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ABSTRACT

Metabolic network reconstructions have become an important tool for probing cellular metabolism in the field of systems
biology. They are used as tools for quantitative prediction but also as scaffolds for further knowledge contextualization. The
yeast Saccharomyces cerevisiae was one of the first organisms for which a genome-scale metabolic model (GEM) was
reconstructed, in 2003, and since then 45 metabolic models have been developed for a wide variety of relevant yeasts
species. A systematic evaluation of these models revealed that—despite this long modeling history—the sequential process
of tracing model files, setting them up for basic simulation purposes and comparing them across species and even different
versions, is still not a generalizable task. These findings call the yeast modeling community to comply to standard practices
on model development and sharing in order to make GEMs accessible and useful for a wider public.
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INTRODUCTION

Genome-scale metabolic model reconstruction has been estab-
lished as one of the major modeling approaches for systems-
level metabolic studies (Gu et al. 2019). These models are mainly
built in a bottom-up approach, in which genome information is
combined with the accumulated knowledge about the metabolic

capabilities of a living organism to reconstruct a complete
metabolic map (Nielsen 2017). Another widely used approach
for model reconstruction consists of the use of one or multiple
well-curated networks as scaffolds, due to the high degree of
conservation of metabolism for phylogenetically close species.
Metabolic models have been proven to be useful as knowledge
databases (Herrgård et al. 2008), tools for contextualization of
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omics data (Kerkhoven et al. 2016) and for guiding metabolic
engineering projects (Meadows et al. 2016), enabling systematic
explorations of the relationship between genotypes and pheno-
types.

The metabolic model iFF708 (Förster et al. 2003) of Saccha-
romyces cerevisiae, the genome of which was the first eukaryotic
one to be sequenced (Goffeau et al. 1996), was the first published
GEM for its entire domain in 2003. This model has been used as a
scaffold for further network refinements (Duarte, Herrgård and
Palsson 2004; Kuepfer, Sauer and Blank 2005; Herrgård et al. 2006;
Nookaew et al. 2008), which has facilitated the development of
metabolic models for several other budding yeast species over
the years, due to their well evolutionarily-conserved metabolic
capabilities (Shen et al. 2018).

Multiple model reconstructions exist, not just for S. cerevisiae,
but for several other yeast species. These reconstructions have
usually been carried out by different research groups, resulting
in specific network improvements according to their scientific
interests, but at the same time yielding incompatible identifiers
for reactions and metabolites hampering any systematic com-
parison and evaluation across models (Herrgård et al. 2008).

As GEMs are valuable tools for a wide variety of applications,
their end users vary from academic researchers with different
backgrounds and levels of computational skills, to professionals
in the biotechnology and pharmaceutical industries. Therefore,
there is a strong need for computational metabolic models to be
accessible and published in a ready-to-use format, which facili-
tates their utilization by non-expert users. Additionally, the use
of consistent and standardized identifiers for their components
enables comparisons across models, thus simplifying the pro-
cess of finding the best model for a given application.

Latest developments on yeasts GEMs

The development, interconnections and applications of
metabolic models for different yeast species have been reviewed
extensively (Sánchez and Nielsen 2015; Lopes and Rocha 2017;
Castillo, Patil and Jouhten 2019; Chen, Li and Nielsen 2019) how-
ever, the list of yeast GEM models is continuously increasing
both in number of GEMs and encompassed species. Here we
briefly summarize the development history of all models for
diverse yeast species that are currently available in the scientific
literature. The validation strategies and main applications of
these models, as described in their original publications, are
provided in Table S3 (Supporting Information), indicating the
type of biological data and computational methods used for
each case.

S. cerevisiae is one of the most studied organisms in the
Eukarya domain, which has resulted in a long modeling his-
tory with 18 networks currently available. The models iND750
(Duarte, Herrgård and Palsson 2004), iLL672 (Kuepfer, Sauer
and Blank 2005) and iIN800 (Nookaew et al. 2008) were directly
derived from iFF708 (Förster et al. 2003) and subsequently used
as templates for iMH805/775 (Herrgård et al. 2006), iMM904 (Mo,
Palsson and Herrgård 2009), iAZ900 (Zomorrodi and Maranas
2010) and iTO977 (Österlund et al. 2013) reconstructions.

As these multiple reconstructions added new knowledge and
gap-fills to the network, a first attempt of unification was carried
out by the knowledge base Yeast1, published in 2008 (Herrgård
et al. 2008). The concept of standardized identifiers for reac-
tions and metabolites was first implemented in this reconstruc-
tion, but simulation capabilities were not achieved. Sequential
curation iterations were performed (Yeast2 and Yeast3) until
the publication of Yeast4, which notably increased the network

connectivity and the number of included metabolites, mak-
ing it a suitable model for simulation purposes (Dobson et al.
2010). Further updates to the consensus metabolic network have
shown to improve predictions on gene essentiality, induced aux-
otroph phenotypes and cellular growth on diverse environments
(Yeast5 (Heavner et al. 2012), Yeast6 (Heavner et al. 2013) and
Yeast7 (Aung, Henry and Walker 2013)). In 2019, a new ver-
sion of the consensus metabolic network, Yeast8, was published
(Lu et al. 2019), its reconstruction process combined informa-
tion from previous GEMs, different curated databases such as
KEGG (Kanehisa et al. 2016), SGD (Hellerstedt et al. 2017), Bio-
Cyc (Karp et al. 2019), Reactome (Fabregat et al. 2018) and UniProt
(The UniProt Consortium 2017) and experimental data on sub-
strate usage. Furthermore, Yeast8 provides an ecosystem of mul-
tilayer models suited for different kinds of phenotype predic-
tions, ranging from 1011 strain-specific models to incorpora-
tion of enzyme constraints (ecYeast8) and protein 3D structures
(proYeast; Lu et al. 2019).

In parallel with the development of the consensus net-
work, iSce926 (Chowdhury, Chowdhury and Maranas 2015) was
derived from Yeast7 (Aung, Henry and Walker 2013) in 2015,
incorporating gene essentiality and synthetic lethality informa-
tion to curate gene-reaction rules. The model iSc-AMRS-1 (Wich-
mann et al. 2016) was developed from iLL672 (Kuepfer, Sauer and
Blank 2005) in 2016, mainly by curation of proton balancing for
mitochondrial ATP production and reaction reversibility, aiming
to improve flux distribution predictions in order to investigate
production of isopropenoids.

The model SpoMBEL1693 for Schizosaccharomyces pombe, a
model organism for eukaryotic cell cycle studies, was devel-
oped in 2012 using annotated genes and reactions from the
KEGG database as a draft network (Sohn et al. 2012). iNX804,
a metabolic model for Candida glabrata, known as a platform
organism for pyruvate production, was reconstructed in 2013
and used for identification of gene targets for enhanced pro-
duction of pyruvate-derived fine chemicals (Xu et al. 2013). The
metabolism of Candida tropicalis, known as a promising host for
α, ω-dicarboxylic acids production, has been studied with the
model iCT646, reconstructed through the collection of multiple
database information in 2016 (Mishra et al. 2016). The model
iOD907, a metabolic network for Kluyveromyces lactis, a yeast
commonly used in the dairy industry, was published in 2014
(Dias et al. 2014). Its reconstruction process used iMM904, for
S. cerevisiae, as a scaffold and merged it with annotation for
metabolic genes and transporters from KEGG (Kanehisa et al.
2017) and TCDB (Saier et al. 2016), respectively. This model
was validated with data for growth on diverse carbon sources
and used to investigate phenotypic differences for single gene
knockout strains between K. lactis and S. cerevisiae (Dias et al.
2014).

Pichia pastoris is an established workhorse in biotechnology
for heterologous protein production, as it shows superior protein
secretion efficiency compared with other yeasts (Schmidt 2004).
Additionally, humanized N-glycosylation patterns for recom-
binant protein production can be obtained by engineering its
metabolism. The first two GEMs for P. pastoris, PpaMBEL1254
(Sohn et al. 2010) and iPP668 (Tomàs-Gamisans, Ferrer and Albiol
2016), were both developed in 2010 using genome annotation
information from databases and literature. In 2015, ihGlycopas-
toris (Irani et al. 2016) was specially developed for simulation of
recombinant protein production as a target, by combining the
previously established iLC915 (Caspeta et al. 2012) model with
humanized N-glycosylation pathways. This allowed the investi-
gation of the influence of N-glycosylation processes on protein
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production and the model was used for the prediction of gene
overexpression targets for improving protein yields. The model
Kp.1.0 was published in 2017, in which 12 different biomass com-
positions were tested under different growth conditions, show-
ing minor effects on growth and gene essentiality predictions,
but drastic changes in flux distributions (Cankorur-Cetinkaya,
Dikicioglu and Oliver 2017). A total of three previous P. pastoris
reconstructions (Chung et al. 2010; Sohn et al. 2010; Caspeta
et al. 2012) were merged into iMT1026 (Tomàs-Gamisans, Fer-
rer and Albiol 2016), expanding the representation of fatty
acid and sphingolipid metabolism, intact N-glycosylation,
O-glycosylation and glycosylphosphatidylinositol(GPI)-anchor
pathways. iMT1026 was then curated to iMT1026.v3 in 2018,
leading to a refinement of predictions for cellular growth on
glycerol and methanol as carbon sources (Tomàs-Gamisans,
Ferrer and Albiol 2018). Additionally, the model iRY1243 was
created in 2017 by merging iPP668, PpaMBEL1254, iLC915 and
iMT1026, also incorporating curation of biosynthesis of vitamins
and cofactors, which added more than 200 metabolic genes to
the network. This model was validated with the use of RNAseq
data for different conditions, utilization of carbon and nitrogen
sources and 13C-labeled derived fluxomics, yielding an overall
high consistency of predictions for essential genes, flux distri-
butions and different mutant phenotypes (Ye et al. 2017).

The yeast Scheffersomyces stipitis (formerly known as Pichia
stipitis) has raised interest due to its great native potential for
xylose utilization. In 2012, three models were published for this
species: iTL885 (Liu et al. 2012) and iSS884 (Caspeta et al. 2012)
were derived from previous S. cerevisiae’s models, whilst iBB814
(Balagurunathan et al. 2012) was reconstructed from genome
annotation extracted from various databases. A modified ver-
sion of iBB814, the model iDH814, was published in 2016 and
used to elucidate the redox balance shift response to reduced
oxygen supply conditions (Hilliard et al. 2018). As these four
reconstructions just account for the cytoplasm, mitochondria
and peroxisome as cellular compartments, a fully compartmen-
talized model for this relevant organism is still missing.

The oleaginous yeast Yarrowia lipolytica, is another organism
for which multiple GEMs already exist. Its first model, iNL895
developed in 2012 (Loira et al. 2012) and other two following
models iMK735 (Kavšcek et al. 2015) and iYali4 (Kerkhoven et al.
2016), were derived from previous networks of the phyloge-
netically distant yeast S. cerevisiae, in contrast to iYL619 PCP
(Pan and Hua 2012), reconstructed directly from Y. lipolytica spe-
cific information available in public databases and literature. In
2018, iYLI647 (Mishra et al. 2018) was developed using a previous
reconstruction for the same species, iMK735 (Kavšcek et al. 2015),
as a scaffold and expanded to include the ω-oxidation path-
way that converts fatty acids to long-chain dicarboxylic acids
(DCAs), the subsequent fatty-acid degrading β-oxidation path-
way and branched-chain amino acid degradation pathways, in
order to guide simulation of metabolic engineering strategies for
enhanced DCA production.

During these years, other non-conventional yeasts have
gained more attention due to their fascinating and diverse phe-
notypes. Several GEMs have been constructed as an attempt
to understand their particular traits. Rhodotorula toruloides is
an oleaginous yeast, which can accumulate lipids up to 70%
of its dry mass (Ratledge and Wynn 2002). Previous modeling
approaches have explored the use of constraint-based meth-
ods together with a reduced metabolic network for this organ-
ism to assess lipid accumulation on different substrates (Bom-
mareddy et al. 2015; Castañeda et al. 2018), but its first genome-
scale model, rthoGEM (Tiukova et al. 2019), was published in

2019. Cell growth data using glucose, xylose and glycerol as sub-
strates were used to validate the model, while gene targets for
triacylglycerol and carotenoid production were predicted with
the use of the FSEOF algorithm (Choi et al. 2010). That same year,
iRhto1108 (Dinh et al. 2019), was developed using Yeast7 and
the Kbase fungal metabolic network (Arkin et al. 2018) as model
templates. This model increased the metabolic gene coverage in
comparison to rthoGEM (from 926 to 1108) and enabled growth
simulations using arabinose and cellobiose as carbon sources.

Zygosaccharomyces bailii has been described to have high tol-
erance towards acetic acid (Palma et al. 2017; Palma, Guerreiro
and Sá-Correia 2018). It has been suggested that the Zygosaccha-
romyces clade diverged from Saccharomyces ancestors just before
the whole genome duplication event (WGD; Kurtzman 2003),
which took place approximately 100 million years ago, mak-
ing the Zygosaccharomyces genus the closest pre-WGD ancestral
group of relatives to study the genome evolution of S. cerevisiae
(Hagman et al. 2013; Solieri et al. 2013). The model ZyPa1 (Fil-
ippo et al. 2018) was reconstructed using homology information
from 20 different yeasts belonging to the Saccharomycetaceae
family, and was then connected to the KEGG database to obtain
a draft network. Stoichiometry and localization information for
the reactions were extracted from the models Yeast7 (Aung,
Henry and Walker 2013) and iOD907 (Dias et al. 2014). ZyPa1 con-
tains 2413 genes, more than twice the number of genes in Yeast8
(Lu et al. 2019), being the metabolic model for a yeast species with
the highest number of genes. This GEM has been applied to the
study of cellular growth under co-consumption of lactate and
glucose.

Kluyveromyces marxianus is a thermotolerant yeast that can
even tolerate temperatures as extreme as 52◦C (Nonklang et al.
2008), making it a specially interesting organism host for indus-
trial bioproduction. The first GEM for K. marxianus, iSM996, was
built in 2019 (Marcišauskas, Ji and Nielsen 2019) by using a draft
model generated with the RAVEN Toolbox (Wang et al. 2018),
aided by the KEGG database and the models iOD907 (Dias et al.
2014) and Yeast7 (Aung, Henry and Walker 2013) as sources
for the network gap-filling process. iSM996 was validated using
data on carbon and nitrogen source usage, and transcriptome
datasets were integrated in order to simulate growth under dif-
ferent temperatures (Marcišauskas, Ji and Nielsen 2019).

Lachancea kluyveri is a weak Crabtree positive yeast of indus-
trial relevance due to its capabilities for ethyl-acetate secretion,
when cultivated in aerobic batch conditions, and usage of urea
and uracil as sole nitrogen sources for growth. In 2020, the model
iPN730 (Ghosh et al. 2020) was built on a Kbase workspace (Arkin
et al. 2018) using iMM904 (Mo, Palsson and Herrgård 2009) for S.
cerevisiae as a template network and other 13 fungi models as
references for homologous reactions searches. The model was
validated by simulating cellular growth on diverse environments
(Ghosh et al. 2020).

A repository for yeast species metabolic models

All aforementioned yeasts GEMs, together with the previously
published models, were used to query the literature using the
keyword ‘yeast’ together with ‘metabolic model’, ‘GSM’, ‘GEM’
or ‘GENRE’ (genome-scale network reconstruction). In total, 43
model files for 12 different organisms were found either as part
of publications in peer-reviewed journals, supplementary files
for preprint articles in bioRxiv, or in the yeastnet model database
(https://sourceforge.net/projects/yeast) when no specific publi-
cation about their reconstruction was found (as in the case of
Yeast2, Yeast3 and Yeast4). Most of these yeast species belong

https://sourceforge.net/projects/yeast
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to the Saccharomycetales order in the Ascomycota phylum, but
some of them have been classified as part of other classes,
as Schizosaccharomyces pombe (Schizosaccharomycetes) or even
phyla, such as the Basidiomycota fungus Rhodotorula toruloides
(Table S1, Supporting Information).

As expected, S. cerevisiae is the yeast species for which the
most GEMs have been reconstructed, however multiple models
are also available for P. pastoris, Y. lipolytica and S. stipitis (Fig. 1A).
This collection of model files has been stored in a publicly avail-
able GitHub repository at https://github.com/SysBioChalmers/
YeastsModels, together with the necessary scripts for their fur-
ther analysis. The search and exploration processes for these
models pointed out several aspects that can be classified into
three main categories: accessibility, usability and interoperabil-
ity.

Model accessibility

The analyzed models in this review span more than 17 years of
active research, in which standards for file formats and shar-
ing practices in the field of systems biology have changed, mak-
ing the retrieval of their original files a time-consuming and
not automatable task. Even though the Systems Biology Markup
Language (SBML) was released in 2002 (Hucka et al. 2003), and
since then has evolved to become the standard file format for
metabolic modeling, 27% of the analyzed models were shared
in a different format in their original publications, such as .txt,
.XLS and .pdf (Fig. 1B and C), which limits scientific exchange
and reproducibility of results on different setups due to their
dependence on specific software applications (Ravikrishnan and
Raman 2015).

As not all models could be successfully obtained from their
original sources, models were also sought in other public repos-
itories such as Biomodels (Chelliah et al. 2015), Biomet (Garcia-
Albornoz et al. 2014) and openCOBRA models (Ebrahim et al. 2015;
Fig. 1D), which contain curated metabolic reconstructions not
just for yeast species but for all key phylogenetic groups (Monk,
Nogales and Palsson 2014). The models from the last decade
present in this catalogue reflect the trend of referring to unam-
biguous entries in such databases instead of uploading model
files as supplementary material to their respective journal web-
sites.

Notably, a novel methodology for model sharing and devel-
opment has been proposed by the Yeast8 project (Lu et al. 2019)
and the Memote model test suite (Lieven et al. 2020), which
with the aid of version control tools, such as Git and GitHub,
provides not just the final snapshot of a GEM but its whole
development history, offering also a web platform for open and
continuous development. These version control tools have also
been implemented for Y. lipolytica, K. marxianus and R. toruloides
GEMs (iYali4 (Kerkhoven et al. 2016), iSM996 (Marcišauskas, Ji
and Nielsen 2019), rthoGEM (Tiukova et al. 2019) and iRhto1108
(Dinh et al. 2019)), which represent 11% of the collected models
(Fig. 1E). More community-driven modeling efforts are expected
to emerge in the next years as a way to circumvent the draw-
back of having multiple independent reconstructions available
for some of these yeast species.

Model usability

In order to evaluate the complexity of the process of getting
started when utilizing a GEM, a testing pipeline was developed
using the RAVEN (Wang et al. 2018), COBRA (Heirendt et al. 2019)
and COBRApy (Ebrahim et al. 2013) toolboxes, which in a series

of sequential steps aims to obtain feasible flux balance anal-
ysis simulations (Orth, Thiele and Palsson 2010), with cellular
growth maximization as an objective function, assuming that no
prior knowledge about the model´s specific structure and identi-
fiers was available. In total, SBML files for 37 models were found
available in this study, and therefore analyzed by the mentioned
pipeline.

The first tested functionality was the importability of each
SBML model into a non-empty MATLAB structure (Table S2, Sup-
porting Information). This was satisfactorily achieved for the
majority of these models, 97%. The only non-loadable SBML file
was also tested with the COBRApy toolbox, but its import could
not be accomplished due to parsing errors. Secondly, a default
objective function was sought in the model structure by retriev-
ing any non-zero coefficient in the objective function field or so
called ‘c vector’. Of the analyzed models, 76% showed a prede-
fined objective function. Further exploration found that all of
these objectives are maximization of the growth rate, ‘biomass
exchange’ or ‘biomass formation’. Taking this into account,
traceability of a biomass pseudoreaction was also evaluated.
For doing so, the presence of the substrings ‘growth’, ‘biomass’
and ‘vgro’ was explored in the model.rxns and model.rxnNames
fields. In total 84% of the tested models contain a biomass pseu-
doreaction identifiable with the used patterns. This does not
imply that a biomass reaction is absent for the 16% remaining
models, but that the search for it would require a customized
manual procedure for each of them.

For all of these models, maximization of the found biomass
reaction was set as an objective function and all of their
exchange reactions were opened in both directions (lower and
upper bounds of −1000 and 1000 mmol/gDw h, respectively)
to check in silico cellular growth capabilities. In total, 76% of
the tested subset (28 models) showed a non-zero growth rate
when subject to these constraints. We consider these models as
available in a ready-to-use setup, as no further steps or manual
inspection was needed to simulate growth. Detailed information
for the evaluated metrics and features can be found in Table S2
(Supporting Information).

In order to assess the utilization of these models by the sci-
entific community, the total and average annual citations were
used as proxy metrics. Figure 2E shows that a larger proportion
of the cited models that were recently published (<5 years ago)
have been made available in a ready-to-use format (77%) in com-
parison to those that were published a longer time ago (62%). For
the S. cerevisiae network reconstructions, it is clear that older
models are on average more used or referred to in the scien-
tific literature. However, as time has passed more models have
become available and decays on citations for older models usu-
ally coincide with publication and rise of newer ones (Fig. 2F).
This might suggest that scientific interest shifts towards more
recent models as they accumulate the knowledge gathered by
previous reconstruction iterations.

Interoperability

As described above and repeatedly concluded (Dräger and Pals-
son 2014; Ebrahim et al. 2015; Heavner and Price 2015; Sánchez
and Nielsen 2015; Mendoza et al. 2019), the lack of identi-
fier consistency and connection to external databases for all
of the relevant components of GEMs (metabolites, reactions,
genes and cellular compartments) together with the use of
non-standardized file formats, are the main obstacles for direct
model comparison and assessment, even across reconstructions
for a single species.

https://github.com/SysBioChalmers/YeastsModels
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Figure 1. Accessibility of metabolic models for diverse yeast species. (A) Number of published models per species. (B) Number of published models per file format.
Models available in several formats are counted multiple times. ∗NA indicates model files that were not available in either their original publications or external model
repositories (C) Proportion of models provided as an SBML file in their original source or publication. (D) Proportion of yeast models stored in different public databases.

Models stored in several databases are just accounted as part of the one that uploaded them first. (E) Proportion of models with continuous development tracked on
public repositories.

In order to aid systematic model development, according to
community-agreed practices, a standardized set of metabolic
model tests (Memote) has recently been developed as an open-
source software suite (Lieven et al. 2020). Memote tests are
divided into organism- and model-specific ones, not applica-
ble to all reconstructions, and a section of independent tests,
which check for model consistency (in terms of mass and
charge balance, metabolite connectivity and stoichiometric con-
sistency), and annotation, or connection to external databases,
for metabolites, reactions, genes and SBO terms (systems biol-
ogy ontology terms; Courtot et al. 2011). This pipeline assigns a
numerical score, based on the specific model characteristics, to
each of the independent tests, relevant for comparing evolution
of particular model features across versions.

The 37 SBML model files analyzed above were furthermore
tested by the Memote suite. As this software relies on the lat-
est version of the SBML Level 3 Flux Balance Constraints pack-
age (Olivier and Bergmann 2018), not all of the models could be
tested due to parsing errors for those available in previous or
conflicting SBML versions (36%), as shown in Fig. 3A. Notewor-
thy, this is not an indicator of model quality or predictive perfor-
mance, but rather one of compliance with model format stan-
dards. Further details for all of the individual tests and com-
puted scores are available as HTML reports and also as part of
Table S2 (Supporting Information), both stored in the aforemen-
tioned GitHub repository.

The community-driven series of consensus metabolic net-
work reconstructions for S. cerevisiae has tried to overcome some
of the obstacles mentioned above by keeping consistency of
identifiers across the subsequent model refinement iterations.
However, this approach has not yet been applied to any of the
other yeast species models analyzed in this review. Such consis-
tency allows to interpret Memote standardized test results as an
evolution of the network in different regards, offering a system-
atic guidance for further development. Annotation of metabo-
lites, reactions and SBO terms has been improved throughout
the different versions of the S. cerevisiae model (Fig. 3B). Result-
ingly, Yeast8 shows the most complete degree of annotation for
all of these features, even though standardized gene identifiers
that are traceable to an external database are still missing.

CONCLUSIONS

Here we reviewed, collected and evaluated the usability of the
available GEMs for different yeasts species, offering a valuable
concentrated resource for the community. The model recollec-
tion process evidenced that not all of them are easily acces-
sible and multiple sources were needed to be queried. Even
though specialized databases for curated GEMs exist, connec-
tions between them are still missing, which might hamper large-
scale multi-species studies. We also found that GEM files have
been shared in a wide variety of file formats, making the uti-
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Figure 2. Model usability. (A) Proportion of tested SBML models successfully imported with the RAVEN, COBRA or COBRApy toolboxes (total = 37 models). (B) Proportion
of tested models with a default objective function. (C) Proportion of tested models with a biomass pseudoreaction identifiable with the substrings ‘biomass’, ‘growth’
or ‘vgro’. (D) Proportion of models yielding a non-zero growth rate according to the developed testing pipeline. (E) Citation landscape of models of yeasts metabolism.
Annual average citations vs elapsed time since publication per species, the proportion of ‘operative models’ (available in a ready-to-use format, according to the

developed testing pipeline) is indicated in the upper part for models that have been published more or less than 5 years ago. (F) Evolution of the annual citations for
models of S. cerevisiae metabolism. Citations were queried from Google scholar, accessed on September 4th, 2020.

Figure 3. Memote tests results. (A) Proportion of models for which the automated Memote test was accomplished. (B) Memote test scores for the consensus recon-

structions of the S. cerevisiae metabolic network. Scores for metabolites, reactions and SBO terms evaluate the degree of annotation for such components with external
databases identifiers that can facilitate the traceability of a component across different model versions. The Memote global score takes into account the structure,
consistency, annotation and functionality of metabolic models.

lization of some of them dependent on specific software tools.
Storing and sharing models using the latest version of the stan-
dard SBML format will facilitate scientific exchange and enable
reproducibility of results, avoiding platform dependent parsing
issues.

As part of this review, a simplified model test pipeline was
developed and run for all of the yeast GEMs with an available
SBML file. With the aim of obtaining feasible FBA simulations
with the minimal number of steps, we simulated the initial
familiarization process of a non-expert user with a new model.
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It was found that 28 of the tested models (representing 62%
of the models in this catalogue) were available in a ready-to-
use format, as in-silico growth was obtained without any further
knowledge or utilization experience on them. This result must
not be interpreted as a measurement of model quality, as bio-
logical meaningfulness or consistency of predictions were not
evaluated. More robust tests were performed with the aid of the
Memote suite. Nonetheless, this was not possible for all of the
analyzed models due to outdated file formats. For such cases,
update of their respective SBML files is recommended in order to
ensure compatibility with the latest modeling and analysis tools
and to facilitate further development. The results of the Mem-
ote standardized tests illustrated a progressive evolution con-
cerning the annotation of model components for the different
versions of the S. cerevisiae metabolic network, highlighting the
advantages of community-driven model development.

The total or partial lack of cross-references of model compo-
nents to widely used external databases is still a common trait of
the models in this catalogue. GEMs are usually described as valu-
able scientific resources not just for quantitative predictions but
as genome-scale knowledgebases of living organisms. However,
as their usability and exploration are still hindered by the lack
of format consistency, cross-references and continuous commu-
nity development, the full exploitation of their potential remains
restricted to expert users.
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