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ARTICLE

Non-equilibrium properties of an active
nanoparticle in a harmonic potential
Falko Schmidt 1, Hana Šípová-Jungová 2, Mikael Käll 2, Alois Würger 3✉ & Giovanni Volpe 1✉

Active particles break out of thermodynamic equilibrium thanks to their directed motion,

which leads to complex and interesting behaviors in the presence of confining potentials.

When dealing with active nanoparticles, however, the overwhelming presence of rotational

diffusion hinders directed motion, leading to an increase of their effective temperature, but

otherwise masking the effects of self-propulsion. Here, we demonstrate an experimental

system where an active nanoparticle immersed in a critical solution and held in an optical

harmonic potential features far-from-equilibrium behavior beyond an increase of its effective

temperature. When increasing the laser power, we observe a cross-over from a Boltzmann

distribution to a non-equilibrium state, where the particle performs fast orbital rotations

about the beam axis. These findings are rationalized by solving the Fokker-Planck equation for

the particle’s position and orientation in terms of a moment expansion. The proposed self-

propulsion mechanism results from the particle’s non-sphericity and the lower critical point of

the solution.

https://doi.org/10.1038/s41467-021-22187-z OPEN

1 Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden. 2 Department of Physics, Chalmers University of Technology, SE-41296
Gothenburg, Sweden. 3 Laboratoire Ondes et Matière d’Aquitaine, Université de Bordeaux & CNRS, F-33405 Talence, France. ✉email: alois.wurger@u-bordeaux.fr;
giovanni.volpe@physics.gu.se

NATURE COMMUNICATIONS |         (2021) 12:1902 | https://doi.org/10.1038/s41467-021-22187-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22187-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22187-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22187-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22187-z&domain=pdf
http://orcid.org/0000-0002-2041-4572
http://orcid.org/0000-0002-2041-4572
http://orcid.org/0000-0002-2041-4572
http://orcid.org/0000-0002-2041-4572
http://orcid.org/0000-0002-2041-4572
http://orcid.org/0000-0002-5383-9120
http://orcid.org/0000-0002-5383-9120
http://orcid.org/0000-0002-5383-9120
http://orcid.org/0000-0002-5383-9120
http://orcid.org/0000-0002-5383-9120
http://orcid.org/0000-0002-1163-0345
http://orcid.org/0000-0002-1163-0345
http://orcid.org/0000-0002-1163-0345
http://orcid.org/0000-0002-1163-0345
http://orcid.org/0000-0002-1163-0345
http://orcid.org/0000-0003-1499-1960
http://orcid.org/0000-0003-1499-1960
http://orcid.org/0000-0003-1499-1960
http://orcid.org/0000-0003-1499-1960
http://orcid.org/0000-0003-1499-1960
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
mailto:alois.wurger@u-bordeaux.fr
mailto:giovanni.volpe@physics.gu.se
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Active matter is constituted by particles that can self-propel
and, therefore, feature properties and behaviors char-
acteristic of systems that are out of thermodynamic

equilibrium1. Active-matter systems range across scales going
from large robots and animals, down to single-celled organisms
and artificial active particles2–5. They have found a broad range of
applications, e.g., enhancing self-assembly, bioremediation, and
drug-delivery6,7.

The presence of confinement, boundaries, and obstacles has an
important influence on the behavior of active particles. For
example, motile bacteria form spiral patterns when confined in
circular wells8 and Janus particles reorient at walls9. Confinement
can be provided also by the presence of external potentials, e.g.,
electric, magnetic, or chemical potentials. A paradigmatic exam-
ple of a confining potential is provided by the harmonic potential,
which is widely employed to study physics, in general, and
thermodynamics, in particular. It can also provide important
insight into active-matter systems. Experimentally, the motion of
active particles in harmonic potentials has already been studied
using macroscopic toy robots walking in a parabolic potential
landscape10, as well as microscopic active colloidal particles in an
acoustic trap11, in an active bath12–14, and in an optical trap15. All
these experiments have been performed with relatively large
particles, where, in particular, active motion is mainly determined
by the particle’s self-propulsion, while the particle’s rotational
diffusion occurs on much longer time scales.

Moving down to the nanoscale, rotational diffusion acquires a
much more important role, hindering directed motion16. This is
because of the different scaling of translational and rotational dif-
fusion: considering a spherical particle of radius a, its translational
diffusion scales with its linear dimension (i.e., proportional to a−1),
while its rotational diffusion scales with its volume (i.e., propor-
tional to a−3). This limits the possibility of achieving and studying
directed active motion on the nanoscale. In fact, while several
nanomotors have been proposed and experimentally realized4,17–20,
their activity translates into a hot Brownian motion, i.e., into a
higher effective temperature when exploring a potential well21.

Here, we demonstrate an experimental system where an active
nanoparticle held in a potential well features far-from-equilibrium
behavior beyond hot Brownian motion. Specifically, we consider a
nanoparticle immersed inside a critical binary mixture and confined
by the optical potential created by an optical tweezers. At low laser
power, the nanoparticle explores the optical tweezers potential as a

hot Brownian particle, which is characterized by a Gaussian posi-
tion distribution given by the Boltzmann factor of the potential.
Increasing the laser power, we observe a transition towards a state
with a clear out-of-equilibrium signature, where the nanoparticle
moves away from the trap center acquiring a non-Gaussian position
distribution. Furthermore, the nanoparticle performs orbital rota-
tions around the trapping beam, whose direction we can statistically
control by adjusting the polarization of the beam. We provide a
theoretical model based on the solution of a Fokker-Planck equa-
tion in terms of a moment expansion, which provides strong evi-
dence that the behavior of the nanoparticle in the optical trap is a
result of its non-spherical shape. These results demonstrate the
importance of asymmetry in nanoscale active systems as a deter-
minant of their behavior in confinement. This insight provides a
crucial stepping stone towards the next generation of fast and
efficient nanomotors.

Results
Experimental setup. We investigate the dynamics and probability
distribution of gold nanoparticles trapped in a focused laser beam
(λ= 785 nm). We employ commercially available monodisperse
nanoparticles with radius a= 75 nm (Sigma Aldrich, < 12%
variability in size). Although often referred to as nanospheres,
these nanoparticles feature a crystalline structure that distin-
guishes them from an ideal sphere, as can be seen in the SEM
image in Fig. 1a.

As schematically shown in Fig. 1b, the trapping beam
propagates upwards and is focused near the top cover glass
surface of the sample cell. The nanoparticle is confined along the
vertical z-direction at distance d from the cover glass by
counteracting actions of the radiation pressure pushing it towards
the cover glass and of the short-range electrostatic repulsion
pushing it away from the glass surface22. Therefore, the
nanoparticle is effectively confined in a quasi-two-dimensional
space in the xy-plane parallel to the cover glass, where it is
trapped by an optical tweezers in a harmonic optical potential,
i.e., VðrÞ ¼ �V0e

�1
2r

2=σ2 , where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, σ is the beam waist

and where the prefactor V0= KP is proportional to the power P
by the proportionality constant K.

A schematic of the experimental setup is shown in Supple-
mentary Fig. 1. The nanoparticle motion is captured via digital
video microscopy at 719 frames per second.

Fig. 1 Nanoparticles and their driving mechanism. a SEM image of the gold nanoparticles employed in this work. From this image, it can be appreciated
how they are approximately spherical, but also feature characteristic crystalline facets. The scale bar is 150 nm. b A nanoparticle (radius a) is trapped in a
harmonic potential by a focused laser beam (magenta shading, propagating upwards in the direction of the red arrow, beam width σ). The particle is
confined in a quasi-two-dimensional space in the xy-plane near the sample upper cover glass at distance d by the competing effects of the optical scattering
force and the electrostatic repulsion by the glass. Depending on its distance from the trap center, the nanoparticle is irradiated by different intensities and,
therefore, reaches different temperatures T. If T exceeds the critical temperature Tc, a concentration gradient is locally induced around the nanoparticle
(green ring surrounding the particle), thereby leading to a drift velocity away from the trap’s center.
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Non-equilibrium state. We start by trapping the particle in water
to establish a baseline in a standard medium23. The trajectories
and the resulting probability density histograms at laser power
P= 4.4 and 7.3 mW are shown in Fig. 2a. The data are fitted with

the Boltzmann probability density ρeq / exp � V
kBT

� �
. The particle

is confined at the center of the beam, where the potential may be
replaced by its harmonic approximation Vh=V0r2/σ2. Indeed,
the data in Fig. 2a are very well described by a Gaussian profile.
Since the stiffness of the potential increases with laser power, the
distribution function is narrower at larger P; consequently, an
even narrower distribution function is expected at larger laser
powers (e.g., P= 10.16 mW).

We then study a nanoparticle in a near-critical mixture of
water and 2,6-lutidine at a critical lutidine mass fraction cc=
0.286 with a lower critical point at the temperature Tc ≈ 34 °C (see
phase diagram in Supplementary Fig. 2)24. At a temperature T
below Tc the mixture is homogeneous and behaves as a standard
viscous fluid (just like water). When T approaches Tc density
fluctuations emerge, leading to water-rich and lutidin-rich
regions. Finally, when T exceeds Tc the solution demixes into
water-rich and lutidin-rich phases.

Absorption of part of the laser light of the trapping beam heats
the nanoparticle and results in a temperature profile in its
vicinity. If the surface temperature exceeds Tc, a critical droplet
with a modified water content Φ(r) forms around the
nanoparticle. Its excess surface temperature is proportional to
the laser power. By choosing the critical temperature Tc, attained
at the critical power Pc, as a reference point, the excess
temperature can be written as

TðrÞ � Tc ¼
a2β
3κ

PgðrÞ � Pcð Þ; ð1Þ

with the beam profile gðrÞ ¼ e�
r2

2σ2 , the absorption coefficient β,
the heat conductivity of the liquid κ, the laser power P, and the
critical value Pc corresponding to the laser power at which Tc is
attained. For a nanoparticle of a= 75 nm, the increase in surface
temperature is about 6 KmW−1, when the particle is in the
highest-intensity region.

In Fig. 2b, we show the probability densities for a nanoparticle
trapped at three different laser powers in a near-critical mixture
kept at T0= 3 °C via a heat exchanger coupled to a water bath
(i.e., about 30 K below Tc). At low laser power (P= 4.36 mW,
T= 31 °C < Tc), the nanoparticle position distribution is qualita-
tively similar to that of the nanoparticle in water (Fig. 2a) and
features only very small deviations from a Gaussian profile. As we
raise the laser power (P= 7.25 mW, T= 45 °C > Tc), the nano-
particle position distribution acquires a distinctively non-
Gaussian shape. Finally, as we raise the laser power even further
(P= 10.16 mW, T= 63 °C≫ Tc), the nanoparticle position dis-
tribution develops a peak at a finite radial distance r from the trap
center, which is also observed in the form of a ring in the
histogram of the trajectories. These non-Gaussian distributions
cannot be ascribed to a harmonic potential at higher effective
distribution and are clear signatures of the out-of-equilibrium
nature of this system.

Self-propulsion of near-spherical particles. Figure 3 shows the
velocity profile v(r) as a function of the distance from the beam
axis, as well as its radial and azimuthal components vr and vθ. We
have determined the local average velocity of the particle by
dividing the distance between two subsequent positions by the
time separation Δt= 1.39 ms. This local average velocity consists
of an active contribution u(r) depending on the beam intensity
and thus on position, and a diffusive contribution vD that
accounts for Brownian motion as well as other random motion
components,

vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðrÞ2 þ v2D

q
: ð2Þ

With increasing power, the particle’s surface temperature
exceeds the lower critical point Tc of water-2,6-lutidine (see Sup-
plementary Information), causing a local modification of the
composition according to the spinodal line of the phase diagram.
Then, the particle is surrounded by a droplet of modified water
content, ϕðrÞ � ϕc / ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðrÞ � Tc

p
, where the sign of the excess

term depends on the wetting properties of the surface. Within
this droplet, isotherms correspond to iso-composition surfaces.

Fig. 2 Nanoparticle trajectories and probability density distributions. Trajectories (top) and probability density ρ(r) (bottom) for a nanoparticle with
radius a= 75 nm held by an optical tweezers, a in water at powers P= 4.36 (gray), and 7.25mW (black), and, b in a critical mixture of water-2,6-lutidine at
P= 4.36 (blue), 7.25 (yellow), and 10.16 mW (orange). Sample trajectories in the xy-plane are shown for 200ms, while the background shading indicates
the counts (darker colors indicate higher counts); the scalebar is 1 μm. The probability densities ρ(r) are calculated from data acquired for 1 s. a In water, the
data are well described by the Boltzmann distribution ρeqðrÞ / exp � V

kBT

� �
(solid lines), which becomes narrower as the laser power P and, therefore, the

optical trap potential depth increase. b In water-2,6-lutidine, the particle features an out-of-equilibrium distribution, which broadens with increasing laser
power. Here, the solid lines are given by Eq. (5). All data are taken at environment temperature T0= 3 °C, i.e.,≈ 30 K below Tc. Due to absorption, the
particle’s surface temperature increases by 6 KmW−1 such that, at P= 7.25 and 10.16 mW, T exceeds Tc and the solution locally demixes. The radial
distance has been normalized by the beam waist σ= 340 nm.
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For non-uniformly heated particles, the resulting composition
gradient parallel to the surface, ∇∥ϕ, drives self-diffusiophoresis.
Indeed, active motion above Tc has been reported for both laser-
heated Janus particles25,26 and silica colloids with iron-oxide
inclusions15. This mechanism was worked out in detail by
analytical theory27 and simulations28.

Yet, the usual mechanism of self-diffusiophoresis does not
apply to homogeneous colloidal spheres, since their symmetry
does not allow for a composition gradient along the surface.
Therefore, we propose self-propulsion that arises from the non-
spherical shape of our nanoparticles, visible in Fig. 1a. The large
thermal conductivity of gold imposes an isothermal surface, yet
the temperature gradient varies with the local curvature. Thus
above the critical point, the composition ϕ(r) varies at a constant
distance along the particle surface, and the parallel component of
the gradient ∇∥ϕ induces creep flow and self-propulsion of the
particle. This is schematically shown in Fig. 4, which shows
the isothermals (gray lines) surrounding an asymmetric nano-
particle. Moving at a finite distance away from the surface close to
an edge (black dashed line, Fig. 4c), multiple isothermals are
crossed, indicating a tangential concentration gradient respon-
sible for the nanoparticle motion. For a spherical particle (black
dashed line, Fig. 4c) isolines follow the shape of the particle and
no tangential concentration gradient is produced. Similar
observations have been made for a Leidenfrost ratchet29.

Starting from an axisymmetric profile R(θ)= a(1+ χ(θ)) with
χ ¼ ∑nαnPnðcos θÞ, with the polar angle θ and Legendre
polynomials Pn, and evaluating the temperature profile in the
vicinity of the isothermal surface of a gold particle, we obtain self-
diffusiophoresis at a velocity u / α2 ¼ ∑1

n¼2
3nþ2
2nþ3 αnαnþ1. Thus,

motion arises from the superposition of odd and even Fourier
components of the particle shape. The series starts at n= 2, since
the dipolar term n= 1 corresponds to an irrelevant displacement.
For our fits, we assume that less than eight modes contribute with
αn ~ 0.1 and thus find α2 ~ a few percent. For later convenience,
we rewrite the self-propulsion velocity as

uðrÞ ¼ u0
PgðrÞ�Pc
P�Pc

for r < rc;

0 for r > rc;

(
ð3Þ

with u0= C(P− Pc). Note that the velocity depends on the
particle position with respect to the beam axis. At a critical
distance rc ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln P=Pc

p
(rc= 570 nm with P= 10.16 mW and

Pc= 2.5 mW), the local beam intensity is identical to the critical
value Pc, and the velocity vanishes. For r > rc, the particle is
passive. With C= 12.7 μm s−1mW−1 (in qualitative accord with
system parameters, see SI), this expression agrees rather well with
the observed dependencies on position r and laser power P (solid
lines in Fig. 3a).

As alternative mechanisms, we have also evaluated (and
excluded) diffusiophoresis due to the intensity gradient of the
laser beam, and spontaneous symmetry breaking due to a small
molecular Péclet number. Spontaneous symmetry breaking is
excluded since it works only if activity and mobility, as defined in
ref. 30, carry opposite signs. This condition can be met by
chemically active particles producing a solute that is repelled from
the surface, but not by phase separation above a lower critical
point because the particle motion tends to diminish the
composition gradient along its surface, independently of the
wetting properties, while the spontaneous symmetry breaking

Fig. 3 Particle velocity dependence on radial position and laser power. a The particle’s total velocity v follows the intensity profile of the laser
beam indicated by solid lines given by Eq. (2), where u0= 23.7, 60.5 and 131.6 μm s−1 for P= 4.36 (blue, square markers), 7.25 (yellow, x markers), and
10.16 mW (orange, triangle markers), respectively, taken from fits of ρ(r) in Fig. 2. Similarly, b the absolute radial velocity ∣vr∣ and, c the absolute azimuthal
velocity ∣vθ∣ follow the intensity profile of the beam. Data is taken from a single 1-s trajectory sampled at 719 Hz. Each data point is an average over
the times the particle passes through that value of r/σ. Error bars are the standard error of the mean.

Fig. 4 Isothermals around a non-spherical particle. a Composition profile ϕ(r) in the vicinity of an axisymmetric particle with a surface temperature above
the critical value Tc of water-2,6-lutidine. ϕ is constant at the isothermal surface and decreases with distance; the dark blue area indicates the range where
T ≤ Tc and where the composition takes the bulk value ϕc. The gray lines in the critical droplet (T ≥ Tc) indicate iso-compositon surfaces. b The curvature of
the top of the particle is larger than that of its bottom; as a consequence, ϕ varies more rapidly close to the top and the iso-composition lines are denser.
The dashed line, at a constant distance from the particle surface, crosses iso-composition lines; thus there is a composition gradient ∇∥ϕ parallel to the
surface, which induces a diffusio-osmotic creep velocity and results in self-propulsion of the particle. Our detailed analysis relates the particle velocity to
the Fourier series of the particle shape R(θ). c Instead, the bottom of the particle is almost spherical with roughly constant curvature and zero creep
velocity.
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would require that the moving particle enhances the gradient in
the interaction layer. As to motion driven by the intensity
gradient, it is not compatible with the fast orbital motion shown
by the trajectories in Fig. 2, nor with the fast motion at the beam
center where the gradient vanishes. Details are given in the SI.

Finally, we briefly discuss the anisotropy of the velocity data
shown in Figs. 3b and c (∣vθ∣ > vr), which is also visible in the
trajectories in Fig. 2b. Qualitatively, this is accounted for by the
quadrupolar order parameter Q (see methods, Eq. (23)).
Retaining only the dominant term results in the estimate

v2r � v2θ �
u4

σ2D2
r

V
kBT

: ð4Þ

Because V < 0, we find that the mean square of the tangential
velocity component exceeds that of the radial one, in agreement
with the experiment. Such a velocity anisotropy has been
observed previously for a walking robot in a parabolic dish10.
This effect is readily understood by noting that the radial velocity
scale is given by the slow uphill motion, whereas in tangential
direction the particle moves at its full speed.

Probability density and polarization. The observed probability
densities in water–2,6-lutidine shown in Fig. 2b cannot be described
by the Boltzmann distribution. In order to relate these deviations to
the particle’s activity, we have investigated the dynamical behavior
in terms of the steady-state distribution Ψ(r, n), accounting for the
gradient diffusion−D∇Ψ with Einstein coefficient D, the optical
tweezers force F=−∇V, and the self-propulsion velocity u= un.
Since the direction of the latter is given by the nanoparticle axis n,
the distribution function Ψ(r, n) depends both on the nanoparticle
position r and on its orientation n, and the Fokker–Planck equation
(see methods, Eq. (13)) accounts for rotational diffusion, with
coefficient Dr, and eventually for spinning motion due to an
external torque.

Following previous work on the dynamics of Janus particles31,32,
we resort to a moment expansion Ψ= ρ+ n ⋅ p+ . . . , where the
probability density ρ(r)= 〈Ψ〉n and the polarization density p(r)=
〈nΨ〉n are orientational averages with respect to n. When
truncating higher-order terms, one readily integrates the steady
state

ρðrÞ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ uðrÞ2

q exp � V
kBT

ΦðrÞ
� �

; ð5Þ

where we have defined D ¼ ffiffiffiffiffiffiffiffiffiffiffi
6DrD

p
and

ΦðrÞ ¼ D
uc þ u

arctan
D2 � ucu
Dðuc þ uÞ ; ð6Þ

with the shorthand notation uc= CPc. At the critical radius rc, the
velocity u vanishes, and the probability density ρ(r) smoothly
reduces to the Boltzmann distribution ρeq / e�V=kBT . With the
relation for the bulk diffusion coefficients, Dr ¼ 3

4D=a
2, the ratio

u=D reduces to the Péclet number Pe ¼ ffiffiffi
2

p
=3ua=D, which still

depends on position and vanishes at r= rc. The solid curves in
Fig. 2b are calculated using Eq. (5), where the optical tweezers
potential V0=KP is parameterized by K= 2.97 × 10−17 JW−1

(corresponding to about 7 kBTc per 1mW), whereas the solid
curves in Fig. 3a are calculated using Eq. (2) where the velocity is
parameterized by C and Pc. The fit curves describe the non-
equilibrium behavior rather well, and account for the broadening
of the distribution and for the bump emerging at r ≈ σ.

Such fits have been done for three different particles at five
values of the laser power P. Their propulsion speed u0, plotted
in Fig. 5, agrees well with Eq. (3). The three particles have
the same radius a and absorption coefficient β; accordingly, they

experience the same optical tweezers potential and reach the
critical point at the same laser power Pc (obtained from the fit of
u0 using Eq. (5)). Not surprisingly, the values of the slope C differ
significantly, which can be related to the fact that C is
proportional to the nonsphericity parameter α2, which varies
from one particle to another (see Fig. 1a).

The quantityD has been calculated with a diffusion coefficient D
fitted at low power P= 4.36mW and on time scales larger than the
inertial regime (where τ≪ 1 μs) of the trajectory mean-squared
displacement between 1–20ms which we found to be linear (see
Supplementary Fig. 4). Its value (D= 1.09 μm2 s−1) is smaller than
the bulk value in water–2,6-lutidine (D0= 2.3 μm2s−1, with
viscosities taken from ref. 24). Similarly, the rotational diffusion
coefficient used for the fitted curves of Figs. 2 and 5 is smaller than
the theoretical value. There are two physical mechanisms which are
probably at the origin of this discrepancy: hydrodynamic coupling
close to a solid boundary and the confining effect of the critical
droplet surrounding an active particle heated above Tc. The former
reduces the drag coefficient of a sphere moving parallel to a wall33.
For the latter, the critical droplet formed locally around the particle
does not follow its motion but lags behind thus slowing down the
particle’s diffusion. A more detailed discussion is found below.

Controlling the direction of orbital rotation. Transfer of
angular momentum from circularly polarized laser light to plas-
monic nanoparticles is an efficient means for fueling nanoscopic
rotary motors at high-spin rates34. It has already been shown
theoretically and experimentally verified that, even in a tightly
focused Gaussian beam with circular polarization, spin-to-orbital
light momentum conversion occurs and can lead to effects such
as orbit splitting35–37. Here, we show that the spinning motion of
an active particle results in orbital trajectories whose preferred
handedness is imposed by the polarization of the beam. These
measurements are taken with gold nanoparticles of a= 100 nm,
at P= 1 mW, and at room temperature, thus leading to an
increase in surface temperature of about 40 K, corresponding to
30 K above Tc.

We have investigated the azimuthal component of the velocity
depending on the polarization of the beam (Fig. 6a–c). For

Fig. 5 Propulsion velocity as a function of the laser power. The values of
the propulsion velocity u0 as a function of the laser power P are obtained
from fits like those shown in Fig. 2b, using Eq. (5). The solid line is given by
u0= C(P− Pc), with Pc= 2.5 mW and C= 39.5, 30.9, and 54.7 ms−1 mW−1

for particles 1 (yellow), 2 (red), and 3 (blue), respectively. The data of
Figs. 2 and 3 are for particle 1.
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linearly polarized light, vθ is approximately zero, as expected
(Fig. 6b). For circularly polarized light, however, we find vθ to be
different from zero: left-handed polarization results in a positive
azimuthal velocity, corresponding to anti-clockwise rotation
(Fig. 6a); and right-handed polarization, to negative vθ corre-
sponding to clockwise rotation (Fig. 6c).

This effect can be explained as follows: Due to spin angular
momentum transfer from the laser light, the particle spins about
its axis at frequency Ω (Fig. 6d–f). The particle’s spinning motion
under circular polarization is recorded via a photomultiplier. By
placing a linear polarizer in front of the photomultiplier, the
intensity of the scattered light changes with its orientation due to
its non-sphericity. An active particle in a trap self-propels most of
the time in outward direction, as rationalized by the finite
polarization density p=−∇ (uρ)/Dr (Eq. (22)); the spinning
motion then turns the particle axis in the azimuthal direction,
_p ¼ Ω ´ p. Solving the corresponding Fokker-Planck equation
(see methods, Eq. (13)) with a finite spinning frequency, we find
the azimuthal polarization pθ given in Eq. (22) and the velocity

vθ ¼ � Ωu2

6Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
r þΩ2

p F
kBT

: ð7Þ

Because of the inward optical tweezers force, F < 0, the orbital
trajectory has the same handedness as the polarized light. The
azimuthal velocity is expected to vary with the third power of the
beam intensity, vθ / PðP � PcÞ2, to vanish in the center, and to
reach its maximum value at r ≈ σ. Qualitatively, this expression
reproduces the data of Fig. 6 with parameters corresponding to
those used in Figs. 2–5. Although spin-to-orbital light momen-
tum conversion can in principle induce similar results, we expect
this effect to be comparably small. The spinning frequency Ω was
obtained from fitting the scattering autocorrelation function in
Fig. 6d–f with CðτÞ ¼ I20 þ 0:5I21 expð�τ=τ0Þ cosð4πΩτÞ, where I0
is the average intensity, I1 the intensity fluctuation amplitude, and
τ0 the decay time34. Surprisingly, we find that the particle is
spinning under circular polarization at a frequency of about 3 Hz
with a decay time of about τ0= 0.4 s and therefore differs by 3
orders of magnitude compared to standard experiments in
water38. Similarly, as for its reduced diffusion constant mentioned
above, we expect that hydrodynamic and boundary interactions
are possible causes for its much-reduced spinning motion (more
details in the discussion). Regarding the much lower values of the
laser power P and its critical value Pc, note that the nanoparticles
with a= 100 nm absorb light about ten times more than those
with a= 75 nm, thus leading to comparable effects at a ten times
weaker power. The optical tweezers potential parameter K is
proportional to both absorbed power and particle volume.

Discussion
The probability density ρ(r) is obtained from the stationary
Fokker-Planck equation (see methods, Eq. (13)). It turns out
instructive to rewrite the intermediate expression (see methods,
Eq. (24)) as

∇ln ρ ¼ �∇ Vþ 1
2H

� �
kBTþH

; ð8Þ

with H ¼ kBTu
2=D2. For passive particles one has H= 0, and

readily recovers the Boltzmann distribution e�V=kBT . The
denominator of Eq. (8) may be viewed as an effective tempera-
ture. It also appears in the effective diffusion coefficient of active
particles, Deff= (kBT+H)/γ39, and the quantity ρH corresponds
to the swimming pressure of active particles40. Assuming a
constant self-propulsion velocity and discarding kBT, one readily
recovers the probability density ρ∝ e−V/H obtained previously for
particles in an acoustic-wave trap11. From our moment expan-
sion, however, we obtain an additional term 1

2H in the denomi-
nator of Eq. (8), which upon integration results in the intricate
stationary state in Eq. (5). Since the velocity profile u(r) roughly
follows the laser intensity, V þ 1

2H forms a Mexican hat potential
which is less attractive than the bare optical tweezers potential
and takes its minimum not at the beam axis but at a finite dis-
tance of the order rc.

Using the experimental mean-square displacement at short
times (Supplementary Fig. 4) and the measured average velocity
(Fig. 3), we obtain a value for the diffusion coefficient D=
1.09 μm2 s−1. These numbers are smaller than the theoretical bulk
Stokes-Einstein coefficient in water–2,6-lutidine D0= 2.3 μm2s−1

with the viscosity taken from ref. 24. Similarly, the rotational
diffusion coefficient used for the fit curves of Figs. 2 and 5 is
smaller than the theoretical value Dr= kBT/(8πηa3). Likewise, we
would expect a spinning frequency Ω on the order of kHz and a
decay constant τ0 on the order of ms for particles of similar size in
water38.

Two physical mechanism could be at the origin of this dis-
crepancy: hydrodynamic coupling close to a solid boundary,
and the confining effect of the critical droplet surrounding an
active particle. First, hydrodynamic interactions increase the drag

Fig. 6 Controlling the direction of orbital rotation through light
polarization. The particle orbital rotation is biased toward the direction of
the polarization of the trapping beam (laser power P= 1 mW, nanoparticle
radius a= 100 nm). a–c Experimental values (red symbols) and theoretical
fits (black lines) of the azimuthal velocity vθ: a for left-handed circular
polarization, vθ > 0 showing counter-clockwise orbital rotation of the
particle; b for linear polarization (see also Figs. 1 and 2), vθ≈ 0 showing no
preferred direction of rotation; and, c for right-handed circular polarization,
vθ < 0 showing clockwise orbital rotation. Error bars are the standard error
of the mean. The solid line is calculated from Eq. (7) with Ω the same as in
a–c, and taking Dr= 70 s−1, K= 1.27 × 10−16 JW−1 (corresponding to about
30 kBTc per 1 mW), u0= 120 μm s−1, and Pc= 0.2 mW. d–f Experimental
(red lines) and theoretical fits (black lines) of the scattering autocorrelation
C(τ) as a function of lag time τ. The absolute value of the spinning
frequency Ω is d ∣Ω∣= 2.7 Hz for left-handed circular polarization, e ∣Ω∣= 0
Hz for linear polarization, and f ∣Ω∣= 2.7 Hz for right-handed circular
polarization. The absolute value of the decay constant is d τ0= 0.37 s for
left-handed circular polarization, e τ0= 0.11 s for linear polarization, and
f τ0= 0.41 s for right-handed circular polarization.
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coefficient of a sphere moving parallel to a wall33, and similarly for
rotational diffusion. In our experiment, the radiation pressure of
the laser beam pushes the particle towards the glass boundary
(Fig. 1), where the balance with electrostatic repulsion results in a
stable vertical position close to the cover glass. This reduced
separation distance has been experimentally measured for particles
of similar size in ref. 22 and amounts to about 110 nm for a laser
power of P= 4mW, which leads to a decrease of the diffusion
constant D of the particle. Second, with velocities u ~ 100 μm s−1

and a molecular diffusion coefficient of Dm ~ 10 μm2s−1, the
molecular Péclet number ua/Dm is of the order of unity. This
means that the local composition of the critical cloud, corre-
sponding to the spinodal line of water–2,6-lutidine, does not follow
the particle instantaneously but lags behind. This non-linear cou-
pling may accelerate or slow down the particle30; for diffusio-
phoresis due to spinodal demixing, the velocity is always reduced.
By the same token, the critical droplet does not follow instanta-
neously the particle’s Brownian motion; the resulting composition
gradient along the particle surface induces an opposite flow that
drives the particle back and slows down diffusion. Third, the
thermal conductivity contrast between the liquid and the silica
wall, κL=κW � 1

2, enhances the temperature gradient between
particle and wall, resulting in a normal component of self-
propulsion which could affect the diffusion coefficient41–43.

For laser-heated gold nanoparticles in a near-critical mixture,
there are two mechanisms for self-generated motion: At tem-
peratures below the lower critical solution point (i.e., T < Tc), we
consider thermophoresis, whereas in the opposite case (i.e., T >
Tc), we expect diffusiophoresis to be dominant27 (close to the
lower critical point, a small change in temperature results in a
large change of the spinodal composition; as a consequence, the
composition gradient along the particle surface exceeds the
underlying temperature gradient, thus giving rise to the surpris-
ingly fast diffusiophoresis observed in various experiments25.)

For spherical particles in a uniform laser field, the temperature
T(r) and the composition ϕ(r) are radially symmetric. However,
active motion requires some symmetry breaking, which can in
principle happen as a consequence of several possible mechan-
isms. First, spontaneous symmetry breaking due to a large mole-
cular Péclet number30 does not apply to the case of self-generated
composition gradients, because Péclet numbers are too small and
because composition fluctuations are not enhanced but reduced by
the particle’s motion. Second, the non-uniform intensity of the
laser beam has little effect on gold nanoparticles, since their high
thermal conductivity results in an almost isothermal surface; also,
the observed velocity profile (Fig. 3) is not compatible with this
mechanism because the gradient of u vanishes at the center of the
beam where in experiments we observe the highest value of v;
moreover, the gradient of u is only along the radial direction, but
equally, fast motion is observed along the tangential component.
Third, the non-spherical particle shape44, on the contrary, turns
out to be the mechanism driving our nanoparticles, as the SEM
image of Fig. 1 shows a strong asphericity, and an estimate of the
underlying parameters provides velocities that correspond to our
experimental observations.

We have demonstrated that a nanoparticle in an optical
potential in a near-critical mixture provides a model for a nano-
scopic active matter system under confinement. Our system shows
a strong dependence on the external confinement allowing us to
control the transition from passive to active motion by tuning
laser power as well as to change the orbital motion via light
polarization. Our theoretical framework in comparison with our
experimental observations, provides strong arguments for a pro-
pulsion mechanism grounded on the nanoparticle non-sphericity
mechanism: The numerical estimate for u is of the right order and
magnitude, and u accounts for the three observations: (i) rapid

motion in the center of the trap, (ii) rapid motion in both inward
and outward direction, and (iii) rapid motion in azimuthal
direction. The importance of systematic asymmetry provides
insight for the future design of nanomotors. Follow-up studies
could further investigate the spin-orbit coupling in combination
with other types of irregular nanoparticles. In particular, nanorods
due to their high aspect ratio are promising candidates char-
acterized by much higher spin rates under circular polarization34,
improving efficiency and rotation speeds of future systems.

Methods
Experimental details. We consider a suspension of gold nanoparticles (radius a=
75 ± 9 nm, Sigma Aldrich) in a critical mixture of water and 2,6-lutidine at critical
lutidine mass fraction cc= 0.286 with a lower critical point at a temperature of Tc ≈
34 °C24 (see Supplementary Fig. 2). As shown by their SEM image in Fig. 1a, these
nanoparticles possess clear crystalline faces determining their non-sphericity. The
suspension is confined in a sample chamber between a microscopic slide and a
coverslip with an approximate height of 100 μm.

A schematic of the experimental setup is shown in Supplementary Fig. 1.
The nanoparticle’s translational motion is captured via digital video microscopy at
719 Hz, whereas its spin rotation under spherical polarization is recorded by a
photomultiplier (by placing a linear polarizer in front of the photomultiplier, the
intensity of the scattered light changes with the particle’s orientation due to its non-
sphericity). An example image and trajectory of the particle is shown in
Supplementary Fig. 3. The corresponding scattering intensity autocorrelation
reveals oscillations with spinning frequency Ω depending on the polarization of the
beam, as shown in Fig. 6d–f.

Fokker–Planck equation. In this section, we develop the theory for the non-
equilibrium behavior observed for hot gold nanoparticles in an optical tweezers
potential. We consider an active particle subject to the force F=−∇ V deriving
from the optical tweezers potential

V ¼ �gV0; g ¼ e�
r2

2σ2 ð9Þ

with the depth V0, the Gaussian beam profile g and waist σ. Optical forces push the
particle towards the solid boundary, strongly reducing the motion along the z-
direction. Thus, we have discarded the vertical coordinate z, and treat the motion
in the xy-plane only.

The equilibrium density of passive particles is determined from the steady-state
condition, where motion induced by the optical tweezers force and gradient
diffusion cancel each other,

�D∇ρeq þ γ�1Fρeq ¼ 0 ð10Þ
where γ is Stokes’ friction coefficient and D= kBT/γ the diffusion coefficient. With
Eq. (9) this is readily integrated, resulting in the Boltzmann distribution

ρeq / e�VðrÞ=kBT : ð11Þ
This result is independent of the details of the friction coefficient. Note that ρ0
cannot be normalized, since the potential takes a finite value as r→∞: a trapped
particle will eventually escape after a finite residence time. As an important feature,
ρeq does not depend on the viscosity, since the friction factor γ is a common factor
of both terms in the steady-state condition and thus disappears. In particular, the
distribution remains valid close to a solid boundary where diffusion is slowed down
by hydrodynamic interactions.

The motion of an active particle in a trap arises from the gradient diffusion, the
optical tweezers force F, and the self-propulsion velocity u= un. The direction of
the latter is given by the orientation of the particle axis n. The probability current
reads accordingly

J ¼ �D∇Ψþ γ�1FΨþ uΨ: ð12Þ
The probability distribution Ψ(r, n) depends on the particle position r and on the
orientation of its axis n, and satisfies the Fokker-Planck equation

∂tΨþ ∇ � JþR � ðΩ� DrRÞΨ ¼ 0; ð13Þ
where the last term accounts for rotational diffusion about the particle axis, with
the rate constant Dr and the operator R ¼ n ´∇n , and for the angular velocity Ω
= T/γR imposed by an applied torque T. Following previous work on the dynamics
of Janus particles31,32, we resort to a moment expansion

Ψðr; nÞ ¼ ρðrÞ þ n � pðrÞ þQ : nn� 1
3

� �
þ ::: ð14Þ

with the probability density ρ= 〈Ψ〉n, the polarization density p= 〈nΨ〉n, and the
quadrupolar order parameter Q ¼ hðnn� 1

3ÞΨin, where the orientational average is
defined as 〈. . . 〉n= (4π)−1∫dn(. . . ).
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The continuity relation for the former is given by

∂tρþ ∇ � J ¼ 0; ð15Þ
with the current

J ¼ �D∇ρþ γ�1Fρþ up: ð16Þ
In order to close these equations for ρ, we need to evaluate higher moments and to
truncate this hierarchy at some order. The polarization density satisfies the
continuity relation

∂tpþ ∇ � J p þ 2Drp� Ω ´ p ¼ 0; ð17Þ
with the second-rank tensor polarization current

J p ¼ �D∇pþ uQþ uρ
3
þ 1

γ
Fp: ð18Þ

The quadrupolar order parameter Q is calculated for zero external torque. Putting
Ω= 0, we have

∂tQþ ∇ � J Q þ 6DrQ ¼ 0; ð19Þ
with the corresponding third-rank tensor current

J Q ¼ �D∇Qþ 2
3
upþ 1

γ
FQþ :::; ð20Þ

where we have discarded both the octupolar order parameter and the product Qp.
Note that the advection term uρ in Eq. (18) generates the polarization density p,

and the advection up in Eq. (20) generates the quadrupolar order parameter Q.
For small particles, rotational diffusion exceeds the derivatives of terms involving p
and Q.

Accordingly, we discard the current J p except for the source term uρ, and thus
find

2Drp� Ω ´ p ¼ � 1
3
∇ðuρÞ: ð21Þ

Noting that∇ (uρ) has a radial component only and that Ω is perpendicular on the
plane of motion (parameterized by r, and θ), we obtain the polarization density

p ¼ � ∂rðuρÞ
6Dr

Drer þΩeθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
r þΩ2

p : ð22Þ

Thus, rotational diffusion favors polarization in radial direction, whereas an
external spin frequency Ω turns the polarization vector in azimuthal direction. By
the same token, we keep in J Q the polarization advection up only, and obtain

Q ¼ �∇ðupÞ
9Dr

: ð23Þ
The main approximation of the above hierarchy may be viewed as an expansion

in inverse powers of the rotational diffusion coefficient. Because of its variation
with particle size, Dr∝ a−3, this is justified for small enough particles.

Non-equilibrium probability density. The formal expression of the probability
density ρ is obtained from the steady-state condition for the radial component of
the current, Jr= 0. Inserting pr and regrouping the different terms, one finds

∇ln ρ ¼ F=γ� u∇u=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

r þΩ2
p

Dþ u2=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

r þΩ2
p : ð24Þ

For an explicit evaluation, we have to determine the velocity u as a function of
the laser power. Active motion requires that the power at the particle position, g(r)
P, exceeds the critical value Pc, corresponding to the lower critical temperature of
water–2,6-lutidine. As the simplest relation, we take

uðrÞ ¼ CðgP � PcÞ if gP > Pc

0 if gP < Pc

	
: ð25Þ

This describes the fact that active motion occurs only for powers above the critical
value Pc. With the Gaussian beam profile g ¼ e�r2=2σ2 , one readily finds that this
condition is satisfied within a critical radius

rc ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln ðP=PcÞ

p
: ð26Þ

Thus, the particle is active at distances r < rc, its velocity u(r) vanishes at the critical
radius, and the particle is passive beyond rc.

With this form, Eq. (24) is readily integrated, leading to the probability density
in the active range r < rc,

ρðrÞ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ uðrÞ2

q exp � V
kBT

ΦðrÞ
� �

; ð27Þ

where we have defined D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
r þΩ2

p
D

q
and

ΦðrÞ ¼ D
uc þ u

arctan
D2 � ucu
Dðuc þ uÞ : ð28Þ

Beyond the critical radius rc, the particle is passive (u= 0), and ρ is given by the
Boltzmann distribution ρeq / e�V=kBT . Note that in the main text, ρ is discussed for
Ω= 0, that is, with D ¼ ffiffiffiffiffiffiffiffiffiffiffi

6DrD
p

.

Orbital velocity. The probability and polarization densities ρ(r) and p(r) depend
on the radial coordinate only, as expected from the isotropic beam profile g(r) and
optical tweezers potential V(r). Yet, an applied torque (for example due to angular
momentum transfer from a polarized laser beam)34,45,46 induces a spinning motion
of the nanoparticle with angular velocity Ω. Then, the polarization density p no
longer points along the radial direction but acquires an azimuthal component, as
shown by Eq. (22).

A finite polarization density p implies a mean velocity u(r)p(r) at position r. In
the steady state, the radial component of the corresponding current upr is
compensated by the diffusion and the action of the optical tweezers force, resulting
in Jr= 0. For the azimuthal component Jϕ, however, there is no such compensation
force. As a consequence, a finite pϕ describes a steady orbital motion of the
nanoparticle around the center of the laser beam,

Jθ ¼ pθu ¼ � Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

r þΩ2
p ∂rðuρÞ

6Dr
u: ð29Þ

At small power, one has ∂r(uρ)=− u(F/kBT)ρ and Ω≪Dr, resulting in the velocity

vθ ¼ � Ωu2

6Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
r þΩ2

p F
kBT

: ð30Þ

For Ω= 2.7 Hz and u0= 40 μm s−1, the azimuthal velocity is of the order of
microns per second. This is in good agreement with the experimental observations
reported in Fig. 6a–c.

Data availability
The data that support the findings of this study are available from the public repository
FigShare at https://doi.org/10.6084/m9.figshare.13807418.v1.
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