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Cover illustration: Schematic example of Brownian motion for a particle in a 

microfluidic channel under fluid flow. From the optical illumination (green shaded 

region) and quantification of the subsequent optical signal as the particle moves in the 

channel, different particle properties can be quantified, such as refractive index, size, 

slip length and changes in the particle signal. 
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Abstract 
As the importance of nanoparticles continues to increase in both biology and industrial 

processes, so does the need for accurate and versatile characterization methods. 

However, most light-based methods to quantify size and refractive index of individual 

particles are either limited to snapshot observations, particles larger than the wavelength 

of light, non-dynamic particle properties, and commonly, the hydrodynamic boundary 

conditions are assumed without experimental evaluation of the assumptions. The aim 

of this thesis is to partially overcome these limitations by further developing two 

different characterisation methods based on optical microscopy combined with particle 

tracking, where in both cases, the analysis goes beyond the ordinary Stokes-Einstein 

relation.  

The first method combines off-axis holographic nanoparticle tracking with deep 

learning (Paper I). By utilizing the optical signal, both size and refractive index of 

individual particles with a minimum size of 𝑅 = 150 nm were accurately determined 

using only five particle observations. The method was evaluated using particles of 

different sizes, refractive indices, surrounding media as well as for nanoparticle clusters, 

for which reversible fluctuations of the number of monomers could be resolved for 

polystyrene nanoparticle clusters, while the fractal dimension remained constant.  

The second method is based around tethering particles to a fluid lipid bilayer and 

quantifying their diffusivity and flow-induced motion (Paper II). By separating the 

friction contributions from the tethers and the particle, simultaneous measurement of 

size and diffusivity enabled a comparison with theory using partial slip as a fitting 

parameter. This was used to quantify the slip length for different lipid vesicles, as well 

as clarifying the size-dependent mechanistic aspects concerning the mobility of 

membrane-attached nanoparticles. 

 

Keywords: Optical microscopy, off-axis holography, particle tracking, size 

determination, particle dynamics, lipid vesicles, partial slip 
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Those swirls in the cream mixing into the coffee? That’s us. 

Ephemeral patterns of complexity, riding a wave of increasing 

entropy from simple beginnings to a simple end.  

We should enjoy the ride. 

- Sean Carroll       f 
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Introduction 
 

The inability to predict outliers implies the inability to predict the 

course of history. 

 – Nassim Nicholas Taleb 

 

 

Life is a process outside thermal equilibrium where most of the underlying processes 

occur on nanometre to micrometre length scales (see Figure 1), and thus cannot be seen 

directly by the naked eye [1]. Nevertheless, visualisation is often key in order to 

understand complex systems, as best captured by the phrase “seeing is believing”. To 

overcome the limitations of the eye it is possible to use a microscope. Numerous 

microscopy techniques have for this reason been developed over the centuries, ranging 

from different optical methods to electron microscopy and atomic force microscopy [2–

4]. Each development has increased the capability to investigate experimental systems, 

as recognized by more than five Nobel Prizes related to advances in the field. 

Building on that tradition, the pursuit of ever better imaging tools continues to this day. 

However, just because it is possible to image a particular experimental system, 

interpreting the data correctly is far from a trivial task. An interpretation is always based 

on the current understanding of the world and the available tools to measure it. For 

example, in the beginning of the 19th century, Robert Brown and several other 

researchers observed that small particles, such as clay particles contained in the pollen 

of plants*, display a stochastic motion† when dispersed in a fluid [5–7]. Numerous 

explanations for this phenomenon were initially hypothesised, and it was not until 

Albert Einstein’s work about the subject it was settled that this motion originates from 

the existence of atoms and molecules [8]. Similar stories occur all the time, where new 

interpretations change the meaning of old data, illustrating the difficulty in decoding all 

the information which is present in a set of microscopy images of non-stationary particle 

systems. 

The thesis you are currently reading has its core motivation in characterising the motion 

and optical signal of particles smaller than the wavelength of visible light, in particular 

 
* Robert Brown wrote that he analysed particles or granules from grains of pollen [5]. 
† Commonly referred to as Brownian motion. 
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for non-idealised systems with confined diffusivity, non-trivial hydrodynamic boundary 

conditions and dynamically changing particle properties. Entities smaller than the 

wavelength of light are present in our everyday life. For example, as illustrated in Figure 

1, single biomolecules typically are a few nanometres in size and the sizes of viruses 

and lipid vesicles span from a few tens of nanometres and upwards [1]. Moreover, 

dietary products often contain both emulsions and particles of nanoscopic and 

microscopic dimensions [9,10]. Such entities are often dynamically changing and are 

commonly located in complex and partially unknown environments, making 

quantitative characterisation of these entities a challenging task. As an example, the 

mobility of a particle depends not only on particle size, but also on its shape, the 

viscosity of the surrounding medium, proximity to neighbouring surfaces, 

hydrodynamical boundary conditions etc. [11–13]. Thus, if more than one of these 

experimental conditions are unknown or if any of them changes with time, accurate 

particle characterisation becomes a difficult task. One strategy to handle some of these 

challenges is to isolate the particles of interest in a known experimental environment. 

However, even if it would be possible to obtain the entities in a well-defined 

environment without affecting them during the process, which is not necessarily a 

simple task, the subsequent data analysis still requires several assumptions that often 

are challenging to evaluate due to lack of suitable experimental techniques. Thus, in a 

general sense, developing new means that increase our ability to investigate non-

idealised systems bring forth the potential for unexpected discoveries across research 

fields, in addition to the particular information gathered about the investigated systems 

in question. 

 

 

 

Figure 1: Schematic figure showing examples of important biological entities that occur on different 

length scales, ranging from sub-nanometre to hundreds of micrometres. The image is adapted from 

Wikimedia [14] under CC BY-SA 2.5 licence. 
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Although microscopy methods such as electron microscopy have a spatial resolution 

well beyond that of optical microscopy, the latter is still often preferred in the context 

of life sciences as it induces relatively little sample perturbations and enables imaging 

under physiological or near physiological conditions. In the specific case of 

characterising dielectric particles using optical microscopy, a possible analysis 

approach is to quantify radius and refractive index on the single particle level, as the 

combination of these properties relates to both particle size and mass [15–17]. Size and 

refractive index can be quantified by comparing the measured scattering pattern to 

theory describing the experimental system [18,19]. Despite its potential, the current 

implementations of this analysis approach are either limited to single observations [19], 

particles larger than the wavelength of light [20] or non-dynamic particle 

properties [17]. In several experimental systems, such as nanoparticle aggregation or 

particles inside living cells, it is of interest to follow the particle signal as it changes 

over time and over length scales ranging from single particles to larger aggregates. 

Some aspects of this challenge are handled in Paper I, where simultaneous 

characterisation of size and refractive index is extended to include subwavelength sized 

particles with a minimum size of 𝑅 = 150 nm This was achieved by combining the 

recently developed off-axis holographic nanoparticle tracking (H-NTA) with deep-

learning based Mie theory fitting [17,21]. In addition to accurately characterising multi-

component particle samples without requiring information about the surrounding 

medium, the analysis approach enables changes in size and refractive index to be 

followed with a sub-second temporal resolution. The latter aspect of the method was 

used to show reversible signal changes for salt-induced clustering of polystyrene 

nanoparticles. These results illustrate the potential of using H-NTA to characterise 

dynamic particle systems that are challenging to analyse using alternative methods. 

Furthermore, preliminary data, presented in Sections 6.1-0, from our further 

developments of H-NTA show promising results regarding resolving dynamical signal 

changes for particles in complex backgrounds such as inside living cells, as well as 

decreasing the detection limit of optical holography by introducing off-axis twilight 

holography. 

Even though it is possible to further decrease the particle size for which size and 

refractive index can be directly estimated from optical microscopy images, the limited 

spatial resolution of optical microscopy makes it a very challenging task [22]. However, 

if only size is of interest, it can be estimated by tracking the motion of particles in a 

fluid and relating the diffusion constant to size using the Stokes-Einstein 

relation [13].When relating diffusivity to particle size, several assumptions need to be 

made, one of which being directly connected to the particle’s hydrodynamical boundary 

conditions. Typically, it is assumed that the fluid velocity parallel to the surface of the 

particle is zero at the particle-fluid interface, but this condition cannot be derived from 

first principles [12]. Since direct measurements of the boundary condition for 

nanoparticles are challenging using existing methods, the no-slip boundary condition is 

therefore commonly assumed without any evaluation of the validity of the assumption 
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for the particular system under investigation [12,23]. If no-slip is incorrectly assumed 

during diffusion-based sizing, the size becomes underestimated by up to approximately 

30% [23]. Thus, there is a need for new experimental methods to evaluate the 

hydrodynamic boundary conditions for particles in general and for biological 

nanoparticles in particular, as the few existing methods either require significant 

buoyancy forces or that the particle size is significantly larger than the optical resolution 

limit [24–26]. To tackle this challenge, Paper II is focused on developing a method to 

quantify the boundary condition for biological nanoparticles. This was achieved by 

tethering biological nanoparticles to a mobile supported lipid bilayer (SLB, see Figure 

1 for a schematic sketch) and quantifying the size-diffusion relation using the ratio 

between flow-induced velocity and diffusivity. By separating the respective friction 

contribution from the tethers and the particle, the size-diffusivity relation of the particle 

could be directly linked to the hydrodynamic boundary conditions. This technique was 

used to quantify partial-slip for different lipid vesicles, where the results indicate a 

difference in the size-diffusivity relation between synthetic lipid vesicles and cell-

membrane derived vesicles. The latter difference is consistent with the expected 

influence of protruding membrane-bound molecules on cell-membrane derived 

vesicles [27]. The quantified size-diffusion relation also clarifies the mechanistic 

aspects concerning the mobility of membrane-attached nanoparticles, which is 

important both for the understanding of the initial lateral motion of viruses when 

attached to the cell surface as well as for the mobility quantification of membrane 

residing biomolecules when nanoparticles are used as tracing labels [28,29].  

To provide the theoretical context of the work, this thesis begins with two chapters 

describing the theoretical background of the topics in this project. Thereafter a chapter 

covering the main experimental methods used in this work is presented, which is 

followed by a chapter summarising the two appended papers and a final chapter 

describing the future outlook of the project with references to additional experiments 

and ongoing method development. 
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Optical imaging theory 
 

“The book is about how small particles absorb and scatter light.” 

      “My goodness, who could possibly be interested in that?”* [30] 

 

 

In both physics and science in general, theory and experiments are inescapably 

intertwined with each other. In essence, theory is used to predict and interpret 

experiments, while experiments that deviate from the current theoretical framework are 

used to guide future theoretical development. Since this thesis is based on analysing the 

motion and signal from subwavelength sized particles in optical microscopy images, 

the starting point in both cases is the analysis of a large set of images acquired through 

optical microscopy. Thus, in this chapter, the theoretical background for optical imaging 

is presented, with particular focus on the optical scattering from particles that are 

smaller than the wavelength of the incident light. 

Theoretical discussions about optical measurement techniques tend to start with 

Maxwell’s equations, which is a set of differential equations describing the 

spatiotemporal evolution of electromagnetic fields [31,32]. In principle, all classical 

properties of light can be derived from Maxwell’s equations, although the solutions 

might be challenging to obtain. However, as microscopes were developed centuries 

before Maxwell’s equations were first written down [33], there are several simplified 

models to explain the occurring physics [22,33]. The main benefits with the simplified 

explanations are that they aid in forming an intuition of the underlying physics and are 

often simpler to use than starting from Maxwell’s equations, although the validity of 

the assumed approximations needs to be evaluated on a case-by-case basis. Thus, for a 

rigorous handling of Maxwell’s equations, I refer to Jackson [31], Cheng [32] or any of 

the numerous books on the subject. Here, the theoretical discussion will instead be based 

around (i) the theory of optical wave propagation, which describes how light propagates 

from the sample to the measurement device [22], and (ii) the theory of optical scattering 

by small particles, which describes the signal originating from the sample [30].  

 
* According to Google Scholar, by 2021-03-18 the book in question has been cited more than 29000 

times. 
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However, before describing the theory of optical imaging, some fundamental properties 

of light need to be established. Although what our eyes and cameras typically register 

is the light intensity, which is proportional to the energy of the light source [32], it does 

not contain all the information needed to describe the propagation of light. Instead, the 

properties of light are described by its optical field, 𝐸⃗ (𝑥, 𝑦, 𝑧), where the intensity is 

proportional to |𝐸⃗ |
2
 [22]. In the context of optical imaging theory, the difference 

between the optical field and light intensity is that the optical field has a phase Φ and a 

polarisation.  

Regarding the phase, as light propagates, the phase changes depending on the distance 

travelled, Δx, according to ΔΦ ∝ Δx/λ, [22] where λ is the wavelength of light. Thus, 

for two optical fields which are coherent but that have travelled different distances 

before reaching the same spot, the corresponding phase difference will determine the 

resulting measured intensity (see Figure 3) [22,32]. This property of light is critical both 

for understanding the optical scattering signal from non-metallic particles (see Section 

2.4) as well as for the working principle of off-axis holographic microscopy, which was 

the main experimental tool used in Paper I. 

Regarding the polarisation, it describes the direction of the electric field as the 

electromagnetic wave propagates through space [22,32]. The direction of the 

polarisation is important both in the context of scattering from asymmetric particles as 

well as from the notion that optical fields with orthogonal polarisation will act as 

independent fields [22,30]. Thus, for spherical particles, the polarisation of the 

incoming light is of less importance than for asymmetric particle shapes as the scattering 

is independent of the particle orientation. Furthermore, the optical field has also a 

propagation direction, which in some instances is orthogonal to the direction of 

polarisation [31,32].  

Taken together, when combining the properties of the optical field, we see that it has: 

an amplitude, phase, wavelength, polarisation, and a direction of propagation. These 

properties are all needed to fully describe the propagation of light, as will become 

apparent in the following sections. Also note that the classical description of light is 

here used, in which the properties of light are explained in the context of a continuous 

wave and not as a photon. Since an image typically involves measuring the contribution 

of numerous photons, the classical description of light describes the occurring physics 

well. Nevertheless, the discrete energy content from the photon is still needed to 

understand the process behind fluorescence. Thus, light will in the henceforth be 

described as electromagnetic waves with a discrete energy content. 

 



7 

 

Figure 2: Schematic illustration of the interference properties of light waves. When two different 

light waves combine, depending on the phase difference Δ𝛷 between the waves, the interference is 

either constructive or destructive. Note that the image shows the two extreme cases when Δ𝛷 = 𝑁𝜋 

and Δ𝛷 = (2𝑁 − 1)𝜋, where 𝑁 is an integer. If Δ𝛷 has any other value, the resulting interference will 

be in-between the two presented cases. 

 

2.1 Huygens–Fresnel principle of wave propagation 

The first well-established theory of optical wave propagation was derived by Huygens 

in the 17th century [33], which pre-dates Maxwell’s equations with over a century [34]. 

The idea behind the Huygens–Fresnel principle of wave propagation is that the optical 

field can be deconstructed into wavelets* for which the equation for the optical 

propagation is known. If considering a wavelet at the starting position (𝑥0, 𝑦0, 𝑧0), then 

according to Huygens–Fresnel, the optical field at any other position is: [22] 

 𝐸(𝑥, 𝑦, 𝑧) ∝ 𝐸0(𝑥0, 𝑦0, 𝑧0)
𝑒−𝑖𝑘𝑅

𝑅
(1 + cos(𝑅⃗ , 𝑘⃗ 0)),  2.1 

where 𝐸0(𝑥0, 𝑦0, 𝑧0) is the optical field at position (𝑥0, 𝑦0, 𝑧0), 𝑘 is the wavenumber 

(𝑘 = 2𝜋/𝜆), 𝑅 = √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2, 𝑖 is the complex unit and 

cos(𝑅⃗ , 𝑘⃗ 0) describes the angular amplitude profile between the direction of the incident 

wave and propagation direction. Note that polarisation of the field is dropped here as it 

does not influence the equations regarding propagation of light [22]. In essence, what 

Eq. 2.1 describes is a wavelet with a [1 + cos(𝑅⃗ , 𝑘⃗ 0)] amplitude profile for which the 

phase scales linearly with the distance propagated and the field amplitude decreases as 

1/𝑅, where the 1/𝑅 scaling comes from the fact that energy is conserved during 

propagation [32]. A visualisation of this propagation can be seen in Figure 3. 

 

 
* A wavelet is a mathematical function used to deconstruct a given function or continuous signal into a 

superposition of functions with well-defined properties, a procedure that often is used in signal analysis. 
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Figure 3: Illustration of the optical field from the wavelet used in the Huygens–Fresnel principle of 

propagation. The light comes from the left and impinges on an aperture (yellow line). The light which 

goes through the opening has the [1 + cos(𝑅⃗ , 𝑘⃗ 0)] amplitude profile. The image is taken from 

Wikimedia [35] under CC BY-SA 3.0 licence. 

Using Eq. 2.1 as a starting point, in the case of more than one wavelet, the resulting 

field is a sum of all the wavelets. This implies a linearity of the optical field, which is a 

central aspect both in Maxwell’s equations and the Schrödinger equation [32,36]. Thus, 

the full optical field at an arbitrary imaging plane is mathematically expressed as: 

 𝐸(𝑥, 𝑦, 𝑧) = −
𝑖

𝜆
∬𝐸(𝑥′, 𝑦′, 0)

𝑒−𝑖𝑘𝑅

2𝑅
(1 + cos(𝑅⃗ , 𝑘⃗ 0))𝑑𝑥′𝑑𝑦′,  2.2 

where 𝑅 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 0)2. Thus, it follows from Eq. 2.2 that if 

the optical field is known at any one plane, then the optical field at any other plane can 

be calculated. Note that the integral is evaluated for a 2D plane where the coordinate 

system is typically defined such that 𝑧0 = 0, but any other choice of coordinate system 

is also valid.  

However, Eq. 2.2 only describes the simplified situation of propagation in a constant 

environment. In most real-life situations, the imaging system contains several optical 

components such as lenses and apertures (see for example Figure 9 in Section 4.1.1). If 

an optical component is located along the path of the optical field, the subsequent 

propagation is affected. The mathematical procedure to handle this is to evaluate the 

optical field just before the component, calculate the change of the optical field induced 

by the component, and then initiate a new propagation after the component [22]. Thus, 

performing all the mathematical operations becomes challenging to perform 

analytically for optical systems with more than just a few components.  

Although Eq. 2.2 can be used to describe the optical propagation in several important 

special instances, Eq. 2.2 is based on approximations which limits its applicability. 

First, Eq. 2.1 diverges as 𝑅 → 0. Thus, it primarily describes the propagation over 

distances much longer than the wavelength of light [15,22]. Second, to solve Eq. 2.2 

analytically it is often combined with the paraxial approximation; in which only small 

angles in relation to the direction of the incoming field are considered [15,22]. For these 



9 

reasons, other approaches have been developed which do not contain these 

approximations, particularly when solving the equations numerically using a computer. 

Nevertheless, the Huygens–Fresnel principle is still useful for calculations of the optical 

field over long distances and to understand the mathematical structure of other 

calculation strategies [15,22]. 

 

2.2 Propagation of angular spectrum 

An alternative starting point to the wavelet used in the Huygens–Fresnel principle is the 

plane wave solution to Maxwell’s equations. In free space, Maxwell’s equations 

become the Helmholtz equation: [32] 

∇2𝐸⃗ (𝑥, 𝑦, 𝑧) + 𝑘2𝐸⃗ (𝑥, 𝑦, 𝑧) = 0⃗ ,    2.3 

which has the solution 𝐸⃗ (𝑥, 𝑦, 𝑧) = 𝐸⃗ 0𝑒
−𝑖(𝑘⃗ ⋅𝑟 ), where 𝑘⃗  is the wave vector that defines 

the direction of propagation and |𝑘⃗ | = 𝑘 = 2𝜋/𝜆. This solution is often referred to as 

the plane wave solution, as the optical field is constant over a plane orthogonal to the 

wave vector. Using the plane wave solution as a basis, any optical field in free space 

can be written as sum of plane waves as: [15] 

𝐸⃗ (𝑥, 𝑦, 𝑧) = ∬ 𝐴 (𝑘𝑥 , 𝑘𝑦)𝑒
−𝑖(𝑘x⋅𝑥+𝑘y⋅𝑦+√𝑘2−𝑘x

2−𝑘y
2⋅𝑧) 

𝑘𝑥
2+𝑘𝑦

2≤𝑘2 d𝑘xd𝑘y, 2.4 

where 𝐴 (𝑘x, 𝑘y) is the amplitude of the plane wave corresponding to the value of 𝑘x 

and 𝑘y. Note that since |𝑘⃗ |
2
= 𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2 = (2𝜋/𝜆)2, for each choice of 𝑘x and 𝑘𝑦 

the magnitude of 𝑘𝑧 is also determined. Thus, the integral is only evaluated over 𝑘x and 

𝑘y, where the range of allowed values are limited by the criterion |𝑘⃗ |
2
= (2𝜋/𝜆)2.  

When inspecting Eq. 2.4, its structure is similar to that of the two-dimensional Fourier 

transform [37]. Thus, Eq. 2.4 can be written as: 

𝐸⃗ (𝑥, 𝑦, 𝑧) = 𝓕(𝐴 (𝑘⃗ )𝑒
−𝑖√𝑘2−𝑘x

2−𝑘y
2⋅𝑧 

),   2.5 

where 𝓕 is here used to describe the two-dimensional Fourier transform operator for 

the function inside the parenthesis. By applying the inverse Fourier transform to Eq. 

2.5: 

𝐴 (𝑘⃗ )𝑒
−𝑖√𝑘2−𝑘x

2−𝑘y
2⋅𝑧 

= 𝓕−𝟏 (𝐸⃗ (𝑥, 𝑦, 𝑧)).   2.6 

Thus, in a similar way to the Huygens–Fresnel principle, if the optical field is known at 

any one plane, 𝐴 (𝑘⃗ ) can be obtained using Eq. 2.6. Once 𝐴 (𝑘⃗ ) is known, the optical 

field for any other plane is also known by the use Eq. 2.5. This way of numerically 
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propagating the optical field is called propagation of angular spectrum (PAS) [15]. The 

benefits of PAS compared to Huygens–Fresnel are that (i) it is possible to propagate the 

field over short distances, (ii) it is a more general formalism of the optical field, and (iii) 

the propagation can be calculated using Fourier transforms, which are fast operations 

on modern computers. For this reason, PAS is the method used to numerically propagate 

the optical fields in the off-axis holography work related to this thesis.  

 

2.3 Optical resolution limit 

When inspecting Eq. 2.4, the integral is carried out over a finite set of 𝑘𝑥 and 𝑘𝑦 values, 

where the largest 𝑘 value is set by the wavelength. Since the 𝑘 value is related to the 

resolution, with larger 𝑘 values leading to reduced widths of the signal distribution [37], 

the wavelength determines the optical resolution in case of ideal imaging. Thus, an 

optical microscope acts as a low-pass spatial frequency filter.  

To exemplify this, the Fourier transform of an idealised point source is constant over 

all frequencies. The inverse transform using the optically available spatial frequencies, 

𝑘x
2 + 𝑘y

2 ≤ 𝑘2, results in the optical field 𝐸⃗ (𝜌) ∝
 𝐽1(𝜌𝑘)

𝜌𝑘
, where 𝜌2 = 𝑥2 + 𝑦2 and  𝐽1 is 

the first order Bessel function [22,37]. Thus, although the object itself is an idealised 

point source, an image of the object will have a finite width set by the highest spatial 

frequencies that the microscope can capture. This is further exemplified in Figure 4, 

where the effect on a subwavelength-sized sphere is shown.  

At this point it is important to distinguish between detecting a particle and resolving a 

particle. As long as the optical signal is sufficiently large, a particle is detectable in a 

microscope no matter its geometrical size. However, to resolve a particle it needs to be 

distinguished from potential neighbouring particles. If two objects are close enough 

such that their optical signals spatially overlap, then at a certain distance they will no 

longer be distinguishable [22]. The shortest distance for which the individual particles 

are distinguishable is referred to as the resolution limit. The commonly used expression 

for the resolution limit is 
0.61𝜆

𝑁𝐴
 [22], where 𝑁𝐴 is the numerical aperture and is related 

to the highest spatial frequency a microscope can capture for a certain wavelength. The 

definition of the resolution limit may vary between different optical techniques as it 

depends on the details of the recorded signal [38], but as a rule of thumb the limit is on 

the order of 
𝜆

𝑁𝐴
. 
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Figure 4: Example of the low-pass filter effect from optical microscopy using numerical calculation of 

a 100 nm diameter spherical particle and a wavelength of 635 nm. (a) is the initial particle signal and 

(b) is the particle signal when only spatial frequencies fulfilling 𝑘𝑥
2 + 𝑘𝑦

2 ≤ (
2𝜋

𝜆
)
2
 are included. The 

colorbars represent the amplitude of the optical field from the particle, normalised such that the 

maximum value before the filtering is equal to 1. The scalebars correspond to 500 nm. 

 

2.4 Optical signal from small particles  

In a homogenous environment, light propagates as described in Section 2.2, where the 

only distance dependent factor is 𝑒
−𝑖√𝑘2−𝑘𝑥

2−𝑘𝑦
2 ⋅𝑧 

 (see Eq. 2.4). For Eq. 2.4 to be valid, 

the refractive index needs to be the same across the region where the optical field is 

located. Following this reasoning, for deviations from ordinary optical propagation to 

occur, as for example optical scattering, there needs to be spatial variations for the 

refractive index [30].  

The underlying physical principle behind optical scattering is that matter is composed 

of electrical charges, and that an incident electromagnetic field induces an oscillatory 

motion of these charges [32]. These oscillatory motions in turn act as antennas which 

take energy from the incident field and redirect it, causing scattering of light [32]. In a 

homogenous environment, the backward and forward scattering from different regions 

balance each other. However, when light transitions between materials with different 

abilities to generate these field-induced dipoles, i.e. materials with different refractive 

index, the scattering from different regions will no longer cancel each other out [32]. 

In a similar way to the propagation of light, where the optical field is described by a 

superposition of wavelets, the scattering from a small* weakly optically interacting† 

particle can be described by subdividing it into smaller regions where the scattering 

 
* Small here refers to a comparison with the wavelength of the incident light. 
† Weakly optical interacting particle here means that the absolute difference in refractive index between 

the particle and the surrounding medium is much smaller than one. 
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from each subregion acts as a wavelet [30]. Scattering from a particle in the point-like 

limit is: [30] 

𝐸⃗ s =
𝑒−i𝑘⃗⃗ ⋅𝑅⃗⃗  

−𝑖𝑘𝑅
𝑆 (cos

(𝜃) 0
0 1

) 𝐸⃗ in,    2.7 

where 𝐸⃗ in is the incident optical field and 𝜃 is the angle between the directions of the 

incident and scattered optical field (see Section 2.1), while 

𝑆 = −𝑣
3𝑖𝑘3

4𝜋

𝑛p
2−𝑛m

2

𝑛p
2+2𝑛m

2 ,     2.8 

where 𝑛p is the refractive index of the particle, 𝑛m is the refractive index of the 

surrounding medium and 𝑣 is the volume of the point-like particle element. The 

scattering from the full particle is the sum of the field contributions originating from all 

subdivided regions. In the case of a small weakly optically interacting particle, it is 

typically assumed that the excitation for each subdivided region is caused only by the 

incident optical field, thus neglecting influence from neighbouring subdivided 

regions [30]. With this assumption, the particle scattering is the same as Eq. 2.7 except 

for a correction factor 𝑓, typically referred to as the form factor, which describes the 

interference in the far-field from the different subdivided regions of the particle [30]. 

Mathematically, 𝑓 is expressed as: 

𝑓(𝜃, 𝛷) =
1

𝑉
∫ 𝑒−𝑖Δ𝜙
𝑉

d𝑣,    2.9 

where 𝑉 is the full particle volume and Δ𝜙 is the phase difference of the light 

contributions originating from the subregion d𝑣 to the observation direction, where the 

angles 𝜃 and Φ indicate that 𝑓 depends on both the direction of the incident light and 

the direction of the scattered light. This approximation of optical scattering from small 

particles is often referred to as Rayleigh-Gans theory. From this expression, the 

contribution from various particle shapes can be readily estimated as long as the 

assumption of small weakly optically interacting particles is valid [30]. For example, 

from these equations the change in optical scattering signal from deformation of lipid 

vesicles can be estimated and compared with the change in fluorescence signal [39]. 

In the case of spherical particles, there exists a complete solution without the 

assumption of small weakly optically interacting particles. This solution was first 

derived by Gustav Mie and is commonly referred to as Mie theory [40], and is 

applicable for both dielectric particles and metallic nanoparticles [18,40]. Mie theory 

solves the optical scattering as an infinite sum of spherical polynomials [40], and is thus 

primarily used for numerical calculations whereas Rayleigh-Gans theory is easier to use 

when deriving analytical expressions. 

Although Eqs. 2.7-2.9 at first glance present themselves as mathematically 

cumbersome, there are some rules of thumb that can be used to interpret the magnitude 

of the optical signal in some important special cases. First, if the particle is small enough 



13 

such that the shape factor can be approximated as 1, then the optical field scales with 

particle volume. This scaling is important both in the context of understanding the limit 

of detection for different microscopy techniques and in relating the signal amplitude to 

particle properties. For example, this approximation is used to optically quantify the 

mass of single biomolecules using a microscopy method called interferometric 

scattering microscopy (iSCAT) [41,42]. Second, if the particles are large enough to be 

described by geometrical optics, the integrated phase shift induced by a particle is 

proportional to 𝑉Δ𝑛 [17,43]. This property enables optical measurements of the dry 

mass of cells as well as analysis of sub-micron gas bubbles in water [17,43]. Thus, both 

in the limit of very small and large particles, experimentally accessible properties of the 

optical field scale with particle volume and the refractive index.  

 

2.5 Fluorescence  

In scattering-based optical microscopy, as detailed in Section 2.4, all heterogeneity in 

the spatial distribution of the refractive index will contribute to the optical signal. Thus, 

label-free scattering-based microscopy naturally lacks specificity, which in some cases 

is disadvantageous.  

To obtain a specific optical signal with high spatial resolution, the most common 

technique is fluorescence. Fluorescence is a subclass of luminescence, which is the 

process where light is emitted from electronically excited states [44]. In fluorescence, 

the initial excitation originates from absorption of a photon at a particular wavelength 

and the subsequently emitted photon typically has a lower energy than the incident 

photon [44]. This shift in energy originates from that the excitations are linked to a 

vibronic transition, in which the molecule changes both its electronic and vibrational 

state, a process this is often visualised using a Jablonski diagram (see Figure 5) [44,45]. 

Since vibrational relaxations occur on a faster time scale than the electron relaxation, 

the vibrational relaxations will cause the emitted photon to have lower energy than the 

initially absorbed photon [44,45]. 
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Figure 5: Jablonski diagram. An incoming photon at a particular wavelength is absorbed, which 

changes both the electronic and vibrational state of the molecule. The electronic state is indicated by 𝑆𝑖 

and the vibrational state is the number next to each plateau. Since the vibrational relaxations occur on 

a faster time scale than the electron relaxation, the system will relax to the lowest vibrational state before 

emission of a photon at a lower wavelength than the initial excitation. The image is adapted from 

Wikimedia [46] under CC0 1.0 licence. 
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3  

 

Brownian motion 
 

The story of Brownian motion is one of confused experiment, heated 

philosophy, belated theory, and, finally, precise and decisive 

measurement 

 - M D Haw, 2002 [6] 

 

 

One of the most prominent examples of the intertwined relationship between 

experiment and theory is Brownian motion, where over a century of research is captured 

by the quote in the beginning of this chapter. When following the motion of particles 

that are free to move around in a viscous fluid, one part is deterministic, and another 

will appear to be stochastic. The stochastic part of the motion is commonly referred to 

as Brownian motion. This phenomenon was observed by several researchers during the 

19th century [6], but the name of Robert Brown has become synonymous with the 

process [5]. For a long time the origin of this phenomenon was unknown, but during 

the 20th century it was settled that Brownian motion is due to random collisions between 

the particle and molecules in the surrounding fluid [8]. Nevertheless, relating Brownian 

motion to particle properties is generally not a simple task since several assumptions 

need to be made, where some of the assumptions are difficult to evaluate 

experimentally. For a general treatment of the hydrodynamics of particles in a fluid I 

refer to Happel and Brenner [47]. In this chapter, the theoretical discussion will focus 

on Brownian motion and its dependence on hydrodynamic boundary conditions, 

confinement and tethering to a fluid surface. 

After Einstein’s initial derivation, several equations describing Brownian motion have 

been developed, for example the Langevin equation and the Fokker-Planck 

equation [48]. Starting from Newton’s equation of motion, the motion of a particle with 

a low Reynolds number* is given by the equation: [47] 

𝑚
𝑑𝑣(𝑡)

𝑑𝑡
= −𝛾(𝑣(𝑡) − 𝑣fluid),    3.1 

 
* Solutions to the Navier-Stokes equation exist only in a few special cases. One common approximation 

is assuming slow viscous flow, in which viscous forces dominate over inertial forces. This 

approximation is valid for particles dispersed in a fluid when the Reynolds number, (fluid 

density)×(velocity)×(size)/(viscosity), is smaller than 0.05 [47]. 
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where 𝛾 is the friction coefficient from the fluid acting on the particle, 𝑚 is particle 

mass and 𝑣fluid is the bulk velocity of the fluid. From Eq. 3.1, it follows that 𝑣(𝑡) →

𝑣fluid as 𝑡 → ∞. However, one central concept in statistical physics is thermal 

fluctuations. In particular, the equipartition theorem states that if a system is in thermal 

equilibrium, every independent energy term has a mean value equal to 
1

2
𝑘B𝑇, where 𝑘B 

is Boltzmann’s constant and 𝑇 is the temperature in Kelvin [48]. Translated to the case 

of Eq. 3.1, the equipartition theorem states that < 𝑣2 > * should be different from zero 

as 𝑡 → ∞, which clearly is not the case if 𝑣fluid = 0. Since the motion of the particle 

should be consistent with the equipartition theorem, Eq. 3.1 does not correctly describe 

the full motion of a particle immersed in a fluid. 

The overlooked contribution to the particle motion in Eq. 3.1 is that molecules in the 

fluid may bump into the particle such that it gains velocity, an effect that is typically 

described as a stochastic force. As a general phenomenon in physics, whenever there is 

a dissipative force, such as friction between a particle and the surrounding fluid, there 

is also a stochastic force, a relation known as the fluctuation-dissipation 

theorem [48,49]. When adding a stochastic force to Eq. 3.1, which changes Newtons 

equation to the Langevin equation, the equation of motion becomes: 

𝑚
𝑑𝑣(𝑡)

𝑑𝑡
= −𝛾(𝑣(𝑡) − 𝑣fluid) + 𝜉(𝑡),    3.2 

where 𝜉(𝑡) describes the stochastic force. In the case of experimental measurements of 

Brownian motion, the time in-between position measurements is typically much longer 

than the time in-between collisions of the particle with the molecules in the fluid [48]. 

This observation implies that 𝜉(𝑡) can be approximated as: 

< 𝜉(𝑡) >= 0 and < 𝜉(𝑡1)𝜉(𝑡2) >= 2𝐵𝛿(𝑡1 − 𝑡2),  3.3 

where 𝛿(𝑡) is the delta function, which is zero for all 𝑡 except for 𝑡 close to zero. In 

other words, Eq. 3.3 implies that the stochastic force has a mean value equal to zero and 

no time correlation. Interestingly, to make Eq. 3.2 consistent with the equipartition 

theorem, 𝐵 = γ𝑘B𝑇 [48]. This relation between 𝛾 and 𝐵 exemplifies the relation 

between the dissipation and stochastic aspects of the system, showing that the two are 

intrinsically interlinked with each other. 

 
* Angle brackets here stands for the time average of what inside the brackets. 
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Figure 6: Schematic images describing Brownian motion. (a) Plot of the particle postion at discrete 

time steps. (b) The mean squared displacement (< (𝑥(𝑡) − 𝑥0)
2 >𝑇) over time, which is linear for 

ordinary Brownian motion (see Eq. 3.5). The slope relates to the diffusion constant of the particle and 

the offset 𝜎2 from origin relates to position uncertainty (see Section 3.4). (a) is taken from 

Wikimedia [50] under CC BY-SA 4.0 licence. 

Brownian motion is most often quantified using mean squared displacement,  

< (𝑥(𝑡) − 𝑥0)
2 >. The derivation of the expression for the mean squared displacement 

starting from Eqs. 3.2-3.3 is outlined in several books about the subject [48], and will 

not be reproduced here. Using the end-result of such derivations, the mean squared 

displacement when the particle is in equilibrium with the fluid is: [48] 

< (𝑥(𝑡) − 𝑥0)
2 >𝑇=

2𝑘B𝑇

𝛾
[𝑡 −

𝑚

𝛾
(1 − 𝑒−(𝛾/𝑚)𝑡)].  3.4 

If the inertia of the particle is neglected, the mass-dependent terms in Eq. 3.4 can be 

dropped, which simplifies Eq. 3.4 to 

< (𝑥(𝑡) − 𝑥0)
2 >𝑇=

2𝑘B𝑇

𝛾
𝑡 = 2𝐷𝑡,    3.5 

where 𝐷 =
𝑘B𝑇

𝛾
 is the diffusion constant. From Eq. 3.5 it follows that the mean squared 

displacement scales linearly with time, allowing the diffusion constant to be quantified 

from a linear fit [13,51].  

In the case of a freely diffusing spherical particle, the diffusion constant is in turn related 

to its hydrodynamic radius 𝑅h via the Stokes-Einstein equation,  

𝐷 =
𝑘B𝑇

6𝜋𝑅h𝜂
,      3.6 

where 𝜂 is the viscosity of the fluid [47]. Note the inverse relation between the diffusion 

constant and viscosity, which further exemplifies the relation between fluctuation and 

dissipation. Thus, by estimating the mean squared displacement it is possible to quantify 

its hydrodynamic radius, even when the size of the particle is well below the resolution 
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limit (see Section 2.3). However, the hydrodynamic radius is not necessarily the same 

as the geometrical radius 𝑅. This difference is further discussed in Section 3.1.  

 

3.1 Hydrodynamic boundary conditions 

Hydrodynamics follows the Navier-Stokes equations, which are a set of partial 

differential equations describing the motion of viscous fluids [47]. However, the 

hydrodynamic boundary conditions cannot be derived from first principles [12]. 

Instead, the boundary conditions need to be assumed or based on measurements. For 

macroscopic systems, the exact boundary conditions have only very minor influence on 

the overall system. But as the dimensions of the system become smaller, as is the case 

for diffusing nanoparticles, the boundary conditions may significantly affect the relation 

between the size and diffusion constant [23]. In addition to slip, in the case of charged 

particles in a ionic solution, some of the ions may follow the motion of the particle, 

which further affects the diffusion-size relation [52,53]. Thus, relating the diffusion 

constant to the geometrical size is, in general, a far from trivial task. 

The boundary condition is typically divided into three cases: no slip, partial slip and 

perfect slip, as schematically exemplified in Figure 7. The most commonly used is the 

no slip boundary condition, in which case the velocity of the fluid parallel to the surface 

is zero at the transition between the fluid and the solid interface [12]. No slip is 

frequently observed for hydrophilic surfaces [54]. Since nanoparticles require 

hydrophilicity for a good dispersion in water or serum in order to prevent aggregation, 

no slip is therefore commonly assumed unless the surface has been modified to make it 

hydrophobic [55]. 

 

Figure 7: Schematic illustration of three common hydrodynamic boundary conditions. No slip: the 

velocity of the fluid parallel to the surface is zero at the transition between the fluid and the solid 

interface. Partial slip: the friction at the fluid-solid boundary is finite, causing the velocity of the fluid 

to behave as if the no slip boundary condition still occurs but for an effective surface which is inside 

the solid material, where the distance to effective surface is referred to as the slip length 𝑏. Perfect slip: 

the special case when the slip length is infinite.  
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A larger of class of hydrodynamic boundary conditions, in which no slip is just a special 

case, is partial slip, where the friction at the fluid-solid boundary is finite [12]. During 

partial slip, the velocity of the fluid behaves as if the no-slip boundary condition still 

occurs but for an effective surface inside the solid material. The distance between the 

true and the virtual interface is referred to as the slip length 𝑏, as illustrated in Figure 7. 

Experimental measurements of the slip length, using for example a surface force 

apparatus, range from nanometres to a few micrometres, where the general trend is that 

the slip length increases with increasing hydrophobicity and surface roughness [54]. 

Perfect slip, in contrast, is a special case of partial slip that is characterised by a slip 

length that approaches infinity, which is a useful approximation when the slip length is 

much longer that the length scale of the system [56]. 

The existence of non-zero slip is not only of theoretical importance; it also affects the 

relation between experimental results and physical properties of the system. For 

example, in the case of diffusing spherical particles, a non-zero slip changes the 

standard Stokes-Einstein equation to: [23,56] 

𝐷b =
𝑅+3𝑏

𝑅+2𝑏

𝑘B𝑇

6𝜋𝜂𝑅
,     3.7  

where 𝑅 is the geometrical size of the particle. Thus, the relation between the diffusion 

constant and particle size can change up to a factor of 3/2 depending on the relative 

length of the slip and the size of the particles.  

 

3.2 Confined particle diffusion 

The ordinary expression for Brownian motion assumes that the particle is far away from 

any neighbouring surface. If that is not the case, for example when a particle approaches 

a surface, its diffusion changes and becomes dependent on whether the motion is 

parallel or perpendicular to the surface [13,56]. This dependence comes from that when 

a particle moves it needs to displace the surrounding fluid. Consequently, confinement 

decreases the available pathways for the displaced fluid. The equation describing the 

change in diffusion constant parallel to the surface, when the particle is far away* from 

a planar surface under no-slip boundary conditions, was first derived by Hiding Faxén 

in the beginning of 20th century [57]. Faxén’s derivation is based on the method of 

reflections and is only an approximate solution, where different publications often 

include a different number of correction terms [13,47]. Using the 5th order correction, 

the particle diffusion parallel to the surface is: [47,57,58] 

𝐷NP,int ≈ 𝐷∞ [1 −
9

16
(
𝑅h

ℎ0
) +

1

8
(
𝑅h

ℎ0
)
3

−
45

256
(
𝑅h

ℎ0
)
4

−
1

16
(
𝑅h

ℎ0
)
5

],  3.8 

where 𝐷∞
  is the diffusion coefficient for the particle in bulk and ℎ0 the distance from 

the centre of the particle to the surface. This equation predicts that the closer the particle 

 
* Far away here means that the distance to the surface is much longer than the size of the particle. 
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is to the surface, the slower the diffusion becomes. However, since Eq. 3.8 is derived 

for the case when 𝑅h/ℎ0 ≪ 1, its predictions becomes unreliable when 𝑅h/ℎ0 → 1. In 

this limit, the particle motion is better described by the equations derived for the 

lubrication regime [59]. To interpolate between the regimes, Brenner derived an 

equation that is commonly referred to as the Brenner formula [13,60], in which the 

particle diffusion parallel to the surface is: 

𝐷B ≈ 𝐷∞ [1-
8

15
ln (1-

𝑅h

ℎ0
)+0.029

𝑅h

ℎ0
+0.04973 (

𝑅h

ℎ0
)
2

- 0.1249 (
𝑅h

ℎ0
)
3

]
−1

. 3.9 

Although Eq. 3.8 and Eq. 3.9 are significantly different from each other, their 

predictions are similar as long as 𝑅h/ℎ < 0.8, which can be observed when visually 

comparing the relations, as shown in Figure 8 [59]. 

Confined diffusion is here treated under the assumption that the no slip condition 

applies. However, partial slip might occur at both the particle and the nearby surface, 

as reported for lipid bilayers using a surface force apparatus [61]. The resulting particle 

diffusion in the case when slip occur at both interfaces is not well established, especially 

when the distance from the particle to surface is comparable to the slip length [56]. In 

the limit where ℎ0 ≫ 𝑏, the effect from the slip can be included in Eq. 3.8 by simply 

replacing ℎ0 with an effective distance ℎef ≡ ℎ0 + 𝑏. Thus, when the slip lengths are 

short, the hydrodynamics can be approximated by shifting the no-slip boundary below 

the interfaces, which was the approximation used in Paper II. 

 

Figure 8: Plot of how the particle diffusivity parallel to a planar surface when assuming no slip 

decreases as a function of distance to the surface. The inset shows the difference between the three 

expressions, which primarily occur while ℎ/𝑅ℎ < 1.3. 
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3.3 Brownian motion of nanoparticles tethered to a lipid bilayer 

When a particle binds to a receptor in a fluid-phase lipid bilayer, its subsequent diffusion 

depends not only on the confined particle diffusion but also on the mobility of the 

receptor. For nanoparticles, which in bulk have a much higher diffusion constant than 

molecules in the lipid bilayer [62], it is typically assumed that the diffusion constant of 

the tether-nanoparticle complex is set by the tethers in the lipid bilayer [63,64]. 

However, as demonstrated by Liao et. al. [65], particles with diameters as small as 15-

20 nm significantly reduce the overall diffusion of the tether-nanoparticle complex if 

the number of tethers are few. Thus, the validity of the commonly used approximation 

that the nanoparticle contribution to the diffusivity is neglectable can be questioned.  

In general, the diffusion of the combined nanoparticle-tether complex depends on both 

the nanoparticle mobility 𝜇NP and the mobility of the tethers 𝜇T, where the mobility is 

related to the diffusion constant as 𝜇 = 𝐷𝑘B𝑇. In the case of nanoparticles tethered to a 

lipid bilayer, 𝜇NP and 𝜇T are determined by two approximately independent frictions: 

between the surrounding fluid and the nanoparticle, and between the tethers and the 

lipids. Given that the frictions are inversely proportional to mobilities, the combined 

nanoparticle-tether mobility is: 

𝜇−1(𝑅h) = 𝜇NP
−1(𝑅h) + 𝜇T

−1.    3.10 

From Eq. 3.10 the diffusion constant is partly set by the nanoparticle itself and partly 

set by the tethers. Furthermore, under the assumption of independent forces, only one 

of the two terms in Eq. 3.10 is dependent on particle size. This observation is one of the 

underlying principles behind Paper II, as it allows for a strategy to separate the two 

terms in Eq. 3.10. In particular, since the number of tethers can only obtain discreate 

values, it is possible to distinguish between particles linked with one, two or more 

tethers. Combined with simultaneous size and diffusion constant measurement, 

achieved using two-dimensional flow nanometry (2DFN, see Section 4.2), the different 

terms in Eq. 3.10 could be compared to theoretical expressions using the slip length as 

a fit parameter. 

 

3.4 Estimation of diffusion constant from particle tracking 

As explained in Section 3, the diffusion constant of a particle is related to its size, where 

the exact size-diffusivity relation depends on several factors such as confinement and 

hydrodynamic boundary conditions. Nevertheless, no matter the correction factor, the 

first step is to quantify the diffusion constant using a set of estimated particle positions. 

In the case of single-particle tracking combined with optical microscopy, the diffusion 

constant is most often estimated using the mean squared displacement [13]. The 

estimated particle position, 𝑥̂est(𝑡), is a combination of the true particle position, 

𝑥true(𝑡), and the experimental/analytical position uncertainty 𝜁(𝑡), and is expressed as: 
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𝑥̂est(𝑡) = 𝑥true(𝑡) + 𝜁(𝑡).    3.11 

The position uncertainty depends on two different contributions: (i) how well the used 

position estimation algorithm can identify the centre of the particle, which varies 

depending on particle size and signal-to-noise ratio [66], and (ii) how much the particle 

moves during the exposure time. These two contributions affect the mean squared 

displacement differently, which according to Ref [51]* can be defined as: 

< (𝑥̂𝑛+1 − 𝑥̂𝑛)
2 > = 2𝐷Δ𝑡 +  2(𝜎2 − 2𝐷𝐾Δ𝑡),    3.12 

< (𝑥̂𝑛+2 − 𝑥̂𝑛+1)(𝑥̂𝑛+1 − 𝑥̂𝑛) > = −(𝜎2 − 2𝐷𝐾Δ𝑡),   3.13 

< (𝑥̂𝑛+1 − 𝑥̂𝑛)(𝑥̂𝑚+1 − 𝑥̂𝑚) > = 0 for |𝑚 − 𝑛| > 1,   3.14 

where 𝜎 is the localization uncertainty, the subscripts correspond to independent 

particle observations, Δ𝑡 is the time between the observations and 𝐾 is the blur-factor 

describing the effect from particle motion during the exposure time. If the exposure 

time for the camera is the same as the time between frames, then 𝐾 = 1/6 [67]. Thus, 

although 𝜎2 can be minimized using accurate localisation algorithms, the mean squared 

displacement will still deviate significantly from the diffusion constant if the exposure 

time is similar to the time between frames. 

From Eqs. 3.12-3.13 it follows that it is possible to correct for the bias terms on the 

single particle level. However, the estimate is uncertain as the variance depends on the 

track length as: [51] 

var(Δ𝑥𝑛Δ𝑥𝑚) =
𝛼+4𝛼𝛽+6𝛽2

𝑁−|𝑛−𝑚|
−

2𝛽2 

(𝑁−|𝑛−𝑚|)2
,   3.15 

where 𝛼 = 2𝐷Δ𝑡, 𝛽 = 𝜎2 − 2𝐷𝐾Δ𝑡 and (𝑁 + 1) is the number of position 

observations of the same particle. If 𝛼 ≫ 𝛽, for large 𝑁 it follows from Eq. 3.15 that 

(standard deviation)/mean ∝ 1/√𝑁, which is the rule of thumb when it comes to 

diffusion estimation from particle traces. For this reason, it is beneficial to have long 

track lengths as well as performing the estimate of (𝜎2 − 2𝐷𝐾Δ𝑡) on the ensemble 

level. In Paper II, the correction was performed on the ensemble level using a linear fit 

between < (Δ𝑥𝑛)
2 > and < Δ𝑥𝑛Δ𝑥𝑛+1 >. This strategy was used since the particles all 

had a similar optical signal, making 𝜎2 approximately the same for the analysed 

particles. Thus, the main difference between the particles was their motion during the 

exposure time. In Paper I, since the size estimate was performed directly using the 

optical scattering signal, such corrections were not needed, which shows one of the 

benefits of not relying on estimates of the diffusion constant when quantifying particle 

properties such as size. 

 

  

 
* In Ref [51], 𝑅 is used instead of 𝐾, where 𝐾 is here used to avoid confusion with the particle radius. 
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4  

 

Experimental methods 
 

If it disagrees with experiment it is wrong.  

In that simple statement is the key to science.  

– Richard Feynman 

 

 

When measuring properties of macroscopic objects, such as the size of a football, it is 

typically assumed that the considered property can be measured without any restrictions 

from the tool itself. However, this reality changes when the size of the object becomes 

comparable to the resolution and/or the sensitivity of the measurement method. To 

tackle this problem, one approach is to work with method development, and another is 

to use complimentary measurement techniques. This thesis is founded in the former of 

the two. In this chapter, the details of the used experimental techniques are presented 

together with the complimentary techniques also used to evaluate their performance.  

 

4.1 Quantitative phase microscopy 

The information in an ordinary image recorded by a camera is related to the amplitude 

of the incoming light. However, as described in Section 2, the optical field has both an 

amplitude and a phase. The first microscopy technique measuring the phase signal was 

developed in the middle of the 20th century by Frits Zernike, in which a phase-delay 

ring was used to increase the contrast of weakly optically interacting samples [68,69]. 

Due to the information content in the phase signal, a vast number of phase microscopy 

methods have since been developed, all sharing some central features about how the 

phase information is obtained from images, which themselves only contain amplitude 

information. 

The central idea to recover phase information is to relate the amplitude modulation of 

interfering optical fields to the phase content. If two or more optical fields are present 

at a camera, the recorded light intensity is: 

𝐼cam ∝ |∑ 𝐸⃗ 𝑛𝑛 |
2
= ∑ |𝐸⃗ 𝑛|

2 + ∑ 𝐸⃗ 𝑛 ⋅  𝐸⃗ 𝑚
∗

𝑛,𝑚,𝑛≠𝑚𝑛 ,  4.1 



24 

where 𝐸⃗ 𝑚
∗  is the complex conjugate of the optical field [22,32]. In the special case of 

two coherent optical fields* where one of the fields is a plane wave, 𝐸⃗ 0𝑒
−𝑖(𝑘⃗ ⋅𝑟 ) (see 

Section 2.2), then Eq. 4.1 can be expressed as: 

𝐼cam ∝ |𝐸⃗ 0𝑒
−𝑖(𝑘⃗ ⋅𝑟 ) + 𝐸⃗ 𝑛(𝑟 )|

2

= |𝐸⃗ 0|
2
+ |𝐸⃗ 𝑛(𝑟 )|

2
+ 𝐸⃗ 0𝑒

−𝑖(𝑘⃗ ⋅𝑟 ) ⋅ 𝐸⃗ 𝑛
∗(𝑟 )  

+𝐸⃗ 0
∗𝑒𝑖(𝑘⃗ ⋅𝑟 ) ⋅ 𝐸⃗ 𝑛(𝑟 ).    4.2 

The |𝐸⃗ |
2
 terms of Eq. 4.2 are referred to as intensity terms, as the same signal would 

still be present in the absence of other optical fields, whereas the other terms are called 

interferometric terms. Note that the interferometric terms are here proportional to the 

optical field. Thus, the aim of phase microscopy techniques is to suppress the intensity 

terms such that the information in the interferometric terms can be quantified. 

Nowadays, there exists several strategies to suppress the intensity terms of Eq. 4.2. The 

strategies used to quantify the full optical field can approximately be divided into three 

classes using either: (i) several shifted images, (ii) an off-axis holography configuration, 

or (iii) deep-learning to recover the phase information in out-of-focus 

images [15,70,71]. 

In the case of using several shifted images, which here includes I) phase-shifting [72], 

II) the transport of intensity equation [70] and III) spatial light interference 

microscopy [73], a set of images with a known difference between them are used to 

obtain the optical field. The working principle of the phase-shifting approach is the 

following: if one of the optical fields in Eq. 4.2 is phase shifted, the intensity terms 

remain the same while the contribution from the interferometric terms changes. In 

particular, if the phase shift is 𝜋, the interferometric terms change sign. Thus, 

subtraction of images with and without phase-shifting one of the optical fields supresses 

the intensity terms while still maintaining the interferometric terms [15]. The 

foundation of the transport of intensity equation is however slightly different. In this 

case, intensity images from two adjacent planes orthogonal to the optical axis are 

combined with the propagation equations (see Sections 2.1-2.2) to estimate the optical 

field. Nevertheless, the principle of having images with a known difference between 

them remains the same. The benefits of using several shifted images are high optical 

resolution and that light sources with a short coherence length† can be used. However, 

this approach has the disadvantage that several images are required, and that the sample 

 
* Coherent optical fields means that the frequency and waveform are identical and the phase difference 

is constant. Although incoherent optical fields also interfere at any given moment in time, since the 

phase difference varies much faster than the exposure time of a camera, the recorded interference signal 

for incoherent field is zero. 
† When two initially coherent optical fields travel different distances before recombined at a camera, 

the fields can become incoherent. The distance difference for which the fields become incoherent is 

referred to as the coherence length, which is around a few μm for LEDs and can be up to several km 

for stabilised lasers.  
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needs to remain unchanged during the imaging cycle. Thus, this approach is limited to 

stationary or slowly changing experimental systems. 

Off-axis holography is instead based on using an external reference beam which is 

slightly tilted with respect to the light that interacts with the sample (see Figure 9). The 

tilted external reference beam enables the optical field to be quantified in a single 

image [15]. This method is presented in detail in Section 4.1.1, as it is the main 

experimental method used in Paper I. Off-axis holography has the advantage that the 

optical field is quantified using only a single image, which enables imaging of non-

stationary experimental systems. In contrast, it has the disadvantage that a light source 

with a long coherence length is needed, which makes it prone to coherence speckle 

noise [74].  

The last approach takes advantage of deep learning to recover the phase information 

from out-of-focus images [71]. In principle, a deep learning algorithm is trained to 

suppress the unwanted terms of Eq. 4.2, often using training data from approaches (i) 

or (ii). This combines the benefits of using a single image and light sources with a short 

coherence length. The method’s current drawbacks are that the sample needs to be 

imaged significantly out-of-focus and that a representative training set is needed to train 

the algorithm. However, since the method is continuously being developed, it remains 

to be seen to which extent these limitations will be possible to overcome. 

 

Figure 9: Schematic illustration of an off-axis holographic microscope. The laser beam is split into two 

different beams, where one passes through the sample and one does not. The two beams are then 

recombined at the camera with a slight angle with respect to each other. 1. Inverted microscope, 2. 

Sample, 3. Objective, 4. Tube lens, 5. Beam splitter, 5*. Polarisation-dependent beam-splitter 6.Half-

wave plates.  
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4.1.1 Optical off-axis holographic microscopy 

Off-axis holography is a microscopy technique that measures the change of the 

incoming field induced by a sample, and this using a single image without any 

assumptions of the sample shape [15]. The technique was first developed in the 1960s 

by Emmett Leith to overcome some of the issues with Gabor holography, another 

holography technique developed in 1948 by Dennis Gabor* [75,76]. In Gabor 

holography, it is difficult to separate the different interferometric terms and the 

technique is limited to relatively simple objects which transmit a large proportion of the 

light without scattering [76]. To overcome these limitations, Leith introduced a tilted 

external reference beam (see Figure 9 and Figure 10), which enabled a straight forward 

procedure to separate the interferometric terms (see Section 4.1.1).  

To motive the use of a tilted external reference beam, we return to Eq. 4.2. If all the 

optical fields have the same polarisation and the camera plane is defined such that 𝑧 =

0, the recorded image is proportional to: 

𝐼cam ∝ |𝐸⃗ 0|
2
+ |𝐸⃗ 𝑛(𝑟 )|

2
+ 𝐸0𝐸obj

∗ (𝑟 )𝑒−𝑖(Δ𝑘𝑥𝑥+Δ𝑘𝑦𝑦)  

+𝐸0
∗𝐸obj(𝑟 )𝑒

𝑖(𝛥𝑘𝑥𝑥+𝛥𝑘𝑦𝑦),   4.3 

where 𝐸⃗ obj(𝑟 ) is the light which has interacted with the sample while Δ𝑘𝑥 and Δ𝑘𝑦 

depend on the angle between the external reference beam and the direction of 𝐸⃗ obj(𝑟 ). 

At this point, it is important to recall the relation 𝓕(𝑓(𝑥)𝑒𝑖𝑘𝑥𝑥) = 𝑓(𝑘 − 𝑘𝑥), where 

𝑓(𝑘) = 𝓕(𝑓(𝑥)) and 𝓕() is the Fourier transform operator for the function inside the 

parenthesis [37]. Specifically, the multiplication with 𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) becomes an offset in 

the spatial frequency space. Thus, the interferometric terms and the intensity terms 

become separated when the image is Fourier transformed. An example of 𝓕(𝐼cam) is 

shown in Figure 10. The central peak corresponds to the intensity terms and the off-

centre peaks correspond to the interferometric terms. One of the interferometric terms 

can then be selected by applying a Fourier filter which supresses the other two peaks. 

The image analysis method to select one of the interferometric terms is standardised 

and outlined in several scientific articles; thus for extensive details see Kim [15]. In 

brief, by centring one of the off-centre peaks, multiplying with a circular selection 

Fourier filter and then applying an inverse Fourier-transforming the filtered image, the 

optical field is obtained (see Figure 10) [15]. Thus, the tilted external reference beam 

allows for a numerical procedure to separate the intensity and interferometric terms 

using only a single image. 

Once the optical field is obtained, the phase information can be obtained using the 

argument of the complex numbers. The advantage of using off-axis holography to 

quantify the induced phase shift is that it is relatively unsensitive to light attenuation 

 
* Holographic microscopy was initially developed for electron microscopy, but it was quickly realised 

that the same principles could be used in optical microscopy.  
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from the sample, whereas ordinary phase microscopy methods assume the sample only 

affects the phase of the incident light [15]. Furthermore, by utilizing the propagation 

algorithms in Sections 2.1-2.2, the optical field can be repropagated and analysed at any 

arbitrary z-plane, enabling analysis of particles throughout the sample volume. For this 

reason, off-axis holography has been extensively used in various cell studies [15,16,43]. 

This aspect of off-axis holography was utilized in Paper I to enable particle tracking 

throughout the volume of a microfluidic channel.  

 

Figure 10: Illustration of the initial data processing steps of the off-axis holography data. All images 

with a scalebar correspond to the same region in the sample, the only difference is the amount of data 

processing. The recorded image at the camera is Fourier filtered such that the optical field is obtained. 

The optical field is then normalised such that the plane-wave background is equal to 1. The stationary 

background signal is thereafter subtracted. The scalebars correspond to 1 µm. 

 

4.1.2 Characterisation of subwavelength particles using their optical signal 

By using the theory developed to represent the optical signal from small particles (see 

Section 2.4), the optical scattering pattern from a known particle can be calculated. 

Thus, if the objects in the sample are known, then the corresponding microscopy image 

is also known except for experimental noise and optical aberrations. However, in the 

vast majority of measurements, the particles are unknown and the goal is to describe 

the particles based on their corresponding microscopy image. Without any previous 

knowledge about the particles, finding a unique solution is a very challenging problem, 

particularly due to the limited spatial resolution of optical microscopy. This problem is 

often referred to as the inverse problem, whereas calculating the signal from known 

particles is called the direct problem [30]. 
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For this reason, if the particle shape is unknown, either the shape needs to be assumed 

or the signals are being quantified without any reference to particle size or shape. The 

advantage of assuming particle shape is that it allows to quantify particle size directly 

from an image using the spatial distribution of the signal [21]. Since the signal 

amplitude is approximately the product of particle volume and the refractive index 

difference between the particle and the surrounding medium, the refractive index of the 

particle can also be obtained once particle size is known [17,21]. When assuming 

particle shape, a spherical approximation is often used [18]. This enables fitting using 

Mie theory (see Section 2.4) with the radius and refractive index as free parameters. If 

the particle deviates from a sphere, the signal can often be replicated by an effective 

sphere, in particular if the particle size is smaller than the point spread function (PSF) 

of the measurement [20,77], where the PSF contains the effect of the wavelength, 

optical aberrations, distance from the focal plane, and numerical aperture of the 

objective [78]. However, the estimated radius and refractive index should then be 

referred to as effective fitting parameters. Nevertheless, depending on the a priori 

information about the measured particle system, the effective parameters can be related 

to physical particle parameters. For example, for elongated particles, the relation 

between effective radius and refractive index contains information about particle 

orientation [79], and for particle clusters the effective radius and refractive index relate 

to the fractal dimension and the number of monomers in the cluster [17,20].  

However, one limitation of the Mie fitting approach is that it becomes unreliable for 

nanoscopic particles, which is a consequence of the optical spatial resolution limit and 

noise in experimental images [21]. Specifically, as the particle size decreases, the spatial 

distribution of the signal becomes dominated by the properties of the microscope, as for 

example the wavelength and optical aberrations [80]. Since the size determination using 

Mie theory depends on the spatial distribution of the optical signal, pushing the limit of 

the particle sizes which accurately can be quantified using Mie fitting depends partially 

on the ability to correct for such aberrations. For example, Mie fitting still works for 

simulated nanoparticles in noise-free images [81]. Corrections of the induced effect of 

the microscope can be performed by taking into account that the measured signal is a 

convolution between the particle signal and the PSF [78]. To correct for the effect of 

aberrations, the strategy used in Paper I was to perform calibration measurements using 

monodisperse particles with a known size and refractive index. Specifically, by 

comparing calibration data with theory and taking advantage of the mathematical 

theorem that a convolution becomes a multiplication when Fourier transformed [37], 

the experimental PSF and its spatial variations could be estimated.  

As indicated in the previous paragraph, there is a lower size limit below which the 

simultaneous determination of both size and refractive index from the optical signal 

becomes unreliable. Nevertheless, the signal amplitude can still accurately be 

quantified, while other size-dependent information such as the diffusion constant can 

be combined with the particle signal to determine the refractive index [17]. However, 

accurate estimation of the radius using the diffusion constant requires several particle 
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observations as well as knowledge about the viscoelastic properties of the medium and 

the hydrodynamic boundary conditions; aspects that were discussed in detail in Section 

3.4.  

4.1.3 Image analysis of holography data using deep learning 

Classical image analysis is typically based on using a fixed set of mathematical 

operations, such as convolutions and thresholds, combined with intuition about the 

experimental system in question [82]. Despite the historical success of this approach, 

the obtained solution is not necessarily the optimal for the task at hand. In particular, 

the explored space of potential solutions* is significantly limited, and the solution 

depends on the knowledge of the user. For images with a high signal-to-noise ratio and 

distinct features of interest, different image analysis algorithms give similar outcomes. 

But as the signal-to-noise ratio decreases, which is the case when smaller particles are 

analysed, the used algorithm may significantly affect the accuracy of the quantified 

particle parameters [66,83]. 

An alternative image analysis approach to solve the task at hand is letting a computer 

find the combination of parameters for the mathematical operations, an approach 

referred to as machine learning. In essence, machine learning is based on setting up a 

space of mathematical parameter combinations, in which a computer explores different 

combinations given a certain set of rules [82]. There exist several different classes of 

machine learning, both regarding the mathematical operations the algorithm performs 

and how the end-result is obtained. In the context of quantitative image analysis of 

microscopy data, convolutional layer-based neural networks trained using supervised 

learning is commonly used, as they are translation-invariant and requires relatively few 

free parameters to be optimised [71,82,84]. The structure of the network depends on the 

considered application. For example, the so called U-NET structure has successfully 

been applied to holography data to achieve phase recovery, denoising and virtual 

staining [71,85] among others, whereas convolutional neural networks (CNN) and 

dense neural networks have been used to quantify size and refractive index from particle 

scattering patterns [21,86].  

There are both advantages and disadvantages of using deep learning-based image 

analysis compared to classical image analysis. The main disadvantages are that training 

data is needed, which either is experimentally obtained or simulated, and that the 

algorithm often needs retraining when transferred to another microscope. Depending on 

the complexity of the experimental system, the challenge of generating training data 

varies. However, as outlined in Section 4.1.2, calculating the signal from known 

particles (the direct problem) is often significantly easier than the inverse problem [30]. 

Thus, deep learning can this way shift the inverse problem in classical image analysis 

 
* The phrasing “space of potential solutions” comes from viewing the task as a multi-dimensional 

optimisation problem, where each free parameter, such as threshold values, is a separate dimension in 

the space of potential solutions. Thus, by increasing the number of free parameter and the range of 

searched values, the space of mathematical parameter combinations becomes larger. 
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to the direct problem. Furthermore, there are now several open-source software 

packages available that aid in this step of the analysis [84], thus reducing the complexity 

for individual users.  

There are numerous potential advantages of using deep learning instead of classical 

image analysis. For example, deep learning-based image analysis opens up for new 

possibilities such as recovering the phase information from a single out-of-focus 

image [71] and virtual staining [85]. In Paper I, deep learning was used to enable 

weighted averaging of a stack of particle observations, such that the averaging became 

independent on particle centring in the images. The used network structure also 

generated a weight for each single observation based on noise and image quality to 

further improve the parameter estimation. Another advantage is improved performance 

at low signal-to-noise ratios, since neural networks are efficient at separating signals 

occurring at different length scales, where noise, the signal of small particles, and the 

background signal often have different spatial correlation. For example, in the case of 

single-particle tracking, deep learning algorithms have been shown to reduce the 

uncertainty in position determination and improve particle detection [66,83]. 

 

4.2 Two-dimensional flow nanometry 

When quantifying the diffusion constant of individual particles, long track lengths are 

needed to reduce the statistical uncertainty (see Section 3.4). However, if the particles 

are free to move unrestrictedly in 3D, they will eventually move outside the imaging 

region, which consequently limits the experimentally obtainable track lengths. To 

overcome this limitation, one solution is to restrict the motion of the particle by using 

nano- or microfluidic designs [87,88]. Another approach is to molecularly link the 

particles to a laterally fluid supported lipid bilayer (SLB), as illustrated in Figure 11, 

which restricts the particle motion to two dimensions [89]. Although long track lengths 

can readily be obtained using any of these approaches, the particle mobility is affected 

by the confinement (see Section 3.2). Furthermore, when a particle is molecularly linked 

to an SLB, the motion of the particle-tether complex depends also on the mobility of 

the linker (see Section 3.3) [62,63]. Thus, when using any of these approaches, the 

ordinary Stokes-Einstein equation cannot be used to relate diffusivity to particle size 

without first introducing corrections for the particular system under investigation [47]. 

In the case of nanoparticles tethered to an SLB, one strategy to avoid the added 

complexity when relating diffusivity to particle size is to introduce a shear flow and use 

the ratio between the flow-induced velocity and the diffusivity of the particles [63]. 

Implied by the Einstein–Smoluchowski relation [8], the ratio between the flow-induced 

velocity, 𝑣, of the particle and the diffusion constant, 𝐷th−NP, relates to the 

hydrodynamic force as: 

𝐹 = 𝑘B𝑇
𝑣

𝐷th−NP
.      4.4 
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Assuming spherical particles, 𝐹 is related to particle size, 𝑅FN, as: [63] 

𝐹 = 𝑘B𝑇
𝑣

𝐷th−NP
≈  𝐴𝜂𝑢0𝑅FN(𝑅FN + 𝜆̃),   4.5 

where 𝑢0 is the flow rate of the surrounding fluid, 𝜂 the dynamic viscosity of the 

surrounding fluid, while 𝐴 and 𝜆̃ are calibration parameters which depend on the 

experimental geometry and hydrodynamical boundary conditions. In other words, since 

both the flow-induced velocity and the diffusion constant depend on the mobility of the 

tethered particle, their ratio cancels the effect from the unknown mobility. This 

approach to measure particle size is called two-dimensional flow nanometry (2DFN) 

and is the main experimental imaging technique in Paper II. The advantage of 2DFN is 

that it enables simultaneous quantification of both the size and diffusion constant 

without requiring a known relation between the optical signal and size. However, the 

main disadvantage with 2DFN is that it requires tethering of particles to a fluid interface, 

which limits the type of particles that can be analysed.  

When relating measured particle properties, such as diffusion constant or fluorescence 

intensity, to 𝑅FN, it is important to consider the physical meaning of 𝑅FN. In Paper II 

and in previous work using 2DFN [63,90], the calibration was done by relating the 

measured hydrodynamic force distribution to the hydrodynamic size distribution 

obtained using bulk-based nanoparticle tracking analysis (NTA). This makes 𝑅FN 

similar to the hydrodynamic radius but not necessarily identical. If the particles used 

during calibration have a non-zero size distribution, there might be a difference between 

the measured particle size distribution in 2DFN and in bulk. This introduces a potential 

bias in size determination using 2DFN. A detailed investigation of this effect is 

presented in the supplementary information to Paper II.  

 

Figure 11: Schematic of a two-dimensional flow nanometry (2DFN) measurement. Particles (here a 

lipid vesicle) are linked to a supported lipid bilayer (SLB) using molecular tethers, here a cholesterol-

DNA tether. A shear-flow is applied such that the tethered vesicle has a non-zero drift velocity. The 

particles are here imaged using fluorescence microscopy. 
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4.2.1 Limitations of two-dimensional flow nanometry 

When applying Eq. 4.5 to estimate particle size, it is implicitly assumed that the velocity 

of the fluid around the particle is considerably faster than the velocity of the SLB. To 

illustrate this approximation, it is instructive to inspect the Langevin equation of motion 

(see Section 3). If the flow direction is along the x-axis, then the equations of motion 

are: 

𝑚
𝑑𝑣x

𝑑𝑡
= −𝜇NP

−1(𝑣𝑥 − 𝑣fluid) − 𝜇T
−1 (𝑣x − 𝑣SLB) + 𝜉𝑥(𝑡)  4.6 

𝑚
𝑑𝑣y

𝑑𝑡
= −𝜇NP

−1𝑣y − 𝜇T
−1𝑣y + 𝜉y(𝑡)    4.7 

where 𝜇NP is the nanoparticle mobility, 𝜇T is the mobility of tether(s) in the SLB and 

𝜉(𝑡) is the stochastic force (see Section 3). Since the velocity of the fluid is different 

for different parts of the particle, 𝑣fluid here refers to the average velocity of the fluid 

interacting with the particle, which is assumed to be identical to the fluid velocity at the 

height corresponding to the centre of the particle [63]. 

Equation 4.7 is similar to the ordinary equation for Brownian motion. Thus, the 

diffusion constant along the y-axis is given by 𝐷y = 𝑘B𝑇/(𝜇NP
−1 + 𝜇T

−1). Furthermore, 

when a particle has reached its steady-state drift velocity, <
d𝑣x

d𝑡
>= 0, Eq. 4.6 gives: 

𝜇NP
−1𝑣fluid + 𝜇SLB

−1 𝑣T = 𝑣x(𝜇NP
−1 + 𝜇T

−1)  =  𝑘B𝑇
𝑣x

𝐷y
.   4.8 

Furthermore, the particle mobility is defined as the ratio between the terminal drift 

velocity and the applied force, 𝜇 = 𝑣/𝐹. Thus, 𝜇NP
−1𝑣fluid is the hydrodynamic force in 

Eq. 4.4. Therefore, to obtain Eq. 4.4 from Eq. 4.8, it is required that 𝜇NP
−1𝑣fluid ≫

𝜇T
−1𝑣SLB. Measurements of 𝑣SLB show that its velocity is over a factor 100 lower than 

the fluid velocity at the height of a 50 nm radius particle [91]. Furthermore, the results 

from Paper II show that 𝜇NP
−1 is similar to 𝜇T

−1 in the case of a single tether and a 50 nm 

radius particle. However, since both 𝜇NP
−1 and the distance from centre of the particle to 

the SLB decrease with reducing particle size, there is a lower size limit at which this 

approximation is no longer valid. The lower particle size limit for when 2DFN can be 

accurately applied is around 10-20 nm (in diameter) [63]. 

Furthermore, to obtain the relation 𝐹 ≈ 𝐴𝜂𝑢0𝑅FN(𝑅FN + 𝜆̃) given in Eq. 4.5, it is 

implicitly assumed that 𝜇NP
−1 ∝ 𝑅 [63]. However, as discussed in Section 3.2, the 

diffusivity-size relation deviates from the ordinary Stokes-Einstein relation when the 

particles are in close proximity to the surface. Since 𝜇 = 𝐷𝑘B𝑇, this also holds for the 

particle mobility. Thus, Eq. 4.5 should be viewed as an approximate relation. This is of 

importance since 𝜆̃ is sometimes referred to as the slip length (see Section 3.1). 

Although 𝜆̃ to some extent is dependent on the slip length, due to the approximations 

when deriving the expression, there are several other contributions to its numerical 

value, such as confinement effects and the finite viscosity of the SLB [11,13]. Thus, to 
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quantify the slip length using 2DFN, the size-diffusivity data needs to be evaluated 

using Eqs. 3.8-3.10, which was inspected in detail in Paper II. 

Another central assumption when using 2DFN is that the particle mobility is the same 

throughout the measurement. If the tethering is multivalent, as in the case for Paper II, 

the number of tethers may change during the trace [64]. This complication can be 

handled either by evaluating the diffusion constant using a sliding window approach, 

which checks if it is the same throughout the trace, or by comparing the diffusion 

constants parallel and orthogonal to the flow direction. In the latter approach, if the 

number of tethers change, then the mean step length in the flow direction becomes 

incorrect, which makes the diffusion constants deviate from one another. This second 

approach was used in Paper II to only include particles for which the number of tethers 

is constant during the track and did not interact with potential defects in the SLB. 

 

4.2.2 Total internal reflection fluorescence microscopy 

As indicated in Section 2.5, by using wavelength-selective filters it is possible to 

separate a fluorescence signal from the incoming illumination. The main differences 

between the many existing fluorescence microscopy methods arise from the size of the 

illumination volume and how the molecules are excited. For example, in 

epifluorescence microscopy, the sample is illumined by a stationary light beam, 

whereas in confocal fluorescence microscopy a small optical probe is scanned over the 

sample, where in both cases either single and double photon excitation are commonly 

used [44]. 

If the objects of interest are in close proximity to a surface, it is possible to use the 

evanescent field from total internal reflection to only excite particles in vicinity to the 

surface (see Figure 12). Total internal reflection is a phenomenon which occurs when a 

ray of light interacts with a medium with lower refractive index and the angle relative 

to the normal direction of the surface is larger than a critical value determined by the 

ratio of the two refractive indices. When this happens, there is no direction in the second 

medium in which constructive optical interference in the far field* can occur. Instead, 

the light reflects at the surface. However, although the far field is zero, there is still a 

non-zero optical near field, here called the evanescent field, which exists close the 

interface between the two media.  

The evanescent field decays exponentially, 𝐼 = 𝐼0e
−𝑧/𝛿, with the characteristic length 𝛿, 

𝛿−1 =
4𝜋

𝜆
√(𝑛1 sin 𝜃)2 − 𝑛2

2,    4.9 

 
* The far field is the signal which can be captured by an ordinary camera, whereas the near field is the 

part of the optical field which cannot. Nevertheless, the near field is important for close range 

interaction, as in the case of an evanescent field. 
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where 𝑛1 is the refractive index of the original medium, 𝑛2 is the refractive index of 

second medium and 𝜃 is the relative angle between the incoming ray of light and the 

normal of the surface [22,32]. Fluorescence microscopy which uses this type of 

excitation illumination is called total internal reflection fluorescence (TIRF) 

microscopy. TIRF is commonly used when analysing particles attached to an SLB as it 

suppress the potential background signal from particles in bulk [92–94], a feature used 

in Paper II. 

 

 

 

Figure 12: Schematic illustration of a total internal reflection fluorescence (TIRF) microscope. The 

incoming light is wavelength filtered to match the absorption spectrum of the fluorophores. The 

incoming light approaches the sample with an angle such that total internal reflection occurs, which 

gives rise to an exponentially decaying evanescent field which excites the fluorophores close to the 

surface. δ is the characteristic length constant for the exponentially decaying evanescent field. The 

subsequent emission is wavelength filtered and recorded by a camera. The image is adapted from 

Wikimedia [95] under CC BY-SA 1.0 licence. 
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4.3 Comparison between optical holography and different microscopy 

characterisation techniques to estimate particle size 

Although both holographic microscopy and fluorescence microscopy combined with 

2DFN are used to quantify particle size in Paper I and II respectively, the size is 

extracted directly from the images only when using holographic microscopy. The 

reason for the difference in size quantification between the methods does not only relate 

to the different particle sizes used in the respective investigations, it also relates to 

differences between fluorescence and optical scattering. For example, the fluorescence 

signals from different parts of a particle are incoherent with each other, where the 

coherence aspect of optical scattering contains a significant amount of the size 

information (see Section 2.4). For this reason, the size determination approach used in 

Paper I is difficult to apply for fluorescence data. Another difference is that the 

fluorescence intensity depends on both exposure time and the chemical environment 

around the fluorophores, which implies that the signal amplitude does not necessarily 

scale with particle volume [90,96]. Thus, it is challenging to quantify the size of 

subwavelength particles using the amplitude and spatial distribution of the fluorescence 

signal. Nevertheless, fluorescence is a specific signal whereas scattering originates from 

all refractive index inhomogeneities (see Sections 2.4-2.5), and specificity is 

advantageous when investigating the motion of weakly optically scattering objects such 

as lipid vesicles.  

Regarding the use of off-axis holography in Paper I, there are several different 

interferometric/scattering techniques that are capable of quantifying both size and 

refractive index of individual particles. One such technique is flow-cytometry, which 

has been used to measure the size of lipid vesicles by quantifying the angular scattering 

pattern [19]. Another technique is dark-field optical microscopy combined with particle 

tracking, which is based on that the scattering intensity and hydrodynamic radius can 

be used to estimate the refractive index (see Section 2.4) [97]. A third technique is in-

line holography, in which Mie fitting is applied to out-of-focus microscopy images [18]. 

The particle sizes that can be analysed using flow-cytometry and dark-field microscopy 

are considerably smaller than the sizes that can be observed using off-axis holography. 

One major reason for this difference is that optical holography is a brightfield technique 

whereas flow-cytometry and dark-field NTA are dark-field techniques. In the limit of 

small particle sizes, the signal-to-background ratio becomes critical. Off-axis 

holography can also be used in a dark-field configuration [98], but then the signal 

contains no information about the phase-shift induced by the particle since that requires 

information about the phase of the incident light.  

However, dark-field techniques also have disadvantages. For example, they struggle 

with simultaneous size-refractive index determination for particle sizes comparable to 

or larger than the wavelength of light. This originates from that the scattering signal 

does not monotonically increase with particle size, with the size interval within which 

the signal monotonically increases being dependent on the illumination 
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geometry [97,98]. Ordinary off-axis holography does not have that issue since the 

integrated phase scales monotonically with particle volume [17]. Thus, the performance 

of the different scattering/interferometric techniques varies depending on the size-

interval in question, where holography is preferable for particles larger than the 

wavelength of light and dark-field techniques are currently preferable for nanoparticles. 

Furthermore, it is difficult with flow cytometry and dark-field NTA to investigate 

dynamical changes on the single-particle level. Flow cytometry only takes a snapshot 

of the particle in question, whereas diffusion-based sizing requires that changes in 

particle size occurs on a time scale much slower than the imaging frame rate (see 

Section 3.4). Thus, for experimental systems where it is of interest to follow changes 

for the same particle over time, holographic microscopy is advantageous. However, 

other holographic microscopy methods such as in-line holography can also be used to 

quantify dynamics on the individual particle level. One major difference between in-

line holography and off-axis holography is that in-line holography requires the particle 

to be imaged considerably out of focus, whereas off-axis holography can handle both 

in and out-of-focus particles. This limitation of in-line holography is one of the reasons 

why the minimum particle radius to accurately determine both size and refractive index 

is around 500 nm [86,99]. Thus, for particles with a radius larger than 500 nm both in-

line and off-axis holography can be used, but for subwavelength sized particles only 

off-axis holography has so far been able to experimentally quantify size and refractive 

index.  
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5  

 

Summary of results 
 

“Because I enjoy it.” 

Michelson’s answer to Einstein’s question regarding why he spent so 

much effort on measuring the physical constants. [100] 

 

 

This chapter summarises the two papers that this thesis is based upon, referred to as 

Paper I and Paper II. Paper I is focused on quantifying size and refractive index of 

subwavelength sized particles using the optical scattering pattern measured with off-

axis holography, and where deep-learning was used to improve the parameter 

determination. The developed method was used to quantify size and refractive index of 

individual particles in dispersions with different solution properties as well as to resolve 

reversible fluctuations of the number of monomers for polystyrene nanoparticles 

clusters. Paper II is focused on the quantification of hydrodynamic boundary conditions 

using two-dimensional flow nanometry (2DFN, see Section 4.2) for nanoparticles 

tethered to a supported lipid bilayer (SLB). The experimentally obtained size-diffusivity 

relation was evaluated against theoretical expressions to quantify the slip length for two 

different lipid vesicles, as well as to clarify the size-dependent mechanistic aspects 

concerning the mobility of membrane-attached nanoparticles. For details beyond the 

summaries in the following sections, see the Papers appended to this thesis. 

 

5.1 Paper I 

This investigation is based upon developing an alternative to the Stokes-Einstein 

relation when using optical microscopy to quantify size of subwavelength sized 

particles, as such sizing cannot be applied for dynamically changing particles or for 

particles in unknown surrounding media. One alternative approach to quantify both the 

size and refractive index without the limitations of the diffusivity-size relation is to fit 

the optical scattering pattern to simulations of known particles (see Section 4.1.2). 

Previous implementations of this approach, however, either struggle with 

subwavelength sized dielectric particles or cannot follow the same particle over 

time [18,19,99]. 
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To develop a method which partially overcomes these limitations, off-axis holographic 

nanoparticle tracking analysis (H-NTA) was combined with a deep learning-based 

analysis called weighted average convolutional neural network (WAC-NET) to 

characterise both the size and refractive index using the optical scattering pattern. The 

WAC-NET was trained using Mie simulations combined with noise to mimic the 

experimental data. The performance was subsequently evaluated using experimental 

data of particles with known size and refractive index.  

For polystyrene (PS) particles which according to the manufacturer had a radius of 228 

± 6.8 nm, the WAC-NET analysis provided estimates on the single particle level for 

both the radius and refractive index with standard deviations (std) of ±16 nm and ±0.05 

refractive index units (RIU) using only five particle observations. By increasing the 

number of observations to 60, the std became ±11.9 nm and ±0.03 RIU, showing that 

the output converges using only a few particle observations. 

To further evaluate the performance, a mixture of 210 nm radius silica (SiO2), 150 nm 

and 230 nm radius PS particles in water were analysed and correctly identified (see 

Figure 13(a)). Thus, the method can handle mixed samples with particles of different 

sizes and refractive indices. When changing the viscosity and refractive index of the 

surrounding medium, the WAC-NET analysis correctly estimated the size and the 

difference in refractive index between the particle and the media, even though the 

training data only contains simulations of particles in water. Thus, the characterisation 

does not require a known surrounding medium.  

To test the network in a dynamic scenario, a sample consisting of a solution of 31 nm 

radius PS nanoparticles was analysed during salt-induced clustering. Since these 

aggregates are not homogenous spheres, the quantified size and refractive index are 

effective particle parameters, but these effective parameters can in turn be related to the 

number of monomers and the fractal dimension* of the cluster [20]. The obtained fractal 

dimension of 2.35 ± 0.1 agrees well with the expected fractal dimension considering 

that diffusion-limited clustering of monodisperse monomers have a fractal dimension 

of ~2.5 and the fractal dimension decreases if cluster−cluster aggregation occurs [101]. 

Further, as seen in Figure 13(b), the size and refractive index change over time while 

the fractal dimension is approximately constant, demonstrating that the clustering 

process is dynamic and has a reversible nature. 

In conclusion, this work shows that the size and refractive index can accurately be 

measured for dielectric particles with a minimum radius of ~150 nm using only a few 

particle observations. Compared to diffusivity-based sizing, the WAC-NET analysis 

requires approximately a factor of 100 fewer observations to achieve the same accuracy 

for individual particles. As the characterisation is performed without assumptions on 

 
* Fractal dimension 𝐷𝑓 is here referred to as the scaling between the size and the number of monomers, 

𝑁, where 𝑟𝐷𝑓 ∝ 𝑁. Pictorial depictions of possible clusters for three different fractal dimension are 

shown in Figure 13(b). 
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the physical properties of the environment and shape of the particle, it can be applied 

for a wide range of experimental systems as long as the particles generate a large enough 

optical signal. In particular, the characterisation is sufficiently accurate to provide a 

reliable time-resolved estimate of the fractal dimension of individual aggregates, which, 

to our knowledge, has not previously been reported. 

 

 

 

Figure 13: Summary of the main results in Paper I. (a) The WAC-NET approach (using 60 

observations) distinguishes and correctly characterises subpopulations in a multicomponent mixture 

dispersed in water, consisting of 0.21 μm silica (SiO2), 0.15 μm polystyrene (PS), and 0.23 μm PS 

particles. Furthermore, it also correctly characterises size and the refractive index difference Δ𝑛 of 

0.23 μm PS particles dispersed in a 50% glycerol/water mixture. The intersections of the dashed lines 

represent the expected positions of the populations. (b) The WAC-NET approach gives an average 

fractal dimension 𝐷𝑓 close to 2.35 for salt-induced clustering for 31 nm radius PS nanoparticles. The 

insets show some pictorial depictions of possible clusters for three different fractal dimensions. (c–f) 

Time-resolved behaviour of a representative cluster, characterised in terms of its radius 𝑟 (c), refractive 

index difference Δ𝑛 (d), number of monomers 𝑁 (e), and fractal dimension 𝐷𝑓 (f). While 𝑟, Δ𝑛, and 𝑁 

greatly vary over time, 𝐷𝑓 remains stable. The shaded regions represent the estimated standard deviation 

of the error. The cluster is characterised using a moving window of 20 observations, acquired at a frame 

rate of 30 frames per second. Adapted from [21] under CC-BY license. 
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5.2 Paper II 

This investigation is based around two current limitations regarding relating 

nanoparticle diffusion to properties of the experimental system. First, when relating 

nanoparticle diffusivity to size, the no-slip boundary condition is commonly assumed. 

However, this assumption cannot be derived from first principles. Furthermore, there 

are substantial experimental evidence showing deviations from no-slip for several 

different surfaces, but direct evaluation of partial slip for nanoparticles is difficult using 

existing methods [12,23,25]. Second, when partial slip occurs, the equations describing 

confined nanoparticle diffusion close to a planar surface are uncertain when the slip-

length is similar to the distance from the surface [13,56]. Thus, there is a need for new 

approaches to experimentally quantify the hydrodynamic boundary conditions for 

nanoparticle systems in general, and mobility of nanoparticles close to a surface with 

partial slip in particular. Furthermore, considering that a distance similar to the potential 

slip-length is naturally present during the initial interaction between biological 

nanoparticles and cellular membranes [102], clarifying the size-dependent mechanistic 

aspects concerning the mobility of lipid bilayer attached nanoparticles is also of 

biological relevance.  

To investigate these questions in the context of biological nanoparticles close to an SLB, 

2DFN was used to simultaneously measure particle size and diffusivity of both POPC 

lipid vesicles and extracellular vesicles (EVs). The vesicles were tethered using 

cholesterol-DNA tethers to an SLB formed on the glass floor of a rectangular PDMS 

microfluidic channel such that the flow-induced motion of these vesicles could be 

measured with total internal reflection fluorescence (TIRF) microscopy [63,89]. For a 

schematic illustration of the experimental system, see Figure 14(a). 

From the 2DFN measurement, when inspecting the flow-induced velocity and the 

diffusivity (see Figure 14(b)), the data is not continuously distributed but is instead 

gathered in clusters. This data clustering is caused by the fact that vesicles can be 

tethered with more than a single tether. Thus, within each cluster only particle size 

varies. Since both size, diffusivity and number of tethers are known for vesicles within 

a particular tether subpopulation, this opens up a possibility to fit the measured size-

diffusivity relation using the slip lengths 𝑏 as fitting parameters.  

When deriving the size-diffusivity expression under the assumption of short slip 

lengths, 𝑏 ≪ 𝑅, the distance between the nanoparticle and the SLB, 𝛿, the slip length at 

the SLB interface, 𝑏i, and the slip length at the vesicles, 𝑏p, enter the expression as a 

sum. Thus, the size-diffusivity relation has two fitting parameters, defined as 𝑏ef ≡ 𝛿 +

𝑏i + 𝑏p and 𝐷T, where 𝐷T is the diffusivity for a tether without any vesicle. A fit of the 

POPC data in Figure 14(c) results in 𝑏ef = 22.8 ± 6.3 nm and 𝐷T = 2.56 ± 0.07 

μm2/s. The obtained 𝐷T is similar to complementary tether diffusivity measurements 

using fluorescence recovery after photobleaching (FRAP) of labelled DNA-cholesterol 
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tethers, suggesting that the separate clusters indeed correspond to individual tether 

subpopulations.  

Additional measurements of POPC vesicles in different buffer salt concentrations 

resulted in a 𝑏ef of around 21-26 nm, whereas measurements of the extracellular vesicles 

(EVs) resulted in a 𝑏ef of ~31 nm. These lengths are considerably longer than the height 

of the PEG2000 in the SLB, which is ~4 nm [103], and the length of the DNA tether, 

which is ~15 nm, that together set range of potential 𝑏ef values if no slip occurs. Since 

the slip length is expected to be similar for the POPC vesicles and the EVs, the 

difference in 𝑏ef is likely due to the complex membrane composition of EVs, with 

protruding proteins and hydrocarbons [27] increasing their distance to the SLB. This 

indicates that the vesicles are pushed down towards the PEG by the shear flow, resulting 

in a 𝛿 of around 4 nm. Assuming the same slip at both the nanoparticle and the SLB 

gives a slip length for POPC of around 8-11 nm, which is similar to the literature value 

for DOPC SLBs of 6 ± 0.5 nm that was measured using a surface force apparatus [61], 

albeit for planar rather than nanoscale interfaces. 

In conclusion, this work shows that the nanoparticle contribution to the size-dependent 

diffusivity of SLB-tethered nanoparticles can be quantified using a single measurement, 

where comparison with theory enables evaluation of the hydrodynamic boundary 

conditions. In addition to the slip length estimation, this finding also clarifies the size-

dependent mechanistic aspects concerning the mobility of membrane-attached 

nanoparticles and enables detailed investigations into how nanoparticle mobility varies 

between different types of biological nanoparticles. 
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Figure 14: Summary of the main results in Paper II (a) Illustration of the 2DFN concept. Labelled 

vesicles are linked to a supported lipid bilayer (SLB) using cholesterol-DNA-tethering within a 

microfluidic channel. A shear-flow is applied and the two-dimensional movement of the vesicles 

tracked using TIRF microscopy. 𝑏 indicate the slip length for the SLB and ℎ0 is the distance from the 

centre of the particle the SLB. Inset: fluorescence micrograph showing the shearing of vesicles in the 

field of view with tracks highlighted in red. (b) Flow induced particle velocity versus inverse diffusivity 

for POPC vesicles tethered to and SLB consisting of POPC. The dashed red lines designate the selection 

based on the number of tethers (1, 2 and 3+). (c) Inverse diffusivity versus 𝑅FN for the first two vesicle-

tether clusters in (b). The estimated values from the least-square fit (yellow lines) are 𝑏ef = 22.8 ± 6.3 

nm and 𝐷T = 2.56 ± 0.07 μm2/s (mean ± 95% CI, visualized using the shaded blue region). 
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6  

 

Future outlook 
 

Remember that you are a Black Swan.  

 – Nassim Nicholas Taleb 

 

 

In the two papers which this thesis is based upon, it is shown that although optical 

microscopy combined with particle tracking is a well-established experimental 

technique, there is still room for creative ideas and method improvement. This is 

particularly true for non-ideal systems in which the ordinary Stokes-Einstein equation 

cannot be directly applied or when relating the optical signal to particle properties in 

the 100-500 nm diameter size regime. Although such systems are challenging to 

investigate, it also offers the potential to experimentally obtain new parameters, as 

demonstrated in both Paper I and Paper II. Therefore, when looking forward, the main 

targets are to push the limits of holographic microscopy and to extend the presented 

investigations to systems of higher complexity. 

 

6.1 Off-axis twilight holography 

One of the main limitations with traditional optical holography in the context of 

measuring nanosized particles originates from the fact that it is a brightfield technique. 

For brightfield techniques, the background signal tends to dominate the signal from 

weakly scattering particles, which in turn puts a limit on the weakest signal that can be 

differentiated from the background. One approach to overcome this limitation is to use 

dark-field microscopy, in which the illumination pathway is constructed such that the 

background illumination is not captured by the camera. This approach is used in 

ordinary nanoparticle tracking analysis (NTA), and has been successfully combined 

with off-axis holography to improve the limit of detection [98]. However, to quantify 

the induced phase shift from a particle, which is one of the benefits of using off-axis 

holography, the background signal is needed. This is so because a phase shift is always 

relative to the incoming illumination. Thus, dark-field holography is not an ideal 

solution for quantitative particle analysis.  

Although brightfield and dark-field illumination are by far the most common 

illumination configurations, there is a middle ground between the two which is based 
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on semi-transparent optical Fourier filters. The working principle of optical Fourier 

filters is that certain lens configurations perform a Fourier transformation of the 

incoming optical signal [22,33], which in turn makes is possible to access the spatial 

frequency information without performing the Fourier transform on a computer. By 

placing an optical filter in the Fourier plane it is possible to suppress particular spatial 

frequencies of the optical signal, which in turn shifts the relative signal between 

different features in an image [104,105].  

In the case of plane-wave excitation of a point-like particle, which is the case for off-

axis holographic imaging of a nanoparticle, the plane-wave Fourier transforms to a point 

whereas the optical scattering from the point-like particle Fourier transforms to a plane-

wave [37]. Thus, by placing a small optical filter in the Fourier image plane, it is 

possible to supress the background signal with minor influence on the signal from the 

point-like scatterer. In particular, by using filters made of thin metallic films, not all the 

incident light on the filter is removed [104,105]. The reduced but non-zero signal of the 

incoming illumination enables measurements of the induced phase shift from a particle, 

where the changed signal-to-background ratio enables weaker optically interacting 

particles to be measured.  

The use of semi-transparent optical filters to improve the signal-to-background ratio is 

not a new concept when it comes to interferometric microscopy. It was first combined 

with in-line holography in 2015 under the name of twilight holography [104], and it has 

later been used in both iSCAT and coherent brightfield (COBRI) 

microscopy [41,105,106]. However, in these examples the signal amplitude is only a 

relative signal which needs to be related to a calibration curve. One advantage with off-

axis holography is that the phase signal can be directly related to the physical properties 

of the sample without any calibration curve. When combining off-axis holography with 

a semi-transparent Fourier-filter, the phase signal changes as the filter affects the 

relation between the particle signal and the background signal. However, since the 

optical field is directly obtained in off-axis holography and given that the effect from 

the Fourier filter is known, it should be possible to compensate for this effect during the 

data analysis. Thus, off-axis twilight holography can likely improve the detection limit 

of holography while still maintaining an absolute signal quantification.  

In practice, it is difficult to know the exact effect from the Fourier filter in advance. 

However, it can be estimated by comparing the signal from particles which can be 

detected both with and without the filter. Although it is difficult to extend the 

simultaneous size-refractive index quantification presented in Paper I to nanoparticles 

since a microscope acts as a low-pass filter (see Section 2.3), both the diffusion constant 

and dynamical changes in the optical signal can still be quantified. Preliminary results 

for 95 nm and 120 nm radius polystyrene (PS) spheres are displayed in Figure 15. The 

particle signal is ~2 times larger for the 120 nm radius PS spheres than for the 95 nm 

PS spheres, which is expected since the particle signal scales approximately with the 

volume. Thus, these results indicate that it is possible to compensate for the effect of 
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the filter. For comparison, the smallest PS in Paper I had a radius of 150 nm. Thus, this 

shows that the size-limit of off-axis holography can be improved well beyond what 

previously has been reported. The limits of this approach are to be explored in future 

work, together with applications on biologically relevant nanoparticles, such as lipid 

nanoparticles and viruses. In particular, by reducing the smallest particle size that can 

be measured, both aggregation and dissociation of biological nanoparticle clusters 

should be possible to investigate, which is of importance when it comes to particle 

stability and inhibition of viruses by attaching particles or large molecules [107].  

 

 

Figure 15: Example of the twilight off-axis holography. (a) The optical Fourier filter is a small gold 

disc on a glass slide. (b) Measurements of 120 nm radius polystyrene (PS) both with and without the 

Fourier filter is used to experimentally obtain the effect from the filter. (c)-(d) Measurements of 120 

nm and 95 nm radius PS using twilight off-axis holography, where (c) is the measured optical field from 

the particles and (d) are histograms of the obtained hydrodynamic radius.  
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6.2 Holographic characterisation of sub-cellular structures using deep 

learning 

When particles interact with for example a living cell, the size-diffusivity relation 

changes throughout the process and the label-free optical signal becomes dominated by 

the background of the cell. This makes it difficult to quantify dynamic signal changes 

using ordinary label-free optical microscopy, especially for subwavelength sized 

particles. Nevertheless, the particle signal is still present as in Paper I, since it is 

independent of the complexity of the background signal.  

To identify the label-free optical signal of interest in the case of particles inside and/or 

interacting with cells, the particle identification and background suppression needs to 

be different than for freely diffusing particles. In the case of small particles inside cells, 

the particle signal occurs on a shorter length scale than the cell. Thus, one approach is 

to use various image filters to supress the signal originating from the cell. However, one 

signal of interest is the integrated phase shift from the particle, where an integration 

corresponds to a low frequency spatial signal. Furthermore, the signal distribution from 

a particle depends on its distance from the focal plane. Thus, the signal of interest does 

not occur on a single spatial length scale. These aspects make it difficult to accurately 

analyse the corresponding images using classical image analysis. 

In Paper I, the particle identification is based on classical image analysis, where deep-

learning was only involved in the size-refractive index quantification using the recorded 

scattering patterns. One alternative image analysis approach is to use deep learning for 

both particle identification as well as for the signal quantification. In particular, 

convolutional neural networks have been successfully applied to several different image 

analysis tasks, where one of its strengths lies in the ability to separate signals which 

occur at different length scales [82]. When analysing holographic images, one network 

structure that often is used is the so-called U-NET structure [71,85], in which the output 

is one or multiple images containing the information of interest. When applied to the 

task of identifying and quantifying 225 nm radius fluorescently labelled PS particles as 

well as internal cellular compartments inside SH-SY5Y cells, the U-NET approach 

works well, as shown in Figure 16. All the visible particles in the phase image as well 

as those in the fluorescence image are identified by the U-NET, where the U-NET also 

identifies several non-fluorescent particles, which most likely corresponds to different 

intracellular compartments. To evaluate the integrated phase shift of the particles in the 

cell images, it is compared with the quantified phase shift for PS particles measured 

using holographic nanoparticle tracking (H-NTA) [17]. When only considering the 

particles that co-localise with a fluorescent signal, the histogram peak is located at a 

similar position as for H-NTA, showing that the quantification works as intended. The 

non-fluorescent particles have a different integrated phase distribution than the 

fluorescent PS particles, further motivating that they correspond to intracellular 

compartments 
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The next step is to push the limit of the information which can be extracted from this 

analysis approach. As both the signal and the 3D-position of every particle is recorded 

in each image, the U-NET based analysis has the potential of analysing and correlating 

the signal of a vast number of particles, which would be useful when characterising 

processes related to for example cellular uptake and internal processing. In particular, 

since the samples are kept in incubators, it would be of interest to follow the signal 

changes over time as well as correlating the signal with the particle position in relation 

to the cell. For example, one interesting question is whether it would be possible to 

distinguish nanoparticles bound to the outer cellular membrane from particles in side 

cells, where they are expected to be surrounded by a medium with higher refractive 

index. Another interesting application is to analyse the dynamic signal of membraneless 

compartments inside cells, which are of importance when it comes to function of cells 

but are challenging to investigate using existing methods [108]. 

 

 

Figure 16: Experimental phase images of subwavelength sized particles both inside and outside cells, 

and the application of the U-NET on experimental data. (a) A phase image of the area of interest. (b) 

The same phase image as in (a) is subtracted using a displaced image (where the sample itself have been 

displaced) to subtract stationary background signal. The image clearly shows the presence of five 

particles within the field of view, illustrating the benefit of using position modulation to detect dielectric 

particles inside cells. The traces are the estimated trajectories of the particles (using the output of the 

U-NET) over approximately 90 seconds, where the motion of the particles follows the layout of the 

cell, and the motion of each particle inside the cell is mostly in one single direction, indicating directed 

motion for the particles inside the cell. (c) Image showing the probability output from the U-NET used 

to identify the particles. (d) Overlay of a probability image and the fluorescence signals, showing that 

the analysis finds all 225 nm radius polystyrene (PS) particles while also finding several non-fluorescent 

intracellular compartments. (e)-(f) Histograms of the recorded integrated phase shift, where the similar 

signal is recorded for the particles in the cell sample in (e) as for the particles measured using H-NTA 

in (f). The scalebars correspond to 5 micrometres. 
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6.3 Diffusivity quantification of tethered particles with surface 

interaction  

In Paper II, although the tethering of nanoparticles to a supported lipid bilayer (SLB) 

and the proximity to the surface makes it deviate considerably from idealised bulk-

based nanoparticle measurements, the system is still idealised compared to biological 

systems. For example, in Paper II there is very little interaction between the 

nanoparticles and the SLB due to the presence of PEG in the SLB. Thus, after having 

established the size-diffusivity relation of SLB-tethered nanoparticles during close to 

idealised conditions, a natural next step is to investigate the effect of a weak interaction 

between the nanoparticle and the SLB. In particular, tethered nanoparticles could in 

principle be used to probe weak temporally fluctuating interactions in the limit where it 

is difficult to quantify the interaction using the residence time of nanoparticle bound to 

a receptor in an SLB [92]. Another level of complexity is the interaction between tethers 

when the nanoparticle is multivalently linked to the SLB. In Paper II the main part of 

the analysis is made using particles which are linked with a single tether to the SLB. As 

the number of tethers increases, the resulting diffusivity will most likely deviate from 

independent tether friction contributions to a more collective friction behaviour. Such 

information would further the understanding of the size-dependent mechanistic aspects 

concerning the mobility of membrane-attached nanoparticles on native cellular 

membranes, information that are critical in order to fully understand the initial processes 

during cellular uptake of nanoparticles.  
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