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Abstract

In this paper, the performance of a direct current (DC) distribution system is modelled

for a single-family residential building and compared with a conventional alternating

current (AC) system to quantify the potential energy savings and gains in photovoltaic

(PV) utilisation. The modelling is made for two different climates to quantify the

impact of the geographical location. Results show that the system losses are reduced

by 19–46% and the PV utilisation increased by 3.9–7.4% when using a DC distribution

system compared to an AC equivalent, resulting in system efficiency gains in the

range of 1.3–8.8%. Furthermore, it is shown that the geographical location has some

effect on the system's performance and PV utilisation, but most importantly, the grid

interaction is paramount for the performance of the DC topology.
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1 INTRODUCTION

Power from photovoltaic (PV) panels is generated as direct current

(DC) and batteries operate with DC, and almost all electronic loads in

buildings are natively DC operated. In today's conventional alternating

current (AC) systems with PV and battery storage, there are conver-

sions between AC and DC required before the final user stage, and all

these conversions are associated with electrical losses. By adopting

a DC distribution network in the building, many of these conversion

losses can be avoided and thus increase the system's performance

and utilisation of the PV energy. Lately, there have been numerous

attempts to determine whether DC is superior to AC in terms of

energy efficiency on a system level and what circumstances affect

these results. In Dastgeer et al.'s literature comparison of past and

Abbreviations: AC, alternating current; cond, conduction; DC, direct current; DHW, domestic hot water; HVAC, heating, ventilation and air conditioning; KPI, key performance index; PCC,

Pearson correlation coefficient; PFC, power factor correction; PV, photovoltaic.

present work in the area, one conclusion is that gains from in-house

DC distribution differ greatly, varying from 1.3% to 20%, including

studies that show no efficiency gain with DC supply.1 However, as sug-

gested by the same authors, comprehensive research efforts based on

detailed modelling are needed further, given the importance of accu-

rate assumptions of power electronic components and demonstrations

to provide a true comparison between the two scenarios.

In previous work done by Ollas, comparing AC and DC topologies

for a single-family house in Sweden equipped with solar PV and bat-

tery storage, it is concluded that the energy savings and utilisation

of the generated PV energy increase for a topology with DC distri-

butions.2 Energy savings for the studied case were between 2.5%

and 5.6%, and the PV utilisation increased by up to 10 percentage

points. It was also concluded from the same study that the major loss

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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contribution for the DC topology came from the grid-tied inverter and

that these losses could be minimised for cases where PV generation

better coincides with the load demand. Other studies have also con-

cluded that there is an energy-saving potential when switching to DC

distribution in buildings3-10 and that the inclusion of PV and battery

storage, as DC sources, are a prerequisite for obtaining these savings.

Fregosi et al. performed a comparative modelling study of an AC and

DC topology in commercial buildings across the USA and found that

the largest gains were obtained in the more hot–humid climates.11

Missing in this study is however the inclusion of battery storage that

could further boost the system's self-consumption of PV energy and

thus increase the energy savings for a DC topology. In a related study

done on energy savings from direct-DC usage in US residential build-

ings, Vossos et al. have modelled the effect in 14 different cities,

geographically spread throughout the USA.12 This work acknowledges

the load-dependent efficiencies, but it is not clear whether the whole

working interval for the efficiency is considered at part-load condi-

tions. A deficit from this study is also the usage of a constant roundtrip

efficiency for the battery, which, together with the consideration of

the part-load efficiencies of all converters, are acknowledged as areas

for improvements.1,2 This paper reports on a continuation of Ollas'

previous work,2 in which the system is modelled in another climate,

having a better correlation between supply (PV) and demand (load

usage), to see how this affects the system's performance. It uses the

measured household appliance data from a single-family house located

in Sweden and modifies the heating, ventilation and air conditioning

(HVAC) to a warmer climate using IDA Indoor Climate and Energy (IDA

ICE) and modelled PV-generation profiles. The study also uses detailed

characteristics in the modelling of the power electronic components

and the battery obtained from laboratory measurements. This paper

contributes to previous studies with a detailed modelling comparison

of DC distribution networks in two different climates with their differ-

ences in HVAC demand profiles and PV generation and quantifies their

respective energy savings and PV utilisation gains, concluding how

much the geographical location impacts the system's performance. A

sensitivity analysis is also made by altering the PV array and battery

sizes to quantify its respective impact on the system's performance.

Furthermore, this work also presents a quantification of the contri-

butions from the different loss sources, to give an understanding of

where to put the focus for future studies.

2 THEORY

2.1 AC and DC building topologies with a PV and

battery system

Apart from in rural areas without a shared electrical grid, AC supply

of buildings is today dominating the electric power supply to all types

of buildings. Figure 1 shows a typical AC topology for a residential

building, in this case also equipped with solar PV and battery storage.

Today's household appliances are almost exclusively operated on DC

at their final stage. Note that all converters are subject to losses

where the AC/DC conversion is done in two steps: firstly rectification

(AC/DC) and then DC/DC conversion to the desired DC voltage

level,13,14 typically using a power factor correction (PFC) converter.

A worst-case scenario in Figure 1 involving a maximum number of

conversion steps is when excess PV is inverted (DC/AC) and stored

in the battery through two conversions: AC/DC and DC/AC, and

then supplied to the big loads with additional DC/AC and AC/DC

conversions, resulting in a total of four conversion steps. This can be

illustrated using the power flow as*

PV is generated as DC, and the battery storage is operated using DC,

and they are both AC coupled in this topology, that is, connected to

the main AC link. An alternative approach is that the DC sources, that

is, battery and PV array, are connected to a DC link as presented in Li

and Danzer.15 Still, converters are needed, but the losses of a DC/DC

converter are lower compared to the ones of an AC/DC converter.

In a DC topology (see Figure 2), the PV and battery stored energy

are better utilised since they are both connected directly on the main

DC link (i.e., DC coupled), and thus, the DC/AC stage is removed and

replaced with a more efficient DC/DC converter.†

In comparison with the worst-case scenario from Figure 1, where

PV energy is supplied to the loads through the battery storage, the

equivalent conversion steps are reduced to three. For small power

loads, an additional DC/DC conversion is needed for both topologies

(see dashed perimeter in Figures 1 and 2) and is assumed equal in

performance for both cases. Similar to (1), the efficiency for the power

flow can be expressed as‡

2.2 Electrical losses in residential buildings

There are two main electrical losses occurring in a residential building:

conduction and conversion. Here, the underlying theory of these two

sources is explained.

2.2.1 Cable conduction losses

Cable conduction losses occur when power is transferred in the cables

and is given, for each modelled time step tk, as

pcond(tk) = 2ri(tk)2 (3)

where the factor ‘2’ is due to the return conductor and with i as

the current throughput. The cable resistance, r, is determined by the

cross-sectional area, A, resistivity (𝜌) and cable length, l, as

r = 𝜌
l
A

(4)

2.2.2 Conversion losses

The conversion losses come from voltage conversions, rectification

(AC/DC) and inversion (DC/AC). As few loads operate directly from the

* Please refer to an online or colour-printed version for better visualisation of the stepwise

conversions.
†In this study, a buck converter is used for DC/DC conversion with an efficiency of 98.5%

and is placed between the main DC link voltage, the battery, and the PV array in the DC

topology. Whereas in the AC topology, this conversion is done with an H-bridge, having an

efficiency of 97%.
‡Please refer to an online or colour-printed version for better visualisation of the stepwise

conversions.
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FIGURE 1 Typical AC topology with a PV and
battery system. Dashed perimeter is the DC/DC
conversion for the low-power appliances using
a PFC and are equal for both the AC and DC
scenarios. ‘Res. loads’ are resistive loads that
can be operated on either AC or DC

FIGURE 2 Example of a DC system
topology with two DC voltage levels,
including a PV array, battery storage and a
bidirectional grid-tied converter, with the
following colour coding for distribution:

supplied voltages (230/110 VAC or 380 VDC), conversions are needed,

and the losses of these stem from the electronic components inside

the respective converters. The losses are given by the converter's

efficiency, 𝜂conv , and are dependent on the converter's loading.

To determine the losses from a voltage conversion, the input and

output quantities can be measured, and the difference is the losses.

Single-phase AC and DC powers are given as

pAC(tk) = uAC(tk)iAC(tk) (5)

pDC(tk) = uDC(tk)iDC(tk) (6)

where uAC(tk) and iAC(tk) are the AC voltage and current, and uDC(tk)
and iDC(tk) are the DC equivalents.

The conversion efficiency, assuming AC/DC conversion is given,

using (5) and (6), as

𝜂conv,AC∕DC(tk) =
pDC(tk)
pAC(tk)

(7)

The corresponding conversion losses are then given as

pconv(tk) =
(

1 − 𝜂conv,AC∕DC(tk)
)

pload(tk) (8)

where pload(tk) is the converter power throughput for each time

instance, tk.

2.3 Load and PV correlation

In Swedish residential buildings, the peak electricity usage normally

occurs during the cold and darker months, caused mainly by a higher

heating demand, which is addressed to a great extent using heat

pumps. Also, the need for lighting is greater during the darker months.

The main part of the electricity demand in Swedish residential buildings

consists of electricity for heating and lighting, which leads to a modest

demand during the warmer and lighter months and thus creates a poor

correlation with the availability of PV energy. On the other side of

the spectrum, other geographical locations have their peak electricity

usage during the hotter and lighter periods of the year, caused by

the need for cooling. This gives a better seasonal correlation with
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the PV-generated energy than in countries like Sweden. Seasonal

variations in supply (PV) and demand (load usage) are one thing, but

it is also important to address the intraday correlation between these

two when evaluating the performance of a PV system.

To quantify the natural match between PV generation and load

demand, different correlation models can be used, and some of them

are summarised in Ramadhani et al.16 In this study, the Pearson cor-

relation coefficient (PCC) is used to calculate the correlation between

the two continues data sets of load usage and PV generation:

𝜌(PV, Load) = 1
N − 1

N∑
i=1

(
PVi − 𝜇PV

𝜎PV

)(
Loadi − 𝜇Load

𝜎Load

)
(9)

where 𝜇PV and 𝜎PV are the mean and standard deviations of the PV

generation, respectively, and 𝜇Load and 𝜎Load are the ditto for the

load usage, using N number of observations. The resulting correla-

tion coefficient (−1 − +1) describes the linear relation between the

two variables, where −1 represents a negative relation, for example,

increasing and decreasing variables, respectively, and +1 a positive

relation, for example, increasing and increasing.

3 METHODOLOGY

In this section, the two used cases are presented together with the

system modelling methodology, including key performance indexes

(KPIs) and the investigated system topologies.

3.1 Load and PV-generation profiles

In this study, data of load demand and PV generation are used from two

different geographical locations: Borås, Sweden, and Phoenix, USA,

which have two different load and generation (PV) characteristics.

The first location has a poor correlation between PV generation and

load demand, while the second location has a better correlation.

Both studies are for a single-family residential building, and their

characteristics are presented below. The modelled load demands are

obtained from simulations using the IDA Indoor Climate and Energy

(IDA ICE) software, with the building model adopted from Chen

and Markusson17 and modified to represent a conventional Swedish

single-family house with an average U-value of 0.26 W/(m2K). For both

cases, the energy demand from household appliances, for example, TV,

cooking, cleaning and domestic hot water (DHW) usage, are assumed

equal. The load for household appliances and DHW production were

specified to be 30 and 25 kWh/m2/year, respectively, suggested by

Levin et al.18 as standard values in Sweden for residential building

energy simulations. Thus, the difference in electricity usage, in both

space and time, comes from the HVAC equipment usage.

The HVAC usage simulated in IDA ICE is dependent on the type

of system used, its operation and control. In the Swedish case, a

ground-source heat pump (GSHP) with an electrical backup heater is

used to provide both space heating and DHW. The GSHP has a rated

capacity of 8.36 kW, and the modelling is done to keep the indoor

temperature at a minimum of 21◦C during the heating season. A bal-

anced ventilation system with a rotatory heat exchanger is used, which

is typical for single-family houses in Sweden. A constant supply flow

rate of 60 L/s, corresponding to 0.386 L/s/m2 is used. In the US case,

the DHW is generated from a water heater using a resistive element,

TABLE 1 Energy demand and PV generation (both in AC
quantities) and the Pearson correlation coefficient for difference
loads at the two locations

Borås, Sweden Phoenix, USA

Energy demand (kWh) 10,744 11,946

PV AC energy (kWh) 3583 7077

PCC—all loads (—) −0.31 −0.18

PCC—household appliances (—) −0.23 −0.35

PCC—cooling (—) — +0.33

and space heating is provided by a gas-fired furnace, with negligible

electricity usage. For US cooling and ventilation, a centralised all-air

HVAC system is used.19 The centralised HVAC system consists of an

outdoor condenser/compressor unit and an indoor air-handling unit.

When no cooling is needed, the indoor unit's central fan provides

ventilation. The air conditioner system is controlled by a proportional

controller, with the input signal from a temperature sensor located

in the central exhaust air duct, with the minimum and maximum set

points for cooling at 24◦C and 25◦C, respectively. The maximum air

conditioner flow rate is 390 L/s (including outdoor fresh air and recir-

culating air), based on the target flow rate of 47–60.5 L/s/kW of rated

cooling capacity.20 The rated cooling capacity of the air conditioner

used in the simulation is 7.95 kW, and it uses a variable flow rate

depending on the cooling load. As in the Borås case, 60 L/s outdoor

fresh air is used for ventilation to ensure the indoor air quality. Thus,

the same amount of outdoor air, that is, 60 L/s, is always supplied to

the house and mixed with the room air.

3.1.1 Borås, Sweden

Figure 3A shows the normalised (per unit, ‘p.u.’) moving average of

load and PV-generated power for the studied case in Borås, Sweden.

The house is equipped with 14 PV modules (each at 260 Wp), with a

total generation of 3583 kWh (AC) and with a total user load demand

of 10,744 kWh. Here, it is evident that there is a clear seasonal

mismatch between the load usage and PV generation, where the

former has its peaks during the heating period (October–March) and

the latter during the summer period (May–August). Using the Pearson

coefficient correlation from (9) gives a correlation between the PV and

load usage of −0.31, which means a (slight) negative correlation (see

Table 1).

3.1.2 Phoenix, USA

Figure 3B shows the normalised (p.u.) moving average of load usage

and PV generation for Phoenix, USA. Here, the PCC from (9) is −0.18

for all loads (see Table 1). This means that the total load usage

correlates to the availability of the PV generation slightly better than

the case of Borås, Sweden.

In Figure 4, the intraday correlation between PV and load usage is

shown for both cases and two arbitrary days with high PV output. Total

load demand is shown, divided per category, together with the PV

generation and the grid interaction (import and export of power) with

and without battery storage ‘Grid—battery’ and ‘Grid’, respectively.

For Borås (Figure 4A), the lack of load demand around noon generates

a poor match with the availability of PV and feds excess PV to the

grid without the presence of a battery (see ‘Grid’). When a battery
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FIGURE 3 Normalised moving mean values of load and PV powers for 1 year in (A) Borås, Sweden, and (B) Phoenix, USA

is added to the same system, the grid interaction is reduced (see

‘Grid—battery’), and excess PV energy after noon is stored in the

battery and then fed to the loads later in the evening. For Phoenix,

the cooling demand is well correlated with the PV generation (see

Figure 4B), and the effect of adding a battery is seen where excess

generation during midday is stored and used to reduce the grid import

during the afternoon/evening. For the Phoenix case, using (9) only on

the cooling demand, neglecting household electricity and electricity

for DHW production, gives a positive (+0.33) correlation, meaning that

the demand is positively correlated to PV generation (see Table 1).

3.2 System modelling

To evaluate the energy savings from a DC distribution system for

the two cases defined in Section 3.1, the building's performance

is evaluated for an entire year's operation using the load and PV

time-series profiles. The study is made for two system configurations

with regard to PV and battery sizes§:

1. 3.6/0 kWp/kWh

2. 3.6/7.5 kWp/kWh

where the selected battery size is made from studying the battery

‘effectiveness’ defined in Pilz et al,21 quantifying the increase in

self-consumption¶ per kWh added battery size as

ebattery, i =
SCn − SC1

qbattery,n
(10)

where SCn is the self-consumption for battery size qbattery, n and SC1

the self-consumption for the smallest battery modelled. Using this

methodology, the highest effectiveness gives the optimal battery for

the studied system. Thus, for the load and PV profiles in Borås, this

value is achieved at 7.5 kWh. The results from the two cases at the

same location give the added energy savings when including battery

storage. Comparing Cases 1 and 2 at the two locations quantifies the

impact of the geographical location and more specifically the impact

from the PV and load correlation.

As results from previous studies have proven the importance of

limiting the grid-tied converter throughput to maximise the perfor-

mance of a DC topology,2,4,9 the battery's objective function is set

§It is assumed that the battery power is 80% of its storage capacity, for example,

7.5 kWh = 6 kW.
¶ Self-consumption is defined as the share of PV-generated energy that is used to cover the

load demand.

to maximise the system's self-consumption#of generated PV energy.

Thus, the modelling is done using the ‘Target Zero’ dispatch algorithm

adopted from Fares and Webber,22 where the battery is only allowed

to charge from PV surplus and discharge directly to the load. Thus, no

direct interaction is made between the battery and the electrical grid.

The battery's internal losses are modelled using the representation

from Ollas2 and the measured characteristics of the internal resis-

tance as a function of current throughput. This is to give an accurate

representation of the battery's losses under varying operating con-

ditions. In the same manner, the converter's efficiency as a function

of its loading has been adopted from the same reference to increase

the accuracy of the modelled losses. In Ollas,2 it was also concluded

that the cable conduction losses are negligible compared to the other

sources, and thus, these have been neglected in this study for both

system configurations.

For the modelling of the PV output, the System Advisor Model

(SAM)∥software was used to acquire the PV-generation profiles. For

Borås, Sweden, the PV array was modelled with a tilt angle of 41◦

(from horizontal), and for Phoenix, USA, a tilt angle of 28◦ was used.23

Both systems were modelled with an array orientation due south (180◦

azimuth angle).

Generated PV energy is subject to losses in the inverter. Thus,

modelled PV energy, given as AC, is compensated to the DC equivalent

using the following relation:

ePV,DC(t) =
ePV,AC(t)
𝜂inv(t)

(11)

where the inverter efficiency as a function of its loading, 𝜂inv(t), is

taken from Notton et al,24 as

𝜂inv(t) =
p(t)

m · p(t)2 + p(t) + p0

(12)

with p0 and m calculated from the efficiencies at 10% and 100%

loading (see Notton et al.24 for numerical values for m and p0) and with

the loading ratio, p(t), calculated as

p(t) =
pout(t)
Prated

(13)

where pout(t) is the inverter output and Prated the rated power of the

inverter. In this case, a DC/AC ratio of 1.25 is used for the inverter

rated power.

# The authors are aware that energy cannot be consumed according to the first law of

thermodynamics. But the terminology is used here to match the literature.
∥NREL—System Advisor Model—https://sam.nrel.gov/.

https://sam.nrel.gov/
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FIGURE 4 Intraday correlation between electrical load demand and PV generation, and resulting grid interaction with (‘Grid—battery’) and
without (‘Grid’) the inclusion of a battery for (A) Borås, Sweden, and (B) Phoenix, USA. Total load is divided into cooling (only available in
Phoenix), domestic hot water (DHW), heating (only for Borås) and household appliances (‘User’). For Borås, heating and DHW production are
both done by the same sources (ground-source heat pump and an electrical backup heater)

3.3 Investigated system topologies

The systems are compared for two topologies, AC and DC, where the

power distribution is made with 230 VAC and 380 VDC, respectively.

In both cases, it is assumed that the smaller loads**have an additional

DC/DC conversion from 380 to 24 VDC with the efficiency 𝜂DC/DC

(see Figures 1 and 2). The two topologies compared are

• 230 VAC—reference

Conventional system commonly used in today's buildings, with

a 230 VAC voltage distribution (see Figure 1 for system layout

including a PV and battery system).

• DC—380 VDC

Voltage distribution at 380 VDC, and this level is selected using

the EMerge Alliance 380 VDC standard for data centre power

distribution25-27 and is the result of an expert assessment of suitable

DC distribution levels from Glasgo et al.28 Here, the efficiency of

the grid-tied bidirectional converter is modelled for two different

cases:

1. with a varying efficiency as a function of the converter's loading,

as presented in Ollas2—‘DC1’;

2. fixed efficiency of 97.8%29 as commonly done in other related

literature3,4,7,8,10—‘DC2’.

where cases DC1 and DC2 show the impact of assuming a varying and

fixed efficiency respectively for the grid-tied converter.

3.3.1 System performance evaluation

For a comparison of the system's performance, the overall system

efficiency is adopted from Gerber et al.30 For this specific study, the

system's efficiency is defined for both the AC and DC topologies as

𝜂system, i = 1 −
Elosses, i

Eload
(14)

where Elosses, i are the total annual energy losses for system ‘i’ and Eload

the annual energy usage by the loads. †† The system's total energy

** Smaller loads are defined as loads with a maximum power of 100 W.
††Annual energy demand, Eload , is equal for all modelled cases at the same geographical

location (see Table 1).

demand, Edemand , is thus calculated as

Edemand, i = Eload + Elosses, i (15)

The utilisation of the PV energy is calculated from the losses

associated with the battery storage, the PV inverter‡‡and the battery's

internal losses (since battery charging is only done through excess PV)

and is valid for both the AC and DC topologies. This quantifies the

share of useful PV energy that is fed to the system and is expressed as

𝜂PV, system = 1 −
∑ Einv + Ebatt + Ebatt, conv.

EPV,DC
(16)

where the PV inverter losses, Einv , are given from (12), Ebatt is the

modelled internal losses from the battery using the representation of

a dynamic internal resistance as a function of current from Ollas,2

Ebatt, conv is the modelled battery converter losses and EPV, DC is the

total DC output from the PV array.

4 RESULTS

A breakdown of the loss contributions for the two PV and battery sys-

tems in Borås, Sweden, is shown in Figure 5A,B. Here, it can be noted

that the main loss contributor for the DC case is the grid-tied bidirec-

tional converter and that the inclusion of a battery storage reduces

the losses through the same by increasing the self-consumption of

the PV energy. Comparing the two DC cases with a varying (DC1) and

fixed (DC2) grid-tied converter efficiency, the losses in the latter case

are underestimated by 14.7% and 19.0% with and without the bat-

tery. For this case, the system efficiency gains are 1.2% and 2.7% for

DC1 and 2.3% and 3.6% for DC2 with and without the inclusion of a

battery, respectively, compared to the equivalent AC topology. How-

ever, as shown in Ollas,2 it is a questionable assumption to use a fixed

grid-tied converter efficiency when studying these dynamic scenarios

with varying converter loading, and thus, DC2 is not studied further in

this article.

Table 2 gives a numerical comparison of the results for Borås, Swe-

den, for the AC and DC1 cases. Here, results show that the inclusion

‡‡In the DC topology, there is only a need for a DC/DC conversion from the PV array, and

thus, the terminology ‘inverter’ is only true for the AC topology.
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FIGURE 5 Result comparison showing total annual system losses for Borås, Sweden, and two PV and battery systems: 3.6/0 kWp/kWh (A) and
the impact when adding a 7.5-kWh battery (B)

PV = 3.6 kWp and battery = 0 kWh PV = 3.6 kWp and battery = 7.5 kWh

AC DC1 Difference (%) AC DC1 Difference (%)

Annual losses (kWh) 671 544 −19.0 831 556 −33.1

- Bidirectional converter 0 353 0 288

- Battery converter 0 0 125 39

- PV 235 77 235 77

- Battery losses 0 0 35 38

- Rectification (AC/DC) 322 0 322 0

- Conversion (DC/DC) 114 114 114 114

𝜂system 93.8 94.9 +1.2 92.3 94.8 +2.7

𝜂PV, system 94.0 98.0 +4.3 89.9 96.1 +6.9

Note: ‘Difference’ refers to the comparison between AC and DC for the same PV and battery system.

TABLE 2 Numerical summary of the
results for Borås, Sweden, with AC
and DC distribution and the two
modelled PV and battery systems

of the battery increases the loss savings for the DC case, mainly by

reducing the losses from the bidirectional grid-tied converter. Since

the PV and battery are directly connected to the DC main link, the

losses from the battery converter and PV are significantly reduced in

the DC case, compared to the AC case where they are subject to higher

conversion losses. As the losses in the battery converter and PV array

are lower for the DC cases, the PV utilisation factor, 𝜂PV, system, defined

in (16), increases compared to the AC case. This is more prominent

when the battery is included, where the PV utilisation increases from

4.3% to 6.9%.

Similarly, the results for Phoenix, USA, are shown in Table 3 together

with the loss separation in Figure 6A,B. As in the Swedish case,

the DC systems show better performance in terms of both system

efficiency, 𝜂system, and PV utilisation, 𝜂PV, system, than the equivalent AC.

The comparison shows that the total losses are reduced further in

the US case, −43.6% and −28.5% with and without the inclusion of

a battery storage. Again, for the sake of comparison, DC2 is included

in Figure 6 and gives in this case an underestimation of the grid-tied

losses by 29%, stressing the importance of using a dynamic efficiency

when modelling these types of systems.

To further investigate the impact of the system performance and

the potential gains for a DC network, a sensitivity analysis is made

by varying the PV array and battery storage sizes (see Figure 7). A

comparison of the system efficiency, 𝜂system, PV utilisation, 𝜂PV, system,

and total system losses are made for PV array sizes 3.7, 5 and 10 kWp

and for battery sizes between 0 and 10 kWh. In Figure 7A, the increase

in PV utilisation is shown for the two locations for different PV and

battery sizes. Here, the gains from DC operation in Borås, Sweden, are

higher (4.3–7.4%) than the equivalent system configuration in Phoenix,

USA, (3.9–6.8%). The gains also increase with battery size, and the

highest gains are seen for the smaller PV array (3.7 kWp). The impact

of DC operation gain on system efficiency is seen in Figure 7B, where

Phoenix shows higher potential system gains than Borås, ranging

between 2.3–8.8% and 1.3–5.9%, respectively. For Phoenix, there is

an almost linear increase in performance with the increase in battery

size and that the incremental increase is less for Borås. In Figure 7C,

the resulting reduction in system losses is presented, where the largest

savings are seen for the systems modelled in Phoenix (−27% to 46%),

while in Borås, the loss savings are between −19% and 39%. It is worth

noting that the loss savings for Phoenix are reduced for the largest PV

array (10 kWp). This is mainly because the grid-tied losses increase

with an increased PV array. At a certain point, the PV array output

exceeds the load demand and available storage capacity, forcing the

energy through the grid-tied converter to the grid. This is further

evaluated in Figure 8 where the losses from grid interaction (import

and export through the grid-tied converter) are shown in a duration

diagram for Phoenix (Figure 8A) and Borås (Figure 8B), with a battery

storage of 10 kWh and a varying PV array size (3.7–10 kWp). Here,

the grid import remains equal for the different PV sizes, but the 10

kWp array generates far greater grid-tied converter losses due to the

increase in grid export, especially prominent in the US case caused by

a higher yearly solar yield.

Comparing the findings from Borås and Phoenix, the gains in PV

utilisation for a DC operated system, compared to an equivalent AC,

are higher for the former case, ranging between 4.3% and 7.4%,

compared to the USA where the gains are between 3.9% and 6.8%.
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TABLE 3 Numerical summary of the
results for Phoenix, USA, with AC and
DC distribution and the two modelled
PV and battery systems

PV = 3.6 kWp and battery = 0 kWh PV = 3.6 kWp and battery = 7.5 kWh

AC DC1 Difference (%) AC DC1 Difference (%)

Annual losses (kWh) 908 649 −28.5 1222 689 −43.6

- Bidirectional converter 0 384 0 267

- Battery converter 0 0 243 77

- PV 436 151 436 151

- Battery losses 0 0 71 80

- Rectification (AC/DC) 358 0 358 0

- Conversion (DC/DC) 114 114 114 114

𝜂system 92.4 94.6 +2.4 89.8 94.2 +4.9

𝜂PV, system 94.2 98.0 +4.0 90.1 95.9 +6.4

Note: ‘Difference’ refers to the comparison between AC and DC1 for the same PV and battery system.

FIGURE 6 Result comparison showing total annual system losses for Phoenix, USA, and two PV and battery systems: 3.6/0 kWp/kWh (A) and
the impact when adding a 7.5-kWh battery (B)

However, when looking in absolute terms, the PV is better utilised in

the Phoenix case for the larger PV arrays (5 and 10 kWp) as shown in

Figure 9. For the smaller array (3.7 kWp), the PV utilisation is higher

for Phoenix up until a battery size of 6 kWh and then becomes slightly

lower than the equivalent system in Borås.

A summary of literature findings on the DC distribution efficiency

improvement potential is given in Figure 10 where either simula-

tions or real demonstrations have been performed to quantify the

potential for DC distribution systems compared to equivalent AC sys-

tems.3-6,9,11,12,31-36 The variance in the results from the literature is due

to multiple factors including assumptions of power electronic efficien-

cies, system topology, the presence and sizing of PV and batteries,

modelled or demonstrated results, and so forth. These are compared

with the findings from this study for ‘Borås, Sweden’ (1.3–5.9%) and

‘Phoenix, USA’ (2.3–8.8%), where the findings from this study are in

the lower range of those from the literature.

5 DISCUSSION AND CONCLUSION

Results show that the potential energy savings for a DC distribution

network in a residential building are very much dependent on the grid

interaction or, more specifically, the interconnection between supply

and demand. The system performance for the residential building in

Phoenix, USA, shows an energy efficiency improvement of 8.8–2.3%

compared to its equivalent AC system, and in the Swedish case, the

gain ranges from 5.9% to 1.3% with and without the inclusion of the

battery storage. The utilisation of the PV energy is also increased in

both locations when a DC system is used—in relative terms, the gains

are in the range of 7.4–4.3% for Borås and 6.8–3.9% for Phoenix, with

and without the battery, respectively. In absolute terms, the generated

PV energy in the DC operated systems is better utilised in Phoenix

with up to 0.4 percentage points.

Comparing the gains in system efficiency to previous works, the

results from this study are in the lower range. An explanation for this

could be the assumption made in other studies about using a fixed

efficiency for the grid-tied converter, which increases the DC system

performance further by reducing the losses from the bidirectional

grid-tied converter, as proven in Ollas.2 In this work comparing a

variable with a fixed efficiency, the losses are underestimated by up to

29% when using the latter. This concludes that when studying these

types of dynamic scenarios with power throughput at varying loading

levels and considering the load-dependent efficiency, using a constant

efficiency is a questionable assumption.

Despite an increase in the PV and load correlation for the US case,

the impact from the geographical location has proven to be limited for

the PV utilisation. Even though the correlation between supply and

demand is increased, the bidirectional converter losses still amount

to most of the DC system's losses. From the load usage profiles,

it can be noted that the low midday demand generates excess PV

energy, especially prominent in the case without the battery, and as

this energy passes through the bidirectional converter, it generates

losses. Results show that when the PV array is increased to 10 kWp,

the losses from the grid export increase substantially compared to the

smaller PV sizes, despite the inclusion of battery. This suggests that
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FIGURE 7 Impact on DC performance gains: (A) PV utilisation, (B) system efficiency and (C) total annual system losses, when varying the PV
array and battery size for the two locations

FIGURE 8 Duration diagram of the bidirectional grid-tied converter losses for import and export in (A) Phoenix, USA, and (B) Borås, Sweden,
with a 10 kWh battery and varying PV size

FIGURE 9 PV utilisation factor for DC operation in Borås, Sweden,
and Phoenix, USA, for different battery and PV array sizes

the PV and battery sizing are crucial for these types of systems to

avoid overgeneration and possible power curtailment.

Studying the PV and load correlations for individual loads suggests

that some loads are more naturally correlated with the presence of

PV energy, suggesting that DC operation is more suitable for these

types. A recommendation for future research, to increase the potential

for energy savings from DC distribution, is thus to determine the

correlation for each appliance in the building and, for those who

correlate poorly, find measures to increase the match, for example,

demand response management. Morning and evening load peaks

associated with cooking and DHW usage are common in single-family

residential buildings, which correlate poorly with south-facing PV

arrays. If these loads could be shifted in time—without violating the

user needs and thermal comfort too much—to better match the PV,

the potential for DC distribution could increase further. Also looking

at other types of buildings with peak load demands during midday, for

example, office buildings, would be interesting from a DC potential
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FIGURE 10 DC distribution efficiency gains for residential building
found in literature, together with the findings from this study for the
two climates, ‘Borås, Sweden’ and ‘Phoenix, USA’. The span is given
for the two cases with and without the inclusion of a battery storage

point of view using a south-facing PV array. Another measure would

be to change the orientation of the array to better match the load

usage profile. In this case study, an east- and/or west-facing array

would give a better correlation with the user demand for the studied

case and thus reduce the grid interaction and consequently improve

the DC performance further.
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