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Abstract
Genome-scale metabolic models (GEMs) are widely used to
predict phenotypes with the aid of constraint-based modeling.
In order to improve the predictive power of these models, there
have been many efforts on imposing biological constraints,
among which proteome constraints are of particular interest.
Here we describe the concept of proteome constraints and
review proteome-constrained GEMs, as well as their advan-
tages and applications. In addition, we discuss a key issue in
the field, i.e., low coverage of enzyme-specific turnover rates,
and subsequently provide a few solutions to solve it. We end
with a discussion on the trade-off between model complexity
and capability.
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Introduction
Genome-scale metabolic models (GEMs) are organism-
specific knowledge bases that account for genes, pro-
teins, and biochemical reactions, which enable system-
atic analysis of metabolism [1]. GEMs have been used to
predict phenotypes with the aid of optimization algo-
rithms when mathematically converted to constraint-
based models [2], where two types of constraints are
used, i.e., mass conservation and flux bounds. In order to

improve the predictive power, it is common to impose
Current Opinion in Systems Biology 2021, 25:50–56
additional constraints, e.g., exchange fluxes. Addition-
ally, an increasing number of efforts have focused on
adding biologically meaningful constraints, e.g., prote-
ome constraints.

The proteome constraint relies on the fact that cells
have to optimally allocate finite proteome resources to
various biological processes due to limited space, e.g.,

membrane area and cell volume. This is related to the
concept of cellular resource allocation, which means that
an increase in the requirement of proteome resources of
an enzyme or a pathway would be a trade-off for other
functions. Experimental evidence indicates that
resource re-allocation could be an effective strategy for
various organisms in response to perturbations [3], e.g.,
nutrient shift [4] and growth shift [5,6], which dem-
onstrates the biological significance of proteome con-
straints. Accordingly, this suggests that proteome
constraints could be a valuable addition to GEMs to

improve model predictions.

Here, we describe how proteome constraints can be
integrated into GEMs and review proteome-constrained
GEMs (pcGEMs) that were constructed in recent years.
Subsequently, we discuss one of the current challenges
on implementing proteome constraints, i.e., unavail-
ability of turnover rates, and provide potential strategies
to deal with the issue.
Frameworks to integrate proteome
constraints with GEMs
Over the past years, different frameworks have been
proposed to integrate proteome constraints into GEMs
with two directions, i.e., coarse-grained and fine-grained
frameworks [7]. The coarse-grained frameworks, e.g.,

MOMENT [8] and GECKO [9], impose phenomeno-
logical constraints, e.g., enzyme concentrations and ac-
tivities, on metabolic enzymes (Figure 1a), which do not
change the gene number of the original GEM. These
models are sometimes referred to as enzyme-
constrained GEMs (ecGEMs). In contrast, the fine-
grained frameworks, e.g., ETFL [10], ME-model
[11,12] and RBA [13], introduce additional biological
processes, especially protein expression processes
(Figure 1a), with very detailed descriptions, which can
expand the scope of the original GEM and results in a
self-replicating system [14]. Fine-grained pcGEMs are
www.sciencedirect.com
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therefore able to predict extra biological layers beyond
metabolism when more biological data, e.g., ribosome
efficiencies, are available [11,12].

Despite differences of the frameworks, a commonly
imposed constraint is on metabolic flux (Figure 1a),
formulated as enzyme kinetics v � kcat$E, in which v is
metabolic rate, E is the concentration of the enzyme

that catalyzes the reaction, and kcat is the turnover rate
of the enzyme. This means that each flux is constrained
by the catalytic capability of the enzyme and the avail-
ability of the enzyme. In addition to this, fine-grained
pcGEMs can constrain protein synthesis rates based
on catalytic capabilities of machinery, e.g., ribosomes,
and their abundances (Figure 1a). Figure 1b introduces
the common equations across various frameworks when
proteome constraints are used. It should be noted that
proteome constraints will be active only after imposing
upper limits on individual or total enzyme abundances

(Equation (4) in Figure 1b). The total limit can also be
imposed on enzymes that compete within shared com-
partments, e.g., membrane enzymes and mitochondrial
enzymes. The upper bound for the total enzymes can be
estimated by summing up the abundances of all
involved enzymes based on proteomics data or databases
such as the PaxDb [15]. Due to the inclusion of protein
expression processes, fine-grained pcGEMs have addi-
tional equations related to the maximal catalytic rate of
machinery in the processes (Equation (5) in Figure 1b),
e g., ribosomes and chaperons, and balance of the

components in the processes (Equation (6) in
Figure 1

Overview of proteome constraints. (a) Illustration of the integration of proteome c
The former only imposes phenomenological constraints on enzymatic reactions
metabolic reaction (blue arrow) is constrained by the turnover rate (kcat,i) and abu
arrow) is also constrained by such a type of equation. For example, the total rat
rate (krib) and the abundance (Erib) of ribosome, as well as the production rate o
Equation (1) is the flux balance constraint, in which S is stoichiometric matrix a
each flux. Equation (3) imposes phenomenological constraints on enzymatic re
zymes in certain compartments. Equation (5) imposes constraints on the reaction
machinery. Equation (6) represents the mass balance of components in protein
synthesis rate of a component (vsyn,i) is equal to degradation rate (vdeg,i) plus d
(kdeg,i) multiplies abundance of the component (Ei) while dilution rate depends
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Figure 1b), as well as a balanced equation for each
protein.
Genome-scale models integrated with
proteome constraints
Over the past decade, a number of pcGEMs have been
developed using various frameworks (Table 1). All the
models were derived from the corresponding base GEM
of the organism, including bacteria, fungi, and human
cell lines, suggesting that proteome constraints are
relatively easy to integrate when a base GEM is
available.

With the integration of proteome constraints in either a
coarse- or fine-grained formalism, model predictions
have been improved. In particular, variabilities of
simulated metabolic fluxes of pcGEMs are much lower
than those of the corresponding base GEMs
[9,11,18,19,22,23], which allows more accurate predic-
tion of fluxes [12,18,23]. Additionally, pcGEMs are
capable of predicting phenotypes that base GEMs
cannot unless some specific rates are constrained a
priori, e.g., maximal growth at unlimited conditions
[9,12], overflow metabolism in Escherichia coli [12] and

Clostridium ljungdahlii [33], the Crabtree effect in
Saccharomyces cerevisiae [9], and metabolic shift of argi-
nine catabolism in Lactococcus lactis [27].

pcGEMs can also serve as frameworks for integrated
analysis of transcriptomics and proteomics data [22,38].
onstraints into GEMs based on coarse-grained and fine-grained approaches.
while the latter adds protein expression reactions. The rate (vmet,i) of a
ndance (Emet,i) of the enzyme. The rate of a protein expression reaction (red
es of all protein synthesis reactions (Svsyn,i) are constrained by the catalytic
f all precursors, e.g., amino acids and energy. (b) Formulation of constraints.
nd v is a vector of fluxes. Equation (2) imposes lower and upper bounds on
actions. Equation (4) imposes upper limits on the total abundances of en-
rate of protein expression processes by catalytic rate and abundance of the
expression processes, e.g., enzymes and ribosomes. At a steady-state, the
ilution rate (vdil,i), in which degradation rate is equal to degradation constant
on growth rate (m) and also the abundance.

Current Opinion in Systems Biology 2021, 25:50–56
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Table 1

Published genome-scale models integrated with proteome constraints.

Model Organism Type Turnover rate of metabolic enzyme Year Ref.

ec_iYO844 Bacillus subtilis Coarse-grained (GECKO) Only 17 reactions were assigned with turnover rates, which were manually collected from the
BRENDA [16]and SABIO-RK [17] databases, and literature.

2019 [18]

ecYeast8a Saccharomyces cerevisiae Coarse-grained (GECKO) Turnover rates were automatically retrieved from the BRENDA database using the GECKO toolbox
or manually collected from the literature.

2019 [19]

ec_iML1515 Escherichia coli Coarse-grained (GECKO) Turnover rates were automatically retrieved from the BRENDA database using the GECKO toolbox
or manually collected from the SABIO-RK database and the literature.

2020 [20]

ec-iBag597 Bacillus coagulans Coarse-grained (GECKO) Turnover rates were automatically retrieved from the BRENDA database using the GECKO
toolbox.

2020 [21]

EcSco-GEM Streptomyces coelicolor Coarse-grained (GECKO) Turnover rates were automatically retrieved from the BRENDA database using the GECKO toolbox
or manually collected from the literature.

2020 [22]

Cell line-specific
ecGEMs

Homo sapiens Coarse-grained (GECKO) Turnover rates were automatically retrieved from the BRENDA database using the GECKO
toolbox.

2020 [23]

E. coli MOMENT model Escherichia coli Coarse-grained (MOMENT) Turnover rates were retrieved from the BRENDA and SABIO-RK databases. 2012 [8]
E. coli MOMENT model Escherichia coli Coarse-grained (MOMENT) Turnover rates were retrieved from the BRENDA and SABIO-RK databases. Apparent turnover

rates [24] were used as additional input.
2020 [25]

S. elongatus model Synechococcus elongatus Fine-grained Turnover rates were retrieved from the BRENDA database or manually collected from the literature. 2017 [26]
pcLactis Lactococcus lactis Fine-grained Turnover rates were automatically retrieved from the BRENDA database using the GECKO toolbox

or manually collected from the literature.
2020 [27]

E. coli model Escherichia coli Fine-grained Turnover rates were retrieved from the BRENDA and SABIO-RK databases. 2021 [28]
E. coli ETFL model Escherichia coli Fine-grained (ETFL) Turnover rates were obtained from the study [29] and SABIO-RK database. 2020 [10]
yETFL Saccharomyces cerevisiae Fine-grained (ETFL) Turnover rates were automatically retrieved from the BRENDA database using the GECKO

toolbox.
2021 [30]

T. maritima ME Thermotoga maritima Fine-grained (ME-model) Turnover rates were globally assumed to 15 reactions per second per protein complex. 2012 [11]
iJL1678b-MEb Escherichia coli Fine-grained (ME-model) Effective catalytic rates obtained from the previous study [31] were adopted, in which an iterative

workflow that integrates proteomics data with the ME-model was used to infer the effective
catalytic rates.

2018 [32]

iJL965-ME Clostridium ljungdahlii Fine-grained (ME-model) Turnover rates were globally assumed to 25 s−1. 2019 [33]
B. subtilis RBA model Bacillus subtilis Fine-grained (RBA) Apparent catalytic rates inferred using measured data [13] were adopted. 2015 [13]
E. coli RBA model Escherichia coli Fine-grained (RBA) Apparent catalytic rates inferred using measured data [34,35] were adopted. 2019 [36]

a This is the latest ecYeast model, with a previous version ecYeast7 published in connection with the development of the GECKO toolbox [9].
b This is the latest E. coli ME-model. Previous versions have been reviewed in Ref. [37].
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Additionally, pcGEMs have provided mechanistic in-
sights into cellular resource allocation under environ-
mental changes [39e41]. Furthermore, fine-grained
pcGEMs can predict more biological parameters, e.g.,
growth-condition dependent biomass composition
[11,42] and translation machinery content [11,12],
which cannot be predicted by coarse-grained pcGEMs.
The coarse-grained pcGEMs are, however, more suitable

for the prediction of metabolic engineering targets
[18,20] due to their simple formalism, which makes
simulation cheaper than for fine-grained pcGEMs [43].
Current challenge: turnover rates are
essential parameters
Despite improved predictions and applications, issues
remain with constructing and utilizing pcGEMs [37,44],
of which defining the turnover rates is key as they are
essential parameters in any type of pcGEMs but are
assigned in distinct manners (Table 1). The simplest
one is to assume a global turnover rate for all enzymes,
which is the case in the first version of the E. coli ME-
model [12], the Thermotoga maritima ME-model [11],
and even the very recent C. ljungdahlii ME-model [33].
Although these models succeed in capturing
Figure 2

Correlation analysis on log10 transformed in vivo turnover rates. (a) Dataset i
various E. coli strains [47]. The codes are available here (https://github.com/Yu
panel (a) is also available.

www.sciencedirect.com
phenotypes such as overflow metabolism, the pre-
dictions deviated from experimental measurements
[12]. This could be circumvented, as done in other
pcGEMs (Table 1), by adopting organism-specific and
enzyme-specific turnover rates, which can be retrieved
in databases such as BRENDA and SABIO-RK, and
literature. Given that the retrieved turnover rates were
mostly measured in vitro, it may be questionable

whether in vitro turnover rates can be used in pcGEMs
to simulate in vivo fluxes, but for E. coli there is a good
correlation between in vitro and in vivo enzyme kinetics
[29]. However, measured turnover rates normally only
cover a small fraction of metabolic reactions even in
well-studied organisms [45]. Here we discuss a few so-
lutions that could be potentially helpful to address this
challenge.

1. Reduced models circumvent uncertain turnover rates
When it is impossible to assign turnover rates to all
enzymes in a genome-scale, model reduction can be an
effective way to improve the coverage of high-quality
turnover rates. A recent study proposed such a
concept to reduce GEMs to only include reactions of
s from. 31 various growth conditions of E. coli [29]. (b) Dataset is from 21
-sysbio/correlate_kapp), where the information of numbered conditions in

Current Opinion in Systems Biology 2021, 25:50–56
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energy metabolism so that most of the reactions have
manually curated turnover rates, which can capture
overflow metabolism of E. coli and the Crabtree effect of
S. cerevisiae [46]. This indicates that the energy meta-
bolism is sufficient to interpret key phenotypes. The
concept of reduced models has also been applied to
investigate metabolic shifts in L. lactis, and it was found
that the shift in arginine catabolism could abide by the

resource allocation principles [27]. Therefore, we argue
that genome-scale models might have more un-
certainties and be unnecessary for specific studies where
reduced models, that focus on particular pathways or
organelles, e.g., mitochondrion, may be better suited.

2. Proteomics data enable estimation of in vivo turnover
rates on a large scale
It is possible to infer in vivo turnover rates, also called
apparent catalytic rates (kapps), from genome-wide ab-
solute proteomics and fluxomics data. These can be
calculated simply by dividing the flux through each
enzyme by the abundance of the enzyme [45]. The
in vivo turnover rates have been estimated for E. coli
under diverse growth conditions [29] and for various
E. coli strains [47]. The inclusion of genome-wide data

can improve the coverage of turnover rates of pcGEMs
and even result in condition- or strain-specific pcGEMs.
By analyzing the two datasets, we can see strong corre-
lations of the in vivo turnover rates across conditions and
strains (Figure 2). This means that the in vivo turnover
rates estimated from one condition or strain could be
applicable to others in case data is unavailable. However,
it should be noted that this has not been observed in
other organisms especially eukaryotes that have more
complex regulation. Another approach that also uses
proteomics data to infer in vivo turnover rates imple-

ments an iterative workflow within a ME-model of E. coli
by minimizing the difference between simulated and
measured proteomics data [31]. Altogether, these ap-
proaches show the possibility to estimate genome-wide
in vivo turnover rates, which can be directly adopted in
pcGEMs.

As in vivo turnover rates become available another
question arises: whether in vitro or in vivo turnover rates
outperform in pcGEM simulations? It was shown that
using maximal in vivo turnover rates predicted prote-

omics data much better [47], and we, therefore,
encourage adopting in vivo turnover rates in pcGEMs.
However, in vivo data are currently only available for
E. coli and Bacillus subtilis [13] under specific conditions
due to the limited availability of absolute proteomics
data. In most cases with the lack of in vivo enzyme ki-
netics, in vitro data have to be used in pcGEMs, which
are in principle not applicable to cases with changed
in vivo turnover rates. This is therefore a general weak-
ness of current pcGEMs.
Current Opinion in Systems Biology 2021, 25:50–56
3. Machine learning for predicting turnover rates
Although data-driven estimation of in vivo turnover rates
improves the coverage, there are still a lot of enzymes
that cannot be estimated due to coverage issues of
proteomics experiments. For example, only hundreds of

turnover rates have been estimated compared with
thousands of reactions in the model [47]. To improve
further the coverage, machine learning approaches
[48,49] have been utilized [47], which enable pre-
dictions of genome-scale turnover rates based on
enzyme biochemistry, structure, and network context
[50]. With the integration of predicted turnover rates,
pcGEMs predict unseen proteomics data with higher
precision [47], which demonstrates that machine
learning can effectively solve the coverage issue of
turnover rates in pcGEMs.
Conclusion
As more kinetic parameters become available, we
believe that an increasing number of pcGEMs will be
constructed in the future. A key direction will thus focus

on the trade-off between model complexity and pre-
dictive capability. From our overview of published
pcGEMs (Table 1), we find that coarse-grained
pcGEMs, especially GECKO models have been adop-
ted by various research groups, probably because they
are easier to build. In contrast, fine-grained pcGEMs do
not spread widely in the community, even though tool-
boxes for automated construction have been provided,
e.g., COBRAme [32] and RBApy [36]. Also, recent ef-
forts focus on the simplification of pcGEMs, including
the sMOMENT framework [25] and simplified

proteome-constrained model of E. coli [28]. Altogether,
simple models seem to be gaining the most attention.
However, fine-grained models are valuable due to the
established connections between various biological
processes, which can serve as mathematical frameworks
for cross-evaluating various types of data. Recently, a
whole-cell model of E. coli was developed [51], which
includes even more biological processes than fine-
grained pcGEM. The model is able to link heteroge-
neous data and therefore confirms that most of the data
are cross-consistent.
Conflict of interest statement
Nothing declared.

Acknowledgements
This work was supported by the European Union’s Horizon 2020 research
and innovation program under Grant Agreement No. 686070 and the Novo
Nordisk Foundation (grant no. NNF10CC1016517). The authors also
acknowledge funding from the Knut and Alice Wallenberg Foundation.

References
Papers of particular interest, published within the period of review,
have been highlighted as:
www.sciencedirect.com

www.sciencedirect.com/science/journal/24523100


Proteome-constrained models of metabolism Chen and Nielsen 55
� of special interest
�� of outstanding interest

1. Kim WJ, Kim HU, Lee SY: Current state and applications of
microbial genome-scale metabolic models. Curr Opin Struct
Biol 2017, 2:10–18.

2. Bordbar A, Monk JM, King ZA, Palsson BO: Constraint-based
models predict metabolic and associated cellular functions.
Nat Rev Genet 2014, 15:107–120.

3. Basan M: Resource allocation and metabolism: the search for
governing principles. Curr Opin Microbiol 2018, 45:77–83.

4. Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U,
Hwa T: A global resource allocation strategy governs growth
transition kinetics of Escherichia coli. Nature 2017, 551:
119–123.

5. Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N:
Principles of cellular resource allocation revealed by
condition-dependent proteome profiling. Elife 2017, 6.

6. Zav�rel T, Faizi M, Loureiro C, Poschmann G, Stühler K,
Sinetova M, Zorina A, Steuer R, �Cervený J: Quantitative insights
into the cyanobacterial cell economy. Elife 2019, 8.

7. Yang L, Yurkovich JT, King ZA, Palsson BO: Modeling the multi-
scale mechanisms of macromolecular resource allocation.
Curr Opin Microbiol 2018, 45:8–15.

8. Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T: Prediction
of microbial growth rate versus biomass yield by a metabolic
network with kinetic parameters. PLoS Comput Biol 2012, 8,
e1002575.

9. Sánchez BJ, Zhang C, Nilsson A, Lahtvee P-J, Kerkhoven EJ,
Nielsen J: Improving the phenotype predictions of a yeast
genome-scale metabolic model by incorporating enzymatic
constraints. Mol Syst Biol 2017, 13:935.

10
�

. Salvy P, Hatzimanikatis V: The ETFL formulation allows multi-
omics integration in thermodynamics-compliant metabolism
and expression models. Nat Commun 2020, 11:30.

This study proposes a formulation called ETFL to integrate expression,
thermodynamics, and growth-dependent variables into metabolism.

11. Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD,
Schrimpe-Rutledge AC, Smith RD, Adkins JN, Zengler K, et al.: In
silico method for modelling metabolism and gene product
expression at genome scale. Nat Commun 2012, 3:929.

12. O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson B:
Genome-scale models of metabolism and gene expression
extend and refine growth phenotype prediction. Mol Syst Biol
2013, 9:693.

13. Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nölker R,
Mariadassou M, Aymerich S, Hecker M, Noirot P, et al.: Quanti-
tative prediction of genome-wide resource allocation in bac-
teria. Metab Eng 2015, 32:232–243.

14. Molenaar D, van Berlo R, de Ridder D, Teusink B: Shifts in
growth strategies reflect tradeoffs in cellular economics. Mol
Syst Biol 2009, 5:323.

15. Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von
Mering C: Version 4.0 of PaxDb: protein abundance data, in-
tegrated across model organisms, tissues, and cell-lines.
Proteomics 2015, 15:3163–3168.

16. Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D:
BRENDA in 2019: a European ELIXIR core data resource.
Nucleic Acids Res 2019, 47:D542–D549.

17. Wittig U, Rey M, Weidemann A, Kania R, Müller W: SABIO-RK:
an updated resource for manually curated biochemical re-
action kinetics. Nucleic Acids Res 2018, 46:D656–D660.

18
�

. Massaiu I, Pasotti L, Sonnenschein N, Rama E, Cavaletti M,
Magni P, Calvio C, Herrgård MJ: Integration of enzymatic data
in Bacillus subtilis genome-scale metabolic model improves
phenotype predictions and enables in silico design of poly-g-
glutamic acid production strains. Microb Cell Fact 2019, 18:3.

This study presents an ecGEM of B. subtilis and shows improved
predictions compared with the base GEM. Additionally, the ecGEM
www.sciencedirect.com
enables the identification of gene deletion targets to optimize the
biosynthesis of the poly-g-glutamic acid (g-PGA) polymer.

19. Lu H, Li F, Sánchez BJ, Zhu Z, Li G, Domenzain I,
Marci�sauskas S, Anton PM, Lappa D, Lieven C, et al.:
A consensus S. cerevisiae metabolic model Yeast8 and its
ecosystem for comprehensively probing cellular metabolism.
Nat Commun 2019, 10:1–13.

20
�

. Ye C, Luo Q, Guo L, Gao C, Xu N, Zhang L, Liu L, Chen X:
Improving lysine production through construction of an
Escherichia coli enzyme-constrained model. Biotechnol
Bioeng 2020, 117:3533–3544.

This study presents an ecGEM of E. coli and uses the model to
improve lysine production.

21. Chen Y, Sun Y, Liu Z, Dong F, Li Y, Wang Y: Genome-scale
modeling for Bacillus coagulans to understand the metabolic
characteristics. Biotechnol Bioeng 2020, 117:3545–3558.

22. Sulheim S, Kumelj T, van Dissel D, Salehzadeh-Yazdi A, Du C,
van Wezel GP, Nieselt K, Almaas E, Wentzel A, Kerkhoven EJ:
Enzyme-constrained models and omics analysis of Strepto-
myces coelicolor reveal metabolic changes that enhance
heterologous production. iScience 2020, 23:101525.

23
��
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