutions, each of which (trivially) have an
associated average that we can compute by means of (24).

Using the relaxed problem formulation allows us to avoid
the explicit average constraint (3f), which is primarily of
use in the sense that the problem becomes more numerically
tractable. At its core, the method we will introduce in this
paper approximates the solution to (3) by instead solving
a finite-horizon problem of sufficient length. One naive
method of satisfying the average constraint would then
be to introduce an additional state variable that stores
the accumulated average, i.e. zN =

∑N−1
k=0 fα (xk, uk). We

could then add an equality constraint demanding zn/N =
α. However, this is computationally demanding (as we
need to introduce an additional state variable, which DP
schemes scale poorly with) and introduces a bias in the
achieved average (as the average zn/N is taken over both
the initial transient and the stationary phase, we therefore
only achieve the desired average as N → ∞). Using the
relaxed formulation thus avoids these issues entirely.

C. Convergence of finite-horizon problem
We will in this section introduce notation for the finite-

horizon problem, which will then be used for constructing
the method presented in this paper.

Definition 8. For a given finite horizon N , bounded λ,
and initial condition x0, define

J∗NR = min
x̄N

R
,ūN

R

1
N

N−1∑

k=0
fc,R (xk, uk) (25a)

(
x̄∗NR , ū∗NR

)
= argmin

x̄N
R
,ūN

R

1
N

N−1∑

k=0
fc,R (xk, uk) (25b)

subject to(
x̄NR , ū

N
R

)
∈ S (25c)

as the N-horizon relaxed problem with average cost J∗NR
and associated (finite-length) state and control trajectories(
x̄∗NR , ū∗NR

)
. Furthermore, define

µ̄∗NR =
[
µ∗NR,0, µ

∗N
R,1, . . . , µ

∗N
R,N−1

]
, (26)
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where µ∗NR,k : Rn → Rm is the k’th state-feedback control
policy, as the N -horizon sequence of control policies
associated with (25).

Definition 9. Define

xk,CL (µ, x0) (27)

as the (not necessarily optimal) k’th closed-loop state given
by repeatedly applying a (sample-independent) control
policy µ k times from an initial state x0, e.g.

x0,CL (µ, x0) , x0

x1,CL (µ, x0) , fd (x0, µ (x0))
x2,CL (µ, x0) , fd (x1,CL (µ, x0) , µ (x1,CL (µ, x0))) .

Note that the method of generating xk,CL is very similar
to the forward-calculation stage of ADP, and differs only
in that the control policy is kept constant.

Definition 10. For a given control policy µ, define

F ′k(µ) , {x0 ∈ X : g(xk′,CL, µ(xk′,CL)) ≤ 0 ∀k′ ∈ [0, k]} .
(29)

We can thus view F ′k(µ) as the set of initial conditions in
X that satisfies the problem constraints and dynamics (the
latter trivially, as we use µ to apply a control and give the
next state) after applying the control policy µ k times.

Definition 11. For k > 0, introduce the maximum control
policy deviation ∆k

µ ∈ Rm as
[
∆k
µ

]
i
, max

x ∈ F ′dk/2e(µ∗kR,0)
k′ ∈ [0, dk/2e]

∣∣∣
[
µ∗kR,0 (x)− µ∗kR,k′ (x)

]
i

∣∣∣ ,

(30)
where the notation [a]i refers to the i’th element of a vector
a and d. . . e refers to the ceiling function. We can view ∆k

µ

as indicating the convergence of µ∗kR,0 to µ∗, evaluated at
the gridded state points X whose associated state evolution
remains feasible after k/2 iterations.

Definition 12. Introduce the maximum state deviation
∆k
x ∈ Rn as

[
∆k
x

]
i
, max
x∈F ′

kdk/2e(µ
∗k
R,0)

∣∣∣∣∣

[
xdk/2e,CL

(
µ∗kR,0, x

)
−

∑

x′∈F ′dk/2e(µ
∗k
R,0)

xdk/2e,CL
(
µ∗kR,0, x

′) 1
|F ′dk/2e|

]

i

∣∣∣∣∣. (31)

Note that the notationally heavy second line of (31) is
equivalent to the mean feasible state after dk/2e iterations.
Similarly to Definition 11, we can thus view ∆k

x as
indicating the convergence of

[
x0,CL, x1,CL, . . . , xdk/2e,CL

]

to x̄∗, evaluated at the points where xdk/2e,CL remains
feasible.

Trivially, using Definition 11 and Definition 12 gives:

Proposition 13. By A.3 limk→∞∆k
µ = 0, and by A.4

limk→∞∆k
x = 0.

Definition 14. Given a control policy tolerance εµ ∈ Rm
and state convergence tolerance εx ∈ Rn, define

NM , min
k
k (32a)

such that [
∆k
µ

]
i
< [εµ]i ∀i ∈ [1,m] (32b)

[
∆k
x

]
i
< [εx]i ∀i ∈ [1, n] , (32c)

as the minimum horizon. Proposition 13 ensures us that
that for any εµ and εx there exists an associated finite
horizon NM , which we view as the shortest finite-horizon
approximation of the infinite-horizon problem.

IV. The UCPADP method
In this section we introduce the primary contribution

of this paper: Undiscounted Control Policy generation by
Approximate Dynamic Programming (UCPADP), a method
that generates an approximation of µ∗. At its core, in
UCPADP we generate an approximation of the optimal
control policy by iteratively testing successively larger
horizons until the termination criteria (32) are satisfied.
For computational efficiency reasons we will return to,
UCPADP will approximate the control policy as

µ∗ ≈ µ∗N
′
M

R,0 (33a)
where NM ≤ N ′M ≤ 2NM , (33b)

i.e. the generated horizon will lie in a range between NM
and 2NM .
We can at this stage highlight one of the more

significant differences between UCPADP and conven-
tional API: the choice of termination conditions. Con-
ventional API generates improved control policies ana-
logous to µ∗1R,1, µ

∗2
R,2, µ

∗3
R,3, . . . with an associated cost

J∗1R , J∗2R , J∗3R , . . . , and eventually terminates when the
difference between either successive policies or cost is below
a given threshold, for instance as in Santos and Rust
(2004); Stachurski (2008, CPI, PSDP). This is similar to
the test performed in (32b), which requires the control
policy to be near-stationary. However, in conventional
API the termination tolerance (analogous to εµ) is sized
based on the discount factor, and depending on the specific
method chosen the tolerance is either undefined or tends
towards zero when the discount factor tends towards
one (i.e. becomes the undiscounted case we study here).
Bertsekas (2011); Scherrer (2014) review other methods
that do not terminate based on the change in the control
policy, but instead use some other termination criterion.
However, these methods also assume a discounted problem
formulation. Guo et al. (2017) is one example of a method
that considers the undiscounted case, however their method
imposes fairly significant limits on the class of cost and
constraint functions (as discussed previously).
The state convergence condition (32c) is to the best of

our knowledge novel, and serves a crucial purpose in that it
demands the horizon be long enough for all gridded feasible
initial conditions to converge to a region near the equilibrium.
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Figure 1: UCPADP steps, successively switching between
generating more accurate control policies (backward calcu-
lation, steps 1,3,. . . ), and evaluating whether the control
policy is constant over the time needed for the state
evolution to converge (forward calculation, steps 2,4,. . . ).

Recall that by A.4 x∗k (the true optimal state trajectory) is
stable in the sense of Lyapunov for initial conditions near
the equilibrium, and in concert with Theorem 4 we are
thus ensured that an initial condition near the equilibrium
will also remain in its vicinity. As we apply test (32c) to
all feasible elements in X , at least one initial condition
x0 ∈ X will therefore start and then remain in the nearby
vicinity of the equilibrium. Ultimately, by combining (32b)
and (32c) we are ensured that µ∗N

′
M

R,0 is nearly constant
during the interval needed for all feasible gridded points
in X to reach the vicinity of the equilibrium.

In UCPADP, we determine µ∗N
′
M

R,0 numerically efficiently
in a manner similar to API implemented with ADP. We
do this using a nested scheme that repeatedly switches
between backward-calculation phases (successively gen-
erating control policies with longer associated horizons)
and forward-calculation phases (applying tests (32b) and
(32c), and eventually terminating when both tests pass).
A description of the phases in UCPADP follows, see Fig. 1
for an illustration. For now, assume εµ and εx are given
(fixed) vectors.

First, we arbitrarily choose a small initial horizon N
and perform N backward-calculation iterations, giving us
(among other data) µ∗NR . We can then perform test (32b)
and, by performing N/2 forward-calculation steps, test
(32c). If both tests pass we terminate and return µ∗NR,0 as
our approximation of µ∗. Conversely, if either of these tests
fail by A.4 we are ensured that increasing the horizon
sufficiently will give a control policy that satisfies the tests.
In UCPADP we chose to proceed by increasing the horizon
to 3N . Fortunately, in our DP scheme we can compute µ∗3NR

using only 2N additional backward-calculation iterations
by resuming the backward-calculation from µ∗NR . This is
possible as each successive backward-calculation step is
independent of the total horizon. After generating µ∗3NR

we can now again test (32b) and (32c). Should both tests
pass we can return µ∗3NR,0 as our approximation of µ∗, and
otherwise recursively repeat this procedure of doubling
the number of back-calculation steps until the tests pass
(i.e. generating and testing horizons N, 3N, 9N, 27N, . . . ).
A pseudocode implementation of the UCPADP method is
listed in Algorithm 1.
Up to this point we have assumed that the problem

solution is unique (A.2), converges to a stationary control
policy (A.3), and all states converge to a unique equilib-
rium (A.4). Let us now briefly consider the case where we

do not know if these assumptions hold beforehand. Begin-
ning with A.2, recall that we can determine whether or
not this assumption holds during the backward-calculation
phase by checking if the minimum cost is unique, and
in the case of a non-unique cost we can resolve this by
simply returning one arbitrarily selected optimal solution.
Let us now focus on the case where A.3 and A.4 are
unverified. Applying the UCPADP method gives one of
two possible outcomes: UCPADP either never terminates
(i.e. (32b) and (32c) never pass), or it terminates after a
finite number of back-calculation iterations. If UCPADP
never terminates, then one possible cause is that A.3
and/or A.4 do not hold (i.e. the termination criteria (32b)
and (32c) correctly detected a non-stationary control policy
and/or detected that the system states do not converge
to a single equilibrium). Alternatively, it is possible that
the problem’s discretisation and/or tolerances were poorly
chosen. Regardless, should UCPADP never terminate it is
clear that no valid solution could be generated. If UCPADP
does terminate, we are assured that either: (i) A.3 and A.4
do hold and a near-optimal control policy is generated, or
(ii) the problem is maliciously nonlinear and A.3 and/or
A.4 do not hold (which went undetected by (32b) and
(32c)), ultimately giving a control policy without any clear
optimality guarantees. As the class of problems we can
attempt to solve with UCPADP covers general non-linear
systems it is not surprising that there exist pathological
problems that lead UCPADP (and ADP in general) to
generate erroneous solutions. Ultimately it is up to the
user of UCPADP to determine whether or not the studied
problem is of a class that satisfies the (arguably mild)
assumptions A.3 and A.4.
In Algorithm 1, we extend the notion of termination

used thus far by adding a parameter Nmax that allows for
configuring a maximum horizon that terminates UCPADP
if N > Nmax. This acts as a safety and guarantees that
UCPADP terminates after a finite number of iterations. In
the event that this limit triggers UCPADP to terminate
we can conclude that either the minimum horizon is larger
than Nmax, that A.3 and/or A.4 do not hold, or the
discretisation and/or tolerances were poorly chosen. Of
course, should this happen then we can not say anything
about the stability (let alone the optimality) of the returned
control policy.
Tests (32b) and (32c) are straightforward to compute

exhaustively, as the initial conditions x0 come from the
discrete set X . Furthermore, in UCPADP we have chosen
to double the number of additional back-calculation steps
to perform between each test evaluation. This attempts to
balance the time spent on backward-calculation iterations
and the horizon length sufficiency tests, though we may
ultimately solve for problem horizons up to 2NM , as
indicated by (33b). Ultimately this choice is arbitrary, and
it is possible for some problems to use another scheme for
selecting a new length.

From a practical perspective, we have found that setting
εµ ≈ 2du and εx ≈ 2dx (the distance between points in
U and X respectively) is a good design choice for well-
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Algorithm 1. Pseudocode UCPADP algorithm. Here,
DP1-back and DP1-fw are the one-step backward and
forward ADP operations. X is the set of initial conditions
tested in the ADP method. Ninit is the initial problem
horizon. CN is the cost-to-go after N iterations. Note here
that a reverse notation is used for the calculated control
policy; µ1 corresponds to the state-feedback control policy
from the first back-calculation step (i.e. µ∗NN−1) while µN
corresponds to the last (i.e. µ∗N0 ). We can view the index k
as counting the number of back-calculation steps performed.
Note the abuse of notation on line 14 that indicates the
∆N
x and ∆N

µ tests respectively.
1: function UCPADP(X , Nmax, Ninit)
2: Nb ← Ninit . Batch back-calculation steps
3: N ← 0 . Cumulative back-calculation steps
4: C0 ← 0 . Set initial cumulative cost to zero
5: repeat
6: for N ← N,N +Nb do
7: µN+1, CN+1 ← DP1-back(CN )
8: end for
9: XCL ← X

10: for i← 1, dN/2e do
11: XCL ← DP1-fw(XCL, µN )
12: end for
13: Nb ← 2 ·Nb . Raise Nb by doubling
14: until N > Nmax or (|XCL − mean(XCL)| < εx and
|µN − µk| < εu ∀k ∈ [dN/2e, N ])

15: return µN , XCL, N
16: end function

behaved problems. Smaller values raise the risk of never
terminating, e.g. due to residual state trajectory jitter
caused by approximation inherent to interpolation, while
larger values give an unnecessarily large approximation of
the true control policy µ∗R,0. Ultimately, this implies that
UCPADP has to some degree only one tuning parameter:
the ADP discretisation, which trades off accuracy with
computational time and memory demands.

As UCPADP is based on interpolating ADP (and in
turn DP) it is subject to the inherent limitations of
DP methods, in particular its poor scaling with problem
dimensionality (colloquially referred to as the “curse of
dimensionality”) (Bellman, 1954; Bertsekas, 2017). This
limits UCPADP to low- to moderate-dimensional problems.
The examples shown in the following section (with two state
variables and one control variable, giving a total of three
independent variables) are easily solved using an ordinary
desktop computer on the order of one minute to one hour
(depending on the demanded solution accuracy). In practice,
we expect UCPADP to be viable for up to 4–6 continuous-
variable problems, depending on the discretisation of the
state and control variables, the nature of the problem, and
the available computational power.

A general implementation of the UCPADP method in the
MATLAB language, including the numerical examples in
the following section, is available at https://gitlab.com/
lerneaen_hydra/ucpadp.

Figure 2: A simple pendulum.

V. Representative examples
We illustrate the UCPADP method, introduced in

Section IV, by solving two simple problems. Though “toy”
problems in some sense, recall that Assumption 1 allows
for significantly more difficult (and practically relevant)
problems. First we consider the classical minimum-time
inverted pendulum problem, where we highlight the stop-
ping criterion of UCPADP. Afterwards, we consider the
problem of maintaining an average pendulum angle with
minimum control power, illustrating the average-constraint
properties shown in Subsection III-B.

We will consider the dynamical system given by a simple
pendulum (Fig. 2) for both problems. For a pendulum
with length l, point mass m, gravitational force g, damping
coefficient d, angle θ, and applied torque u, the dynamic
equation for the system can be derived as

θ̈ + d

m
θ̇ + g

l
sin (θ) = 1

ml2
u. (34)

In both the following examples we will assume a discrete-
time control system with sample rate ts, i.e. the control
input u is piecewise constant over intervals of uniform time
ts. If the problem is reformulated as a set of coupled first-
order ordinary differential equations with a state variable
vector

x ,
[
θ

θ̇

]
(35)

then we can express the state at the next sample as

xk+1 = fp (xk, uk) , (36)

where fp is given by solving (34) over a time ts with initial
condition xk and constant control input uk.

A. The inverted pendulum
To illustrate the mechanics of UCPADP’s termination

criterion, consider the traditional minimum-time inverted
pendulum problem (formulated here as an infinite-horizon
problem)

J∗ = min
x̄,ū

lim
N→∞

1
N

N−1∑

k=0
fc (xk) (37a)

fc (x) =
{

0 if |θk − π| < 2dx, |θ̇k| < 2dx
1 else

(37b)
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subject to
xk+1 =fp (xk, uk) (37c)
|uk| ≤1 (37d)
−2 ≤ θk ≤ 3.5 (37e)
−1.5 ≤ θ̇k ≤ 2. (37f)

All the following results are shown for a sample time
of ts = 0.2, pendulum parameters set to give the system
dynamics equation θ̈ + sin (θ) = u, state variables discret-
ised by a Cartesian grid with separation dx = [0.05, 0.05]T
in the range allowed by (37e) and (37f), and the control
variable discretised with even spacing du = 0.01 in the
range allowed by (37d). Setting εx and εµ to the suggested
value of twice the discretisation gives εx = [0.1, 0.1]T and
εµ = 0.02.
Note that the cost function (37b) equally penalises all

pendulum configurations other than the single vertical zero-
velocity state combination, and with an infinite horizon
(and small enough dx) gives a solution arbitrarily close
to the traditional minimum-time formulation. The state
bounds (37e) and (37f) have been chosen to give a reas-
onable range for the specific initial value we will study
shortly.

For the above problem, UCPADP terminates after testing
a horizon of N ′M = 135, indicating that 45 < NM ≤ 135.
An illustration of termination criterion (32b) is shown in
Fig. 3, where we can verify the condition is satisfied as all
values are above dN/2e = 68. Furthermore, ∆k

µ will by con-
struction take values from U = {0,±0.01,±0.02, . . . ,±1}.
For εµ = 0.02 (32b) will thus only be satisfied for values
−0.01, 0, 0.01. We can see this in Fig. 3, where ∆135

µ = 0.
Similarly, criterion (32c) is illustrated in Fig. 4, where we
can verify that representative trajectories all converge to
a region bounded by εx (shown by the yellow box). An
illustration of the control policy ultimately generated by
UCPADP is shown in Fig. 5. Solving this specific problem
took approximately 10 minutes using a standard desktop
PC.

Fig. 6 shows a comparison of the solution generated by
UCPADP and a reference solution, generated by formulat-
ing a problem with an explicit horizon of N = 10N ′M =
1350 (i.e. one order of magnitude longer the UCPADP
horizon), for x0 = [0, 0]T . Here the reference solution is
generated using a traditional ADP scheme, configured with
the same sample time and state/control grid discretisation.
Note that we intentionally compare the UCPADP solution
to a traditional ADP solution (in contrast to, for instance,
an analytical solution) as we wish to highlight the accuracy
of the automatically sized horizon, rather than the accuracy
of an interpolating ADP scheme.

The average cost over the time interval shown in Fig. 6 is
0.09664 for the UCPADP solution, while the cost associated
with the reference solution is 0.09689, i.e. a deviation∗ of
0.25%. We can conclude (for this specific problem) that
the cost associated with the UCPADP solution is virtually

∗The fact that the UCPADP solution has a lower associated cost
is likely due to the inherent approximation of interpolating ADP.

Figure 3: Visualisation of εµ = 0.02 test for N ′M = 135.
The coloured regions indicate the number of samples that
the control policy varies less than εµ, while white regions
indicate a feasible solution could not be found, i.e. white
regions lie outside of F ′135. Note that as U is discrete then
∆135
µ is also, i.e. we here have ∆135

µ identically equal to
zero.

Figure 4: Visualisation of εx = [0.1, 0.1]T test for N ′M =
135. Blue arrows indicate the motion of the system through
its phase space. Representative closed-loop trajectories are
shown in red. The closed-loop state at N = 135 is shown
by (overlapping) small red circles near θ = π, θ̇ = 0. The
yellow box indicates the ∆135

x termination criterion, which
is satisfied as all states at N = 135 lie inside the box.

Figure 5: Control policy associated with (37) for horizon
N = 135. The coloured region shows the optimal control
to apply for any given state, while white regions indicate
infeasible states, i.e. outside of F ′135.



10

Figure 6: Comparison of the solutions given by UCPADP
and an open-loop ADP reference method for x0 = [0, 0]T .

identical to a conventional ADP solution, indicating that
the identified horizon N ′M = 135 was sufficient.

B. The constant-angle pendulum

Let us now consider a problem that illustrates the proper-
ties of the average constraint introduced in Subsection III-B.
Assume we wish to solve

J∗ = min
x̄,ū

lim
N→∞

1
N

N−1∑

k=0
u2
k (38a)

subject to
xk+1 = fp (xk, uk) (38b)

lim
N→∞

1
N

N−1∑

k=0
θk = θref (38c)

|uk| ≤ 1, |θk| ≤ 1, |θ̇k| ≤ 1, (38d)

i.e. the problem of keeping the average pendulum angle
at a setpoint θref while minimising the quadratic control
input u2

k.
By Theorem 7 we can avoid including the average

constraint (38c) by augmenting the cost functional (38a)
as

J∗R = min
x̄R,ūR

lim
N→∞

1
N

N−1∑

k=0
u2
k + λθk (39)

for a constant scalar λ. Assuming the problem reaches an
equilibrium with control ueq and states θ = θref, θ̇ = 0, by
(34) we have ueq = mgl sin(θref). We can thus express the
equilibrium cost as

ceq = (mgl sin(θref))2 + λθref (40)

which is a function of one variable. Equation (40) has one
unique stationary point (a minimum) in the permissible
range |θ| < 1, and we can thus find the specific value λ that
gives the lowest equilibrium cost at the desired setpoint by
setting dceq

dθref
= 0 and solving for λ, giving

λ0 = −2m2g2l2 sin (θref) cos (θref) . (41)

We can now reformulate (38) as the equivalent problem

J∗R = min
x̄R,ūR

lim
N→∞

1
N

N−1∑

k=0
u2
k − θkλ0 (42a)

subject to
xk+1 = fp (xk, uk) , |uk| ≤ 1, |θk| ≤ 1, |θ̇k| ≤ 1. (42b)

As in the previous example, we discretise the state and
control variables evenly in the permissible space, here with
separation dx = [0.02, 0.02]T and du = 0.01 respectively.
Solving (42) for pendulum parameters resulting in a system
dynamics equation θ̈ + θ̇ + sin (θ) = u and θref = 0.5
gives the results shown in Fig. 7 (again compared with
a reference solution given by explicitly choosing a large
horizon, one order of magnitude larger than the horizon
given by UCPADP).

Figure 7: Comparison of the solutions given by UCPADP
and an open-loop ADP reference method for x0 = [0, 0]T .
The state trajectories are nearly identical and the control
trajectory displays only very small differences.

For this problem, we find that the UCPADP solution
generates a solution with control cost (i.e.

∑
u2
k) of 0.2321

over the horizon shown in Fig. 7, while the control cost
associated with the reference solution is 0.2323 (i.e. a
deviation of 0.09%), again showing that the accuracy of

Figure 8: Cost of the applying control policy associated
with varying problem horizon lengths. The cost is shown for
all feasible initial conditions, resulting in a range of costs
for any given horizon (e.g. [−0.037,−0.039] for horizons
≥ 40). Problem horizons tested by UCPADP are shown
with dashed lines.
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the UCPADP solution is virtually identical to that of a
reference ADP solution.
For comparison, in Fig. 8 we also show the solution

quality parameterised by different finite horizons. More
specifically, we solve the finite-horizon counterpart of (42),
i.e. using the notation introduced in (25), for varying finite
horizons N (denoted the problem horizon), resulting in the
associated control policies µ∗NR,0. We then apply the control
policy to the set of initial conditions feasible with a long
horizon N = 1350 (denoted the trajectory horizon). The
plot shows the augmented cost of the trajectory horizons,
i.e. J∗R, parameterised by different problem horizons. We
can identify that the average cost is higher for short
problem horizons than for long problem horizons, and
that the cost associated with problem horizons & 40
is constant, indicating that for this problem a problem
horizon & 40 is sufficient. It may therefore seem like
UCPADP is inefficient in its choice of problem horizon (135
samples). However, computing the average cost of any given
problem horizon shown in Fig. 8 is time consuming, with
each individual problem horizon taking approximately the
same time to compute as the entire UCPADP solution, as
well as requiring problem-specific knowledge of the initial
conditions and trajectory horizon to average over. The
trade-off between spending time computing additional back-
calculation steps and checking whether a given horizon is
sufficiently large thus motivates a scheme like our proposed
horizon-doubling method.

VI. Conclusions

In this paper we have introduced UCPADP, a numer-
ical method inspired by API. UCPADP can be used
to generate a near-optimal control policy for general
undiscounted continuous-valued infinite-horizon nonlinear
optimal control problems. The problem can also optionally
be constrained to converge to a given equilibrium. The
primary contribution of UCPADP is the introduction of a
termination criterion that is amenable to the undiscounted
case, while still allowing for general costs and constraints.
We have evaluated the method by solving two simple, but
representative, problems. For both examples we showed
that the generated control policy was on par with the
accuracy of a reference ADP solution (whose accuracy is
determined by the chosen discretisation of the problem).
UCPADP has several properties that render it useful

as as one part of the process of constructing an on-line
controller. Firstly, it shares a property with other API
methods in that it does not require any a-priori information
about a suitable horizon, instead performing an indefinite
number of iterations and terminating when a suitable
problem horizon is found. Secondly, the tuning parameters
are simple to grasp, as they trade off solution accuracy
with computational time and memory demands. Finally,
the output from UCPADP, as with other API methods,
is a control policy (i.e. a state feedback table). After this
control policy is computed in an off-line phase it can in turn
be used to construct a subsequent on-line controller with

very low computational demand, only requiring a simple
interpolation operation to determine the control signal.
Full source code of the implementation as well as the

specific problems studied is available at https://gitlab
.com/lerneaen_hydra/ucpadp.
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ABSTRACT
We study the dynamic engine-generator optimal control

problem with a goal of minimizing fuel consumption while
delivering a requested average electrical power. By using an
infinite-horizon formulation and explicitly minimizing fuel
consumption, we avoid issues inherent with penalty-based
and finite-horizon problems. The solution to the optimal
control problem, found using dynamic programming and the
successive approximation method, can be expressed as in-
stantaneous non-linear state-feedback. This allows for triv-
ial real-time control, typically requiring 10–20CPU instruc-
tions per control period, a few bytes of RAM, and 5–20KiB
of nonvolatile memory. Simulation results for a passenger
vehicle indicate a fuel consumption improvement in the re-
gion of 5–7% during the transient phase when compared
with the class of controllers found in the industry. Bench-
tests, where the optimal controller is executed in native
hardware, show an improvement of 3.7%, primarily limited
by unmodeled dynamics. Our specific choice of problem for-
mulation, a guaranteed globally optimal solution, and triv-
ial real-time control resolve many of the limitations with
the current state of optimal engine-generator controllers.

1 Introduction
Engine-generator (gen-set) systems are used in a wide

range of applications, from the drivetrain in a series-hybrid

passenger vehicle to the larger diesel-electric locomotive and
natural gas power plants. Regardless of application a gen-
set fundamentally consists of a combustion engine mechan-
ically connected to an electric machine, whose purpose is
to convert a combustible fuel into electrical power. One
particularly relevant attribute of a well-designed gen-set is
it’s fuel efficiency, i.e. how efficiently consumed fuel is con-
verted to electrical power. In this paper we will consider
the gen-set of a series-hybrid passenger vehicle and specifi-
cally a method of improving its fuel efficiency (though this
method can easily be extended to other applications). In
particular, we will focus on methods that include transient
operation, i.e. where the gen-set engine speed is allowed to
vary over time.

One method of generating a fuel-efficient control scheme
is to formulate the objective as an optimal control problem,
and then use a method from the field of optimal control to
solve the problem. The specific formulation of the optimal
control problem and the method used to solve it is crucial.
In this paper we will require the solution to

1. accurately capture our intent of minimizing fuel con-
sumption,

2. be (close to) the globally optimal solution, and
3. allow for real-time control with low computational de-

mand.

Previous work in transient gen-set control covers a range

1 Copyright c© 2019 by ASME



of different optimal control formulations, solution methods,
and with varying degrees of real-time applicability.

If we first consider the formulation of the optimization
problem, some have elected to use quadratic penalty-based
formulations that balance the quadratic gen-set losses and
quadratic deviation from requested power [4, 6]. Though a
conventional formulation, this results in the gen-set gener-
ally never delivering exactly the requested power. Further-
more, this formulation does not generally minimize fuel con-
sumption (as the minimand is quadratic losses and power
deviation, not consumed fuel). One alternative formulation
is to apply strict equality constraints to the delivered power
at all times [3]. This is suitable for applications where there
is a true requirement to deliver a given power at every point
in time, however, as described in their paper this is at cost
of potential infeasibility as well as reducing the range of per-
missible control actions, virtually guaranteeing a higher fuel
consumption compared to the case where delivered power is
allowed to vary during the transient phase. A third option
is to use an explicit minimum-fuel problem formulation [5].
This choice unequivocally matches our intent, but has the
potential of leading to a problem formulation that is difficult
to numerically solve.

The specific method used to solve the optimization
problem is another aspect relevant to consider. The gradi-
ent descent method [4] is a traditional method, but requires
a differentiable problem formulation and is not guaranteed
to return a globally optimal solution. The multiple shooting
and sequential quadratic programming method [5] is more
sophisticated, but is still subject to the same fundamental
limitations. An alternate approach is the use of stochas-
tic optimization, e.g. a genetic algorithm [6]. This avoids
the need for a differentiable problem formulation and is less
likely to be trapped in a local optimal solution, but is typ-
ically computationally demanding and has no global opti-
mality guarantee. One attractive option is to use a method
based on Pontryagin’s maximum principle or dynamic pro-
gramming, as these typically are ensured to give the globally
optimal solution. An example of this is seen in [3], though
the specific method used requires hours of computational
time to solve a problem that covers 10 seconds of opera-
tion.

Finally, it is worth considering how well (if at all) so-
lution methods can translate into real-time control. One
straightforward method is to limit equilibrium operation to
a small number of discrete points [6], allowing for storing
pre-computed trajectories and applying them during run-
time. Though effective, this scales poorly with the number
of equilibrium points, as we will typically need to store the
optimal control trajectories over time for every combina-
tion of equilibrium points. Alternatively, domain-specific
knowledge can be used to implement real-time methods

Energy
storage

Traction
motor

Power
electronics

Engine
Electric
Machine

Gen-set

FIGURE 1: Series-hybrid vehicle drivetrain, the gen-set con-
sists of the combustion engine and electrical machine.

Combustion
Engine

Electric
Machine

Fuel
storage

Electric
power

FIGURE 2: Gen-set dynamic model overview.

that approximate the behavior of the computed optimal
solutions [3, 4]. Though this can lead to very efficient real-
time control methods, we are no longer guaranteed optimal-
ity while also requiring extensive knowledge of the specific
problem to be solved.

In this paper we will introduce a method that addresses
many of the current limitations. In particular, we will for-
mulate the optimization problem as an explicit fuel con-
sumption minimization problem, constrained to deliver a
given average electrical power over an infinite time hori-
zon which we solve using dynamic programming, ensuring a
(close-to) globally optimal solution. The infinite time hori-
zon is useful both as it ensures us that fuel consumption
is balanced between the transient and stationary phase, as
well as giving a solution that can be formulated as state-
feedback. This ultimately allows for implementing real-time
optimal control using a bare minimum of computational
power (on the order of 5–20KiB of nonvolatile memory, a
few bytes of RAM, and 10–20 CPU instructions per control
period).

2 Problem formulation
In this paper we will study the gen-set of a series-hybrid

vehicle, as illustrated in Fig. 1. In particular, we will model
the gen-set as a combustion engine directly connected to
an electrical machine, with dynamics that arise from the
moment of inertia of moving parts (illustrated in Fig. 2).

In the gen-set, we model the combustion engine (CE)
as consuming fuel at a rate

ṁ(t) = fC (ω (t) , τC (t)) , (1)

2 Copyright c© 2019 by ASME



i.e. a function of the instantaneous torque τC (t) and
crankshaft angular speed ω (t). Similarly, the electric ma-
chine (EM) delivers or consumes electric power as

PE (t) = fE (ω (t) , τE (t)) (2)
=−τE(t)ω(t)−fE,loss(ω(t), τE(t)), (3)

for a given instantaneous torque τE (t) and crankshaft speed
ω (t). We will view τE and τC as control inputs that should
ultimately be selected in a way that minimizes the fuel con-
sumption of the gen-set.

Note that we assume fC and fE are instantaneous func-
tions of the current crankshaft velocity and their respective
torques, without any additional dynamics. This instan-
taneous formulation allows for determining them by using
standard experimentally obtained equilibrium maps (i.e. by
experimentally measuring the fuel massflow and delivered
electrical power respectively at a wide range of operating
points). We will return to the validity of this assumption
in Subsection 4.1. Furthermore, note that (3) implies that
we can view the EM as an ideal mechanical to electrical
converter (with power given by −ω(t)τE(t)), with all non-
frictional losses lumped into fE,loss. For brevity, we will no
longer explicitly state the time-dependence of the previous
terms.

We lump all frictional components in the CE and EM
together to form τf (ω), which is typically non-linear. This
implies that we can view τC and τE as indicated torques
rather than crankshaft torques. Similarly, we lump together
all inertial terms forming a net moment of inertia J . This
gives a net continuous-time dynamic gen-set model

ω̇ = 1
J

(
τC + τE + τf (ω)

)
, (4)

i.e. a non-linear first-order dynamic system. Note that the
nonlinearity of τf implies that (4) is generally a non-linear
differential equation.

This specific choice of modeling and sign notation im-
plies that a negative EM torque will apply a retarding
torque to the crankshaft and deliver electrical power. Sim-
ilarly, for positive EM torques the EM will tend to accel-
erate the crankshaft and thus consume electrical power. In
steady-state operation, where the gen-set delivers electrical
power, we will thus have τC > 0, τE < 0, and PE > 0.

Assume that we will ultimately implement real-time
control using a digital controller with a fixed sample rate
ts, where the control signals τC and τE are held constant
between sample times (zero-order hold). For convenience,

we will use the notation

ωk ≡ ω (kts) (5a)
τC,k ≡ τC (kts) (5b)
τE,k ≡ τE (kts) (5c)

to indicate the discrete-time crankshaft speed and torques
respectively. Using a numerical ODE solver we can solve
(4) for a given initial condition and torques over time ts,
allowing us to introduce a discrete-time dynamic equation

ωk+1 = f
(
ωk, τC,k, τE,k

)
(6)

where f is given by the ODE solver.
We can now introduce the optimization problem we ul-

timately wish to solve as

(τ∗C , τ∗E) = argmin
τC ,τE

lim
N→∞

N∑

k=0
fC
(
ωk, τC,k

)
· ts (7a)

subject to

ωk+1 = f
(
ωk, τC,k, τE,k

)
(7b)

1
N

N∑

k=0
fE
(
ωk, τE,k

)
= Ptgt (7c)

g
(
ωk, τC,k, τE,k

)
≤ 0, (7d)

i.e. over an infinite horizon minimize fuel consumption,
while delivering a given average power Ptgt, and demand-
ing the CE and EM torques and crankshaft velocity lie in
a permissible range given by g. Note that though the sum
in (7a) grows arbitrarily large with increasing N , the mini-
mand (τ∗C , τ∗E) is for this problem well-defined [1], as fC · ts
is finite (the CE can only consume a finite amount of fuel
in finite time).

Note that the choice of an infinite horizon (N →∞)
obviates the need for determining a control and prediction
horizon commonly found in finite-horizon problem formula-
tions (e.g. traditional model predictive control (MPC)).

In this paper we have studied a conventional direct-
injection turbocharged gasoline combustion engine coupled
with a permanent-magnet synchronous electric machine.
These are representative examples of gen-set components
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that could be found in a typical light-duty series-hybrid.
The functions fC and fE are approximated by empirically
measuring the physical fuel flow and delivered electrical
power respectively for a large set of equilibrium operating
points. Similarly, τf is determined by measuring the torque
required to motor the unloaded crankshaft (i.e. τC , τE are
set to 0) while maintaining a constant speed using an ad-
ditional external EM. The function g is defined to give box
constraints for the permissible state and control signals as

g (ω,τC , τE) =





0 if 0≤ ω ≤ 750
and 0≤ τC ≤ 390
and −150≤ τE ≤ 150

1 else.

(8)

Illustrations of the combustion engine’s normalized in-
dicated specific fuel consumption, the electric machine’s ef-
ficiency (defined as ηEM ≡ (|fE |−fE,loss)/|fE |, and the net
friction τf are shown in Fig. 3.

3 Method
Minimum Horizon Dynamic Programming (MHDP), a

method recently developed by the authors [2], is a method
based on dynamic programming and the successive ap-
proximation method for solving general average-constrained
infinite-horizon nonlinear optimal control problems of form

(x∗,u∗) = argmin
x,u

lim
N→∞

N∑

k=0
c(xk,uk) (9a)

subject to

xk+1 = fd (xk,uk) (9b)

1
N

N∑

k=0
fa (xk,uk) = α (9c)

g (xk,uk)≤ 0 (9d)

where xk ∈ Rn and uk ∈ Rm are the k’th state and control
variables respectively. Ultimately, MHDP determines the
optimal controls u∗ in the sense that (9a) is minimized while
respecting the system dynamics and constraints.

It can be shown that under some mild assumptions, for
problems of form (9a), that the optimal control u∗ to ap-
ply at any given time solely depends on the current system

(a) CE fuel consumption.

(b) EM electrical power.

(c) Net crankshaft friction.

FIGURE 3: Plots of normalized CE fuel consumption, EM ef-
ficiency, and τf . As the CE and EM are modeled as friction-
less devices the crankshaft torques can be views as indicated
rather than brake-specific torques.
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state [2]. Essentially, there exists a function fsf : Rn→ Rm
such that u∗k = fsf(xk). Typically fsf is referred to as an
optimal control policy or optimal non-linear state feedback.
MHDP generates an approximation of fsf and returns a
look-up table with the optimal controls to apply for a given
set of discrete state values. Once fsf is known this allows
for near-trivial on-line control, as the controller can sim-
ply look up the tabulated state value (typically using some
form of interpolation if the current system state lies between
tabulated values) and apply the resulting control signal.

Though a detailed description of the MHDP method
is beyond the scope of this paper, an overview of the pa-
rameters required by the method can aid in understanding
and interpreting the generated results. Given a non-linear
(but well-behaved) cost c, system dynamics fd, averaging
function fa, a demanded average α, and general constraints
g MHDP can return the optimal control policy associated
with (9). Furthermore, MHDP requires selecting a given
state and control quantization; more densely sampled points
will give a more accurate approximation of fsf, but gen-
erating the state-feedback law will take longer as well as
requiring more memory in the real-time controller (as the
optimal control policy table will contain more entries). Fi-
nally, an additional consequence of the MHDP method is
that the generated optimal control policies are not explic-
itly parameterized by the average constraint α (Ptgt in our
application), but by another scalar parameter λ analogous
to a Lagrange multiplier. We resolve this in this paper by
searching for values of λ that give the desired average power
levels.

Returning to our specific problem, solving (7) with
MHDP will generate the optimal control policies

(τ∗C (ω,Ptgt) , τ∗E (ω,Ptgt)) , (10)

which we can view as the optimal torques τ∗C and τ∗E to
apply tabulated by different crankshaft speeds ω and the
target-power Ptgt.

A block diagram illustrating the final controller con-
struction is shown in Fig. 4. As is shown, the requested
power Ptgt is fed into the tabulated control laws τ∗C , τ∗E
along with the current crankshaft speed ω, giving a closed-
loop non-linear state-feedback controller.

For our specific problem (7) the real-time system need
only perform a two-dimensional interpolation operation ev-
ery sample. This typically takes on the order of 10–20
CPU instructions and (using the parameters to be pre-
sented shortly in Table 1) requires a look-up-table consum-
ing approximately 13KiB (as NPtgt ·Nω = 6560 entries are
required, using 16-bit words gives ≈ 13KiB), both of which
are trivially performed in virtually any embedded system.

FIGURE 4: Net closed-loop block diagram.

TABLE 1: MHDP parameters used for (7).

Parameter Value Unit Description

ts 50 ·10−3 s Sample time

∆τ 4 Nm Torque
quantization

NPtgt 80 - Number of evenly
spaced equilibrium

power levels.

Nω 82 - Number of evenly
spaced discretized

states.

4 Results
We have solved (7) using MHDP (taking approximately

12 hours with a standard desktop PC) with the configura-
tion listed in Table 1, where the state and control signals
have been discretized by evenly spacing them in the range
allowed by (8). The specific choice of parameters in Table 1
was chosen to give a torque and crankshaft speed quantiza-
tion that is on par with the measurement accuracy of the
system.

Illustrations of the optimal CE and EM torques for rep-
resentative target powers are shown in Fig. 5a and Fig. 5b.
These plots illustrate the low computational demand of the
on-line controller — the optimal control is given simply by
consulting the stored torque corresponding to the current
crankshaft speed and desired power.

Studying Fig. 5a and Fig. 5b allows us to come to some
conclusions about the optimal control policy. For instance,
for the 37 kW and 62 kW target power the EM will accel-
erate the gen-set when the crankshaft speed is less than
approximately 200 rad/s. We speculate that this is due to
the slightly lower efficiency of the CE at low speeds, as is
seen in Fig. 3a, and it is thus optimal to spend as little time
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(a)

(b)

FIGURE 5: Optimal CE and EM torques for representative
target powers.

as possible in this region. Furthermore, for the specific case
of a 0 kW setpoint, τC = 0, i.e. the combustion engine is set
to consume no fuel. In the event that ω 6= 0 then τE < 0,
which we can interpret as the optimal policy being to de-
celerate the crankshaft to zero speed while converting as
much as possible of the crankshaft’s stored kinetic energy
to electrical energy.

In order to evaluate the performance of the optimal
controller generated by MHDP we have chosen to compare
it to a traditional gain-scheduled proportional controller. In
this paper we will use a controller with control law


 τC,P

(
ω,ω∗EQ

)

τE,P

(
ω,ω∗EQ

)

= clamp




 τ
∗
C,EQ

(
ω∗EQ

)

τ∗E,EQ

(
ω∗EQ

)

+


 kp

(
ω∗EQ

)

−kp
(
ω∗EQ

)

(ω−ω∗EQ

)

 (11a)

ω∗EQ = f∗ω (Ptgt) . (11b)

Here, f∗ω (Ptgt) is a function that gives the equilibrium
crankshaft speed that consumes the least fuel for a given

target power Ptgt. τ∗C,EQ and τ∗E,EQ are functions that re-
turn the torques needed to keep the system stationary at
the equilibrium speed (which can be viewed as feed-forward
terms), clamp is the clamping function that limits τC,P and
τE,P to the permissible values given in (8), and kp is a pa-
rameterized controller gain (which can be viewed as a pro-
portional feed-back gain term). Due to the system’s dynam-
ics (4), the structure of (11) ensures that the gen-set will
asymptotically approach the optimal operating point but
will likely be sub-optimal during the transient approach.

The specific value of the controller gain kp is critical
for the performance of the closed-loop system. With small
values a large amount of time is spent operating in regions
with low efficiency, while large values will tend to apply
very large torques which also typically reduces efficiency.
In order to give a fair comparison between the optimal and
proportional controllers, we have selected kp to give a step
response time from standstill (ω = 0) to the target speed
(ω = ω∗EQ) that takes an equally long time as the optimal
solution (see Fig. 6). Note that we have now implicitly
made our proportional controller to some degree optimal —
it is unlikely that a real-world controller would happen to
be optimally tuned and would presumably consume even
more fuel than the results shown below.

Note that this specific choice of a gain-scheduled pro-
portional controller ensures that the gen-set will deliver the
same electrical power and consume fuel at the same rate
when at equilibrium operation. In all following compar-
isons we will thus only consider the transient phase, as it
is only in this region where the optimal controller has any
potential for improvement.

In all the following results, we have chosen to use the
piecewise-constant setpoint function

Ptgt (t) =
{
P 0≤ t≤ T
0 else,

(12)

where T is chosen to be large enough to bring the gen-set
to near-equilibrium operation. We have chosen this spe-
cific setpoint function as this allows us to fairly compare
gen-set controllers. A full drive-cycle simulation would re-
quire choosing a specific torque-split controller (i.e. when
and how much power to draw from the battery and gen-
set respectively), the choice of which will greatly influence
the total system behavior. Furthermore, we can note that
only steps in power will give a truly optimal control signal,
as the problem formulation (9) assumes a constant average
power constraint. We speculate however that slowly-varying
power demands will also be near-optimal (as no significant
dynamics are excited). To limit the scope of this paper we
will thus only consider the simple power step (12).

6 Copyright c© 2019 by ASME



FIGURE 6: Step response from standstill to equilibrium
crankshaft speed for optimal and proportional controllers.
For fairness, the proportional controller gain is set to make
the system reach equilibrium at the same time as the opti-
mal controller.

In Fig. 7 we can study the operating points for the CE
and EM for the optimal controller (7) and the traditional
controller (11). We can see that though both controllers
reach the same equilibrium operation point (indicated by
xEQ), their paths to the equilibrium point are different. In
particular, in Fig. 7a we can see that the proportional con-
troller generates a trajectory that happens to pass through
a region with poor efficiency (ω = 75, τC = 280), a region
the optimal controller avoids entirely.

As both controllers bring the gen-set to the same oper-
ating point in the same time we can numerically compare
them by studying their effective efficiency (i.e. delivered
electrical energy per consumed fuel mass)

η =
∫∞

0 fE dt∫∞
0 fC dt

. (13)

Note that as Ptgt = 0 for t > T , (13) can be viewed as a
measure of the efficiency of the gen-set during solely tran-
sient operation, and indicates the gen-set efficiency both for
an increase and decrease in target power.

As the controllers do not necessarily deliver the same
amount of energy during the transient phase, the time T in
(12) is adjusted separately for each controller until the total
delivered power is identical.

In essence, both controllers will start and end at the
same crankshaft speed, reach the same equilibrium speed
at the same time, and deliver the same amount of energy

over the whole cycle. The controller’s freedom lies in the
choice of transient torques, as well as when electrical power
is delivered.

Fig. 8 shows the efficiency improvement during the
transient phase of operation, with fuel savings on the or-
der of 2–7%. We believe that the large variation in effi-
ciency gains is primarily due to the traditional controller
sometimes performing fairly well (e.g. at 52 kW) and some-
times poorly (e.g. for ≤ 45 kW) compared to the optimal
controller. We can see an indication of this in Fig. 7, where
in Fig. 7a the proportional controller’s trajectory passes
through an inefficient region, while in Fig. 7c the propor-
tional controller’s trajectory happens to be closer to the
optimal trajectory.

4.1 Bench-test results
In this section we verify the previous results by imple-

menting and evaluating the optimal controller in a physical,
real-time, control system.

We have performed this test using a light-duty plug-in
hybrid electric vehicle with dynamometers mounted on all
wheels as shown in Fig. 9. We use the same problem for-
mulation as in the previous section, i.e. solve for (7), (8),
with an additional constraint limiting the electrical power to
15 kW due to the vehicle’s relatively small inverter. Math-
ematically we can demand this by adding

|fE | ≤ 15 ·103

as a constraint to (8).
Notably, due to the minimal computational load of im-

plementing the optimal control policy as given by MHDP,
the entire control loop is performed natively in the vehi-
cle’s engine control unit without any support from external
hardware (as shown in Fig. 4). In these tests we have gener-
ated state-feedback control laws for 102 discrete crankshaft
speeds over the gen-set’s operating range (using linear inter-
polation to determine τC and τE for intermediate crankshaft
speeds) and two power levels (Ptgt = P and Ptgt = 0). τ∗C
and τ∗E were stored as 32-bit floating point values, giving
a total nonvolatile memory consumption of 1.6KiB. Tests
have shown that the on-line controller consumes on the or-
der of 10–15 CPU cycles per sample, which is similar to that
of the existing (suboptimal) controller. We have compared
the optimal controller with a controller of form (11), which
is comparable to controllers used in the industry.

We have tested the vehicle’s gen-set for a setpoint power
of P = 15 kW, with a corresponding equilibrium crankshaft
speed of 205 rad/s. Due to resource limitations only a sin-
gle (15 kW) power level was evaluated. In Fig. 10 we can
view ensemble plots of the CE and EM torque for several
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(a) (b)

(c) (d)

FIGURE 7: Typical CE and EM transient operating point trajectories.

repeated tests, with an associated average efficiency im-
provement of 3.7%. The difference in equilibrium speed in
Fig. 10c is an artifact of the test-bench, but has little effect
on the results as the CE efficiency is virtually identical for
ω = 200 and ω = 210. Notably, the structure of the propor-
tional controller gives a solution that tends to load the CE
more at speeds where it is inefficient (0.5≤ t≤ 1).

There are several potential avenues of further improv-
ing the fuel consumption of the optimal controller beyond
the results seen in this test setup. One significant limitation
is the gen-set’s EM inverter power constraint. This limits
the permissible operating points to a small portion of the
theoretical speed/torque space. For these tests we also have
allowed the engine to rest at idle between steps to P (rather

than allowing it to reach a standstill) to avoid activating
the existing engine start-up routines. Furthermore, there
are several unmodeled sources of dynamics in this physical
setup, the turbocharger among others. Finally, the func-
tions fC , fE , and τf only accurately model equilibrium op-
eration, while we have implicitly assumed that they hold
during transient operation. We ultimately have a trade-off
between model accuracy and the computational load of the
controller (whose non-volatile memory usage scales expo-
nentially with the number of state variables).
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FIGURE 8: Efficiency improvement (delivered energy per
consumed fuel mass) for the optimal controller compared
to the proportional controller.

FIGURE 9: Test-bench setup. A conventional passenger ve-
hicle is used with the same CE and EM as shown in Fig. 3.

(a)

(b)

(c)

FIGURE 10: Ensemble plots of CE and EM torque and
crankshaft speed ω from bench-tests.
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5 Conclusions
We have shown that an optimal gen-set controller that

takes transient dynamics into account can effectively be im-
plemented and run in real-time. Minimizing the consumed
fuel using a dynamic programming method with an infinite
horizon ensures that the optimal control policy captures the
true intent of the problem studied in this paper; minimize
fuel consumption while delivering a requested equilibrium
power. This also avoids issues with penalty-based methods,
does not require any gradients to be known, and is guar-
anteed to be close to the globally optimal solution. Using
the MHDP method, which is based on dynamic program-
ming and the successive approximation method, allows us
to off-line easily construct a state-feedback control law with
very low on-line computational demand (on the order of 10–
20CPU instructions and 5–20 KiB of consumed memory).

Simulation results show that a gen-set in a typical light-
duty vehicle can expect a fuel consumption improvement
on the order of 5–7% during transient operation when com-
pared to current industry-standard controllers. Bench-tests
displayed a fuel consumption improvement of 3.7%, indi-
cating that the simulation results are fairly representative.
This reduction of fuel consumption may be further increased
by using more sophisticated models, in particular a combus-
tion engine fuel consumption model that takes additional
transient dynamics, such as a turbocharger, into account.

Relevant future work includes studying the efficacy of
the proposed method for the more ultimately relevant case
of a whole-vehicle drive cycle. The choice of torque-split
controller (i.e. when and how much power is drawn from
the gen-set and battery respectively) as well as the selected
drive cycle will heavily influence the net effectiveness of the
proposed gen-set controller, and should thus be prudently
chosen.
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Abstract

The three-way-catalyst (TWC) is an essential part of the exhaust
aftertreatment system in spark-ignited powertrains, converting nearly
all toxic emissions to harmless gasses. The TWC’s conversion
efficiency is significantly temperature-dependent, and cold-starts can
be the dominating source of emissions for vehicles with frequent
start/stops (e.g. hybrid vehicles). In this paper we develop a thermal
TWC model and calibrate it with experimental data. Due to the few
number of state variables the model is well suited for fast offline
simulation as well as subsequent on-line control, for instance using
non-linear state-feedback or explicit MPC. Using the model could
allow an on-line controller to more optimally adjust the engine
ignition timing, the power in an electric catalyst pre-heater, and/or the
power split ratio in a hybrid vehicle when the catalyst is not
completely hot. The model uses a physics-based approach and
resolves both axial and radial temperature gradients, allowing for the
thermal transients seen during heat-up to be represented far more
accurately than conventional scalar (i.e. lumped-temperature)
real-time models. Furthermore, we also use a physics-based chemical
kinetics reaction model for computing the exothermic heat of reaction
and emission conversion rate which is temperature and
residence-time-dependent. We have performed an experimental
campaign with a standard spark-ignited engine and a commercial
TWC, where we measured steady-state operation and cold-start
transient behavior. This experimental data allowed us to tune the
model, where we found excellent matching between the measured and
modeled tailpipe emissions. Modeling the radial temperature gradient
improved the relative accuracy of the conversion efficiency by 15%,
and simulations indicate the potential for an absolute improvement by
15 percentage points for some cases. Furthermore, the modeled TWC
temperature evolution for a cold-start was typically within ±10°C of
the measured temperature (with a maximal deviation of 20°C). The
proposed model thus bridges a gap between heuristic models suited
for on-line control and accurate models for slower off-line simulation.

Introduction

The three way catalyst (TWC) is an essential part of the powertrain in
virtually all spark-ignited (SI) automotive vehicles, significantly
reducing the level of harmful emissions and keeping them below
legislated limits. These emissions are generated by combustion
processes in the engine, primarily consisting of carbon monoxide
(CO), nitrogen oxides (NOx), and residual unburnt hydrocarbons
(THC). In normal operation virtually all of the generated emissions
are converted to non-toxic carbon dioxide (CO2), nitrogen gas (N2)
and water (H2O) [1, 2]. In order to reach a high conversion ratio the
TWC must be sufficiently warmed up by the engine exhaust, typically

to at least 250–350°C. However, when a cold vehicle is started there is
a short period, on the order of 10–30 seconds, where the TWC is not
sufficiently warm to convert the exhaust emissions. This gives rise to
a high level of tailpipe emissions, and for many regulatory test
procedures these cold-start emissions are responsible for 60–80% of
the emissions generated from an entire test (which are for comparison
on the order of 30 minutes) [2].

Methods for reducing cold-start emissions have been studied
extensively from several different perspectives, including TWC design
methods that reduce the cold-start time [3], additional hardware that
can pre-heat the TWC before starting the engine [4], and control
schemes that control the engine’s operation to reduce the generated
emissions and/or heat the TWC more quickly [2, 5, 6, 7, 8]. One
shared requirement for making a good design choice for all these
tasks is a sufficiently accurate cold-start thermal model of the TWC.
Ideally, a model should be able to predict both the spatially varying
thermal dynamics and the conversion efficiency of the TWC to a
sufficiently accurate degree. Naturally, more complex models allow
for a higher degree of accuracy (for instance, a full 3D model), while
simpler models are computationally faster.

In this paper we introduce and experimentally study a physics-based
thermal TWC model that is both computationally fast enough to be
used for on-line control methods, while simultaneously using a kinetic
reaction model for emission species conversion and resolving both
axial and radial temperature gradients. This is a significant
improvement over many other numerically fast methods, which use
simpler heuristics for emission conversion and/or assume a constant
temperature profile in the TWC. Furthermore, the model allows for
adjusting the number of axial and radial segments in order to tune the
computational complexity to the available processing power.
Ultimately, the model allows for more accurately simulating the
behavior of the TWC, both for off-line applications that must be
numerically fast as well as on-line control methods with limited
computational capacity. For instance, an on-line controller could use
the presented TWC model in combination with a model-based control
method to balance emissions and fuel consumption by controlling the
engine’s ignition timing, an auxiliary catalyst heater, gear selection,
and/or power split in the case of a hybrid vehicle. Similarly, off-line
tuning of heuristic cold-start strategies is typically time-consuming
when done by experimental test-bench studies or numerically slow
simulations. The time needed to tune a heuristic controller could thus
be reduced by instead simulating the TWC behavior with the
presented model.

In this paper we will first give a brief overview of existing models and
highlight their strengths, weaknesses, and possible applications.
Following this we introduce and define the model, after which we
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describe the experimental setup used to tune it. Finally, we compare
the experimental data and the predictions from the model.

Literature survey

Many authors have considered the problem of modeling a TWC in a
manner that is amenable to on-line control or very fast simulation.
These models can generally be categorized by how they trade off
accuracy and computational demand as well as which sources of
dynamics the models choose to include.

The computationally fastest models typically assume one (scalar)
TWC temperature that is influenced by the exhaust emissions and use
a suitable function for determining the temperature-dependent
conversion efficiency. One example of this is [9], which assumes a
scalar TWC temperature whose state evolution is linearly influenced
by the engine exhaust gas temperature, ambient temperature, and
converted emission species. They further use the arctan function to
approximate the temperature-dependence of the reactions occurring in
the TWC. Finally, they use a dynamic programming (DP) method to
solve an optimal control problem, which could be implemented as an
on-line controller. See also [5, 6, 10] for similar (scalar TWC
temperature) approaches.

Some authors chose to improve the accuracy of the TWC model by
also modeling a TWC phenomenon wherein oxygen is absorbed and
released from the TWC. The stored oxygen content influences the
TWC’s ability to remove emissions, where CO and THC are more
efficiently oxidized when there is an overabundance of stored oxygen
in the TWC, while NOx is more efficiently converted when the
oxygen content is low. For instance, [11] uses two state variables, one
to store the TWC temperature similarly to the previous authors, and
one to store the total stored oxygen in the TWC. This addition results
in a model that more accurately captures the behavior of the TWC
during phases where the air-fuel-ratio, often referred to as lambda,
deviates from a stoichiometric condition. This occurs most
prominently during fuel-cut operation, where the engine motors
without any fuel injection, but also occurs during a short interval
when the engine speed and load is changed [12, p. 69], as well as to a
lesser extent during normal operation where lambda is periodically
switched between slightly-rich and slightly-lean in order to improve
the net TWC conversion efficiency [13]. A significant excursion from
stoichiometric operation (i.e. beyond the ordinary rich/lean switching
scheme) is typically handled by running the TWC at slightly rich or
lean in order to bring the average lambda back to stoichiometry, and is
crucial in order to maintain a high conversion efficiency.

One common approach of further improving model accuracy is by
using a heterogeneous TWC model. Most commonly this is done by
using a model that can represent varying TWC temperatures and/or
stored oxygen. As the TWC is typically constructed with hundreds of
identical parallel channels [1, p. 650], one might choose to assume
that the gas flow, composition, and temperature is identical for all
channels. By using this single-channel approximation our modeling
focus can be directed to studying the behavior in one channel in
isolation, after which we can compute the total TWC behavior via
scaling by the number of channels. As each single channel is long and
narrow one obvious method is to divide each channel into separate
axial slices and then allow each slice to take on its own temperature
and/or stored oxygen (e.g. [14, 15, 16], where temperature is axially
resolved). Ultimately this allows for capturing transient behavior in
the TWC, such as a cold-start, where the front of the TWC is typically
several hundreds of degrees warmer than the rear.

The most practically significant drawback with more complex models
is their increased computational demand. In particular, on-line control
systems intended for native vehicle implementation are typically
highly computationally limited, and any controller must be of low
numerical complexity. There are several different approaches that can
be used, ranging from using optimal control strategies as an

inspiration for heuristic controllers [14], to more computationally
expensive methods, for instance based on Pontryagin’s Maximum
Principle [15], while others primarily target simulation using
hardware much more powerful than that found in vehicles [16].

Several powerful on-line control methods, e.g. nonlinear state
feedback and some explicit MPC variants, can be implemented for
nearly any practically relevant model complexity (nonlinear,
non-convex, and non-differentiable) while being very computationally
inexpensive to run on-line. These methods are computationally
inexpensive as the model is never evaluated in the real-time controller.
Instead, the control signal is generated by referring to a pre-computed
look-up-table [17, 18], i.e. the optimal control can be computed by an
interpolation operation (taking on the order of 5–10 CPU instructions)
in the case of nonlinear state feedback, and a region identification and
function evaluation step in the case of explicit MPC. However, these
methods are limited by a computational complexity that scales very
poorly (exponentially) with the number of state variables. This applies
both to the off-line phase with respect to the computational demand of
generating the model-derived look-up-table, as well as during the
on-line phase with respect to memory requirements (as well as
computational demand in some explicit MPC cases). This motivates a
model that has a limited number of state variables, but may otherwise
(within reasonable limits) be complex and nonlinear. Note that there
exist on-line control methods that do not place as large demands on
the number of state variables (e.g. linear programming methods,
which scale polynomially with the number of state variables).
However, these methods instead limit the complexity of the model
dynamics, and can require them to be e.g. linear, convex in cost, and
so on. In this paper we take the approach of limiting the number of
state variables while allowing the dynamics to be nonlinear, which in
turn makes for instance DP-based methods an attractive choice for
subsequent simulation or controller generation.

Our goal with this paper is to develop an efficient TWC model suited
for cold-starts, whose temperature evolution is driven by the
time-evolution of the combustion engine’s exhaust gas composition,
temperature, and mass-flow. Our model primarily captures axial
temperature variations as well as to some extent radial temperature
variations, which we can view as using the axially-sliced
single-channel approximation while also allowing the temperature of
each channel to vary based on its radial position in the TWC. Given
this goal and the limit on the number of state variables, it is natural to
use a nested controller structure. For instance, an inner control loop to
regulate the engine’s lambda with a goal to maintain the correct stored
oxygen, in concert with an outer control loop to regulate the engine’s
operating point (e.g. ignition timing, speed, and torque) with a goal to
regulate the TWC temperature. Our model is therefore primarily
designed for use as a supervisory controller, and assumes a lambda
controller is already implemented. Note that since the behavior of the
physical TWC depends on the lambda-controller, then a tuned thermal
TWC model is also only valid for a given lambda-controller (i.e. it
must be re-tuned if the lambda-controller is modified).

The presented model is to our knowledge novel in the sense that it
uses a first-principles approach for both thermal conduction and
chemical kinetics in a control-oriented context, meaning that we can
avoid the use of heuristics to describe the thermal and chemical
behavior. Furthermore, the model is configurable in the axial and
radial resolution, allowing for balancing the model’s accuracy and
computational demand to the target application.

TWC model

In this section we will present the TWC model, which resolves both
axial and radial temperature dynamics, uses a first-principles model
for thermal conduction and exhaust gas species conversion reactions,
and is easy to tune to experimental data.

In principle, the model is a nonlinear ordinary differential equation,
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Figure 1: Axially and radially discretized TWC with state variable
T̄ = [T1, T2, . . . , TN ,∆T ].

Figure 2: Fully thermally resolved TWC, here shown for M = 4, N = 3.
Arrows show the exhaust gas flow through the different cells in the model.

where the temperature derivative depends on the current temperature
and incoming gas properties. For ease of understanding we will
introduce the model in a constructive manner, similar to an
algorithmic implementation, divided into the following parts:

1. For given state variable values (which inherently only encode
the TWC temperature at a few positions) a densely-sampled
representation of the TWC’s temperature distribution is
generated where the radial resolution is significantly increased.

2. Once the dense temperature distribution is known, the properties
of the gas entering the TWC are used to determine the outgoing
gas properties and thermal flux in the TWC.

3. For a given thermal flux, the densely-sampled representation is
converted to the time-derivative of the low-dimensional state
variables.

Each of the above phases are defined in the following sections.

Generating the full temperature distribution

Figure 1 illustrates a typical cylindrical TWC monolith, which we
have axially divided into N equally long slices. Each slice, n, has an
associated state variable Tn that corresponds to the radially central
temperature. A final state variable, ∆T , represents the difference in
temperature between the radial center of each slice and its associated
periphery, giving the total state vector

T̄ = [T1, T2, . . . , TN ,∆T ]. (1)

Note that ∆T is not axially resolved, i.e. the difference in temperature
between the radial center and periphery of each slice is assumed
constant throughout the entire TWC. This assumption is made in
order to reduce the number of state variables.

In the first model step, we construct the full representation of the
TWC temperature by increasing the radial resolution. An illustration
of the full TWC model is shown in Figure 2, which consists of the
same equally long N axial slices represented in the state vector, but is
also extended radially with M evenly spaced elements. This gives a
total of N ·M cells, where each cell can be viewed as a small reactor
with homogeneous temperature. Cells (1, n) correspond to the
radially centermost parts of the TWC, while cells (M,n) correspond
to the radially outermost parts of the TWC. We naturally assume that

Short time

Long time

Figure 3: Representative solutions to the transient heat equation for varying
times t. The shown solution’s temperatures have been normalized to the range
[0, 1]. With this normalization, the solution at radii [0, 1) starts off at unit
relative temperature, and as time progresses gradually approaches the closer-to
linear distribution.

gas flows from one given axial position to its successor, without any
radial transport between cells (as indicated by the arrows in Figure 2),
i.e. we assume there is no gas diffusion between neighboring channels
in the TWC. Cells ([1 . . .M ], 1) are fed with engine exhaust, cell
(m,n+ 1) is fed with the output of cell (m,n), and the output from
cells ([1 . . .M ], N) are combined to form the total tailpipe exhaust.
Note that as the TWC is circular, cells nearer the periphery have a
larger associated open frontal area. We compensate for this by
assuming a constant gas flow-rate, and weight the incoming massflow
relative to each cell’s relative area. Letting ṁeng ex be the total
massflow from the engine, the flow into each cell is then

ṁm,1 =
m2 − (m− 1)2

M2
· ṁeng ex (2)

ṁm,n+1 = ṁm,n. (3)

In essence, we can view the full TWC model as consisting of M
parallel single-channel models, each of which consists of N sections
with different temperatures, and whose incoming massflow is
proportional to its associated frontal area.

Each cell is assigned a temperature as follows:

• cells (1, 1) through (1, N) are assigned temperatures T1 through
TN respectively (i.e. the radially centermost temperature),

• cells (M, 1) through (M,N) are assigned temperatures
T1 + ∆T through TN + ∆T respectively, (i.e. the radially
outermost temperature), and

• the remaining cells, (2, 1) through (M − 1, N), are assigned
temperatures following a physics-based interpolation scheme
described below.

Radial temperature profile

The radial temperature distribution (i.e. the temperature profile
between the radial center and periphery) in the physical TWC varies
depending on the properties of the incoming gas, and by extension the
operating point of the combustion engine.

We have chosen to model the true radial temperature profile as a
solution to the heat equation. More specifically, we solve the transient
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Figure 4: Each axial slice is assigned a radial temperature distribution that de-
pends on the properties of the incoming exhaust gas. The radially centermost
temperature (Tn) and radially outermost temperature (Tn + ∆T ) in combina-
tion with the operating point is used to construct the radially-varying tempera-
ture distribution.

heat equation in a flat circular plate with radius R and homogeneous
initial temperature T̂ (r) = 0, r = [0, R] (note that despite the similar
notation, T̂ has no direct relation to the model state vector T̄ or the
axial slices Tn). Furthermore, we apply the boundary condition
T̂ (R) = 0 at the periphery (i.e. a Dirichlet boundary condition), and
assume the bulk of the plate develops a constant and homogeneous
power (analogous to the energy delivered by the incoming gas to a
given axial TWC slice). This is a textbook problem (e.g. [19, p. 148])
with a well-known solution that can be expressed as a Fourier-Bessel
series. We can easily numerically solve this problem over time and
along the plate’s radius (for instance using MATLAB’s pdepe
function), generating the radially-varying time-evolution of the plate’s
temperature. We show normalized solutions, i.e. where T̂ is offset and
scaled so that T̂ (0) = 1 and T̂ (R) = 0, for some representative time
instances in Figure 3 for R = 1.

In this paper we select the modeled TWC temperature profile at any
given time (i.e. which profile we select from Figure 3) based on the
engine’s current operating point, as indicated in Figure 4, and we will
return to the specific method for choosing a profile in the
experimental results section. Ultimately, this gives an easily
implemented interpolation method for cells (2, 1) through
(M − 1, N) that matches the temperatures at the radial center and
periphery, represented by T1, . . . , TN and T1 + ∆T , . . . , TN + ∆T

respectively. The scheme is physically motivated, capturing the
essence of the radial thermal conduction and incoming power from
gas convection and exothermic heat of reaction.

Chemical kinetic model

Though the total set of reactions occurring in the TWC are highly
complex and involve many different compounds, there are fewer
components that contribute to the legislated emissions and significant
heat generation. We therefore are only interested in the following net
reactions (adapted from [11, 20])

2 CO + O2 −−→ 2 CO2 (4)
2 NO + 2 CO −−→ N2 + 2 CO2 (5)

2 NO2 −−→ N2 + 2 O2 (6)
2 C3H6 + 9 O2 −−→ 6 CO2 + 6 H2O (7)

C3H8 + 5 O2 −−→ 3 CO2 + 4 H2O. (8)

Typically, engine-out nitrogen oxides and hydrocarbon emissions are
lumped together [1, pp. 572, 597], and we thus categorize the the
emission species as carbon monoxide (CO), nitrogen oxides (NO and
NO2), and hydrocarbons (C3H6 and C3H8). By [1, p. 578] we
assume a constant molar ratio of 99:1 for NO to NO2 (a similar ratio
was found in our experimental tests). Similarly, by [21] and [22] we
choose to assume a a 3:1 ratio for C3H6 to C3H8. For convenience,
we will refer to these lumped emissions as NOx and THC
respectively.

We use an Arrhenius expression to model the reaction rate ksn,m of a
given emission species s (i.e. CO, NOx, and THC) in any given cell
n,m as

ksn,m = Ase
−Es

a
RTn,m (9)

where R is the ideal gas constant, Tn,m is the temperature of cell
n,m, Es

a is the activation energy of emission species s, and As is the
apparent pre-exponential factor for species s (which is dependent on
the cell’s volume). Using the notation ysn,m to indicate the mole
fraction of emission species s, we model the evolution of the mole
fraction as

dysn,m

dt
= −ksn,my

s
n,m. (10)

For a typical TWC, the gas residence time in each slice is short
enough for the temperature to be close-to constant, which we will now
motivate. In [6, p. 64], the authors find that the gas residence time in
the entire TWC is typically in the range of 0.05–0.1 s, e.g. with 4 axial
slices the residence time in each slice is typically 12.5–25 ms.
Furthermore, [6, p. 66] also finds that the typical temperature
time-derivative in the TWC during a cold-start is on the order of
10°C/s (this is similar to our findings, which we will see later).
Ultimately this implies that the temperature in a given axial slice
changes by approximately 0.1–0.25°C during the time the gas is in
each slice, which we view as insignificant.

Using the constant-temperature approximation, (10) has the explicit
solution

ysn,m(tr) = ysn,m(0) · e−ks
n,mtr (11)

for a residence time tr . We will assume a simple plug flow reactor
model (i.e. no axial mixing), which gives

tr =
Vslice

ν
(12)

where Vslice is the volume of each axial slice and ν is the volumetric
gas flow rate. We generate the slice volume as

Vslice =
VTWC

N
, (13)

where VTWC is the gas volume of the entire TWC. We further estimate
ν as

ν =
ṁeng ex

P/(RspecificTn,m)
(14)

where P is the absolute pressure in the TWC (typically close to
ambient pressure) and Rspecific is the specific gas constant for the
post-TWC ratio of N2, CO2, O2, and H2O we measured in our
experimental trials during stoichiometric operation. We have chosen
to use this specific gas constant as it is easily determined and the
remaining gasses contribute minimally to Rspecific.

Ultimately, using (9) through (14) gives a simple, but physics-based,
model for the reactions occurring in the TWC that takes temperature,
gas composition, and residence time into account. This implies that
the model is suited for quasi-stationary combustion engine operation,
where the engine-out exhaust temperature, emission species mole
fraction, and massflow varies slowly with respect to the residence
time. Though the model will not accurately capture the true behavior
during engine transients, as gas at different positions in the TWC will
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Figure 5: Representative conversion efficiency for a given emission species and
cell, with maximal efficiency at low massflow (i.e. longer residence time) and
high temperature.

have originated from the engine operated at different regimes, we
hypothesize (but were not able to verify with the available
measurement equipment) that the predicted TWC performance
converges to the measured performance on a time scale that is
comparable with the residence time in the TWC.

By (11), the massflow emitted from cell n,m is

ṁs,out
n,m = ṁs,in

n,me
−ks

n,mtr (15)

and, by the conservation of mass, the converted massflow is

ṁs,conv
n,m = ṁs,in

n,m − ṁs,out
n,m. (16)

Furthermore, we define the conversion efficiency of each cell as

ηsn,m = 1− ṁs,out
n,m

ṁs,in
n,m

. (17)

A qualitative illustration of the conversion efficiency as a function of
massflow and temperature is shown in Figure 5.

Finally, we model the tailpipe emission of species s as the sum of
outputs from each element in the last axial segment, i.e.

ṁs
tp =

M∑

m=1

ṁs
m,N . (18)

In order to determine the exothermic reaction power generated by the
above reactions, we can compute the (temperature-dependent) heat of
reaction for each mole of reactant species as

dHCO = H0,CO2
−H0,CO − 1/2H0,O2

(19)

dHNO = 1/2H0,N2
+H0,CO2

−H0,NO − dHCO (20)

dHNO2 = 1/2H0,N2
+H0,O2

−H0,NO2
(21)

dHC3H6
= 3H0,CO2

+ 3H0,H2O −H0,C3H6
− 9/2H0,O2

(22)

dHC3H8
= 3H0,CO2

+ 4H0,H2O −H0,C3H8
− 5H0,O2

. (23)

Note that we have neglected to indicate the temperature dependence
of these above terms for brevity, but include the temperature
dependence in the model by using the Shomate equation and
reference constants given by the NIST available at
https://webbook.nist.gov/ . The heat of reaction for the lumped
emission terms is then similarly given by the weighted average

dHNOx
= (99dHNO + dHNO2

)/100 (24)

dHTHC = (3dHC3H6
+ dHC3H8

)/4. (25)

Using (19), (24), and (25) the total temperature-dependent heat of
reaction generated in each cell is given as

Pn,m = ṁCO,conv
n,m · dHCO + ṁ

NOx,conv
n,m · dHNOx

+ ṁTHC,conv
n,m · dHTHC. (26)

Generating the state vector derivative

In this stage, we use the previously computed converted massflow and
associated exothermic reaction power per cell to generate the state
vector derivative. Note that the state derivative is of size N + 1,
i.e. the information encoded in the N ·M cells is reduced to N + 1
dimensions. The state derivative is constructed from three different
terms:

dT̄

dt
= T̄cond + T̄exo + T̄convect. (27)

Here, T̄cond, T̄exo, and T̄convect correspond to bulk thermal conduction,
exothermic reaction power, and the convective power from the
incoming gasses. Theses terms are in turn defined as follows.

Thermal conduction

We model thermal conduction in the TWC, T̄cond, both axially and
radially as

T̄cond =
1

τax




T2 − T1

...
Tn−1 + Tn+1 − 2Tn

...
TN−1 − TN

0




(28)

+
1

τra




∆T

...
∆T

−∆T


 (29)

+
1

τamb




0
...
0

Tamb − 1
N

∑N
n=1(Tn + ∆T )


 , (30)

where τax, τra, and τamb are scalar tuning parameters that capture the
net axial, radial, and ambient thermal resistance respectively and Tamb
is a given ambient temperature. Note that T̄cond is given as the sum of
three terms, corresponding to axial conduction (28), radial conduction
(29), and heat transfer to the ambient environment (30) respectively.
Each of these three terms are motivated by the 1-dimensional heat
equation [19]. In particular, note that in (30) d∆T

dt
is given by the

difference in temperature between the ambient and mean peripheral
temperature. This is ultimately due to our choice of assuming a scalar
core/periphery temperature difference, i.e. one that is identical for all
axial slices.

Exothermic terms

We introduce

Pctr,n =

M∑

m=1

Pn,m(1− m− 1

M − 1
) (31)

as the weighted exothermic reaction power associated with the radial
center of the TWC for axial position n. Note that the term m−1

M−1

varies from 0 to 1 for m from 1 to M , i.e. a linear weighting. We have
chosen this specific weighting as it matches our intuition in that
exothermic power near the center of the fully resolved TWC should
be assigned to the state variables corresponding to the axial center,
and vice-versa for the periphery. However, this is only a first
approximation and an optimal weighting might be different.

Similarly, we introduce

Pper,n =

M∑

m=1

Pn,m
m− 1

M − 1
(32)
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as the weighted exothermic reaction power associated with the
periphery of the TWC for axial position n. In essence, Pctr,n and
Pper,n collect the exothermic reaction power developed in each cell,
weighting power near the center to Pctr,n and power near the periphery
to Pper,n.

We can now define the state derivative terms due to the heat of
reaction as

T̄exo = kconv




Pctr,1
...

Pctr,N
1
N

∑N
n=1(Pper,n − Pctr,n)


 , (33)

where kconv is a tuning parameter for the proportionality between heat
of reaction and the temperature derivative, i.e capturing the heat
capacity of the TWC. Note that if Pctr and Pper are expressed in Watts
and T̄exo as K/s then kconv will have units J/K. Finally, note that the last
element of T̄exo can be seen as the average difference in power
between the radially central and peripheral exothermic reaction
powers, which is thus proportional to d∆T

dt
.

Convective terms

We model the temperature derivative from convective terms driven by
the incoming gas as

T̄convect =
ṁeng ex

τconvect




Teng ex − T1

...
Tn−1 − Tn

...
TN−1 − TN

0




(34)

where Teng ex is the temperature of the gas entering the TWC and
τconvect is a tuning parameter proportionality constant, capturing the
the specific heat of the exhaust gas and the heat capacity of the TWC.
Note that (34) implies that the gas leaving each given cell is assumed
to have the same temperature as the cell itself, i.e. each cell can be
viewed as a reactor that is long enough for the moving gas to attain
the same temperature as the cell before leaving (motivated by [6, p.
62] for N ≤ [2, 5]). Also, recall that the final element of T̄convect stores
the difference in temperature between the radially central and
peripheral part, i.e. setting the final element of (34) to 0 implies
radially uniform gas flow through the TWC.

Experimental setup

Engine

The engine setup consisted of a production Volvo Cars two liter
in-line four-cylinder direct injected spark ignited turbocharged engine
rated at 187 kW and 350 Nm, as listed in Table 1. The engine exhaust
was connected to an exhaust aftertreatment system consisting of a
TWC equipped with wide-band lambda sensors, 14 thermocouples,
and five exhaust gas sampling locations, both measuring average and
point source gas compositions. The engine was connected to an
electrical dynamometer that regulated the engine speed and measured
the delivered torque. A prototyping ECU was used to allow sampling
and changing engine parameters.

An auxiliary air valve was added to the exhaust manifold, allowing for
flushing the entire exhaust aftertreatment system with
room-temperature air for the cold-start tests. Cutting all fuel to the
engine (while pumping air through the engine) and flushing with
auxiliary air allowed for rapidly cooling the exhaust aftertreatment
system, taking approximately 5 minutes to cool the entire TWC to

Table 1: Engine properties.

Engine type VEA Gen I, VEP4 MP
Number of cylinders Four, in-line

Displaced volume 1969 cc
Bore/Stroke 82 mm/93.2 mm

Compression ratio 10.8:1
Valve train DOHC, 16 valves

Intake camshaft Variable 0-48° CA advance
Exhaust camshaft Variable 0-30° CA retard
Ignition system DCI, standard J-gap spark plugs

Fuel system/Injection pressure DI/200 bar
Fuel Gasoline RON95 E10

Start of injection 308-340 CAbTDCf
Boosting system Turbocharger

Rated power/Rated torque 187 kW/350 Nm
Stoichiometric air/fuel ratio 14.01:1

Figure 6: Experimental setup, TWC housing highlighted. Above the TWC is
a 90°elbow. The turbocharger exhaust is just visible to the right of the elbow.
Below the TWC is a GPF (not used in this experiment) and a flexible bellows.

under 100°C. The auxiliary airflow was kept small enough to avoid
the turbo spooling up, which might cause an undesirable transient
when resuming normal operation. During all normal engine operation
the auxiliary air valve was kept closed in order to not alter the
composition and temperature of the engine exhaust.

A photograph of the aftertreatment system is shown in Figure 6, with
a schematic representation is shown in Figure 7 and a detailed view of
the TWC in Figure 8. The schematic shows the engine exhaust and
auxiliary cool-down air feed entering the turbo, which then proceeds
through a 90°elbow, enters the TWC, and then is finally exhausted.
Gas composition measurement points are located before and after the
TWC which sample the average gas composition. An additional three
sample points are located at the left, center, and right of the TWC,
which allow sampling the local gas composition leaving a few TWC
channels.

Data Acquisition

Data was sampled using two data acquisition systems. Emissions
signals from instruments, fuel, and the dynamometer were sampled

6



Emissions Rack
NOx
HC
CO
CO2
O2

TWC
T Thermocouple type K

Te8

Ts23 TailpipeTe9

Compressed air

Ts11b

Ts14b

Ts10b

Ts12b

Ts15b

λ

UHEGO

UHEGO UHEGO

UHEGOUHEGO

Ts10c

Ts12c

Ts10a

Ts12a

Ts13a

Ts13c

Electrically actuated valve

Exhaust manifold

⌀ 125mm

L 122mm

WG

Figure 7: Schematic diagram of experimental setup.
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Figure 8: TWC instrumentation as seen from rear (outlet) side. Thermocouple
locations indicated with orange, local gas sample points indicated with blue.
See Table 2 for detailed thermocouple positioning.

Table 2: Thermocouple positioning. Depth indicates position of thermocouple
relative to rear (outlet) of monolith. TWC length, diameter, and radius/azimuth
reference as shown in Figure 8.

THERMOCOUPLE RADIUS r [MM] AZIMUTH θ [°] DEPTH [MM]

Ts10a 61 180 -100
Ts10b 61 180 -60
Ts10c 61 180 -20
Ts11b 30 180 -60
Ts12a 0 0 -100
Ts12b 0 0 -60
Ts12c 0 0 -20
Ts13a 61 0 -100
Ts13c 61 0 -20
Ts14b 30 270 -60
Ts15b 61 270 -60

Table 3: Steady-state operating points. The load point at 3000 rpm, 8 bar BMEP,
1.05λ was not measured due to time constraints.

SPEED [RPM] BMEP [BAR] LAMBDA [-]

1000 2 0.95/1.00/1.05
1500 5 0.95/1.00/1.05
2000 15 0.95/1.00/1.05
3000 8 0.95/1.00

with a National Instruments DAQ and an associated LabVIEW
program. Engine parameters such as temperatures, pressures, and
target lambda were sampled using acquisition units connected via
CAN to an ETAS-module. All temperatures were measured using
type K thermocouples. Fuel flow mass was measured with a Coriolis
meter. All parameters were sampled at a rate of 10 Hz.

Exhaust samples were extracted from five different locations (as
indicated in Figure 7). Regardless of sample location, all were
extracted via a heated hose (180°C), followed by a heated
conditioning unit (190°C) with a heated filter and pump. Emissions
concentrations were then analyzed by separate instruments. Total
hydrocarbon concentration (THC) was measured using a flame
ionization detector, NOx concentrations using a chemiluminescence
analyzer, and CO using a non-dispersive infrared detector. The
propagation delay and axial dispersion in hoses and instruments was
identified by generating a step in emissions (by disabling the fuel-cut
signal as will be described in the cold-start experimental procedure).
From this data we could compensate for the propagation delay as well
as apply a first-order high-pass filter to mitigate some of the axial
dispersion in the measured pre-catalyst emission data. This
compensation was then applied to all other emission sampling
locations, allowing for studying transient gas composition changes
fairly well using an instrument rack primarily intended for
steady-state analysis. Ultimately however, our experimental set-up
only allowed for measuring emissions at any one given location at a
time. We therefore chose to keep the engine in stationary operation in
order to maximize the repeatability of the engine-out emissions,
which was critical for generating an accurate estimate of the TWC’s
conversion efficiency.

Measurement procedure

The emission measurement equipment was calibrated before
measurements using calibration gasses, and the engine was heated to
its working temperature by running at a moderate load until the
coolant temperature remained constant. Afterwards, we performed
two different tests.

Steady-state analysis

The goal of this test was to identify the steady-state engine-out
emissions and associated steady-state radial temperature distribution
in the TWC for the engine operating points that can plausibly occur
during a low- to medium-load cold-start. This was performed by
statically running the engine and storing the steady-state values of all
measured signals. The target lambda value was set swept between
slightly rich, stoichiometric, and slightly lean in order to characterize
the steady-state engine-out emissions1. This was then repeated for the
operating points listed in Table 3.

1The conventional cold-start lambda-switching routine was not altered dur-
ing this test, i.e. the instantaneous lambda value was automatically switched to
slightly above and slightly below the target lambda. We only discuss the target
(average) lambda here.
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Cold-start thermal evolution

This goal of this test was to characterize the thermal evolution of the
catalyst during a cold start. We performed this experiment for each
emission sampling point by:

• bringing the engine to a moderate speed and torque (1500 RPM
and 5 bar BMEP, giving a suitably long warm-up phase),

• disabling fuel injection (i.e. pumping air only) and opening the
auxiliary air valve until the thermocouples in the TWC reported
a temperature of under 100°C,

• first closing the auxiliary air valve and then enabling ordinary
fuel injection until the TWC reached near-equilibrium
temperature.

To capture the ordinary behavior of the engine during a cold-start, we
ensured that the lambda control was run in open-loop, i.e. the
narrowband lambda sensor after the TWC was not used to fine-tune
the engine’s air-fuel ratio. Instead, the ECU’s conventional open-loop
scheme was kept active during all tests, which periodically switches
between lean and rich phases with λ ≈ {0.98, 1.02}. This switching
period is reduced as engine speed and torque increases, leading to
poor lambda control at moderate loads and above. Due to this we kept
the engine load fairly low during tests, at 1500 RPM and 5 bar BMEP.

Experimental results

Steady-state

The results from the steady-state experiment are listed in Table 4,
showing the measured engine-out temperature, massflow, and
emission concentration. The relative midway temperature

tmid =
Ts11b− Ts10b
Ts12b− Ts10b

,

indicates the relative temperature of thermocouple Ts11b (the axial
and radial midpoint of the catalyst), where 0 corresponds to the
temperature of the radial periphery (i.e. Ts10b) and 1 corresponds to
the temperature of the radial center (i.e. Ts12b).

Cold-start thermal evolution

An illustration of the temperature evolution in the TWC is shown in
Figure 9. It shows the radial and azimuth temperature evolution
(Figure 9a) and the radially central and radially peripheral axial
thermal evolution (Figure 9b) for the tested load step. Notably,
Figure 9a indicates that there are no significant azimuth thermal
variations (as Ts11b and Ts14b exhibit virtually identical trajectories),
in turn indicating that the gas flow through the TWC is fairly evenly
distributed azimuthally and that the radius of the 90°elbow after the
turbocharger is sufficiently large for near-uniform flow. Furthermore,
some radial variations are visible, as the radially outermost
thermocouples (Ts10b, Ts15b) show a lower temperature after
≈ 100 s. Figure 9b shows a very significant axial thermal variation,
with a clearly visible thermal front progressing over time from the
incoming gas (Te9), to the front of the TWC (Ts10a/Ts12a), followed
by the middle (Ts10b/Ts12b) and the rear (Ts10c/Ts12c) of the TWC,
and finally the gas exiting the TWC (Ts23). Furthermore, the radial
peripheral temperature is bears a close resemblance to the radially
central temperature of each given axial slice. This motivates our
choice of modeling the radially peripheral temperature as Tn + ∆T

(i.e. the peripheral temperature varies axially), in contrast to assuming
a constant peripheral (canning) temperature. These results thus lend
weight to our approach of modeling primarily axial, and to some
extent radial, thermal variations.

An illustration of the net conversion efficiency of the TWC, defined as
the ratio of the total converted mass to total incoming mass, is
illustrated with dashed lines in the upper part of Figure 10. This figure
was generated by using time-resolved emission data from two
different sampling points, one before the TWC (i.e. measuring the
total generated emissions) and one after the TWC (i.e. measuring the
total remaining emissions). The figure illustrates that CO and NOx

reach light-off more quickly than THC, which is to be expected [1, p.
652]. Furthermore, we can reach a more fundamentally important
conclusion; any attempt to characterize the entire TWC’s conversion
efficiency as a function of a single temperature during a thermal
transient is bound to be limited in its accuracy. As Figure 9b shows, at
for instance t = 75 s, the front of the catalyst is ≈ 375°C, while the
rear is ≈ 125°C. We see a similar, albeit smaller, radial thermal
difference in Figure 9a. Ultimately, this again motivates our modeling
choice of a thermally resolved axi-radial model.

Model tuning

We utilized the experimental data in the previous section to tune the
model constants. The tuning phase was divided into three different
stages:

Radial temperature profile

By using the relative mid temperature, as found in the steady-state
experiment and listed in Table 4, we uniquely determined the radial
temperature profile associated with a given engine operating point.
We followed the method described in the TWC model section, where
we solved and normalized the heat equation solution over time.
Afterwards, we selected the solution associated at a given time where
the half-radius relative temperature was equal to the measured relative
mid temperature tmid.

Reaction rate parameters

The parameters Ea and A, as used in (9), were estimated using the
cold-start experimental results. First, we assigned the time-evolution
of the model’s states to the measured thermal evolution (as shown in
Figure 9). With our experimental data using three axial slices is most
convenient, as we can generate T̄ = [T1, T2, T3,∆T ] directly by
Ts12a, Ts12b, Ts12c, and Ts10b− Ts12b respectively. This explicitly
gives the sample-evolution of the state vector T̄ (k), where
k = 0, 1, 2, . . . indicates the time-sample of the state vector, sampled
at rate of 10 Hz. The radial temperature profile was estimated using
M = 15 independent radial channels. We chose to use 15 radial
channels as this is sufficiently large to resolve the most significant
radial temperature distribution, as will be shown later.

For given Es
a and As we computed the modeled tailpipe output

emissions ṁs
tp(k) using (9) through (18). Finally, we tuned Es

a and
As by solving the numerical optimization problem

min
∑

k

|ṁs
tp(k)− ṁs

tp,meas(k)|2 (35)

for all measured samples (as shown in Figure 9), and where ṁs
tp,meas(k)

was the measured tailpipe emissions of each emission species.

We solved (35) using the patternsearch optimization tool in
MATLAB (a gradient-free direct-search method bearing some
similarity to the Nelder-Mead method), which gave good matching
between the measured and simulated output emissions, as shown in
Figure 10. Note that the first 5 – 10 seconds of experimental data is of
lower accuracy, particularly for THC, as the sharpening filter used
could not completely compensate for the axial dispersion in the
sampling lines and pump leading to the measurement equipment. This
otherwise very good match indicates our choice of using a Arrhenius
expression (9) and a first-order rate equation (10) can accurately
approximate the true reactions in the TWC. The numerically
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Table 4: Steady-state engine-out temperature, massflow, relative gas composition, and TWC midway temperature.

SPEED [RPM] BMEP [BAR] LAMBDA [-] TEMPERATURE [°C] MASSFLOW [G/S] CO [PPM] NOX [PPM] THC [PPM] tMID [-]

1000 2
0.95 356 5.81 14500 151 586 0.723
1.00 368 5.95 4660 183 470 0.787
1.05 361 6.13 1370 325 405 0.757

2000 15
0.95 755 56.9 16000 1660 319 0.797
1.00 755 55.6 3920 2720 204 0.815
1.05 744 57.1 1270 3070 117 0.816

3000 8
0.95 812 50.0 15600 1050 293 0.912
1.00 860 53.3 2140 1530 11.3 0.858

1500 5
0.95 583 16.3 14900 357 384 0.919
1.00 623 17.6 4130 529 225 0.940
1.05 642 19.7 943 782 59.7 0.983

Te9_TWCIn_Exh

Ts10b

Ts11b

Ts12b

Ts14b

Ts15b

Ts23

(a) Radial and azimuthal temperature evolution of axially central slice. The
radially central portions of the TWC heats earlier (Ts11b-Ts14b) than the
radially outer parts (Ts10b, Ts15b). No noticeable azimuth variation.

Te9_TWCIn_Exh

Ts10a

Ts12a

Ts10b

Ts12b

Ts10c

Ts12c

Ts23

(b) Axial temperature variation of radially central and radially peripheral sec-
tions. The sensors closest to the engine exhaust (Ts10a, Ts12a) heat up first,
while sensors successively further back (Ts10b/Ts12b, and Ts10c/Ts12c) heat
up after each other. Sensors of the same axial position (Ts12a and Ts10a,
Ts12b and Ts10b, Ts12c and Ts10c) show a strong interdependence, moti-
vating our modelling approximation of ∆T being constant axially along the
TWC.

Figure 9: Temperature evolution of TWC. Sensor locations as shown in Figure 7 and Figure 8.
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Figure 10: Simulated and measured output emissions. The core temperature of
each axial slice T1, T2, T3 as well as ∆T is shown.

estimated parameters are shown in Table 5, and our estimated values
of Ea are on the same order of magnitude (±50–100%) as those found
in earlier studies, e.g. [23]. Note that we can not practically expect a
more precise match as we do not model mass transport limitations,
stored oxygen in the catalyst, and lambda-switching, all of which
influence the apparent reaction kinetics.

Thermal dynamics parameters

The thermal dynamics tuning parameters τax, τra, τamb, kconv, and
τconvect were also estimated using the cold-start thermal evolution.
First, we set the initial state vector T̄ (0) = [T1, T2, T3,∆T ] to the
temperatures measured by Ts12a, Ts12b, Ts12c, and Ts10b− Ts12b
respectively. Then, for given tuning parameter values we computed
the modeled thermal evolution T̄ (k), using an explicit 4’th order
Runge-Kutta method. As the tuning parameter’s influence on T̄ (k)
involves non-linear dynamics, conventional optimization methods
tend to behave poorly. Here, we have used MATLAB’s genetic
algorithm (ga) tool, with the fitness function

min
∑

k

|T̄ (k)− T̄meas(k)|2, (36)

where T̄meas is the measured temperature evolution at the sampled
times (i.e. Ts12a, Ts12b, Ts12c, Ts10b − Ts12b), and otherwise
using the default ga solver settings. Though other optimization
methods tend to converge more quickly, the genetic algorithm is
convenient in that it searches a wide range of initial values and the
presented model evaluates quickly enough for the slow rate of
convergence to not be problematic. Here, generating a solution
required approximately 4 hours on a standard desktop PC (AMD
Ryzen 2700x with 16 gb 3200 MHz RAM), where each model call
required approximately 30 ms of compute time and generated
modeled data corresponding to 425 seconds at sample rate of 50 ms
(i.e. ≈ 280 000 model calls per second, or ≈ 15 000 times faster than
realtime). The results gave good matching between the measured and
simulated thermal trajectories, as shown in Figure 11. We re-ran the
algorithm 10 times, and received virtually identical results each time.

T
1
 sim

T
2
 sim

T
3
 sim

T
 sim

T
1
 meas

T
2
 meas

T
3
 meas

T
 meas

Figure 11: Simulated and measured thermal evolution of the TWC.

Table 5: Estimated reaction rate parameters.

SPECIES EA [J/MOL] A

CO 40.7 · 103 161 · 103

NOx 37.5 · 103 86.0 · 103

THC 44.6 · 103 215 · 103

Table 6: Estimated thermal parameters.

PARAMETER VALUE

τax 88.2 · 103

τra 385

τamb 2.18 · 103

kconv 34.5 · 10−6

τconvect 171

The estimated parameters are listed in Table 6.

The difference between the measured and simulated temperatures in
Figure 11 are typically within ±10°C, with a maximal deviation of
20°C. We hypothesize that the deviation between the simulated and
measured T1 at 20–60 seconds is caused by exhaust species that were
adsorbed on the TWC during the first 20 seconds that start reacting as
the TWC reaches lightoff (≈ 300°C). We have chosen not to model
adsorbed exhaust species as this would require at least one additional
state variable.

We can note that the thermal TWC model captures convective gas
terms (seen during the first 20 seconds, where the entire TWC is
below the light-off temperature) as well as exothermic reaction power
generated in the TWC (seen after the first 80 seconds, where the TWC
is well above the light-off temperature and is hotter than the incoming
gasses). Furthermore, the model captures the characteristic thermal
front that progresses from the front to the rear, as well as a radial
temperature gradient that increases with increasing core temperatures,
motivating our choice of a model that is axially and radially resolved.

Note that unlike many black-box modeling approaches, the tuning
parameters in the model correspond to physical parameters. We
hypothesize that this implies that we can tune the model for a given
axial resolution M , and then easily generate tuning parameters for a
different axial resolution M ′, by scaling the slice-volume-dependent
parameters A and τax by M/M ′, and using the remaining parameters
as-is. However, we have as of yet not conclusively validated this
hypothesis.
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(a)

(b)

Figure 12: Mean absolute deviation between predicted and measured conver-
sion efficiency for varying M . In Figure 12a this is computed over t =

[20, 80] s, while Figure 12b focuses on the region t = [60, 80] s where ∆T

is more significant, as seen in Figure 10.

(a)

(b)

Figure 13: Mean absolute deviation between the simulated emission for M =

50 and the simulated emission for varyingM , with ∆T fixed to -50 and -100°C.
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Radial resolution

One of the primary contributions of this paper is the inclusion of a
radially resolved temperature profile. However, in order for this
addition to be motivated, this should result in a model that more
accurately predicts the TWC behavior. In Figure 12 we illustrate the
mean deviation between the modeled and measured conversion
efficiency (as previously studied in Figure 10) for varying radial
resolutions M . Here, we have swept M = [1, 50] while keeping the
reaction rate parameters fixed at the values found for M = 15 (see
Table 5). Both figures show an improvement in the estimated
conversion efficiency with increasing M , indicating that resolving the
radial temperature profile improves the model performance.
Furthermore, the figures also indicate that the model is not over-fitted,
as the prediction improves when M is increased from the value we
used to tune the model. Finally, we can note that our choice of
M = 15 is plausible, as the majority of the gains are had for M & 7.

More specifically, if we consider Figure 12a, we can state that
resolving the radial temperature profile marginally improves the
average predicted conversion efficiency over t = [20, 80], with a
maximal relative improvement of approximately 15%. However, if we
consult Figure 10 it is clear that |∆T | is very small at times
t = [20, 60]. Limiting the averaging window to times where |∆T | is
larger, e.g. t = [60, 80], gives Figure 12b, where we see a relative
improvement of approximately 350%. Though this is a very large
relative improvement in accuracy, the absolute deviation between the
modeled and measured conversion efficiency is small for all tested M
here, as the conversion efficiency is very close to 1. However, had the
engine been run in a manner that gave a large |∆T | near light-off we
can expect the inclusion of a radially resolved temperature profile to
give a significant absolute accuracy improvement. An illustration of
this is shown in Figure 13, where we simulate the effect of a constant
∆T = {−50,−100}, but otherwise use the same thermal evolution
and engine-out emissions. Though a constant ∆T is not practically
representative, it is plausible for |∆T | to be large during intervals near
light-off. (For example, if a hybrid vehicle starts the combustion
engine when reaching highway speeds the TWC periphery will be
significantly cooled by the passing air.) In these figures we compare
the mean emissions for M = 50 with the emissions for varying M
over the entire cold-start phase. These results show that resolving the
radial temperature distribution can lead to an average absolute
accuracy improvement by 7–15 percentage points over the entire
cold-start cycle, with gains that increase as the magnitude of ∆T

increases.

Conclusion

In this paper we have introduced a physics-based TWC model that
resolves axial and radial thermal dynamics, while simultaneously
keeping the number of state variables low, ultimately allowing for use
as a model for fast off-line simulation or on-line control methods
(e.g. nonlinear state-feedback methods and explicit MPC). The
number of axial slices (and thereby the number of state variables) and
radial resolution is configurable, allowing for balancing the
computational demand and accuracy for a specific application. The
model uses a first-principles approach for chemical kinetics,
exothermic reaction power, gas convection, axial and radial thermal
conduction, and an interpolation method for increasing the radial
resolution.

Resolving the axial and radial temperature profile allows for
implementing more nuanced control schemes, where if for instance
during a cold-start the first axial slice(s) of the TWC are hot, then the
exhaust mass-flow can be kept sufficiently low in order to increase the
residence time in the hot part(s) of the TWC. This awareness of the
TWC’s condition is lost with most conventional on-line models that
only characterize TWC temperature as a scalar value.

We have performed an experimental campaign where we measured

the temperatures and emission massflow in the TWC using a
conventional experimental rig. This experimental campaign required
only a few hours of effective measurements, after which we were able
to identify the model’s tuning parameters. These consist of three
activation energies, three pre-exponential scaling terms, one radial
thermal distribution table, and five thermal parameters.

Subsequent analysis showed that the modeled and experimentally
measured conversion efficiencies very closely match each other, even
with only three axial slices. Furthermore, the modeled temperature
evolution matched the experimentally measured temperature well,
typically deviating no more than ±10°C. The most significant
discrepancies were seen just after lightoff, plausibly due to exhaust
species that adsorbed onto the cold TWC that then exothermically
reacted after lightoff. Resolving the radial temperature profile
improved the relative accuracy of conversion efficiency by
approximately 15%, but would likely be much more significant for
operating regimes with a more prominent radial temperature gradient.
Simulations show the potential for the absolute conversion efficiency
accuracy to improve by 7–15 percentage points when the temperature
of the TWC periphery differs from the center by 100°C.

The fast computational speed of the model (approximately 15000
times faster than realtime on a desktop PC (AMD Ryzen 2700x with
16 gb 3200 MHz RAM) with unoptimized code) and the low number
of state variables open up for several possible use-cases. Examples
include closed-loop on-line control methods suited for
low-dimensional non-linear models (such as nonlinear state-feedback
and explicit MPC) and very numerically fast off-line TWC
simulations. This can ultimately allow for on-line optimal cold-start
strategies, TWC sizing, or more quickly evaluating the performance
of exhaust aftertreatment systems with several different TWC
elements. Relevant future work includes constructing a suitable state
observer for on-line applications that have a limited number of
measured temperatures.
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Nomenclature

TWC Three way catalyst
DP Dynamic programming
SI Spark-ignited
DOHC Dual Over Head Camshaft
CO Carbon monoxide
NOx Nitrogen oxides
THC Total hydrocarbons
T̄ Model state vector
Tn Temperature of axial slice n
∆T Temperature difference between radial center and radial

periphery
N Number of axial elements
M Number of interpolated radial elements
Tn,m Temperature of cell n,m
ṁn,m Total massflow into cell n,m
ksn,m Reaction rate of emission species s in cell n,m
As Apparent pre-exponential scaling factor for Arrhenius

expression for emission species s in any given cell
Es

a Activation energy for emission species s
ysn,m Mole fraction of emission species s in cell n,m
tr Residence time of exhaust gas in a given cell
Vslice Gas volume of each axial slice
VTWC Gas volume of the entire TWC
ν Volumetric flow rate in a given cell
ṁeng ex Total exhaust massflow
P Absolute pressure in the TWC
ṁs,out

n,m Massflow of emission species s leaving cell n,m
ṁs,in

n,m Massflow of emission species s entering cell n,m
ṁs,conv

n,m Massflow of emission species s converted in cell n,m
ηsn,m Conversion efficiency of emission species s in cell n,m
ṁs

tp Tailpipe massflow of emission species s
dHx Molar heat of reaction of x
Pn,m Exothermic reaction power in cell n,m
T̄cond State derivative due to conductive terms
T̄exo State derivative due to exothermic reaction terms
T̄convect State derivative due to convective terms
τax Tuning parameter, axial thermal resistance
τra Tuning parameter, radial thermal resistance
τamb Tuning parameter, ambient thermal resistance
Tamb Ambient temperature
Pctr,n Weighted exothermic reaction power, center of axial slice n
Pper,n Weighted exothermic reaction power, periphery of axial

slice n
kconv Tuning parameter, exothermic reaction power

proportionality constant
τconvect Tuning parameter, gas convection proportionality constant
Teng ex Engine exhaust temperature
T̄meas Experimentally measured temperatures corresponding to

model state vector
tmid Relative radially midway temperature
ṁs

tp,meas Experimentally measured tailpipe massflow of emission
species s

Contact Information

Jonathan Lock
+46317725792
lock@chalmers.se

Acknowledgments

This work has been performed within the Combustion Engine
Research Center at Chalmers (CERC) with financial support from the
Swedish Energy Agency.

13





PAPERE
Cold-Start Modeling and On-Line Optimal Control of the

Three-Way Catalyst

Jonathan Lock, Kristoffer Clasén, Jonas Sjöblom, Tomas McKelvey

To be submitted
Preprint available at https://arxiv.org/abs/2104.12390

https://arxiv.org/abs/2104.12390




1

Cold-Start Modeling and On-Line Optimal Control
of the Three-Way Catalyst

Jonathan Lock, Kristoffer Clasén, Jonas Sjöblom, Tomas McKelvey

Abstract—We present a three-way catalyst (TWC) cold-start
model, calibrate the model based on experimental data from
multiple operating points, and use the model to generate a
Pareto-optimal cold-start controller suitable for implementation
in standard engine control unit hardware. The TWC model is
an extension of a previously presented physics-based model that
predicts carbon monoxide, hydrocarbon, and nitrogen oxides
tailpipe emissions. The model axially and radially resolves the
temperatures in the monolith using very few state variables, thus
allowing for use with control-policy based optimal control meth-
ods. In this paper we extend the model to allow for variable axial
discretization lengths, include the heat of reaction from hydrogen
gas generated from the combustion engine, and reformulate the
model parameters to be expressed in conventional units. We
experimentally measured the temperature and emission evolution
for cold-starts with ten different engine load points, which was
subsequently used to tune the model parameters (e.g. chemical
reaction rates, specific heats, and thermal resistances). The
simulated cumulative tailpipe emission modeling error was found
to be typically -20% to +80% of the measured emissions. We have
constructed and simulated the performance of a Pareto-optimal
controller using this model that balances fuel efficiency and the
cumulative emissions of each individual species. A benchmark
of the optimal controller with a conventional cold-start strategy
shows the potential for reducing the cold-start emissions.

I. INTRODUCTION

The Three-Way Catalyst (TWC) is used in nearly all con-
ventional vehicles with spark-ignited (SI) engines to reduce the
level of harmful emissions generated by the combustion engine
that would otherwise exit the tailpipe. The toxic emissions
generated by the combustion engine, broadly categorized as
nitrogen oxides (NOx), carbon monoxide (CO), and residual
hydrocarbons (THC), are in the TWC converted to primarily
form non-toxic nitrogen gas (N2), carbon dioxide (CO2), and
water (H2O) [2, 3]. Modern TWCs are very effective at
removing emissions, with conversion efficiencies of over 95%
being commonplace [3] and in some cases significantly higher,
as was found in the experimental results in this paper. However,
the TWC must be sufficiently hot to function, which is in
ordinary operation maintained by virtue of the hot exhaust
gases passing through it from the combustion engine. However,
when a vehicle is cold-started (i.e. started after the TWC has
had sufficient time to cool to the ambient temperature) the
tailpipe emissions are much larger until the TWC is heated to
its ordinary operation temperature, an interval typically taking
on the order of 40–100 seconds[3]. These cold-start emissions
are very significant, and for many regulatory test procedures
are responsible for 60–80% of the emissions generated from an
entire test (which are for reference on the order of 30 minutes).

Several methods for reducing cold-start emissions have been
studied from a multiple perspectives. These range from methods
of constructing the TWC that reduces the cold-start time [4],
methods for preheating the TWC before starting the combustion
engine [5], and control schemes that focus on controlling the
combustion engine’s operation to limit the emissions generated
during the cold-start [3, 6, 7, 8, 9].

In this paper our goal is to develop a model-based optimal
TWC cold-start controller that can be feasibly be implemented
in a standard engine control unit (ECU). We will consider a
conventional SI engine and TWC, where the engine’s load
point can be freely controlled during the cold-start, making the
controller suitable for e.g. hybrid vehicles. More specifically,
we view the TWC cold-start problem as determining the optimal
engine speed, load, and spark timing to apply over time while
balancing the conflicting goals of maximizing fuel efficiency
and minimizing the cumulative emissions. Generating a Pareto-
optimal controller will therefore both require a dynamic thermal
model of the TWC as well as a suitable optimal control design
method. This paper can naturally be divided into two parts, one
where we develop a TWC cold-start model, and one where we
evaluate the performance of an optimal controller generated
using said model.

The model presented in this paper extends on a TWC model
previously developed by the authors [1]. In the previous work,
we derived a thermal model of the TWC with very few state
variables suited for fast off-line simulation or on-line control
systems. The model resolved both axial and radial temperature
variations from a first-principles perspective. In this paper we
extend the previous model by allowing the axial discretization to
vary along the TWC’s length, model the heat generation caused
by oxidation of hydrogen in the exhaust gas, and reformulate
the tuning parameters (heat capacity, thermal conductivity, etc)
to be expressed in well-known units (J K−1 kg−1, W m−1 K−1,
etc). Furthermore, we expand on our previous work by here
considering a TWC consisting of two separate monoliths and
use separate training and validation datasets for tuning and
evaluation.

In this paper we will first briefly discuss categories of
existing models and their strengths, weaknesses, and relevant
applications. Following this we will introduce our extended
model and the experimental setup used to calibrate the model.
Finally, we will study the experimental results and evaluate the
simulated performance of the optimal control scheme using
the calibrated model. A listing of all abbreviations is shown
in Table I, while all model parameters and their units are
presented in Table II.
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TABLE I
TABLE OF USED ABBREVIATIONS.

CAbTDC Crank Angle before Top Dead Center
CO Carbon Monoxide

ECU Engine Control Unit
SI Spark Ignited

NOx Nitrogen Oxides
SA Spark Angle

THC Total Hydrocarbon
TWC Three Way Catalyst
TWC1 The first monolith in the TWC
TWC2 The second monolith in the TWC

A. Literature survey

The topic of modeling the TWC for cold-start purposes
has been considered from a wide range of perspectives. Some
authors derive fully three-dimensional or two-dimensional mod-
els that capture many of the fundamentally complex chemical
kinetics, transport dynamics, and temperature dynamics [10,
11, 12]. Though accurate, models of this caliber are very
computationally demanding and primarily suited for in-depth
analysis.

One commonly used method of reducing the computational
demand is to exploit the characteristic structure of modern
TWC’s, which consist of a large number of parallel channels.
Assuming each channel’s construction and composition is
identical it is sufficient to study the behavior of a single channel
and afterwards scale the result by the number of channels in the
TWC. This approximation is typically referred to as the single
channel approximation or single channel model, and results in
models with significantly reduced computational demands.

Several authors[13, 14, 15, 16, 17, 18, 19] model the
TWC with the single channel approximation, and depending
on the number of modeled chemical phenomenon and the
level of spatial resolution some models can approach realtime
simulation speeds on powerful PC’s (i.e. where generating one
second’s worth of data requires one second of computation
time). Beyond modeling the temperature dependence of the
TWC, many of these models also include terms to capture a
TWC phenomenon where oxygen is absorbed and released in
the TWC. The stored oxygen greatly influences the TWC’s
capacity to convert emissions, where CO and THC are more
effectively oxidized when the stored level of oxygen is large,
while NOx is more effectively reduced when the level is low.

These models allow for simulating either the whole TWC
or a representative channel to a fairly high degree of accuracy.
However, they are primarily of use for analyzing the perfor-
mance of the TWC in an off-line manner, for instance in a TWC
design process. In this paper we instead focus on on-line TWC
control, and in particular consider the cold-start problem. This
requires a model that is significantly simpler computationally,
both as optimal control methods place specific demands on the
complexity and structure of the system models, and as the ECU
has a very limited computational capacity. There are several
classes of control-oriented models, ranging from models that
approximate the spatially varying temperature distribution as a
scalar temperature [20, 6, 7, 8], to more complex models that

TABLE II
TWC PARAMETERS.

Parameter Unit Description

L m Total TWC length
R m TWC radius
Ln m Length of axial slice n
Ln−1,n m Center-to-center distance between axial

slice n− 1 and n
tw m TWC wall thickness
lc m TWC channel width
OFA - TWC open frontal area
mTWC kg Monolith mass
cp J K−1 kg−1 Net monolith specific heat
ṁexh kg s−1 Exhaust massflow
cp,exh J K−1 Exhaust gas specific heat
Tamb

◦C Ambient temperature
Texh

◦C Temperature of gas feeding TWC
kax W m−1 K−1 Effective axial thermal conductivity
krad W m−1 K−1 Effective radial thermal conductivity
kamb W m−1 K−1 Effective thermal conductivity to ambient
tamb m Thickness of insulation to ambient

N - Number of axial TWC segments
M - Number of resolved radial TWC channels
T ◦C Temperature state vector
Tn ◦C Central temperature in axial slice n
∆T

◦C Center/periphery temperature difference

ksn,m mol s−1 Reaction rate, species s in cell n,m
As - Pre-exponential factor, species s
Es

a J mol−1 Activation energy of emission species s
ysn,m - Mole fraction, species s in cell n,m
ṁs,conv

n,m kg s−1 Mass conversion, species s, cell n,m
ṁs,in

n,m kg s−1 Incoming mass, species s, cell n,m
ṁs,conv

n,m kg s−1 Outgoing mass, species s, cell n,m
ṁs

tp kg s−1 Tailpipe massflow, species s
tr,n s Gas residence time in slice n
pTWC Pa Absolute pressure in TWC

Pctr W Heating power, radial center
Pper W Heating power, radial periphery
Pax W Heating power, axial conduction
Prad W Heating power, radial conduction
Pcon,ctr W Heating power, convection, center
Pcon,per W Heating power, convection, periphery
Pn,m W Exothermic power generated in cell n, n
Pexo,ctr W Weighted central exothermic power
Pexo,per W Weighted peripheral exothermic power
Pamb W Heating power, loss to ambient
qax W m−2 Axial heat flux
qrad W m−2 Radial heat flux
qamb W m−2 Heat flux to ambient
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axially resolve the TWC temperature and/or include oxygen-
storage terms [21, 22, 23]. The simpler models are fairly well
suited for direct use with on-line optimal control methods,
while most of the more complex models are used primarily as
a starting point for creating a suboptimal controller.

The model presented in this paper (an extension of [1]) has
been constructed for the specific purpose of subsequently being
implemented for optimal control in conventional ECUs. More
specifically, it is well-suited to control-policy based optimal
control methods, where the optimal control signal (e.g. engine
speed, load, spark angle, and so on) is precomputed in an
offline phase and stored in a table for a discrete set of TWC
temperatures. A subsequent realtime controller can ultimately
determine the optimal control signal by consulting the table of
stored temperatures and associated optimal control signals [24,
25]. Controllers of this class are very powerful, as they allow
for nearly arbitrarily nonlinear model dynamics, costs, and
constraints, but are limited in that their memory demand scales
exponentially with the number of state variables and require
the states variables to either be measured or estimated. In an
effort to limit the number of state variables we have chosen
to not dynamically model the stored oxygen in the TWC as
this is not as significant as the temperature dynamics during a
cold-start [20, 1].

II. TWC MODEL

We will in this section introduce the TWC model. This
model is based on and extends a model previously presented
by the authors [1]. The model is extended by allowing the
size of the axially discretized slices to vary over the length
of the catalyst, reformulated so all parameters are based on
easily determined physical parameters, and we consider the
case where two separate TWC monoliths are placed in series.

The model can naturally be divided into three distinct
subsections; one modeling the chemical kinetics, one modeling
the temperature dynamics, and one that interpolates the low-
dimensional state variables to a higher-dimensional temperature
distribution using a physics-based method. We will initially
consider a single TWC monolith, and later return to the case
where two are placed in series.

An illustration of the assumed TWC geometry is shown
in Figs. 1a and 1b. Specifically, we assume that the TWC
is cylindrical with radius R and length L. We make the
modeling choice of dividing the TWC into N different axial
slices, and extend the previously presented model [1] that
assumed equally-sized slices by allowing the associated lengths
L1, L2, . . . , LN (where

∑
Ln = L) to be different for each

slice. We also define the lengths L1,2, L2,3, . . . , LN−1,N as the
axial distances between the midpoints of neighboring slices.
Finally, we assume the TWC has a monolithic structure with
square, axially traversing channels of wall thickness tw and
channel length lc, as illustrated in Fig. 1b.

Importantly, we make the approximation of axially discretiz-
ing the TWC temperature. More specifically, we model the
TWC temperature in the radial center of slice n as Tn. This
implies that the temperature in the radially central channel is
modeled as N segments of constant temperature. Furthermore,

(a) TWC body. Engine exhaust travels from left to right. Figure derived from
[1].

(b) Detail of TWC chan-
nels.

Fig. 1. Illustration of geometry and measurement definitions for a single TWC
monolith.

we model the difference in temperature between the radial
center and radial periphery of each slice as as ∆T . Note
that ∆T is not axially resolved, i.e. we assume that ∆T is
identical for all axial slices, i.e. the periphery temperature of
slice 1 is T1 + ∆T , slice 2 is T2 + ∆T , and so on. Finally,
as is described in more detail in Section II-A, we use an
interpolation scheme to approximate the temperature at M
different radial locations ranging from the radial center to the
periphery. Ultimately, a single TWC monolith is at any given
instance in time characterized by the state variable vector

T =




T1

T2

. . .

TN

∆T



. (1)

In the following subsections we will detail the individual
parts of the model. First, we define how the state variable is
used to generate a dense representation of the TWC temperature
that is axially and radially resolved. This is followed by
the chemical kinetics model that determines the conversion
efficiency of the TWC as well as the heating power generated
by the exothermic reactions. Finally, we introduce the thermal
model that generates the state variable derivative and define
the interface between the two separate TWC monoliths.

A. Radial temperature interpolation

The model presented in this work uses the single-channel
approximation for fundamental TWC material properties, while
resolving the radial temperature profile by simulating several
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Short time

Long time

Fig. 2. Representative solutions to the transient heat equation in a flat disc with
a homogeneous power term and a Dirichlet boundary condition T̂ (R) = 1.
The displayed temperatures and radii have been normalized to the range [0, 1].
Figure reused from [1].

parallel channels corresponding to different radial positions
with different associated temperatures. This allows for capturing
the experimentally observed behavior where the periphery of
the TWC is significantly colder than the radially central sections
(as we will be discussed in Section IV-B).

More specifically, we model the radial temperature profile
T̂ (t, r), at time t and radius r, as a solution to the transient
heat equation in a flat circular disc with radius R and an
initial temperature of zero, i.e. T̂ (0, r) = 0, r = [0, R]. Note
that T̂ has no relation to the state variable T or the axial
slice temperatures Tn despite the similar notation. Furthermore,
we assume a Dirichlet boundary condition, i.e. T̂ (t, R) = 0,
and assume that the plate develops a constant homogeneous
power. This power is intended to be analogous to the power
delivered to a slice in the TWC by convection, axial conduction,
and exothermic heat generation. Solving the time-evolution of
T̂ (t, r) is a textbook problem (e.g. [26, p. 148]) with a solution
that can be expressed as a Fourier-Bessel series. Solving
this numerically over time and radii can also be done easily
(for instance with MATLAB’s pdepe function), generating
the radially-varying time evolution of the plate’s temperature.
Normalized solutions (where T̂ (t, r) is scaled to the range
[0, 1], and R = 1) are shown in Fig. 2.

In this paper we interpolate the radial TWC temperature
profile by using precomputed solutions to the above flat-
plate problem. More specifically, we assume that the radial
temperature profile in slice n is given by A1T̂ (t′, r) + A2

for a given time instant t′. Here, A1 and A2 are selected
so that T̂ (t′, 0) = Tn and T̂ (t′, R) = Tn + ∆T (i.e. T̂
is scaled and offset to match the known radial center and
periphery temperatures), and t′ is selected to give a radial
temperature profile that matches the experimentally measured
temperature profile for a given engine operating point (more
on this in Section IV-A). In summary, we interpolate the

Fig. 3. Fully-resolved TWC, here shown for N = 3 and M = 4. Figure
reused from [1].

radial temperature distribution using the known radially central
and peripheral temperatures and the instantaneous engine
operating point. Letting M denote the number of independent
single-channel models we wish to resolve, this interpolation
scheme allows us to convert the N + 1 state variables to a
representation with M single-channel models of N segments.
This is illustrated in Fig. 3, where cells ([1 . . .M ], 1) are fed
with the incoming gas, cell (m,n+ 1) is fed with the output
of cell (m,n), and the output from cells ([1 . . .M ], N) are
combined to form the total exhaust from the TWC.

As the TWC is assumed to be circular, regions near the
periphery have a larger associated area than regions near
the axial center. This is taken into account in our model by
approximating the massflow in the physical TWC as equal at
all locations, and scaling the proportion of gas passing through
each channel to match. Letting ṁexh be the total exhaust
massflow from the engine and scaling by the relative area of
an annular ring with a major radius of m/M and a minor
radius of (m− 1)/M gives the massflow into a given cell as

ṁm,1 =
π(m2 − (m− 1)2)

πM2
ṁexh

=
(2m− 1)

M2
ṁexh (2a)

ṁm,n+1 = ṁm,n . (2b)

B. Chemical kinetics

The total range of chemical reactions occurring in the TWC
are very complex and involve a wide range of compounds.
However, there are fewer that contribute to the legislated
emissions or significant heat generation. We will therefore limit
our scope to net reactions (i.e. without considering intermediary
steps). This is done both for simplicity, and as a detailed
approach would require the addition of numerous state variables
that track the concentration of the emission species and their
intermediaries in the TWC. [19, 27, 1] give the most significant
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reactions (apart from Eq. (3b)) as

2 CO + O2 −−→ 2 CO2 (3a)
2 H2 + O2 −−→ 2 H2O (3b)

2 NO + 2 CO −−→ N2 + 2 CO2 (3c)
2 NO2 −−→ N2 + 2 O2 (3d)

2 C3H6 + 9 O2 −−→ 6 CO2 + 6 H2O (3e)
C3H8 + 5 O2 −−→ 3 CO2 + 4 H2O . (3f)

We will assume all reactions are balanced, i.e. for a TWC
with 100% conversion efficiency all CO, H2, C3H6, and C3H8
emitted from the engine are fully oxidized and all NO and
NO2 are fully reduced.

In this paper we include the heat generated by the oxidation
of hydrogen gas, i.e. (3b), which is generated in the engine by
the water-gas shift reaction. As H2 is not typically experimen-
tally measured we will instead estimate its mole-fraction from
the measured mole-fractions of CO and CO2, as given by [2,
eq. (4.68)]

yH2
=
yH2OyCO

KyCO2

(4a)

where

yH2O =
m′

2n′
yCO + yCO2

1 + yCO/(KyCO2) + (m′/2n′)(yCO + yCO2)
.

(4b)

Here, y corresponds to the mole-fraction of each corresponding
compound, K is a constant value set to 3.8 [2, eq (4.63)], and
n′ and m′ correspond to the number of carbon and hydrogen
atoms respectively1 in each molecule of the fuel. With the
RON95 E10 fuel studied in this paper we used the supplier-
specified value of m′/2n′ = 0.258.

Typically, nitrogen oxides (NO and NO2) and hydrocarbon
(C3H6 and C3H8) emissions are lumped together and denoted
as NOx and THC respectively [2, pp. 572–597]. We will in
this paper assume a constant ratio of 99:1 for NO to NO2 as
indicated by [2, p. 578], and by [28, 29] a constant ratio of
3:1 for C3H6 to C3H8.

We model the reaction rate ksn,m of an emissions species s
in any given cell n,m using an Arrhenius expression of form

ksn,m = Ase
−Es

a
RTn,m , (5)

where R is the ideal gas constant, Tn,m is the temperature of
cell n,m, Es

a is the activation energy of emission species s,
and As is the apparent pre-exponential factor for species s.
Letting ysn,m indicate the mole fraction of emission species s
in cell n,m, we model the evolution of the mole fraction as

dysn,m
dt

= −ksn,mysn,m . (6)

Note that we do not include an inhibition factor in Eq. (6) in
order to limit the complexity of the model and the model tuning
process. However, including an inhibition term (e.g. as in [18])
is viable and would not interfere with the optimal control

1[2] indicates in (4.68) that n′ and m′ correspond to hydrogen and carbon
respectively. Consulting the previous derivations instead indicates that n′ and
m′ correspond to carbon and hydrogen.

method that will be described in Section V. Furthermore, note
that Eq. (6) does not include an oxygen concentration term. As
the engine is operated stoichiometrically the O2 concentration
is fairly constant, implying that it can be lumped into ksn,m.
This is beneficial as we avoid the need to explicitly measure
or model the O2 concentration.

Though Eq. (4) allows for generating an estimate of the
hydrogen gas concentration for a given CO and CO2 concen-
tration (quantities which are easily measured with conventional
emissions-measurement equipment), as yH2 is not typically
measured it is difficult to tune the associated reaction rate
parameters. By [18, 29] we have chosen to instead model the
reaction rate of Eq. (3b) as identical to that of Eq. (3a), i.e. we
assume EH2

a = ECO
a and AH2 = ACO. Finally, as H2 is not

typically viewed as a problematic emission species we will
in the remainder of this paper only consider Eq. (3b) from
the perspective of determining the heat of reaction, in contrast
to CO, THC, and NOx emissions which both contribute with
their associated heat of reaction and whose tailpipe emissions
are important to track.

As described in more detail in [1], the gas residence
time in each axial slice is short enough for the monolith
temperature to be close-to constant. Using this constant-
temperature approximation we can explicitly solve Eq. (6)
as

ysn,m(tr,n) = ysn,m(0)e−k
s
n,mtr,n (7)

for a residence time in slice n of tr,n. We will approximate
the residence time by assuming a plug-flow reactor model
(i.e. assuming there is no axial dispersion), giving

tr,n =
Vslice,n

ν
(8)

where Vslice,n is the gas volume of slice n and ν is the
volumetric flow-rate of the exhaust gases. Using the geometry
of the TWC as defined in Fig. 1, and using the ideal gas law
we can approximate Eq. (8) as

tr,n =
OFA · LnπR

2

ṁexhRspecificTn,mp
−1
TWC

, (9)

where OFA is the open frontal area of the TWC, defined by

OFA = (lc − tw)2l−2
c . (10)

In this paper we extend [1] to use physically meaningful SI
units for all parameters. Here ṁexh is the exhaust massflow
(kg s−1), P is the absolute pressure (Pa) in the TWC, which
is typically close to the ambient pressure, and Rspecific is the
specific gas constant (J K−1 kg−1) for tailpipe ratio of N2,
CO2, O2, and H2O that was experimentally measured for a
hot TWC. This specific gas constant is used as it is easily
determined and the remaining gases only marginally contribute
to Rspecific.

Ultimately, Eqs. (5) to (10) give a simple physics-based
model of the most significant reactions that occur in the TWC
that takes temperature, gas composition, and residence time
into account.

Note that we have implicitly assumed that the incoming
gas composition is time-invariant, as this significantly reduces
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the number of required state variables. (Explicitly modeling
a time-varying incoming gas concentration can require an
additional 3N state variables, one for each emission species
concentration in each slice.) This implies that the model is
suited for quasi-static combustion engine operation, where the
engine-out emission species and massflow varies slowly with
respect to the residence time in the TWC. Fortunately, as the
residence time in the entire TWC is fairly short (on the order of
0.05 – 0.1 s) [7, p. 64] we hypothesize that moderately-varying
dynamic operation with transitions on the order of 0.5 – 1 s
will show accuracy similar to that of constant engine operation.

By Eq. (7), we can compute the massflow emitted from cell
n,m as

ṁs,out
n,m = ṁs,in

n,me
−ks

n,mtr,n , (11)

and, by the conservation of mass, the converted massflow is
trivially

ṁs,conv
n,m = ṁs,in

n,m − ṁs,out
n,m . (12)

This lets us model the tailpipe emissions of emission species
s as the sum of the outputs from each individual cell in the
last axial segment, i.e.

ṁs
tp =

M∑

m=1

ṁs
m,N . (13)

For convenience, we also define the conversion efficiency of
the entire TWC for a given emission species as

ηs = 1− ṁs
tp

ṁs
exh

, (14)

which we can view as the proportion of emissions converted
in the TWC.

We generate an estimate of the exothermic reaction
power generated by the above reactions by computing the
(temperature-dependent) heat of reaction for each mole of
reactant species as

dHCO = H0,CO2
−H0,CO − 1/2H0,O2

(15a)
dHH2

= H0,H2O −H0,H2
− 1/2H0,O2

(15b)
dHNO = 1/2H0,N2

+H0,CO2
−H0,NO − dHCO (15c)

dHNO2
= 1/2H0,N2

+H0,O2
−H0,NO2

(15d)
dHC3H6

= 3H0,CO2
+ 3H0,H2O −H0,C3H6

− 9/2H0,O2

(15e)
dHC3H8

= 3H0,CO2
+ 4H0,H2O −H0,C3H8

− 5H0,O2
.
(15f)

For brevity, we have not explicitly stated the temperature
dependence of the above terms but include their temperature
dependence in the numerical model. We use the Shomate
equation and reference constants given by the NIST (available
at https://webbook.nist.gov) to compute the numerical values
of the above terms. Using the previous concentration ratios for
the lumped terms gives the effective reaction power

dHNOx
= (99dHNO + dHNO2

)/100 (16a)
dHTHC = (3dHC3H6

+ dHC3H8
)/4 . (16b)

Fig. 4. Heat flux between two materials of known temperature.

By Eqs. (15a), (15b), (16a) and (16b) the total temperature-
dependent heat of reaction generated in each cell is thus

Pn,m = ṁCO,conv
n,m · dHCO + ṁH2,conv

n,m · dHH2

+ ṁNOx,conv
n,m · dHNOx

+ ṁTHC,conv
n,m · dHTHC . (17)

C. Temperature dynamics

We model the temperature dynamics using a heat balance
ODE. Introducing the relative length-weighting matrix

WL =




L1/L 0 . . . 0

0 L2/L . . . 0
...

. . .
...

0 0 . . . LN/L



, (18)

we can define the heat-balance ODEs as

mTWCWLcp
dTctr

dt
= Pctr (19a)

mTWCWLcp
dTper

dt
= Pper , (19b)

where

Pctr = Pax − Prad + Pcon,ctr + Pexo,ctr (20a)
Pper = Pax + Prad + Pcon,per + Pexo,per − Pamb . (20b)

Here, mTWC is the mass of the TWC, cp is its specific heat,
Pctr and Pper are N×1 vectors corresponding to the total power
developed in the radial center and periphery respectively, and
dTctr

dt and dTper

dt are N ×1 vectors representing the temperature
derivative in the radial center and periphery. With these terms,
we can construct the total state vector ODE as

dT

dt
=

[
dTctr

dt

Nmean(WL(
dTper

dt − dTctr

dt ))

]
, (21)

where mean([x1, x2, . . . , xn]) corresponds to the arithmetic
mean of the elements in x, i.e. 1/n

∑n
i=1 xi. Note that we

can interpret Nmean(WL(
dTper

dt − dTctr

dt )) as corresponding to
the average difference between radially central and peripheral
powers, weighted by the relative length of each slice.

The power terms in the right hand side of Eqs. (20a)
and (20b) are separated into axial, radial, convection, exother-
mic, and ambient loss terms respectively, which we will define
below. This extends on our previous work [1], which used
lumped-element parameters without an explicit power-balance
formulation.
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1) Axial conduction: The axial heat conduction power Pax

is modeled by Fourier’s heat law [26]. Using conventional
notation, the heat flux between two materials of constant
temperature separated by a material of thickness l is in general

q = k
T2 − T1

l
, (22)

where q is the heat flux (W/m2), T1 and T2 are two known
temperatures (K), and k is the thermal conductivity of the
material (W m−1 K−1), as illustrated in Fig. 4.

In this paper, we extend our previous model [1] by modeling
the axial flux between successive axial slices as

qax = kax




T2 − T1

L1,2

T3 − T2

L2,3
...

TN − TN−1

LN−1,N




(23)

where kax is the axial thermal conductivity and Ln,n+1 is the
distance between the center of axial slice n and n + 1, as
illustrated in Fig. 1a. Note that for N axial slices we thus have
N − 1 axial fluxes between slices.

We model the power associated with each flux term by
scaling by the surface area of the solid mass of the TWC, i.e.
qax(1 − OFA)R2π. We can then model the total developed
power in each axial slice due to conduction as the difference
in incoming and outgoing power fluxes, i.e.

Pax =

[
0

qax(1−OFA)R2π

]
−

[
qax(1−OFA)R2π

0

]
. (24)

2) Radial conduction: The radial heat conduction is modeled
in a manner similar to the axial heat conduction. The radial
flux is modeled as

qrad = krad
∆T

R/2
, (25)

i.e. a temperature difference of ∆T and separation of R/2.
Approximating the surface area conducting heat as that of a
cylinder with half the radius of the TWC and length equal to
the TWC’s length gives a developed radial conduction power
of

Prad = qradπRL1 , (26)

where 1 is the ones vector of size N × 1.
3) Convection: The convection heat powers Pcon,ctr and

Pcon,per are modeled under the assumption that each cell is
sufficiently long and narrow for the gas temperature to reach
the cell temperature, i.e. the gas travels slowly enough to reach
thermal equilibrium with the TWC walls. This was considered
in our previous model [1], where we found that five axial
slices was a suitable upper limit. As we now also allow for
the slice lengths to vary, it is thus reasonable to require that
Ln ≤ L/5 ∀n.

This gives the convection powers as

Pcon,ctr = ṁexhcp,exh




Texh − T1

T1 − T2

...
TN−1 − TN




(27)

Pcon,per = ṁexhcp,exh




Texh − (T1 + ∆T )

(T1 + ∆T )− (T2 + ∆T )
...

(TN−1 + ∆T )− (TN + ∆T )




(28)

where ṁexh is the exhaust massflow (kg s−1), cp,exh is
the constant-pressure specific heat of the exhaust gases
(J kg−1 K−1), and Texh is the temperature of the exhaust gas
fed into the TWC (K).

4) Exothermic power: The exothermic power terms Pexo,ctr

and Pexo,per are modeled by weighting the densely-resolved
single-channel exothermic power into an effective central and
peripheral powers. Here we use a linear weighting scheme as
a first approximation, given as

Pexotherm,ctr =
M∑

m=1

Pn,m(1− m− 1

M − 1
) (29)

Pexotherm,per =
M∑

m=1

Pn,m
m− 1

M − 1
. (30)

Note that the term m−1
M−1 varies from 0 to 1 as m varies from

1 to M .
5) Ambient losses: The heat losses to the ambient environ-

ment are modeled as conductive, with a total flux of

qamb = kamb




(T1 + ∆T − Tamb)t−1
amb

(T2 + ∆T − Tamb)t−1
amb

...
(TN + ∆T − Tamb)t−1

amb .




(31)

Here, kamb is the effective thermal conductivity of the insu-
lating material and tamb is its associated thickness. Modeling
the exposed surface area as a cylinder with radius and length
equal to the whole TWC (and thus neglecting heat loss through
the circular ends of the cylinder) gives the power loss to the
ambient environment as

Pamb = qamb2πRL . (32)

D. Two-monolith structure

In this paper we extend the model previously presented
in [1] by studying a TWC with series-coupled monoliths.
More specifically, we consider two physically separated TWC’s,
where the gas leaving the first is assumed to be completely
mixed and then fed into the second, as illustrated in Fig. 5. We
model this by assuming two completely independent sets of
TWC parameters (as listed in Table II), and let the exhaust gas
first travel from the engine through the first TWC. As a first
approximation, the gas leaving the first TWC is assumed to be
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Fig. 5. The series-connected TWC is modeled as two independent TWC’s
with the gas exiting the first being mixed and fed into the second.

TABLE III
ENGINE PARAMETERS.

Engine type VEA Gen I, VEP4 MP
Number of cylinders Four, in-line
Displaced volume 1969 cc
Bore/Stroke 82 mm/93.2 mm
Compression ratio 10.8:1
Valve train DOHC, 16 valves
Intake camshaft Variable 0-48°CA advance
Exhaust camshaft Variable 0-30°CA retard
Ignition system DCI, standard J-gap spark plugs
Fuel system/Injection pressure DI/200 bar
Fuel Gasoline RON95 E10
Start of injection 308-340 CAbTDCf
Boosting system Turbocharger
Rated power/Rated torque 187 kW/350 Nm
Stoichiometric air/fuel ratio 14.01:1

perfectly mixed (both with respect to temperature and emission
species concentrations) and then fed through the second TWC,
which then finally exits to the tailpipe.

Ideal mixing implies that the temperature of the gas feeding
the second TWC is given as

Texh,TWC2 =

MTWC1∑

m=1

m2 − (m− 1)2

M2
TWC1

TN,m,TWC1 , (33)

where i.e. the gas leaving the first TWC (TWC1) is combined
and scaled by the its relative flow rate. Trivially, we also have
that the emission species concentration entering TWC2 is

ṁs,in
1,m,TWC2 =

m2 − (m− 1)2

M2
TWC2

ṁs
tp,TWC1 , (34)

i.e. we use the same weighting scheme previously defined in
Eq. (2a).

III. EXPERIMENTAL SETUP

As in our previous study in [1], the experimental setup
consisted of a production Volvo Cars two liter in-line four-
cylinder direct injected spark ignited turbocharged engine rated
for 187 kW and 350 Nm, as listed in Table III. The engine
was connected to an electrical dynamometer that regulated the
engine speed and measured the generated torque. A prototyping
ECU was used to sample and change engine parameters. The
TWC was close-coupled to the turbocharger outlet.

The TWC was instrumented with 28 thermocouples (14 in
each monolith) and three exhaust gas sampling locations. The

Fig. 6. The instrumented TWC, with exposed ceramic (left) and metallic
(right) sections. The exhaust gas flow is shown with the highlighted arrow. The
cover to the left is open here for illustrative purposes and tightly connected to
the main body during operation.

thermocouples, 0.5 mm type-K with a grounded hot junction2,
were inserted into a TWC channel and held by friction. A
close-up of the instrumented TWC is shown in Fig. 6, which
also shows the direction of gas flow through the two monoliths.
A more detailed drawing of the TWC construction and the
thermocouple locations is shown in Fig. 7.

Several thermocouples failed during the experimental cam-
paign. We believe this to be due to the combination of fairly
sharply bending the thermocouples in order to reach the
required monolith channels and a high level of vibration in
an initial TWC mounting fixture. Fortunately, the most critical
sensors (in slices 1, 3, 4, and 6) were fully functional and only
sensors in slices 2 and 5 were damaged. We excluded data
from the damaged sensors in our analysis.

An auxiliary air feed was added to the exhaust manifold,
which allowed for flushing the entire exhaust subsystem with
room-temperature air. By running the engine in fuel-cut mode
(i.e. disabling fuel injection and motoring the engine with
the dynamometer) and injecting auxiliary air into the exhaust
manifold the exhaust aftertreatment system could be cooled to
under 100°C in approximately 5 minutes. The auxiliary airflow
was set to 1000 L min−1 STP, which was the maximum flow-
rate supported by the mass flow controller. The auxiliary airflow
was completely disabled during normal operation (i.e. when
fuel injection was enabled). A photograph of the experimental
setup is shown in Fig. 8, where the engine is visible and
the TWC is highlighted. A schematic representation of the
experimental set-up and gas flows is shown in Fig. 9, which
also highlights the auxiliary air feed, exhaust gas flow, and gas
sampling locations.

The emission sampling points after TWC1 and after TWC2

2Manufacturer: RS PRO, model number: 847-1110
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Fig. 7. Detailed cross-section of the TWC structure and thermocouple locations.
A total of six axial positions were measured (three per monolith) as indicated.
Each axial position was sampled in one of two configurations, A and B, as
indicated. Each specific sensor is referenced as TSXYZ, where X is the slice
number (1-6), Y is the slice type (A/B), and Z is the sensor position (A/B or
A-J).

measured the emissions exiting the radially central channel of
each respective TWC. As both TWCs at times displayed a large
radial temperature differential, this implies that the average
emissions leaving each TWC can be significantly different
from the emissions measured at the radial center.

A. Data Acquisition

Emissions signals from instruments, fuel consumption,
and dynamometer readings were sampled with a National
Instruments DAQ and an associated LabVIEW program. Engine
temperatures, pressures, and the air-fuel ratio was sampled
using acquisition units over a CAN ETAS module. All
thermocouples were of type K. Fuel massflow was measured
with a Coriolis meter. All parameters were sampled at a 10 Hz
rate.

Exhaust gases were sampled from three different locations
(as illustrated in Fig. 9). All sampled gases were extracted with
a heated hose (180 ◦C), followed by a heated conditioning
unit (190 ◦C) with a heated filter and pump. Emissions
concentrations were measured with separate instruments. THC
emissions were measured using a flame ionization detector,
NOx using a chemiluminescence analyzer, and CO using a non-
dispersive infrared detector. The propagation delay and axial
dispersion in hoses and instruments was identified by recording
the measured engine-out emissions during the transition from
fuel-cut operation to normal operation (as will be described
in Section III-B). With this data we compensated for the
propagation delay and applied a first-order high-pass filter to
mitigate some of the axial dispersion. This compensation was
applied to the remaining two sampling locations, allowing for

Fig. 8. The experimental setup, with the TWC housing and heat shield
highlighted. The turbocharger is just visible to the right of the TWC. The
exhaust from the TWC is fed down through the visible ducting.

Emissions Rack

NOx

HC

CO

CO2

O2

M1
Tailpipe

Compressed air

Electrically actuated valve

Exhaust manifold

WG

M
2

Fig. 9. Schematic representation of the experimental setup, with exhaust
gas passing through the turbocharger, through monolith 1 (M1), monolith 2
(M2), and finally exiting to the tailpipe. Exhaust gases were sampled at three
locations; directly after the turbocharger, between the monoliths, and after
monolith 2.
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TABLE IV
TESTED STEADY-STATE ENGINE OPERATING POINTS. THE LISTED SPEEDS,

LOADS, AND SPARK ANGLES (SA) ARE SETPOINT VALUES.

Speed [RPM] BMEP [bar] SA [CAbTDC]

1000 2 [12, 14, 16, 18, 20, 22, 24]
1000 5 [6, 8, 10, 12, 14, 16, 18]
1000 8 [-2, 2, 4]
1500 2 [12, 14, 16, 18, 20, 21, 22, 24]
1500 5 [6, 8, 10, 12, 14, 16, 18]
1500 8 [-2, 2, 4, 6, 8, 10]
2000 2 [16, 18, 20, 22, 24, 26, 28]
2000 5 [8, 10, 12, 14, 16, 18, 20]
2000 8 [2, 4, 6, 8, 10, 12]
2000 10 [-4, 4]
2000 12 [-2, 2, 4]
2000 14 [-2, 2]
2500 2 [14, 16, 18, 20, 22, 24, 26]
2500 5 [12, 14, 16, 18, 20, 22, 24]
2500 8 [8, 10, 12, 14, 16]
2500 13 [4, 6]
3000 8 [8, 10, 12, 14, 16, 18]

studying transient emission concentration changes moderately
well using an instrument rack primarily intended for steady-
state analysis.

As our experimental set-up only allowed for measuring the
emissions at one location at any given time it was crucial for
the engine-out emissions to be consistent between different
runs. Due to this we chose to run the combustion engine
in stationary operation, with the goal of maximizing the
exhaust gas composition repeatability. We hypothesize that
using hardware that measures the emission species at every
sample point simultaneously would allow for non-stationary
engine operating during cold-start tests.

B. Measurement procedure

The emission measurement equipment was calibrated before
measurements using calibration gases and the engine was heated
to its working temperature by operating it at a moderate load
until the coolant reached its working temperature. The engine
was kept warm during the entire test procedure, implying that
the cold-starts studied in this paper refer to the case where
the TWC is initially cold while the engine is at operating
temperature. Furthermore, the TWC was instrumented with
heated lambda sensors, and the engine operated with the
conventional closed-loop lambda control scheme during TWC
cold-start tests.

1) Steady-state analysis: The goal of this test was to identify
the steady-state engine-out emissions and the associated steady-
state radial temperature distribution in the TWC. This was
performed by statically running the engine at a given speed
and BMEP and sweeping the spark angle from the default value
and retarding it to the edge of combustion stability. Table IV
lists the tested speeds, BMEPs, and spark angles tested.

2) TWC cold-start characterization: The goal of this test
was to characterize the cold-start parameters of the two TWC’s.
The combustion engine was kept at a warm and constant

TABLE V
TWC COLD-START LOAD POINTS. SA SET TO ECU DEFAULT VALUE.

Index Speed [rpm] BMEP [bar] SA [CAbTDC]

1 1000 2 24
2 1000 5 18
3 1500 5 18
4 1500 2 24
5 2000 2 28
6 2000 5 20
7 3000 8 18
8 1000 8 4
9 1500 8 10
10 2000 8 12

temperature throughout these tests, i.e. we evaluated the
behavior of a cold TWC and warm engine. We performed
this experiment by
• disabling fuel injection (i.e. motoring the engine with the

dynamometer) and opening the auxiliary air valve until all
the TWC thermocouples reported a temperature of under
100 ◦C,

• first closing the auxiliary air valve, and then immediately
enabling ordinary fuel injection until the TWC reached
near-equilibrium temperature and emissions.

This procedure was repeated for each emission sample point
for each of the load points listed in Table V. These test points
were chosen so that some generated a heating profile that gave
a long time to light-off (primarily load points 1–5), while
others reached light-off more quickly (load points 6–10). The
low-load points gave a longer data stream and reduced the
relative error due to axial dispersion in the emission sampling
lines. The remaining load points (points 6–10) were more
representative of a conventional heating strategy, where light-
off is reached more quickly. Furthermore, the load points were
characterized by BMEP rather than IMEP due to limitations
in the measurement equipment. The engine was kept at a
warm and constant temperature to ensure that the exhaust gas
composition was not influenced by changes in friction from
one load point to the next. It is plausible that regulating for
a given IMEP would give an exhaust gas profile that is less
sensitive to engine temperature.

IV. EXPERIMENTAL RESULTS

A. Steady-state

The steady-state experimental results were used to generate
a table of the mean equilibrium TWC temperatures, engine-out
emissions, exhaust massflow, and engine BSFC for each of the
load points listed in Table IV. Representative data is shown
in Table VI for TWC1. The parameters TT0, TTR/3, TT2R/3,
and TTR correspond to the mean thermocouple temperature
for thermocouples in slice 2 at radius r = 0, r = R/3,
r = 2R/3, r = R respectively (i.e. TTR/3 is the mean of
TS2BB, TS2BG, TS2BJ). Importantly, we also also use this
experimental data to determine the radial interpolation profile
outlined in Section II-A, i.e. for each load point we generate
an associated interpolated radial temperature profile. More
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TABLE VI
TWC1 STEADY-STATE DATA FOR REPRESENTATIVE LOAD POINTS (SPEED, BMEP, AND SPARK ADVANCE). FIGURES SHOWN WITH MEASURED VALUES.

Speed BMEP SA ṁexh BSFC CO NOx THC TT0 TTR/3 TT2R/3 TTR
[RPM] [bar] [CAbTDC] [g/s] [g/kWh] [ppm] [ppm] [ppm] [◦C] [◦C] [◦C] [◦C]

1010 6.9 10 13 257 3580 2500 427 568 567 566 537
3000 7.9 18 41 259 7620 2550 284 839 839 832 813
1000 1.8 12 5 410 6090 391 548 620 615 609 569
1000 2.0 24 5 384 6650 1150 684 498 497 491 442
1000 4.7 6 9 299 5950 1200 459 525 526 519 472
1000 5.0 18 9 280 6550 2070 533 552 552 545 503
1570 4.8 6 16 313 7720 533 345 726 725 719 684
1570 5.1 19 15 279 9070 1350 459 668 667 661 627
2000 5.0 8 21 316 6730 279 325 715 716 710 674
2000 5.2 21 19 274 9150 686 442 696 697 693 664
3000 8.1 8 46 277 7060 1610 195 893 893 884 864
3010 8.2 19 43 258 7560 2590 328 803 805 797 773

specifically, for each load point we assume an interpolation
function of form

finterp = T̂ (t′, r) (35a)
where

t′ = argmin
t

3∑

n=0

|T̂ (t, nR/3)− TTnR/3| , (35b)

i.e. we let finterp be the optimal solution in the one-norm
sense that minimizes the deviation between the measured
temperatures and the solution to the heat equation over all
time t′. The one-norm is consistently used in this paper in an
effort to reduce the effect of outliers. Measured temperatures
and the associated interpolation function is shown Fig. 10 for
two representative load points.

B. Cold-start

Figure 11 shows a representative cold-start temperature
evolution, here for 1000 RPM and 2 bar BMEP. We show this
specific load point as it gives the longest system dynamics. We
can draw several useful conclusions from this test;
• The radial temperature distribution is significant through-

out both TWC’s, with a temperature difference between
the radial center and periphery of up to 100 ◦C near light-
off.

• The first TWC shows no major azimuth temperature
variation.

• The second TWC does show variations along the azimuth,
with the hottest regions nearer the bottom section of the
cross-section (see Fig. 12). We hypothesize that this is
due to increased massflow near the lower sections, as
the sharp bend in the TWC housing causes an uneven
pressure distribution across the inlet to the second TWC.

• TWC2 shows less pronounced axial temperature variations
when compared to TWC1. This could plausibly be due
to the length of TWC2, which is only half of TWC1.

These results are consistent for the other load points, which
display similar results.

Based on these results we have chosen to model TWC1 as
consisting of three axial slices, while TWC2 is modeled with

Measured

Interpolated

(a) 1000 RPM, 8 bar, SA 10 CAbTDC

Measured

Interpolated

(b) 3000 RPM, 8 bar, SA 18 CAbTDC

Fig. 10. Measured normalized radial temperature distribution and least-squares
interpolation for M = 100 at two representative load points.
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TS1AA

TS1AB

TS2BA

TS2BB

TS2BC

TS2BD

TS2BF

TS2BG

TS2BJ

TS3AA

TS3AB

TS4AA

TS4AB

TS5BA

TS5BB

TS5BD

TS5BF

TS5BG

TS5BI

TS6AA

TS6AB

Fig. 11. Representative cold-start temperature evolution. Here shown for load point 1 in Table V (1000 RPM, 2 bar BMEP). Thermocouple locations listed in
Fig. 7. Damaged thermocouples (TS2BE, TS2BH, TS2BI, TS5BC, TS5BE, TS5BH, TS5BJ) excluded from plots.
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Fig. 12. Projection of TS5Bx thermocouples onto the plane. Approximate gas
flow shown by gray arrows. The thermocouple closest to the bottom (TS5BF)
reaches the highest temperature in Fig. 3, while the thermocouple closest to
the top (TS5BD) reaches the lowest.

a single axial slice. This gives a total of 3+1 state variables
for the TWC1 and 1+1 state variables for TWC2, i.e. a total
of six state variables. Though additional slices would have
the benefit of improving accuracy, the dynamic-programming
based optimal control method we use in Section V is suited for
no more than 4–6 state variables. We have chosen to allocate
more slices to the first TWC as it displays the most significant
axial temperature variations.

C. Model tuning

The primary goal of the experimental work is to generate
measurement data that is used to tune the TWC model. The
tuning process was divided into two distinct sections where we
first tuned the reaction rate parameters, and afterwards tuned
the temperature dynamics parameters. The problem was divided
into two sections to reduce the number of degrees of freedom
in each optimization step. Furthermore, as the temperature
dynamics depends on the exothermic power, it is prudent to
first determine the reaction rate parameters.

Of the 10 cold-start simulations listed in Table V, we
designated operating points itrain = [1, 3, 5, 7, 9] as a training
set, and ivalid = [2, 4, 6, 8, 10] as a validation set. All model
tuning was done solely using itrain, allowing us to later study
the model’s accuracy by studying results of applying the model
to the validation set’s operating points.

D. Reaction rate parameters

Here, we consider tuning the per-species reaction-rate
parameters As and Es

a, giving a total of six parameters to
tune per TWC. With the experimental setup as described in
Section III, the gas composition entering and leaving TWC1’s
radially central channel is well-measured. However, the gas
composition entering TWC2 is not as well characterized, as
the gas composition leaving TWC1 is inhomogeneous (due
to the large radial temperature gradient) and partially mixed
before entering TWC2. Due to this, we have chosen to first
tune the reaction rate parameters for TWC1, and afterwards
make use of the identical precious metal composition of TWC1
and TWC2 (which differ only in their washcoat thickness
and loading). This allows us to estimate TWC1’s reaction
rate parameters using experimental data and then compute the
equivalent parameters for TWC2.

With respect to TWC1, for a given set of reaction-rate
parameters we used the (measured) temperature evolution of
each axial slice to simulate the outgoing emission concentration.
More specifically, we let the measured state evolution for each
operating point be

Tmeas,TWC1 = [T1, T2, T3,∆T ] (36a)

where

T1 = TS1AA (36b)
T2 = TS2BA (36c)
T3 = TS3AA (36d)

∆T = mean([TS1AB− TS1AA,TS2BD− TS2BA,

TS3AB− TS3AA]) , (36e)

i.e. the measured radially central temperatures and the mean
difference between the radial center and periphery respectively.
This gives a state vector time-evolution T (k)meas,TWC1, where
k = 0, 1, 2, . . . indicates the time-sample of the state vector,
sampled at a rate of 10 Hz. In this and later stages we simulated
100 radial channels. We chose to simulate a relatively large
number of channels as the kinetics submodel was implemented
in a semi-parallel manner that did not require significantly
longer to evaluate than for instance 10 channels3.

We started the tuning process by first determining an initial
guess, where we selected Es

a as determined by [18] and
As was selected to give a light-off temperature near the
experimentally measured behavior. We then used MATLAB’s
patternsearch utility (a zero’th order gradient-descent
optimization method) to minimize the 1-norm penalty

J∗ = min
Es

a,TWC1,A
s
TWC1

∑

i∈itrain

K∑

k=1

|ṁ(k)s,out
3,1,TWC1,i

− ṁ(k)smeas,TWC1out,i| (37)

3This was in part due to the nature of our model implementation in
MATLAB. As the chemical kinetics submodel consists of only basic arithmetic
operations we could implement the model in a manner that effectively makes
use of MATLAB’s numerically efficient matrix operations. This gave a model
implementation whose execution time was dominated by the the number of
function calls, i.e. the sample rate and simulation time, rather than the number
of radial channels.
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TABLE VII
TUNED REACTION RATE PARAMETERS.

Parameter Value Unit

ECO
a,TWC1,2 84.0 · 103 J mol−1

ENOx
a,TWC1,2 82.1 · 103 J mol−1

ETHC
a,TWC1,2 51.0 · 103 J mol−1

ACO
TWC1 59.5 · 109 -

ANOx
TWC1 27.6 · 106 -

ATHC
TWC1 11.2 · 109 -

ACO
TWC2 23.8 · 109 -

ANOx
TWC2 16.1 · 106 -

ATHC
TWC2 5.63 · 109 -

using the MADSPositiveBasis2N polling method and with
the UseCompletePoll flag set. Here, ṁ(k)s,out

3,1,TWC1,i is the
simulated concentration of emission species s emitted by the
third (i.e. last) axial slice at the radial center at sample k
and operating point i, ṁ(k)smeas,TWC1out,i is the measured
emissions at the same time instance and operating point, and i
iterates over the operating points in the training dataset.

With the kinetics parameters for TWC1 determined, we
estimate the parameters for TWC2 by assuming an identical
activation energy and with the pre-exponential term scaled
by the amount of catalytically active material. This gives the
estimates

Es
a,TWC2 = Es

a,TWC1 (38a)

As
TWC2 =

twash,TWC2 · wTWC2

twash,TWC1 · wTWC1
As

TWC1 , (38b)

where twash and w are the washcoat thickness and loading
respectively for each TWC.

Table VII lists the identified parameters for both TWCs,
which are on the same order of magnitude as literature suggests
[18, 30]. Note that the patternsearch method is similar to
gradient-descent methods, and as the problem is non-convex is
therefore not guaranteed to return a globally optimal solution.

Time-resolved plots of the measured and simulated emissions
profiles and the simulated conversion efficiencies are shown
in Fig. 13 for the lowest-load operating point. The simulated
outgoing emissions are shown for the simulated radially central
channel, which corresponds to the location of the measured
emissions. The most significant deviations are seen at t ∈ [0, 30]
for NOx and at t ∈ [0, 50] for THC. We hypothesize that the
former is due to adsorption and the latter due to the poor
transient response of the measurement equipment.

E. Temperature dynamics parameters

With the reaction rate parameters determined we consider the
temperature dynamics parameters kax, kra, kamb, cp, and Ln

separately for each TWC. Note that as TWC2 is modeled with
only a single axial slice, there is no modeled axial conduction
and kax and Ln therefore have no meaning. We tuned each
TWC to the measured data by assigning the initial state to
the measured temperature at the start of the cold-start test and

Fig. 13. Emissions profiles for 1000 rpm, 2 bar BMEP load point. See
Fig. 11 for the associated measured temperature evolution and Fig. 14a for
the associated state evolution.
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TABLE VIII
TUNED AND FIXED TEMPERATURE DYNAMICS PARAMETERS.

Tuned Parameter Value Unit

kax,TWC1 319 W m−1 K−1

kra,TWC1 46.6 W m−1 K−1

kamb,TWC1 0.421 W m−1 K−1

cp,TWC1 2318 J K−1 kg−1

L1,TWC1 32.1 · 10−3 m

L2,TWC1 48.2 · 10−3 m

L3,TWC1 41.8 · 10−3 m

kra,TWC2 4.53 W m−1 K−1

kamb,TWC2 0.602 W m−1 K−1

cp,TWC2 2360 J K−1 kg−1

Fixed Parameter Value Unit

OFATWC1 0.935 -
OFATWC2 0.846 -
mTWC1 0.418 kg

mTWC2 0.248 kg

cp,exh 1050 J K−1 kg−1

tamb,TWC1 10 · 10−3 m

tamb,TWC2 10 · 10−3 m

Tamb 25 ◦C

then applying a 1-norm penalty to the deviation between the
simulated and measured states, i.e.

J∗ = min
kax,kra,kamb,cp,Ln

∑

i∈itrain

K∑

k=1

|T (k)meas,i − T (k)sim,i|

(39)

where Tsim is the simulated state evolution generated by solving
Eq. (21) using an explicit fourth-order Runge-Kutta solver with
a fixed time-step of 0.1 s, T (0)sim is initialized as T (0)sim =
T (0)meas, Tmeas is defined by Eq. (36) for TWC1, and for
TWC2 defined as

Tmeas = [T1,∆T ] (40)

where

T1 = mean([TS4AA,TS5BA,TS6AA]) (41)
∆T = mean([TS4AB− TS4AA,

TS5BD− TS5BA,TS6AB− TS6AA]) . (42)

As in the reaction rate parameters, we used the
patternsearch method to determine the optimal
parameters. We supplied the initial guess for kax, kra, kamb,
and cp by setting them to the values specified by the TWC
manufacturer, and Ln to geometrically ideal values, where we
assume the thermocouples are placed in the center of each slice.
Referencing Fig. 7 gives the initial guess L1 = 20 · 10−3 m,
L2 = 102 · 10−3 m, and L3 = 20 · 10−3 m. Table VIII lists
the parameter values found after tuning, as well as the known
(i.e. assigned) fixed model parameters.

An illustration of a representative temperature evolution is
shown in Fig. 14a and Fig. 14b. Though the first slice of TWC1
and TWC2 capture the measured temperature evolution well,
the second and third slices of TWC1 do not capture the char-
acteristic delay shown in the measured data. We hypothesize

(a) Measured and simulated temperature evolution for TWC1 with 3 axial
slices.

(b) Measured and simulated temperature evolution for TWC2.

Fig. 14. Temperature evolution for 1000 rpm, 2 bar BMEP operating point.

that this is independent of the chosen tuning parameters and
an inherent limitation of our modeling assumption of a small
number of axial slices. More specifically, as a general discrete-
time delay of n samples (trivially) requires storing the values
of the n samples, our shown model can only represent a true
delay of three samples, i.e. an insignificant 0.3 seconds, before
the last axial segment starts displaying a positive temperature
derivative. This can be alleviated somewhat either by increasing
the number of axial segments or by considering cold-starts
with a less prominent delay, as is shown in Fig. 15.

F. Cumulative emissions accuracy

With the model tuned, we will now turn to quantitatively
evaluating the TWC model’s accuracy. Here, we consider
the relative difference between the cumulative measured and
simulated emissions (i.e. cold-start “bag emissions”) for each
emission species and TWC. Using the notation where ∆s

i
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(a) Measured and simulated temperature evolution at the 1000 rpm, 2 bar BMEP
operating point, TWC1 model modified to use 6 axial slices. Other model
parameters unchanged.

(b) Measured and simulated temperature evolution for TWC1 at the 1500 rpm,
8 bar BMEP load point.

Fig. 15. Increasing the number of resolved slices (Fig. 15a) and/or heating
the TWC more quickly (Fig. 15b) reduces the modeling error caused by the
limited ability to represent a delay.

corresponds to the i’th TWC for emission species s gives

∆s
1 =

∑K
k=0 ṁ(k)s,out

3,1,TWC1∑K
k=0 ṁ(k)smeas,TWC1out

− 1 (43a)

∆s
2 =

∑K
k=0 ṁ(k)s,out

1,1,TWC2∑K
k=0 ṁ(k)smeas,TWC2out

− 1 . (43b)

An illustration of the simulated and measured cold-start
emissions is shown in Fig. 16 for the 1000 rpm, 2 bar BMEP
load point, along with the associated cumulative simulation
error. The figure indicates that one significant contribution to
the cumulative error is due to inaccuracies in the measurement
equipment (which is primarily designed for analyzing stationary
operation). This is most clearly seen during the first 20
seconds of operation for THC, where the measured emissions
are significantly larger than than the engine-out emissions.

TABLE IX
RELATIVE MODEL ACCURACY FOR TRAINING (UPPER HALF) AND

VALIDATION (LOWER HALF) LOAD POINTS.

Speed BMEP ∆CO
2 ∆NOx

2 ∆THC
2

[RPM] [bar] [-] [-] [-]

997 1.99 -11.6% -11.6% -39.6%
1500 4.84 +106.5% -20.8% +66.0%
2000 2.07 +44.8% +34.2% -7.8%
3000 8.17 +39.5% +38.9% -18.2%
1500 8.09 +72.7% +56.4% -10.7%

998 4.93 +2.0% -19.5% -23.4%
1500 2.07 +38.6% +41.7% -10.8%
2010 4.93 +73.3% +75.8% +13.1%
999 7.96 +81.2% +65.8% -13.8%
2000 8.08 +63.0% +48.6% -26.7%

It is possible that the NOx emissions are also incorrectly
measured, as the measured emissions are only half of the engine-
out emissions after 3-4 seconds (while light-off occurs after
approximately 60 seconds at this load point). However, it is also
plausible that the low NOx emissions are correctly measured
and this anomaly is instead due to unmodeled adsorption in
the TWC.

A table listing the relative cumulative tailpipe error is shown
in Table IX for each load point. The validation dataset (the
lower half) displays an accuracy comparable to the training
dataset (the upper half), indicating that the model is not
overfitted. Furthermore, though there is a significant degree
of variability between the measured and predicted cumulative
emissions this is only somewhat worse than a significantly more
complex model [18] which displays a typical cumulative error
on the order of ±20% to ±50%. Furthermore, we hypothesize
that the most significant outliers (e.g. the 1500 rpm, 2 bar load
point) are to some extent due to process variability and/or
measurement error. Consulting the time evolution for this load
point (Fig. 17, here shown for CO emissions) indicates that
this can be a factor, as the majority of the modeling error arises
after 10 seconds when the engine-out emissions significantly
increase but a similar increase is not seen in the measured
emissions.

V. OPTIMAL CONTROL

We will here illustrate optimal cold-start control as one
application of the presented model. Specifically, we generate an
optimal state-feedback controller suitable for on-line operation
that balances the combustion engine’s fuel efficiency and
tailpipe emissions. We model the combustion engine exhaust
using a static mean-value engine model, and allow the controller
to freely choose the engine’s speed, BMEP, and spark angle
[31]. We will then use the controller to generate simulated cold-
start temperature and emission trajectories and compare the
results for different weightings of fuel efficiency and tailpipe
emissions.
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Meas Eng. out

Sim   TWC1 1.40 [g]

Meas TWC1 1.63 [g]

Sim   TWC2 1.53 [g]

Meas TWC2 1.73 [g]

Meas Eng. out

Sim   TWC1 0.20 [g]

Meas TWC1 0.25 [g]

Sim   TWC2 0.22 [g]

Meas TWC2 0.24 [g]

Meas Eng. out

Sim   TWC1 0.22 [g]

Meas TWC1 0.29 [g]

Sim   TWC2 0.24 [g]

Meas TWC2 0.40 [g]

Fig. 16. Measured and simulated emissions for each emission species at a
1000 rpm, 2 bar BMEP load point.

Meas Eng. out

Sim   TWC1 2.54 [g]

Meas TWC1 1.08 [g]

Sim   TWC2 2.64 [g]

Meas TWC2 1.28 [g]

Fig. 17. Measured and simulated emissions for CO emissions at the 1500 rpm,
5 bar BMEP load point. Note the large increase in engine emissions after
10 seconds, giving rise to an increase in simulated emissions without an
associated increase in measured emissions.

A. Problem formulation

We introduce the optimal control problem as

J∗ = min
u

lim
K→∞

K∑

k=0

BSFC(k) + ΛT ·



ṁCO

tp (k)

ṁNOx
tp (k)

ṁTHC
tp (k)




(44a)

subject to

x(k + 1) = fd(x(k), u(k)) (44b)
g(x(k), u(k)) ≤ 0 . (44c)

Here, x is a state vector corresponding to both TWC’s
(i.e. [TTWC1;TTWC2]), u is a discrete control variable cor-
responding to the requested operating point of the combustion
engine (i.e. an integer value that indexes the operating points
in Table IV), BSFC(k) is the mean BSFC associated with
operating point u(k), Λ is a 3 × 1 tuning parameter that
balances the relative weight given to fuel-efficient operation
and minimizing emissions (where smaller Λ prioritizes the
BSFC and larger Λ prioritizes the level of emissions), fd is
the system dynamics given by solving Eq. (21) for a given
sample time for each TWC, and g is a constraint function that
bounds u to the integer values that index the tested operating
points and bounds x to safe TWC temperatures.

The cost function Eq. (44a) is specifically formulated to
be of form a + ΛT · b, as this is equivalent to minimizing
a while limiting b ≤ B, i.e. minimizing the average BSFC
while limiting the vector of cumulative emissions to a given
level. The same structure is also commonly seen in Equivalent
Consumption Minimization Strategy (ECMS) controllers [32,
33] for the equivalent purpose balancing fuel consumption and
electric energy consumption. We here notationally use Λ rather
than λ to avoid confusion with conventional notation where λ
is used to denote the air-fuel ratio.
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Note that Eq. (44a) is formulated as an undiscounted infinite-
horizon problem, as this penalizes the BSFC and emissions
without requiring time to heat the TWC to be explicitly specific
or known beforehand. Furthermore, by permitting the engine to
operate at any of the points in Table IV we also allow the engine
power to freely vary. The hybrid vehicle cold-start problem is
one example of an application that is well-suited to this cost
formulation, as the electric machine can typically either supply
or consume the difference between the combustion engine
power and traction power.

We have solved Eq. (44) using a method developed by the
authors [34] based on approximate dynamic programming and
similar to policy iteration methods. The method, Undiscounted
Control Policy generation by Approximate Dynamic Program-
ming (UCPADP) extends on existing approximate dynamic
programming policy iteration methods by allowing for undis-
counted problem formulations, i.e. infinite-horizon problems
where the cost function does not decay with increasing k.
In principle, we can solve Eq. (44) without using the above
method by setting K to a sufficiently large value and using
a conventional ADP method [24, 35] to generate a solution.
However, it is difficult to manually determine a sufficiently
but not excessively large value K. Conveniently, the UCPADP
method also returns a sufficient horizon, which for the specific
TWC and cost formulation studied here was found to be 145
seconds.

One major benefit with UCPADP and other policy iteration
methods is that the optimal control signal can be represented
as a control law, i.e. the optimal control signal can be simply
tabulated by the state values. This implies that a controller can
be implemented by simply looking up the optimal control for
the current state. However, this does require knowledge of the
current system state, either by direct measurement or by a state
observer that estimates the system state. Furthermore, note that
the selection of the engine’s operating point is not formulated
as a dynamic problem, which in principle implies that there is
no cost associated with rapidly changing the engine’s operating
point. Though our solutions did not exhibit very impractical
operating point changes, we have in our presented results
applied a 5-second rolling average filter to the engine’s target
speed, BMEP, and spark angle. Though this makes for solutions
that are not optimal with respect to Eq. (44), we believe that
this results in more suitable engine behavior with somewhat
damped transients.

Solving Eq. (44) using an ADP methods first requires the
state and control variables to be discretized. As u is inherently
discrete (indexing the operating points in Table IV) we only
need to discretize the states x. A denser discretization will give
a solution closer to the true optimal solution, but at cost of
increased memory and computational demand. We have chosen
to discretize the states in TWC1 as

T1 = [0, 25, 50, 75, . . . , 900] (45a)
T2 = [0, 100, 200, . . . , 900] (45b)
T3 = [0, 100, 200, . . . , 900] (45c)

∆T = [−200, 100] (45d)

and for TWC2 as

T1 = [0, 100, 200, . . . , 900] (45e)
∆T = [−200, 100] , (45f)

i.e. we resolve the first axial slice in TWC1 with fairly high
detail, while the remaining slices and ∆T is more coarsely
resolved.

B. Optimal results

We have solved Eq. (44) for a range of different normalized
weights Λn, defined element-wise as

Λs
n =

Λs

min BSFC/min ṁs
exh

(46)

with results listed in Table X. We use the normalized Λn

for ease of reference as Λn = [1, 1, 1] in some sense equally
weighs the fuel consumption and engine-out emissions. As
tailpipe emissions approach zero when the TWC heats up we
can thus view Λn = 1 as a lower bound of relevant values to
consider.

We have simulated the performance of the optimal controller
and list the cumulative emissions, fuel efficiency, and consumed
fuel in Table X for several different Λn and two initial
conditions. As expected, with increasing Λn the sum of
penalized emissions decrease, while the mean BSFC increases.
This data also indicates that the potential for reducing NOx

emissions is significantly larger than CO and THC emissions,
as shown in the last 3 rows where NOx emissions are reduced
by 94% compared to the unpenalized case, while CO and
THC emissions are reduced by 35% and 41% respectively.
Furthermore, there seems to be some degree of conflict with
respect to the individual emissions, as penalizing one species
tends to increase the production of others. This indicates that
the solutions shown in Table X are Pareto optimal, i.e. a
given emission species mass cannot be reduced without either
increasing another species’ or the BSFC.

An illustration of the controller’s time-evolution is shown
in Fig. 18 for Λn = [102, 102, 102]. The cold-start trajectory
can be divided into three sections;
t < 5: Initial heating phase. The engine-out species massflow

is kept low (reducing tailpipe emissions) and the BSFC is not
prioritized. At the end of this phase the first axial slice is hot
enough to convert emissions at low mass-flows.

5 < t < 25: Intermediary phase. With increasing conversion
efficiency the engine-out emissions are gradually allowed to
increase, allowing for the BSFC to be increasingly prioritized.
At the end of this phase the first two axial slices are hot
enough to convert emissions at the massflow associated with
the minimum-BSFC operating point.
t > 25: Sufficiently-heated phase. Here the TWC is

sufficiently hot for operation at the minimum-BSFC operating
point, which the engine is statically operated at while the TWC
converts virtually all emissions. Note that the entire TWC is
well above light-off after 40 s, i.e. a relatively short heating
interval [3].

These sections can largely be seen for other values of Λn,
with shorter times allocated to the initial- and intermediary
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TABLE X
PERFORMANCE OF OPTIMAL CONTROLLER FOR VARYING Λn DURING A

COLD-START (25 ◦C, NO RADIAL DISTRIBUTION) AND HALF-WARM START
(200 ◦C SOME RADIAL DISTRIBUTION). GREEN-COLORED CELLS INDICATE
CASES WHERE Λn PENALIZES ONLY ONE EMISSION SPECIES, WHILE OTHER

ARE IGNORED (RED), AND CAN BE COMPARED WITH THE
EQUALLY-PENALIZED CASE (BLUE).

(a) T1−3,TWC1 = T1,TWC2 = 25 ◦C, ∆T,TWC1 = ∆T,TWC2 = 0 ◦C.

ΛCO
n ΛTHC

n ΛNOx
n CO THC NOx BSFC mfuel

[-] [-] [-] [mg] [mg] [mg] [g/kWh] [g]

0 0 0 521 19.5 262 250 165
1 1 1 521 19.5 262 250 165

10 10 10 423 18.7 153 252 155
0 0 10 423 18.6 152 252 155
0 10 0 521 19.5 262 250 165

10 0 0 388 21.2 239 250 162
102 102 102 526 35.0 41 262 130

0 0 102 687 42.6 38 262 126
0 102 0 494 19.7 242 250 162

102 0 0 340 24.6 229 251 157
103 103 103 529 32.7 29 271 117

0 0 103 530 32.9 29 270 116
0 103 0 432 11.5 151 254 158

103 0 0 338 33.4 245 253 143
104 104 104 526 37.0 26 298 90

0 0 104 668 85.1 15 356 60
0 104 0 433 11.4 145 255 155

104 0 0 340 33.0 232 255 140

(b) T1−3,TWC1 = T1,TWC2 = 200 ◦C, ∆T,TWC1 = ∆T,TWC2 =
−50 ◦C.

ΛCO
n ΛTHC

n ΛNOx
n CO THC NOx BSFC mfuel

[-] [-] [-] [mg] [mg] [mg] [g/kWh] [g]

0 0 0 265 11.9 153 250 165
1 1 1 265 11.9 153 250 165

10 10 10 188 14.2 100 251 155
0 0 10 187 14.1 99 251 155
0 10 0 266 11.9 153 250 165

10 0 0 207 14.3 129 250 162
102 102 102 219 19.5 20 258 138

0 0 102 271 22.8 21 257 137
0 102 0 219 12.1 126 250 161

102 0 0 167 23.0 120 251 149
103 103 103 212 17.4 16 267 125

0 0 103 235 19.4 13 264 126
0 103 0 201 9.0 80 253 157

103 0 0 131 32.0 122 252 132
104 104 104 203 26.9 12 303 86

0 0 104 208 35.3 6 322 75
0 104 0 212 9.9 76 255 152

104 0 0 168 36.0 81 265 117

heating phases as Λn decreases and longer times with larger
Λn.

Though an open-loop control scheme could be easily
implemented, i.e. by “playing back” the speed, BMEP, and
spark angle trajectory shown in Fig. 18 without any temperature
feedback, this type of controller is potentially sensitive to
system variations. This includes both the initial temperature
of the TWC (where a hotter initial condition will reach
light-off more quickly) as well as variations in the exhaust
gas temperature due to the fuel’s composition, combustion

Fig. 18. Simulated trajectories for Λn = [102, 102, 102]. SA indicates
the spark angle, MF the engine-out emissions (solid) and tailpipe emissions
(dashed), and η the net conversion efficiency.

variability, and so on. We found that the optimal control
trajectory for half-warm starts is for some values of Λn nearly
identical to a time-shifted version of Fig. 18, as exemplified
in Fig. 19, while others displayed significant differences. This
indicates the potential for implementing a quasi-optimal open-
loop heating strategy for some Λn.

C. Comparison to suboptimal control

We have compared the optimal controller with a traditional
suboptimal heating strategy. The suboptimal controller was
defined such that combustion engine is run at a constant
operating point for t′ seconds, and then switches to the
minimum-BSFC operating point. The initial operating point
was chosen to be the same as the point chosen by the optimal
controller at t = 0, and t′ selected to give the same average
BSFC as the case for Λn = [102, 102, 102]. A comparison of
the optimal and suboptimal controllers is listed in Table XI,
and the time-evolution is shown in Fig. 20. The CO and THC
emissions are virtually identical, but the NOx emissions are
reduced by 35% in the optimal controller. We can see the
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Fig. 19. Simulated trajectories for Λn = [102, 102, 102] with an initial
condition T1−3,TWC1 = T1,TWC2 = 200 ◦C, ∆T,TWC1 = ∆T,TWC2 =
−50 ◦C.

source of this in Fig. 20, where there is significant NOx slip at
t ∈ [9, 13] when the engine transitions from the heating phase
to the minimum-BSFC operation phase. Though the heating
phase could be extended, this would be at cost of reduced
average BSFC.

We can also compare the optimal and suboptimal controllers
for the half-warm start case. It we consider the same optimal
and suboptimal controllers, Table X indicates that the optimal
controller attains a mean BSFC of 258 g/kWh, in comparison
to the suboptimal controller’s 262 g/kWh. This difference
corresponds to a 33% reduction relative to the minimum BSFC
of 250 g/kWh, indicating the potential for fuel savings by
using a closed-loop cold-start strategy.

D. Memory footprint

Though manageable in a PC, the memory demand associated
with the discretization in Eq. (45) (with 148,000 permutations)
can be problematic in an ECU that has a wide range of other
tasks to perform. However, we can apply a simple space
reduction scheme to significantly reduce the used memory.

Fig. 20. Simulated trajectory for the suboptimal controller. Note the significant
NOx slip at t = 10 s, which is not present in Fig. 18.

TABLE XI
COMPARISON OF THE OPTIMAL (HERE SHOWN FOR Λn = [102102102])
AND SUB-OPTIMAL CONTROLLERS AND THE RELATIVE REDUCTION IN

EMISSIONS FOR THE OPTIMAL CONTROLLER.

Cont CO THC NOx BSFC mfuel

[-] [mg] [mg] [mg] [g/kWh] [g]
Optimal 526 35.0 41.0 262 130

Suboptimal 525 34.9 62.9 262 143
Difference -0.2% -0.3% 34.8% - -

Rather than store the full discretization, we can reduce the
number of stored elements by letting successive axial slices only
be resolved for temperatures equal to or below the preceding
slices (rounded up to the nearest discretized value), i.e. storing
a table of form similar to that in Table XII.

Furthermore, we can reduce the resolution of T1 for tem-
peratures significantly below and above light-off by resolving
T1 with 100 ◦C increments for temperatures below 100 ◦C and
above 400 ◦C, i.e.

T1 = [0, 100, 125, 150, . . . , 350, 375, 400, 500, . . . , 900] .
(47)
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TABLE XII
REPRESENTATIVE TABLE OF STORED STATES. HERE SORTED FROM FIRST TO

LAST COLUMN IN ASCENDING ORDER.

TWC1 TWC2
T1 T2 T3 ∆T T1 ∆T

0 0 0 -200 0 -200
0 0 0 -200 0 100
0 0 0 -200 100 -200
...

...
...

...
...

...
250 300 300 100 200 -200
250 300 300 100 200 100
250 300 300 100 300 -200
250 300 300 100 300 100
275 0 0 -200 0 -200
275 0 0 -200 0 100
275 0 0 -200 100 -200

...
...

...
...

...
...

900 900 900 100 900 100

Reducing the range of considered values in this manner reduces
the number of stored states to 9500 permutations. Each state
permutation is associated with an optimal engine speed, BMEP,
and spark angle. Assuming 4 bits of information are allocated
for each parameter (allowing resolving the speed, BMEP and
spark angle to 16 different and independent values) gives a
total storage requirement of 12 bits per state permutation, for
a total non-volatile memory requirement of 12/8 · 9500 ≈
13.9 KiB, which is feasible with existing ECU hardware. More
sophisticated compression schemes have the potential to further
reduce the required memory, for instance by using decision
trees to avoid the need to exhaustively storing every state
permutation in regions where the optimal control is constant.

VI. CONCLUSIONS

In this paper we have extended a physics-based TWC
model previously presented by the authors [1] suited for on-
line optimal control. The previously presented model resolves
both axial and radial temperature variations while limiting the
number of state variables, allowing for use with optimal control
methods that construct an optimal control policy (e.g. nonlinear
state-feedback and explicit MPC). In this paper we extended
the model to support varying axial discretization lengths, use
tuning parameters expressed in well-known SI units, model
heat generation by the oxidation of hydrogen, consider a TWC
consisting of two separate monoliths of different construction,
and use a more rigorous evaluation method with separate
tuning and validation datasets. Finally, we have used the model
to generate a near-optimal controller [34] that can easily be
implemented in existing ECU hardware, requiring no more
than 13.9 KiB (14250 bytes) of nonvolatile memory and at
virtually no computational cost (as the optimal control is given
by a simple linear interpolation operation and a linear rolling
average filter). The specific construction of the cost function
allows for systematically trading off fuel consumption and
each individual emission species, giving the ability to tune
the cold-start controller to minimize fuel consumption while

individually limiting the specific level CO, THC, and NOx

emissions.
Our experimental study, though limited by the measurement

equipment, shows the potential for use both for off-line simula-
tion as well as for generating a near-optimal cold-start controller.
Though we experimentally studied the case of a warm engine
and a cold TWC for improved experimental repeatability, we
hypothesize that the controller can be extended to the cold
engine case by a suitable update to the combustion engine
exhaust model. Though the measured predictive accuracy
is fairly low (with cumulative cold-start emissions typically
estimated at -20% to +80% of the measured emissions), it is
likely that the experimental setup significantly contributes to
this error. The second monolith is situated after a sharp bend,
giving a temperature distribution that is not particularly well-
captured with an axi-radial model. However, as the majority
of the emissions can be converted in the first monolith for low
to moderate load-points this inaccuracy might not be of great
importance. It may therefore be a prudent design decision
to solely model and control the first monolith dynamics in
an effort to further reduce the memory requirements of the
controller.

We have simulated the performance of the Pareto-optimal
cold-start controller for several different relative weightings
of fuel efficiency (BSFC) and cumulative emissions for each
emissions species, i.e. different points on the Pareto front.
For one representative weighting the optimal controller gives
NOx emissions that are 35% lower than a traditional cold-
start controller with otherwise identical BSFC and CO and
THC emissions. This indicates that an optimal controller that is
generated using the presented model has the potential to reduce
the cold-start emissions, as well as allowing for systematically
adjusting the trade-off between each emission species and fuel
consumption. Furthermore, for some regions on the Pareto-front
the optimal controllers display similar speed, load, and spark
angle trajectories for varying initial TWC temperatures (up to
a shift in time). It is therefore plausible that a close-to optimal
controller could be implemented with only a single temperature
sensor by “playing back” a section of the temporally-resolved
optimal control trajectory based on the measured temperature.

Relevant future work includes performing an experimental
study using measurement equipment more suited to transient
conditions and that is capable of measuring emissions at two
locations simultaneously. Furthermore, it would be prudent
to experimentally validate the performance of the presented
controller, which in turn requires a method for measuring
or estimating the temperatures in the TWC. Additionally,
we hypothesize that characterizing the engine emissions for
different average air-fuel ratios near stoichiometry could allow
for the optimal controller to gain an additional degree of
freedom in balancing the ratio of CO and THC emissions
to the NOx emissions during a cold-start.
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