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In this paper a number of optimal control problems for the motion of the
human upper extremity (HUE), for different types of working tasks, are
considered. The performance index used in these problems is the integral over
the duration of the working task of the sum of the square of the controlling
stimuli acting at the joints of the human arm. Under some conditions this
performance index can be used for evaluation of the muscles' energy
expenditure during human movements. A HUE is simulated by a plane
multibody system of rigid masses. This system comprises the three elements
with mass and rotatory inertia model the upper arm, the forearm and the hand.
The controlled motions of the mechanical system are described in terms of joint
angles and Cartesian coordinates of the shoulder joint, through the application
of Lagrange’s equations. The main aim of the study is an investigation of the
interaction between the gravity forces and the internal torques acting at the
joints during goal-directed extremal motions of the HUE. The analysis of the
internal torques, energetic and viscoelastic characteristics of the shoulder, the
elbow and the wrist joints for the exstremal controlled motions of the human

arm under the external load acting on the hand has been done.
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Introduction

The HUE is a complex indeterminate biomechanical system containing a
number of joints connecting the shoulder elements of the upper arm, the lower




arm and the wrist. Various models of the HUE have been developed over the
last decade [1-6]. These models were used mainly to study the kinematics of the
HUE or the static effects of muscle actions and joint forces but not the goal-
directed extreme motion of the human arm.

Presently, limited information is available about how the HUE performs

dynamically in achieving its extremal (extreme) motion, e.g. time-optimal
motion, energy-optimal motion, etc. What type of torque and force distribution
is needed for these extreme motions? Which are the basic principles of the
stiffness phenomenon of the human arm during performance of the typical
working tasks? What kind of interaction between the gravity forces and the
internal controlling stimuli during extremal goal-directed motion of the HUE is
needed? ,
This paper is concerned with an investigation within the plane
mechanical model of the HUE's controlled motion between fixed boundary
conditions and given constraints on the phase coordinates. A computational
method for mathematical modelling of the optimal control laws that govern the
reaching motion of the HUE is presented. This method is based on a mixed
Fourier and spline approximation of the variable functions and inverse
dynamics approach [7-10]. The method proposed makes it possible to satisfy the
boundary conditions and some constraints on the phase coordinates
automatically. Using the proposed method a number of optimal control
problems of the HUE have been solved. The performance index used in these
problems is the integral over the duration of the working task of the sum of the
square of controlling stimuli acting at the joints of the human arm. Under
some conditions [11] this performance index can be used for evaluation of the
muscles' energy expenditure during human movements. We have also
estimated the torques, energetic and viscoelastic characteristics of the shoulder,
the elbow and the wrist joints for the optimal controlled motion of the human
arm under the external load acting on the hand.

The Mathematical Model

A human arm is simulated by a plane multibody system of rigid masses. This
system comprises the three elements with mass and rotatory inertia model the
upper arm (link SE), the forearm (link EW) and the hand (link WH), (see Fig.1).
In addition to the weights of the links the external forces acting on the HUE
include the interaction forces between the upper arm and the human body,



which are represented by the principal vector of the reaction forces R(t) and the
principal moment p(t). There is a load acting on the hand, which is represented
by the principal vector of the load forces F(t) and principal moment p(t).

It is assumed that the control torques q(t), u(t) act at the elbow E and the
wrist W joints, respectively. These torques are treated as the internal stimuli.

Let OXYZ be a fixed rectangular Cartesian coordinate system. It's assumed that
the HUE moves in a sagittal plane OXY. The following notations are involved:
x,y are the Cartesian coordinates of the shoulder joint S; «,f,y are angles that
specify the position of the human arm links; m,,[,,r,J; are the mass, the length,
the distance to the centre of mass and the moment of inertia with respect to the
centre of mass of the upper arm (i=1), the forearm (i=2) and the hand (i=3),
respectively; R (#),R, (t) and F,(#),F(t) are the horizontal and vertical
components of the principal vectors of the reaction forces in the shoulder joint
and of the load forces acting on the hand at the point H, respectively; g is the
acceleration due to gravity. _

The motion of the mechanical system can be described in terms of joint
angles a,B,y and Cartesian coordinates x,y through the application of the

Lagrange's equations

i(ﬂ)_?_?’ oIl (1)

i\ ) T

where z =(x,y,a,f3,7) is a vector of the generalised coordinates, z° is a vector of
generalised velocities, T and ]I are the kinetic and potential energies of the
system, respectively, and G, is a vector of the generalised forces. In this paper
the following dimensionless variables and parameters will be used:

X=x/Ly=yllLt'=t/T,
p’=p/Mgl, ¢'"=q/Mgl, u'=u/Mgl

W=p/Mgl, F, =F,/Mg, F, =F,/Mg

g =gTi/l, R, =R, /Mg, R =R /Mg



where =1 +1,+1;,M=m +m,+m,,T, is the period of natural oscillation of the

straight human arm.

The Statement of the Optimal Control Problem

The human arm's working tasks can be modelled in different ways. We shall
model the working tasks of the HUE by specifying the initial and the final phase
states of the human arm, and the external load acting on the hand, i.e. we have

the following conditions:
z(O)=zo,z(1)=zr,z’(0)=z;,z°(7:)=z:, (2)

E.(8)=f,(),F, (1) =f,(#),1L(2) = o (2),2 €0, 7], 3)

where vectors zo,2,Z:,2: and functions f, (¢).f, (#),i£,(#) are given in advance; 7 is
a dimensionless time, which is equal to the ratio of the duration of the working
task to the period of the natural oscillation of the straight human arm.

As follows from analysis of the experimental data [12] the angular motions of
the upper arm, the forearm and the hand have to satisfy on te[0,7] the

following inequalities:

-n/3<5a(t) s, -w/20<B(t)—-a(t)<5n/6
-7n /18 < y(t)-P(t)<4mn /9

(4)

The possibility of the human body's musculoskeletal system is bounded.
Hence the controlled stimuli acting at the joints of the HUE have to be bounded.

We shall assume that the next inequalities are valid:

Ip(t)] < Pos|a(t)] < ggofult)] < -
IR, (£)] < Rego|R, (1)| < Ryg, 2 €10, 7.

Consider the following optimal control problem.
Problem A. The human arm's working task is given, i.e. the boundary
conditions (2) and the external load acting on the hand (3) are specified. It's
required to determine the controlled process of the HUE, i.e. the pare of vector-

functions {z(t), U(t)}, where U(t) = {Rx,Ry,p,q,u}, which satisfy the



equations of motions (1), the boundary conditions (2), the given constraints
on the phase coordinates (4), the given restrictions on the controlling

stimuli (5) and which minimises the functional

@ = [[p2(®)+ () + () | ©
0

Under some conditions [11] the functional (6) can be used for evaluation of
the muscles' energy expenditure during human movements. For this reason
the minimal value @, of functional (6) we shall call the energy expenditure
during optimal controlled motion of the HUE. However, it is not strictly the

energy of the system.

The Inverse Dynamics and Mixed Fourier-Spline Based Approach-

The necessary conditions of optimality in Problem A can be obtained by well-
known methods of optimal control theory, e.g. using the Pontryagin's
maximum pfinciple [13]. As usual the numerical solution of the optimal control
problems for multidimensional non-linear systems based on the necessary
conditions of optimality is very complicated.

Central in the proposed approach for solving Problem A is the idea that any
optimal control problem can be converted into a standard non-linear
programming problem by parameterizing each of the variable functions [14-16].
We shall assume that every generalised coordinate of the HUE z; is a variable

function which could be represented as follows [7,8,10]:
z()=P(H)+0 1), i=1234,5

P(t)= Z pt, ; 7)

0.0 = S(a, cos 24 b, sin =25y,
k=1 T T

where Ni, (i=1,2,3,4,5) are given positive integers.
Taking into account the boundary conditions (2) the coefficients of the
polynomials (7) can be determined in analytical form [8,9].



Suppose that the law of motion of the HUE, i.e. the vector-valued function
z(t) is given by formula (7). Using the equations (1) the inverse dynamics'
problem can be solved. All above mentioned makes it possible to convert the

Problem A into the parameter optimization problem:
®=F(C)= min, f(C)<0 (8)

Here the functions F,f are determined by means of (1)-(7),
C = (zi0, it » @ik, bk =1,...,Ni;i=1,2,3,4,5) is a vector of the variable parameters,
zio =zi (0), zir =z{"(7), i.e. zj5,z;; are the generalised accelerations at the initial
t=0 and the final time t€[0, 7], respectively.
In order to solve the parameter optimization problem (8) a computational
algorithm based on Rosenbrok's method [17] has been devised.

The Numerical Simulation and Analysis

Let us describe some solutions of the Problem A for the considered model of
the HUE. In the model the following values of the parameters for the HUE
links have been used: m,=2.17kg, m,=1.26kg, m,=0.53kg, [,=0.32m, [,=0.247m,
1,=0.184m, r=0.147m, r,=0.105m, r=0.079m, J,=0.014kgm?2, J,=0.007kgm?2,
J,=0.0006kgm?2. These values of the parameters for the HUE correspond to a
human body with total mass M=70kg and height of 1.7m [18].

The boundary conditions were specified by formula (2) with

a(0)=p0)=y(0)=x(0)=0, y(0)=1 ©)
a()=p(t)=y(7)=n/2, x(7)=0, y(1)=1

2 =2 == =0

The external load acting on the hand was given over the time te[0, 7] in the
following way: F,(t)=0,F(1)=-AMg,u(t)=0, where 0<A<2 is an input
parameter.

Example 1.
In this example the optimal lifting of the mass to a given height by straight

HUE is investigated. We have the following statement of the optimal control
problem. |

It's required to determine the controlling torques at the HUE joints which
transfer the human arm with given mass at its hand from initial equilibrium
vertical down state to final horizontal state subject to given constraints



an=p@)=y®, x(1)=0, y@)=1
_n/3<a<m,  OIT,st<4r, — oL07] 10)
with minimisation of the functional (6). In formulae (10) T, is the period of the
natural oscillation of the straight human arm. _

In Fig.2 the phase portraits of the obtained optimal motions of the straight
human arm are shown for different values of the parameter A, which is equal
to the ratio of the weight of the external load to the total weight of the HUE
(solid curve corresponds to A=0.5, dashed curve - A=1, asterisk solid curve -
A=1.5, asterisk dashed curve - A=2). It can be seen from Fig.2 that all obtained
optimal motions of the straight arm comprise the reverse motion of the system.

Fig.3 shows the phase portraits for the optimal lifting of the load by straight
arm in the case when the parameter A=1 and the duration of the control process
T is given in advance. These phase pictures correspond to different values of the
dimensionless time 7 (solid curve corresponds to 7=0.25, dashed curve - 7=0.5,
asterisk solid curve - 7=1, asterisk dashed curve - 7=1.25). The analysis of the
phase portraits depicted in Fig.3 shows that for different values of the parameter
7 there are different types of the optimal motion of the human arm for the
same working task. If the duration of the controlled process is less than a quarter
of the period of the natural oscillation of the arm then the obtained optimal
motion of the arm does not comprise the reverse motion (solid curve in Fig.3).
If the time of the controlled process is more than a quarter of the period of the
natural oscillation then the optimal motion of the arm is an oscillatory motion
with a number of reverse motions.

Fig.4 shows the graphic dependence of the minimal dimensionless "energy
cost” @, with respect to the duration T of the controlled process for the
obtained optimal motions of the straight human arm (solid curve). It can be
seen from Fig.4 that the energy expenditure reaches minimum when the time
of the controlled process is equal to the period of the natural oscillation of the

straight human arm.

Example 2.
In this example the optimal lifting of the mass is investigated under the

assumption that the elbow angle of the human arm can be varied during the
working task. .

The position of the hand is defined by the polar coordinates (r, ) (See Fig.5).
We have the following statement of the optimal control problem.
It's required to determine the controlling torques at the joints of the HUE which
transfer the human arm with given mass at its hand from the initial



for a given joint and a given subject [19-21]. Such approach is a cause [22] of a
great variety of the stiffness coefficients of the elbow joint obtained by the
researchers: from 0.59Nm/rad [21] to 260Nm/rad [19]. A disagreement between
experimental results has led to a different approach to the stiffness concept [19-
23].
In this paper the following approximate procedure has been used to estimate

the stiffness characteristics of the HUE during its extremal motion.

Let p,(t),q.(t),u,(t) be the control torques for the optimal motion of the HUE
at the shoulder, the elbow and the wrist joints, respectively. Consider the

following: problem.
It's required to determine the vector-parameters £, which minimise the

functional

T .
E=] {[p—(t) = W(t, &) +1[qe (1) — w(t, &I +[u.(t) — w(t, éu)lz}dt, T (1Y)
0 .

where

Con + Cinex () + Kol (2),t €[0,44]

W(t, 517) — Cz,,a.(t) + Kz,,a.'(t),t € [tlﬂ’tZH]
GCsn0u(t) + K3qai(t),t € [t29, T]

571 = {G)n’qanle,tln’tzn;j= 1’2,3},0Stlr) Sth <7

7= p-q.u)-

(12)

The vector-parameters &, that minimise the functional (11) will determine
the viscoelastic characteristics of the HUE joints corresponding to the controlled
torques p,(t),q.(t),u,(t) and optimal motion a:(?).

The graphic dependencies of the viscoelastic approximation of the controlled
torques for the obtained optimal controlled motion of the straight HUE at the
wrist, the elbow and the shoulder joints are depicted in Figures 8,9,10,
respectively. In these pictures the solid curves are the optimal torques for the
A =1,7=1; dashed curves are the solutions of the approximation problem (11)-
(12).

The analysis of the graphic dependencies in Fig. 8-10 shows that the obtained
optimal control torques of the HUE can be constructed with sufficient accuracy

by the linear viscoelastic controllers.



These controllers are specified by formulae (12) and the following data of the

dimensionless variable parameters.

For the wrist joint's controller:

C;, =0.0068,C;, =0.1856,K", = 0.0045 |
C;, =0.1832,K;, =0.0020,C;, = 0.1382 (13)
K3, =0.0039,¢, =0.39,7, =0.86

For the elbow joint's controller:

C;, =0.0398,C;, =0.258 K, = 0.0249
C;, =0.272,K;, =0.0103,C;, = 0.2756 (14)
K}, =0.0000,7;, =0.55,7;, =0.91

For the shoulder joint's controller:

Cyp =0.1140,C;, =0.0000,K}, = 0.0892
C;, =0.0000,K;, =0.0393,C;, =0.4984 (15)
K, =0.0000,7;, = 0.56,;, = 0.99

The analysis of the obtained numerical data (13)-(15) shows that the stiffness
phenomenon of the joints of the human arm for the considered optimal
controlled motion of HUE can not be described by the constant stiffness and
damping coefficients. The stiffness curves have three characteristic parts
corresponded to the time intervals: re[0,,]t€[t,,.t,,}t€[t,,,7]. This is

confirmed by the experimental results [22].

Discussions and Conclusions

In this paper the analysis of the goal-directed controlled motions of a human
arm is based on the solution of the optimal control problem for a plane three-
link mechanical system. The performance index is the integral over a duration
of the working task of the sum of the square of controlling stimuli acting at the
joints of the human arm.

To solve the non-linear optimal control problem under given boundary
conditions, restrictions on the phase coordinates and on the controlling stimuli,



a parameter optimization approach based on the special Fourier and spline
approximation of the variable functions has been proposed. Using this approach
a number of optimal control problems for the HUE have been solved.

The analysis of the obtained numerical results shows that there is a strong
interaction between the gravity forces and the internal controlling stimuli
during the goal-directed motions of the HUE. This obvious statement is
illustrated by a number of new results from the mathematical modelling of the
extremal controlled motions of the human arm lifting a load in a vertical plane.
For instance, as follows from Fig.4 (solid curve) the duration of the interaction
between the gravity forces and the internal stimuli has a great influence on the
energetic characteristics of the extremal motions of the straight HUE. The energy
expenditure reaches a minimum when the duration of the controlled process is
equal to the period of the natural oscillation of the straight human arm. We
shall call this phenomenon "energetic resonance" of the straight human arm in
the gravity field. o

The obtained results of the mathematical modelling of the extremal motions
of the considered mechanical system have demonstrated the important
influence of the internal torque actihg at the elbow joint on the quantitative and
qualitative characteristics of the goal-directed motion of the HUE. The
incorporatioﬁ into the HUE of an additional degree of freedom in the elbow
joint and the harmony of the interaction between internal stimuli acting at the
shoulder, the elbow, the wrist joints and gravity forces makes it possible to
obtain the kinematic advantage (disappear of the reverse motions of the hand,
See Fig.6,7) and to reduce the energy expenditure of the goal-directed extreme
motion of the human arm (See Fig.4, dashed curve).

In order to investigate the stiffness phenomenon of the HUE a special
af:proximate procedure is proposed. This procedure made its possible to design
the linear viscoelastic controllers of the shoulder, the elbow and the wrist joints
that govern the HUE during the extremal lifting of the load at the hand in a
vertical plane. The analysis of the designed controllers (formulae (12)-(15))
shows that within the framework of our assumptions the stiffness coefficients of
the wrist and of the elbow controllers are of the same order. The damping
coefficients of the elbow's controller are an order of magnitude larger than those
of the wrist's controller. The damping coefficients of the shoulder's controller
are approximately 3-4 times greater than those of the elbow's controller.

From the obtained numerical results it is also possible to conclude that for the
considered extremal controlled motions of the HUE the stiffness curves of the
designed controllers have three characteristic parts with different stiffness and



damping coefficients. This is an example of variability of the stiffness

characteristics of the living tissues.
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