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Zusammenfassung

Mit dem stetigen Wachstum des Internets wächst auch das Interesse von Angreifern.
Ursprünglich sollte das Internet Menschen verbinden; gleichzeitig benutzen aber An-
greifer diese Vernetzung, um Schadprogramme wirksam zu verbreiten. Insbesondere
JavaScript ist zu einem beliebten Angriffsvektor geworden, da es Angreifer ermöglicht
Bugs und weitere Sicherheitslücken auszunutzen, und somit die Sicherheit und Pri-
vatsphäre der Internetnutzern zu gefährden. In dieser Dissertation fokussieren wir
uns auf die Erkennung solcher Bedrohungen, indem wir JavaScript Code statisch und
effizient analysieren.

Zunächst beschreiben wir unsere zwei Detektoren, welche Methoden des maschinellen
Lernens mit statischen Features aus Syntax, Kontroll- und Datenflüssen kombinieren zur
Erkennung bösartiger JavaScript Dateien. Wir evaluieren daraufhin die Verlässlichkeit
solcher statischen Systeme, indem wir bösartige JavaScript Dokumente umschreiben,
damit sie die syntaktische Struktur von bestehenden gutartigen Skripten reproduzieren.
Zuletzt studieren wir die Sicherheit von Browser Extensions. Zu diesem Zweck model-
lieren wir Extensions mit einem Graph, welcher Kontroll-, Daten-, und Nachrichtenflüsse
mit Pointer Analysen kombiniert, wodurch wir externe Flüsse aus und zu kritischen
Extension-Funktionen erkennen können. Insgesamt wiesen wir 184 verwundbare Chrome
Extensions nach, welche die Angreifer ausnutzen könnten, um beispielsweise beliebigen
Code im Browser eines Opfers auszuführen.
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Abstract

As the Internet keeps on growing, so does the interest of malicious actors. While
the Internet has become widespread and popular to interconnect billions of people, this
interconnectivity also simplifies the spread of malicious software. Specifically, JavaScript
has become a popular attack vector, as it enables to stealthily exploit bugs and further
vulnerabilities to compromise the security and privacy of Internet users. In this thesis,
we approach these issues by proposing several systems to statically analyze real-world
JavaScript code at scale.

First, we focus on the detection of malicious JavaScript samples. To this end, we
propose two learning-based pipelines, which leverage syntactic, control and data-flow
based features to distinguish benign from malicious inputs. Subsequently, we evaluate
the robustness of such static malicious JavaScript detectors in an adversarial setting.
For this purpose, we introduce a generic camouflage attack, which consists in rewriting
malicious samples to reproduce existing benign syntactic structures. Finally, we consider
vulnerable browser extensions. In particular, we abstract an extension source code at a
semantic level, including control, data, and message flows, and pointer analysis, to detect
suspicious data flows from and toward an extension privileged context. Overall, we
report on 184 Chrome extensions that attackers could exploit to, e.g., execute arbitrary
code in a victim’s browser.
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Introduction
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1.1. STATE OF THE ART AND MOTIVATION

1.1 State of the Art and Motivation

In recent years, the Internet has become ubiquitous in our daily lives. In particular,
the Web has grown into the most popular software platform, used by billions of people
every day. It has considerably changed our ways of living, working, and communicating,
moving our world to a more digital one, e.g., online banking, e-learning, or social
networks. Given the popularity and widespread character of the Internet and, more
specifically, the Web, they naturally attract the interest of malicious actors who try to
leverage them as vectors for attacking their victims’ machines. In the last few years, we
have seen a rise in the number and impact of cyber-attacks, e.g., the botnet Mirai in
2016 [201], the ransomware outbreaks Petya [202] and WannaCry [203] both in 2017.
The impact of such attacks is all the more exacerbated by our online world, which enables
malware to rapidly infect victims everywhere, anytime. More specifically, the first step
to harm a victim’s machine often relies on JavaScript payloads [58, 123, 128, 198].

While JavaScript was initially invented to create sophisticated and interactive web
pages, it can also be abused to perform malicious activities, such as drive-by download
attacks [49]. While drive-by downloads mostly originate from exploit kits [113], another
popular way to lead to these attacks includes malicious email attachments. As far as
exploit kits are concerned, they first infect a victim’s device during Web browsing before
silently probing the machine for vulnerabilities they could exploit, e.g., targeting old
browsers versions, Java, or Adobe Flash plugins. Once they find a vulnerability, they
can subsequently launch the actual payload to do the real damage, e.g., ransomware
outbreaks. Similarly, for malicious JavaScript attachments, upon opening, they will try
to download and install the actual malware [66].

Even though exploit kits became popular and widespread in 2010 [134], they are
still a serious threat at the time of writing. In particular, multiple exploit kits
were reported in 2019 and 2020, e.g., Fallout, Magnitude, RIG, Spelevo,
or Underminer [99, 116, 179]. They specifically target Adobe Flash Player
(CVE-2018-4878 [206] and CVE-2018-15982 [205]) and Internet Explorer
(CVE-2018-8174 [207] and CVE-2019-1367 [208]) vulnerabilities, from 2018 and 2019,
before launching the actual attack, e.g., ransomware or banking trojans [77].

To impede the detection of such nefarious JavaScript files, malicious actors are abus-
ing obfuscation techniques, which foil approaches directly relying on content matching,
e.g., traditional anti-virus signatures, and impose additional hurdles to manual analysis.
Prior work has been proposed to analyze and detect obfuscated malicious JavaScript
inputs automatically. For example, Rieck et al. and Curtsinger et al. respectively intro-
duced Cujo in 2010 [173] and Zozzle in 2011 [50]. To handle obfuscated files, both of
them include a dynamic component to analyze unpacked code at run-time. In particular,
Zozzle extracts node value features from the Abstract Syntax Tree (AST) of executed
code, while Cujo also includes a static part, based on lexical units, to handle less
obfuscated files. This way, both tools leverage execution traces, combined with lexical
or syntactic features and machine learning algorithms, to detect recurrent malicious
patterns. Still, the malicious JavaScript landscape has evolved since 2011 when, e.g.,
“relatively few identifier-renaming schemes [were] being employed by attackers” [50].
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Besides malicious activities, JavaScript is also one of the core technologies of the
Web platform, e.g., over 96% of all websites use JavaScript as a client-side programming
language [212]. Given the large volume of JavaScript files in the wild, we cannot execute
all of them anymore to check for maliciousness. In fact, dynamic analysis is costly, both
in terms of equipment and run-time performance. Also, malicious JavaScript samples
can have a specific behavior depending, e.g., on time or on the infrastructure where
they are executed, meaning that a dynamic approach would not always detect them.
Thus, we need new detectors that can quickly and accurately distinguish benign from
malicious JavaScript inputs at scale, even when heavily obfuscated (i.e., obfuscation
should not be confused with maliciousness).

While obfuscation foils techniques directly relying on content-matching, static
features, such as structural constructs, can still be identified. We believe, in particular,
that benign and malicious JavaScript samples have a different syntactic structure, even
when both have been obfuscated. This way, machine learning-based systems would be
able to leverage such purely static features, representative of the original file syntax,
to distinguish benign from malicious JavaScript instances automatically. The previous
assumption thereby motivates our first research question, namely RQ1: To what extent
can we detect malicious (obfuscated) JavaScript inputs by combining an analysis at the
AST (Abstract Syntax Tree) level with machine learning algorithms?

By construction, the AST solely represents the syntax of a program, though. Specif-
ically, this code abstraction only relies on the syntactic order of the code, i.e., arbitrary
sequencing choices made by the JavaScript programmers. Also, it does not have any
information regarding variable dependencies or execution path conditions, e.g., dead
code may be linked to a program’s functionality. These shortcomings lead to the
following research questions RQ2: Can we add more semantic information into the AST
of JavaScript files? Specifically, to what extent can we statically enhance the AST with
control and data flows? Which features, combined with machine learning algorithms,
work best to detect malicious JavaScript instances?

While learning-based detectors may be popular to recognize new malicious
JavaScript variants accurately, they are susceptible to the traditional flaws induced by
machine learning approaches. Specifically, it has been shown that attackers with
specific and internal knowledge of a target system may be able to produce input
samples that are misclassified [65, 72, 127, 129, 183, 190]. In practice, the assumption
of strong attackers does not appear realistic, as it implies access to insider information
or, at least, access to a target system. At the same time, we lack investigations
regarding the possibility of bypassing several learning-based detectors without needing
any prior knowledge about them. This limitation then paves the way to the following
research questions RQ3: Can we present a generic attack against static malicious
JavaScript detectors? More specifically, to what extent and how could attackers rewrite
the ASTs of malicious JavaScript samples to reproduce existing benign ASTs while
keeping the original malicious semantics? How effective would this camouflage be
against static detectors?
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In practice, though, malicious JavaScript is not the only way to perform malicious
activities on a victim’s device. Attackers can indeed leverage more stealthy, yet powerful,
attack vectors, such as vulnerable browser extensions, leading to, e.g., arbitrary code
execution in a victim’s browser or sensitive user data exfiltration. In fact, browser
extensions have, by design, access to security- and privacy-critical APIs to perform
tasks that web applications cannot traditionally do. For example, to be effective, an
ad-blocker needs to read/write data on any web page or intercept network requests.
Also, and contrary to JavaScript served on web pages, extensions can download arbitrary
files and access arbitrary cross-domain data, even when a user is logged in.

Due to their high privileges, extensions naturally attract the interest of
attackers [1, 88, 102, 213, 218]. Still, for the most popular desktop browser Chrome,
with a market share of 70% [195] and a gallery of 200,000 extensions, totaling 1.2
billion installs [60], Google engineers are actively working on detecting such malicious
extensions in their store. In February 2020, they removed 500 extensions that were
exfiltrating user data [104]. Similarly, in April 2020, they removed 49 additional
extensions that were hijacking users’ cryptocurrency wallets [115] and, in June 2020, an
extra 70 spying extensions [132]. In addition, before being published, extensions are
reviewed by Chrome vetting system to flag extensions requiring many or powerful
privileges for further analyses [43] and directly detect the ones that may contain or
spread malicious software. This process makes it harder to have malicious extensions in
the store today.

Still, malicious extensions represent only a fraction of the extensions that may lead
to security or privacy issues. In fact, attackers can also abuse vulnerable extensions to
elevate their privileges through the capabilities of an extension. To this end, attackers
can leverage an extension’s communication channels to send payloads to this extension,
tailored to exploit its vulnerabilities. Such vulnerabilities can lead to, e.g., arbitrary code
execution in an extension context. Due to their inherently benign intent, these vulnerable
extensions are more challenging to detect than malicious ones, e.g., as they are not
doing anything suspicious. Furthermore, while they do require powerful privileges, their
benign nature allows them to pass the review process. While some previous works have
focussed on vulnerable extensions, they were either purely formal [26], specific to the
deprecated Firefox XPCOM [154] infrastructure [12, 25], or based on primarily manual
analysis [29]. To the best of our knowledge, only EmPoWeb from Somé [186] focuses on
analyzing extensions’ susceptibility to attacks through external messages at scale. Still,
his work is based on a lightweight call graph analysis, yielding an extremely high number
of reports to vet: out of the 3,300 extensions he flagged, only 5% were vulnerable.

Given the large volume of extensions in the wild, we cannot manually review all of
them to check for vulnerabilities. Therefore, we need an approach to automatically and
accurately detect such vulnerable extensions at scale. In fact, we currently lack a precise
analyzer to limit the number of extensions falsely reported as vulnerable to reduce
the manual validation effort. To this end, we are investigating the following research
question RQ4: To what extent and how can we statically analyze browser extensions to
detect suspicious data flows from and toward security- and privacy-critical APIs?
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1.2 Contributions

This work consists of four major parts, in each one of which we answer a research question.
We first present JaSt, which combines a traversal of the AST with machine learning
algorithms to automatically and accurately detect malicious JavaScript samples (RQ1 ).
Second, we propose JStap, which extends the detection capabilities of existing lexical and
AST-based pipelines by leveraging control and data flow information. This way, JStap
goes beyond relying on the sole code syntax by also considering semantic information
for a more accurate malicious JavaScript detection (RQ2 ). As JaSt and JStap rely on
machine learning algorithms to distinguish benign from malicious JavaScript instances,
they could be impacted by adversarial attacks specifically tailored for them. Third and
with HideNoSeek, we go one step further and present a generic attack against AST-
based malicious JavaScript detectors. To this end, we automatically rewrite malicious
JavaScript inputs so that they have the same AST as existing benign scripts while
retaining their original malicious semantics (RQ3 ). While we previously focussed on
JavaScript instances, which are inherently benign or malicious, attackers can also leverage
benign-but-buggy code to perform malicious activities. To this end, and given their
high privileges, browser extensions are a target of choice for malicious actors. Finally,
with DoubleX, we propose a purely static approach to detect suspicious data flows
between attackers and security- and privacy-critical APIs in browser extensions (RQ4 ).

1.2.1 Detecting Malicious JavaScript Through AST Analysis (RQ1)

JaSt is a fully static pipeline to detect malicious JavaScript instances automatically.
As malicious samples are obfuscated to hide their malicious intent, while benign scripts
may be obfuscated to protect their intellectual property, we abstract JavaScript source
code at a syntactic level over the AST for our analysis. This way, we eliminate the
artificial noise induced, e.g., by identifier renaming, to focus solely on the structural
constructs, which differ between benign and malicious (obfuscated) samples.

Specifically, JaSt traverses the AST to extract syntactic units. To preserve the
units’ context, e.g., a for loop or a try/catch block, we extract 4-grams whose
frequency is analyzed and processed by a random forest classifier. We find that these
features differ between benign and malicious JavaScript samples, allowing our classifier
to learn to automatically distinguish them.

In practice, we evaluate JaSt on an extensive dataset of over 105,000 samples, where
it yields a high detection accuracy of almost 99.5% and has a low false-negative rate of
0.54%, thereby outperforming related work. Following that, we discuss the evolution of
our accuracy over time. Finally, we leverage different classes of malicious JavaScript
samples, e.g., emails vs. exploit kits, to showcase that syntax-based features are core in
classifying JavaScript inputs.

1.2.2 Improving the Detection with Semantics in the AST (RQ2)

Nevertheless, JaSt is not infallible and still leads to misclassifications. In fact, it
lacks semantic information to go beyond solely relying on the code syntactic structure.
For this purpose, we propose JStap, a modular static malicious JavaScript detection
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system. Contrary to JaSt, JStap goes beyond the code syntax by considering control
and data flow information. This way, we do not only take the syntactic order of the
code into account anymore but also leverage the semantic order of the code logic. In
particular, our detector is composed of ten modules, including five ways of abstracting
JavaScript code, with differing level of context and semantic information (i.e., from a
lexical analysis to a control and data flow-based approach), and two ways of extracting
features (i.e., n-grams vs. considering node value information). Based on the frequency
of these features, we train a random forest classifier for each module.

In practice, JStap has an accuracy of almost 99.5% and outperforms JaSt and
the other existing systems, which we reimplemented and tested on our dataset totaling
over 270,000 samples. To further improve our detection accuracy, we combine the
predictions of several JStap’s modules. Such a pipeline enables us to classify almost
93% of our dataset with a detection accuracy of 99.73% and a remaining 6.5% with an
accuracy still over 99%, meaning that less than 1% of our initial dataset would require
additional scrutiny.

All in all, the high accuracy of our approaches showcases that malicious and be-
nign samples have a different code syntactic structure (including differing control and
data flows).

1.2.3 Camouflaging Malicious JavaScript in Benign ASTs (RQ3)

While JaSt and JStap leverage differences in the code syntax for an accurate malicious
JavaScript detection, it also implies that malicious samples mimicking a benign syntac-
tic structure would, by construction, be misclassified by our machine learning-based
pipelines. To this end, previous attacks against learning-based detectors leveraged
specific and internal knowledge of a target system to manipulate malicious samples,
e.g., such that they mimicked a benign feature distribution, for them to specifically
evade a targeted system. With HideNoSeek, we go one step further and propose a
generic camouflage attack, which evades the entire class of detectors based on syntactic
features, without needing any information about the systems it is trying to bypass.

Our attack consists in automatically rewriting the ASTs of malicious JavaScript files
into existing benign ASTs while keeping the original malicious semantics. In particular,
HideNoSeek uses malicious JavaScript payloads and searches for similarities at the AST
level between the payloads and traditional benign scripts. Specifically, HideNoSeek
replaces benign sub-ASTs with identical malicious ones and adjusts the benign data
flows–without changing the AST–so that the malicious semantics is kept after execution.

In practice, we leverage 23 malicious JavaScript payloads to generate 91,020 malicious
samples, which perfectly reproduce ASTs of Alexa top 10k websites. Besides syntactic
detectors, we finally showcase that our attack also evades lexical, control flow, and data
flow-based classifiers, which have false-negative rates between 99.95% and 100% on
our crafted inputs.

1.2.4 Statically Analyzing Browser Extensions at Scale (RQ4)

While JaSt and JStap aim at detecting JavaScript instances, which are inherently
malicious, other samples may be benign by nature but still able to perform malicious
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activities in a specific context. Due to their high privileges, browser extensions are
then a target of choice for malicious actors. In fact, web pages and extensions may be
isolated, but they can still communicate through messages. Specifically, a vulnerable
extension can receive messages from another extension or web page.

To automatically detect if attackers could leverage these communication channels
to gain access to an extension’s privileges, we propose our static analyzer DoubleX.
DoubleX abstracts extension code with a graph, including control and data flows,
pointer analysis, and models the message interactions within and outside of an extension.
This way, we track and detect suspicious flows between external actors and dangerous
APIs, which can lead to, e.g., arbitrary code execution or sensitive user data exfiltration.

In practice, we evaluate DoubleX on over 154,000 Chrome extensions where it
flags 309 data flows (in 278 extensions) as suspicious. We further verify that 89% of
the reported flows can effectively be influenced by external actors and demonstrate
exploitability for 209 of them (184 extensions). To limit the number of vulnerable
extensions in the wild, we finally envision that DoubleX could be added to Chrome
extension vetting system.

1.3 Publications and Tools

The contributions presented in this thesis are based on different papers. In this section,
we reference these papers as well as their corresponding open-source implementations.
We then discuss design choices of the original papers and the extent to which they
influence this thesis.

Publications and Submissions

This thesis is based on the following papers (Chapters 3-6), which have–as of June
2021–all but one been accepted at peer-reviewed conferences:

[P1] Fass, A., Krawczyk, R. P., Backes, M., and Stock, B. JaSt: Fully Syntactic
Detection of Malicious (Obfuscated) JavaScript. In: DIMVA. 2018.

[P2] Fass, A., Backes, M., and Stock, B. JStap: A Static Pre-Filter for Malicious
JavaScript Detection. In: ACSAC. 2019.

[P3] Fass, A., Backes, M., and Stock, B. HideNoSeek: Camouflaging Malicious
JavaScript in Benign ASTs. In: CCS. 2019.

[P4] Fass, A., Somé, D. F., Backes, M., and Stock, B. DoubleX: Statically Analyzing
Browser Extensions at Scale. In: Under submission. 2021.

In addition to the papers presented in this thesis, we have co-authored one more paper,
namely Statically Detecting JavaScript Obfuscation and Minification Techniques in the
Wild, to be published at DSN 2021 [S1]. In this paper, we study at large scale which
code transformation techniques are used in the wild, both by benign and malicious
JavaScript samples, as well as their evolution over time. In particular, we highlight the
differences between popular benign transformation techniques, which are identical
between client-side and library-based JavaScript, and the prevalent malicious ones.
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Open-Source Implementations

For this thesis, we developed different research prototypes to evaluate and test our
approaches. The source code of all our systems (and reimplementations) is available
online. In particular, we developed the following tools:

• JaSt: our AST-based approach to detect malicious JavaScript inputs [T1];

• JStap: our modular system (including lexical, syntactic, control flow, and data
flow analyses) to detect malicious JavaScript inputs [T2];

• HideNoSeek: our control and data flow-based approach to detect syntactic
clones between two JavaScript inputs (for ethical reasons, we chose not to publish
the core of our attack, i.e., the replacement of a benign AST by an equivalent
malicious one) [T3];

• DoubleX: our static analyzer, which provides a semantic abstraction of browser
extension source code (based on control, data, and message flows and pointer
analysis) to detect suspicious data flows from and toward specific APIs (we will
make our tool available on GitHub after the paper acceptance, in the meantime,
we host our research prototype on Dropbox) [T4];

• Our reimplementation of Cujo [T5];

• Our reimplementation of Zozzle [T6].

Remarks

The following Chapters 3 to 6 are based on the four previously highlighted papers
and represent research work conducted between 2017 and 2020. In particular, for this
thesis, we keep the methodology and evaluation as presented in the corresponding
(peer-reviewed) papers. For example, our datasets may vary between the different
chapters. In fact, at the time of the papers’ writing, we had samples, e.g., from different
sources or collected at different time-frames. We also made different design choices
regarding, e.g., a maximum sample size or a specific timeout.

In this thesis, we compare our approaches, among others, with the academic work
Cujo [173] and Zozzle [50]. For JaSt (Chapter 3), we compared our results directly
with the corresponding papers. For HideNoSeek (Chapter 5), we had to reimplement
Cujo and Zozzle to test our crafted samples on them; this way, we could showcase
that our attack is effective in practice. As we implemented JStap (Chapter 4) after
HideNoSeek, we had the opportunity to use our reimplementations of Cujo and
Zozzle to directly compare our detection performance with theirs.

Finally, we could not evaluate HideNoSeek with JStap in the corresponding papers
due to concurrent submissions. For this thesis, though, we performed this evaluation,
and we discuss the results in Section 5.4.
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1.4 Outline

This thesis is structured into eight chapters. In this Chapter 1, we presented our
motivation for conducting the work described in this thesis before introducing our
contributions. Next, in Chapter 2, we give an overview of the technical background
necessary to fully understand this thesis. Following that, in the next four chapters, we
present our contributions to answer our four research questions. Specifically, Chapter 3
introduces our AST-based approach to accurately distinguish benign from malicious
JavaScript inputs. Subsequently, in Chapter 4, we go beyond the AST by also considering
control and data flow information to further detect malicious JavaScript files. On the
contrary, Chapter 5 proposes a generic attack to evade both our malicious JavaScript
detectors as well as state-of-the-art static classifiers. In the following Chapter 6, we move
from a benign vs. malicious JavaScript analysis to an orthogonal approach revolving
around vulnerable JavaScript code from browser extensions. In Chapter 7, we then
present related work and highlight the added value of our contributions. Finally, in
Chapter 8, we discuss future work before summarizing our contributions and concluding
this thesis.
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2.1. JAVASCRIPT

In this chapter, we present the technical background relevant to this thesis. First,
we introduce the scripting language JavaScript and highlight differences between benign
and malicious JavaScript samples. We then present different techniques to perform a
static analysis of JavaScript files. To automate this process and discover meaningful
patterns in benign vs. malicious JavaScript inputs, we subsequently discuss machine
learning techniques, specifically the classification and clustering strategies. Finally, we
present the browser extension ecosystem, with a focus on its security architecture and
the communication within and outside of an extension.

2.1 JavaScript

JavaScript is a browser scripting language that was designed to enhance the interactivity
of websites and to improve their user-friendliness. We first underline the origin of the
language before giving an overview of additional Web technologies relevant to understand
this thesis. Due to the popularity of JavaScript, it also attracts the interest of malicious
actors. We then highlight the difference between vulnerable (benign) and malicious
JavaScript, present different malicious JavaScript categories, and explain how malicious
JavaScript is spread to harm Internet users. Finally, we discuss different techniques to
transform JavaScript code to make it harder to understand and analyze.

2.1.1 Origin of JavaScript

JavaScript was designed at Netscape in 1995 to make web pages more dynamic. It was
subsequently released in the beta version of the Netscape Navigator 2.0 browser, under
the name LiveScript, before being changed to JavaScript [5]. With the popularity of
the language, Microsoft released JScript in 1996, its implementation of JavaScript, in
the Internet Explorer 3.0 browser. Following that, ECMA International developed the
first JavaScript standard, which was adopted in 1997. While the name of the language
specification is ECMAScript, the commonly used term stays JavaScript [56].

Nowadays, JavaScript has become one of the core technologies of the Web platform.
As of October 2020, it is used by almost 97% of the websites as a client-side programming
language [212]. Also, with Node.js [93], JavaScript can be used for server-side scripting
as well as to write command-line tools and applications.

2.1.2 JavaScript Interfaced to the Browser

In this section, we focus on JavaScript in the context of the web browser. Specifically,
we define the Web concepts necessary to understand the remaining of this thesis.

The most basic building block of the Web is HTML (HyperText Markup Lan-
guage) [221], which is the standard markup language to parse and display documents in
a web browser. In practice, a web server sends a static HTML document to the web
browser, which renders it into web pages. To improve the pages appearance, HTML can
be combined with CSS (Cascading Style Sheets). Besides, to enable dynamic interactions
with web pages, make them more sophisticated and user-friendly, HTML documents can
embed programs written in JavaScript. In practice, JavaScript cannot interact with web
pages on its own but needs to leverage the DOM (Document Object Model) API [220].
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In fact, when an HTML document is parsed, the browser stores its structure as a logical
tree. The DOM then enables JavaScript to access and modify the document structure,
style, and content.

The combination of HTML, DOM, and JavaScript enables programmers to create
dynamic web applications. For security and privacy reasons, web pages should not trust
each other, hence the need for isolation mechanisms. To this end, the Same Origin
Policy (SOP) [147] ensures that only resources with the same origin (i.e., same scheme,
host, and port) [222] are allowed to interact with each other. Nevertheless, there are
some ways to relax the SOP, such as postMessages [78], which enable web content from
different origins to communicate with each other. In this case, the responsibility to
prevent cross-origin attacks is partially delegated from the web browser to the developers,
who should only handle postMessages coming from origins they trust.

2.1.3 Malicious JavaScript

Still, the previous mechanisms are not sufficient to guarantee the security and privacy of
the Web users. In fact, the ubiquity of JavaScript, combined with its execution directly
in the users’ browser, renders it attractive for attackers too.

In this thesis, we make a distinction between benign-but-buggy JavaScript, i.e.,
vulnerable code designed by well-intentioned developers, and malicious JavaScript
samples, which have been designed by malicious actors with the aim of harming victims.
For example, vulnerable code includes a web page (or browser extension) executing
untrusted data without proper sanitization, which leads to Cross-Site Scripting (XSS)
attacks [106]. To mitigate such threats, the Content Security Policy (CSP) [219] can be
deployed to limit (or ban) the execution of untrusted scripts. While we focus on benign-
but-buggy JavaScript code in Chapter 6, Chapters 3-5 consider malicious JavaScript
instances, which we describe in the following.

In this thesis, we use the term malicious JavaScript to both refer to JavaScript
code directly performing malicious activities (e.g., ransomware written in JavaScript) as
well as JavaScript payloads leading to the launch of the actual attacks against victims’
machines. For the latter, such payloads generally trigger the download of additional
malware [169] (e.g., ransomware or banking trojans); thus, such attacks are usually
referred to as drive-by downloads. The most popular way to launch these attacks relies
on exploit kits, which stealthily probe a victim’s machine for vulnerabilities they could
exploit, e.g., targeting specific browsers versions or plugins. After successfully exploiting
a vulnerability, the next infection stage begins with, e.g., the download and execution
of the actual malware in the victim’s environment. Besides exploit kits, malicious
JavaScript payloads can be droppers. Similarly, upon execution (such as after a double
click on a dropper file), they will also lead to the next infection stage.

There are numerous ways to spread malicious JavaScript in the wild and infect users’
machines. For example, there are two popular ways to perform a drive-by download
attack. The victim either visits a malicious or compromised web page (which can then
probe the system for vulnerabilities) or opens a malicious email attachment. To lure a
user into visiting a malicious web page or opening a malicious attachment, attackers
use social engineering techniques. In addition, a user can also get redirected to a
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malicious website, e.g., after having clicked on a malicious advertisement found on a
legitimate website.

2.1.4 JavaScript Code Transformation Techniques

To impede the detection and analysis of their malicious JavaScript samples, malware
authors abuse obfuscation techniques. Nevertheless, obfuscation should not be confused
with maliciousness. By design, obfuscation transforms the code to make it harder to
understand, both for human analysts and automatic tools. In practice, benign code
can also be obfuscated, e.g., to protect code privacy and intellectual property. Several
categories of code obfuscation techniques can be found in the wild [84, 98, 101, 226]:
• Randomization obfuscation consists in randomly inserting or changing elements
of a script without altering its semantics. It includes adding whitespace characters
(whitespace randomization) or randomly inserting comments (comment randomization),
which makes the code harder to read and could foil techniques relying on content
matching. In addition, variable and function names can be replaced with randomly
created strings with no specific meaning (identifier obfuscation), e.g., to hinder
manual analysis.
• Data obfuscation regroups string and number manipulation techniques. For ex-
ample, strings can be split, concatenated, or reversed to not appear in plain text.
Similarly, characters can be substituted, e.g., by running a regular expression re-
place on a string. Also, standard or custom encoding (such as ASCII, Unicode, or
hexadecimal), encryption and decryption functions hinder a direct understanding of
the code. These techniques are more specifically referred to as string obfuscation.
Similarly, to avoid that a number appears in plain text, it can be, e.g., computed
with arithmetic operators (integer obfuscation). Further techniques also enable to
hide data. For example, to access the property prop of an object obj, the bracket
notation obj["prop"] can be privileged over the dot notation obj.prop (obfus-
cated field reference). In fact, the bracket notation enables to compute an expression
(e.g., window["e" + "val"]), whereas the dot notation only considers identifiers [146].
In addition, data can be fetched from a global (dynamic) array to complicate the
understanding of the code. For this purpose, data can also be rewritten, so that it
does not contain, e.g., any alphanumeric character anymore [157].
• Logic structure obfuscation directly targets the code logic, such as manipulating

execution paths, e.g., by adding conditional branches. Additional techniques consist
in adding irrelevant instructions (dead code injection) or changing the program flow,
e.g., by moving all basic blocks in a single infinite loop, whose flow is controlled by a
switch statement [94] (control flow flattening).
• Dynamic code generation leverages the dynamic nature of JavaScript to generate
code on the fly, e.g., with eval. Specifically, this construct can be used as a packer
function, e.g., to evaluate encoded code [57, 126].
• Environment interactions is specific to web-JavaScript. In this case, statements
can be split and scattered across an HTML document using multiple < script >
blocks. Similarly, the payload can be stored within the DOM and extracted subse-
quently so that it is not directly discernible.
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Obfuscation should also not be confused with minification, which aims at reducing
the code size, without aggressively attempting to hide its functionality. Basic techniques
consist of deleting whitespaces and comments (while obfuscation may randomly add
them to impede the analysis), shortening variable names, and removing dead code. More
advanced techniques directly modify the logic structure of the code, e.g., by eliminating
unreachable or redundant code, inlining functions [70, 135], or replacing if statements
with the conditional operator shortcut [139].

2.2 Static Analysis

To detect and characterize malicious JavaScript files, we can conduct two types of analysis.
Dynamic analysis consists in executing the input samples in a controlled environment,
e.g., sandbox, to simulate and record their behavior. By design, dynamic analysis has
the following drawbacks: it is very costly, both in terms of specific instrumentation
and run-time performance; also, the amount of time required to observe a potential
malicious behavior is not clearly defined [190]. In addition, dynamic analysis explores
one execution path, meaning that it would not necessarily detect malicious inputs that
are time- or environment-dependent [11, 23]. On the contrary, static analysis consists
in analyzing input samples without executing them. As motivated in Chapter 1, this
thesis relies on a static analysis of JavaScript files, mainly due to its speed, accuracy,
and high code coverage. In the following chapters, we refer to different static analysis
techniques, which we present in this section:
• Content-based analysis relies on specific patterns from the code. For example, it
is used by traditional anti-virus signatures to detect malicious inputs. By design,
this approach is only effective against known malware and is easily thwarted by code
obfuscation techniques.
• Lexical analysis consists in abstracting the code at the token level. To this end, each
word is linearly converted into a lexical unit (i.e., token). For example, lexical analysis
does not consider variable names anymore but represents them with the generic
Identifier token. The same applies to variable values, which can be abstracted to
their types. Thus, lexical analysis is resilient to, e.g., identifier obfuscation.
• Syntactic analysis leverages tokens to build a tree-like representation (i.e., the
Abstract Syntax Tree, AST) of the source code, which depicts the code grammatical
structure [2]. Thus, the AST goes beyond tokens, as it does not represent a linear word
to unit mapping anymore but abstracts the code’s original nesting of programming
constructs. By design, though, the AST represents programmers’ arbitrary sequencing
choices and does not enable to reason about the order in which statements are executed
nor about conditions leading to specific execution paths.
• Control flow analysis relates to the construction of the CFG (Control Flow Graph).
The CFG represents the program as a graph in which the nodes are statements and
predicate expressions. The nodes are then connected with labeled and directed edges
to represent flows of control in the program. Specifically, each statement node has an
outgoing edge ε to indicate the order in which statements are executed. Similarly,
each predicate node has two outgoing edges labeled with true or false to reason about
the conditions that have to be met for a specific execution path to be taken. In this
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thesis, we adopt a definition of the CFG that slightly differs from Allen’s [3] as we
enhance our AST with control flow edges. This way, we build a joint structure that
combines control flow information with the fine-grained AST nodes and edges. We
describe our resulting implementation in Section 4.1.1.3.
• Data flow analysis consists in reasoning about variable dependencies. This infor-

mation can then be stored in the PDG (Program Dependence Graph). This graph is
constructed with two types of directed edges on the statement and predicate nodes,
namely control dependency edges (obtained through the combination of control flow
and dominator information [2, 3], meaning that statement order information is lost)
and data dependency edges. The latter represents the influence of a variable on
another. Specifically, there is a data flow between two statement nodes if and only if
a variable is defined at the source node and used at the destination node, with respect
to the variable reaching definition. In this thesis, we adopt a definition of the PDG
that slightly differs from the one of Ferrante et al. [64] as we chose to add data flow
edges to our CFG. This way, we retain information regarding statement order and
have a fine-grained representation of the data flows directly at the variable level (as
we build the CFG upon the AST). We describe our corresponding implementations
in Section 4.1.1.4 (for JStap and HideNoSeek) and Section 6.2.2.3 (for DoubleX).
• Pointer analysis determines which pointers can point to a given variable [2]. By
design, this approach enables us to infer information regarding variable values and
keep track of these values.

2.3 Machine Learning

The previously presented static analysis techniques can then be combined with machine
learning algorithms to better understand and analyze complex data. In this thesis,
we focus on two categories of learning, namely classification, to distinguish benign
from malicious JavaScript inputs, and, to some extent, clustering, to group malicious
JavaScript files that have a similar structure.

2.3.1 Classification

Classification is a form of supervised learning, meaning that it requires training data and
prior information regarding this data. Specifically, classification consists in discovering
meaningful patterns from labeled data, generalizing them in a model that encapsulates
the relationships between instances with similar patterns, and making predictions on
future data [174, 224]. By design, a classifier pipeline would enable us to, e.g., learn
specific patterns typical of known benign vs. malicious JavaScript samples (for example,
based on lexical or syntactic features) and recognize similar patterns in previously
unseen inputs.

Formally, we define φ : X → Rn, which maps a JavaScript sample x ∈ X to its
n-dimensional feature vector. We consider σ, our model that encapsulates the properties
of benign vs. malicious JavaScript samples. To make predictions on unknown data,
we define ψσ : Rn → P, which maps a feature vector v ∈ Rn to an output space P,
and fσ = ψσ ◦ φ, which maps a JavaScript sample x ∈ X to P. For a sample x ∈ X ,
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fσ(x) represents the outcome of the classifier for this sample. This outcome can be
directly the classifier prediction, i.e., P = {0, 1}, where 0 represents the benign class
and 1 the malicious one. Alternatively, fσ(x) can also quantify the probability y0(x)
of x being benign and y1(x) of x being malicious, i.e., fσ(x) = (y0(x), y1(x)), with
y0(x) + y1(x) = 1 and P = R2. Traditionally, a classifier returns the class label with
the highest probability. We can also define a custom threshold t ∈ [0, 1] so that, e.g.,
for a sample x ∈ X , if y1(x) > t, the output label should be 1. To achieve an optimal
trade-off between the samples wrongly classified as malicious (false positives) and those
wrongly classified as benign (false negatives), this threshold t can be determined by
using Youden’s J statistic [168, 232]. We give an example in Section 3.2.2.2.

In practice, to learn from labeled benign and malicious inputs and make predictions
on unknown samples, different classification algorithms can be used. In this thesis, we
refer to the following ones:
• Bernoulli naive Bayes assumes naive independence between every pair of features,

meaning that it can learn the parameters for each feature separately (in practice, this
assumption is likely incorrect). To predict which class a given sample belongs to, this
algorithm leverages the presence or absence of a feature as a boolean attribute [91].
• Multinomial naive Bayes makes the same independence assumption as Bernoulli

naive Bayes but considers feature probability (instead of feature presence vs. absence)
to make predictions [130].
• Support Vector Machine (SVM) draws a hyperplane in the feature space to
separate the benign from the malicious class with maximum margin [167].
• Random forest does not assume independence between the different features con-

sidered. Random forest is a meta estimator that combines the predictions of several
decision trees [22] and classifies an unknown input sample according to the decision of
the majority of the tree predictors. By design, this algorithm combines two types of
randomness. First, each decision tree is built from random sub-samples of the initial
dataset. Second, for each tree predictor, an input is entered at the top of the tree,
and as it traverses down the tree, a feature subset is randomly selected at each node
to generate the best split [21].

2.3.2 Clustering

Contrary to classification, clustering is a form of unsupervised learning, meaning that we
do not have any prior knowledge regarding the data (i.e., we have access to samples from
X without having any information regarding the output space P). By design, clustering
consists in grouping elements that belong together, based on similarity algorithms
or a predefined number of clusters. In Section 5.3.1.1, to cluster similar malicious
JavaScript samples together, we use the k-means++ algorithm [7]. This approach aims
at minimizing the average squared distances between points (i.e., feature vectors) from
the same cluster. First, k distant points in the feature space are selected as cluster
centers. Next, each remaining point is assigned to the nearest cluster center, and each
center is recomputed as the center of mass of all points from this cluster. Finally, the
process is repeated until a fix point is reached.

This part concludes the background relevant to Chapters 3, 4, and 5.
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Figure 2.1: Extension architecture

2.4 Browser Extensions

In this section, we consider browser extensions, which are the focus of Chapter 6.
Browser extensions are third-party programs, which users can install to extend their
browser functionality, e.g., by adding ad-blocking capabilities. We first present the
extension ecosystem with a highlight on security mechanisms extensions implement.
Subsequently, we introduce their architecture before considering the message-passing
APIs they use to communicate.

2.4.1 Presentation and Security Considerations

Browser extensions, which are zipped bundles of, e.g., HTML, JavaScript, or CSS
files, are widely used to enhance users’ browsing experience. While some extensions
merely customize users’ browser interface, others serve more security- and privacy-
critical tasks, e.g., to be effective, an ad-blocker needs to modify web page content.
Therefore, extensions have privileged capabilities in comparison to web applications.
Unlike JavaScript code in web pages, they are not restricted by the Same Origin Policy
and can access arbitrary cross-domain in the logged-in context of the user’s browser
and inject code into any document.

Due to their high privileges, extensions may introduce security and privacy threats
and put their large user base at risk. To limit these risks, extensions only have access
to explicitly declared APIs. In particular, every extension contains a manifest.json
file, which provides some information, e.g., regarding an extension most important files
or capabilities [44]. For example, there is a permissions field that lists the different
APIs and hosts a given extension has access to [39, 144]. Such permissions include the
possibility for an extension to read and write user data on any or specific web pages
(host), to store and retrieve data from the extension storage (storage), to download
arbitrary files (downloads), and to access users’ history (history).

2.4.2 Architecture

As represented in Figure 2.1, an extension is divided into four main components:
• Content scripts are injected by an extension to run along with web applications.
These content scripts can use the standard DOM APIs to read and modify web pages
and have access to localStorage (i.e., storage space for a document origin, saved
across browser sessions) [152], similarly to the scripts loaded by web pages.
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Figure 2.2: Extension message-passing APIs

• Background pages contain the extension core logic and run independently of the
lifetime of any particular web page or browser window.
• UI pages enable users to customize the extension behavior, e.g., over different options,
settings, or pop-ups.
• WARs (Web Accessible Resources) list additional resources that the extension
needs to expose to web applications, e.g., scripts to be executed on every page.

Each component is composed of several files, which are specified in the extension
manifest [41]. While the highly-privileged background pages, UI pages, and WARs have
access to the full extension’s capabilities (as specified in the manifest permissions field),
the less privileged content scripts only have access to the host (at least until Chrome
Manifest V3 is deployed [46]) and storage permissions.

2.4.3 Communication Channels

By design, an extension can communicate with web pages and other extensions. In this
section, we present the communication channels between a web page and each extension
component, within an extension, and between two extensions.

Web Application - Content Script Besides the web application DOM and local-
Storage, content scripts and web pages communicate over messages. As represented
in Figure 2.2, both use the postMessage API [153] to send messages, and addE-
ventListener [140] or onmessage [151] to receive them. We give an example in
Listing 2.1, where the web application sends a message, which the content script receives
(as in Figure 2.2, the APIs to send and receive messages are represented in blue and
orange, respectively). By default, the content scripts receive all messages sent toward
the window in which they are injected. Thus, if a page running a content script receives
a postMessage from another page, the content script’s handler is also invoked.
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1 // Web application code
2 window.postMessage("Hi CS", "*"); // Sends
3

4 // Content script code
5 window.onmessage = function(event) {
6 received = event.data; // received = "Hi CS"
7 }

Listing 2.1: Messages: web application - content script

1 // Content script code
2 chrome.runtime.sendMessage({greeting: "Hi BP"}, function(response) {
3 received = response.farewell; // received = "Bye CS"
4 });
5

6 // Background page code
7 chrome.runtime.onMessage.addListener(
8 function(request, sender, sendResponse) {
9 received = request.greeting; // received = "Hi BP"

10 sendResponse({farewell: "Bye CS"});
11 });

Listing 2.2: Messages: content script - background page (one-time)

Content Script - Background Page There are two types of APIs to exchange
messages between a content script and a background page. The one-time requests API
aims at sending a single message and receiving a response, while long-lived connections
leverage an established message port and stay open to exchange multiple messages [45].
As presented in Figure 2.2, the content script uses runtime.sendMessage
(one-time) or runtime.connect (long-lived) to send messages.1 Similarly, the
background page sends requests with tabs.sendMessage (one-time) or
tabs.connect (long-lived). Both for the content script and background page, for
Chromium-based extensions, the last parameter of these messaging APIs can be a
callback to get the response sent by the other component. For Firefox, these APIs can
return a Promise [145], instead of invoking a callback, so that the .then construct
can be used to handle the response. As for receiving messages (and responding),
both components register a listener: runtime.onMessage.addListener
(one-time) or runtime.onConnect.addListener (long-lived). Listing 2.2
illustrates Chrome one-time requests API: the content script sends the message
{greeting: "Hi BP"}, which the background page receives before responding
{farewell: "Bye CS"} back.

Web Application - Background Page For Chromium-based extensions, a web ap-
plication and a background page can directly communicate under two assumptions [45].
First, the extension should fill the externally_connectable field from its manifest

1For legibility reasons, we omit browser/chrome from the APIs, which would be, e.g.,
chrome.runtime.sendMessage or browser.runtime.sendMessage
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1 // Web application code
2 var port = chrome.runtime.connect({name: "myport"});
3 port.postMessage({greeting: "Hi BP"});
4

5 // Background page code
6 chrome.runtime.onConnectExternal.addListener(function(p) {
7 p.onMessage.addListener(function(message) {
8 received = message.greeting // Hi BP
9 });

10 });

Listing 2.3: Messages: web application - background page (long-lived)

with specific URLs, to allow the communication with the corresponding web pages
only. Second, the communication can only be initiated by the web application. As
presented in Figure 2.2, the web application sends requests (and gets a response) with
runtime.sendMessage (one-time) or runtime.connect (long-lived). The back-
ground page receives messages (and responds) with runtime.onMessageExternal.-
addListener (one-time) or runtime.onConnectExternal.addListener (long-
lived). Listing 2.3 illustrates Chrome long-lived connections.

Case of UI Pages and WARs Like the background pages, UI pages and WARs are
part of the extension core. To exchange messages with the content scripts, they use the
same APIs as those used by the background pages. To communicate with the background
pages, they can directly leverage their shared extension storage. To exchange messages
with a web application, UI pages and WARs use the same APIs as those used by the
background pages. As the WARs can be injected as iframes in web pages, they also
leverage the same APIs as those used by the content scripts to interact with a web
application. Figure 2.1 summarizes the three sorts of messaging APIs that extension
components use, while Figure 2.2 presents the specific APIs.

Extension A - Extension B Finally, two extensions can communicate with one another.
In this case, the message-passing APIs are the same as those for the communication
between a background page and a web application. Still, this time, the communication
is enabled by default with all extensions [42]. To interact with specific extensions only,
an extension must explicitly declare the IDs of allowed extensions in its manifest.

2.5 Summary

In this chapter, we laid the technical background for the remainder of this thesis. We
first introduced the scripting language JavaScript and highlighted its usage in the
context of the web browser. We pointed out differences between benign and malicious
JavaScript and underlined some techniques to transform JavaScript code to make it
harder to analyze. Subsequently, we presented different approaches to abstract and
analyze JavaScript code statically. To automate the analysis and distinguish benign
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from malicious JavaScript inputs, we then introduced the classification and clustering
concepts from the machine learning ecosystem. Finally, we considered browser extensions
with a focus on the security risks they may induce. We presented their architecture and
components before discussing the message-passing APIs they can use to communicate.

In the following chapter, we combine a static analysis of JavaScript files with machine
learning to automatically detect malicious JavaScript instances.
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3.1. LEARNING FROM AST-BASED FEATURES

Given the popularity of the Web platform, it naturally also attracts the interest of
malicious actors. Specifically, attackers abuse JavaScript to, e.g., exploit bugs in the
browser or perform drive-by downloads. Due to the large volume of JavaScript files in
the wild, executing all of them to check for maliciousness is not realistic. At the same
time, to hinder the analysis and the detection of such nefarious scripts, malicious actors
take advantage of code obfuscation. Even though it foils techniques directly relying on
content matching, e.g., signatures, it leaves specific and recurrent traces in the code
syntax, which static systems can process.

In this chapter, we answer RQ1: To what extent can we detect malicious (obfuscated)
JavaScript inputs by combining an analysis at the AST (Abstract Syntax Tree) level with
machine learning algorithms? To this end, we present JaSt, our fully static pipeline to
automatically distinguish benign (obfuscated) from malicious (obfuscated) JavaScript
instances. JaSt first abstracts JavaScript code at a syntactic level over the AST. This
way, we eliminate the artificial noise induced, e.g., by identifier renaming, to solely
focus on the programmatic and structural constructs, which differ between benign and
malicious scripts. In particular, JaSt learns to recognize specific syntactic patterns
either typical of benign or of malicious JavaScript inputs. In practice, we evaluate the
detection performance of our approach on 105,305 unique files and underline our higher
accuracy compared to prior work. We then discuss the applicability of JaSt in the
wild, e.g., in terms of samples evolution over time and syntactic similarities between
different classes of malicious JavaScript.

3.1 Learning from AST-Based Features

To detect malicious JavaScript samples at scale, JaSt performs a static analysis over
the AST. In particular, we traverse the AST to extract syntactic units (Figure 3.1
stage 1). To preserve the units context, e.g., a for loop or a try/catch block, we
subsequently extract substrings of length n, namely n-grams, whose frequency we analyze
(Figure 3.1 stage 2). We find that these features differ between benign and malicious
samples, enabling our random forest classifier to learn to automatically distinguish
them (Figure 3.1 stage 3).

Figure 3.1: Architecture of JAST

3.1.1 Syntactic Analysis

JaSt leverages the parser Esprima [79] to generate the AST of a valid JavaScript sample.
We chose to rely on Esprima given its thorough set of test cases [80] and widespread
use by prior work [25, 74, 120, 158, 163, 188, 191, 197]. Even though we designed
JaSt in Python, we invoke the Node.js implementation of Esprima, rather than the
Python port, for performance reasons. As presented in Section 2.2, the AST is an
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1 var Euur1V = this [ "l9D" ] ("ev#333399al")

(a) Malicious JavaScript example from [198]
Program

VariableDeclaration

VariableDeclarator

Identifier CallExpression

Euur1V MemberExpression Literal

ThisExpression Literal

l9D

ev#333399al

(b) AST from (a)

Syntactic unit Simplified name

Identifier Identifier
ThisExpression Expression
Literal Literal
MemberExpression Expression
Literal Literal
CallExpression Expression
VariableDeclarator Declarator
VariableDeclaration Declaration
Program Program

(c) Syntactic units extracted from (b)

Figure 3.2: AST generation and corresponding syntactic unit extraction

ordered tree, which describes the syntactic structure of a program. We chose to perform
a syntactic analysis to detect malicious JavaScript instances due to its capability to
quickly and accurately analyze obfuscated inputs. While, at textual level, obfuscation
can foil the detection of malicious files, at AST level, we can still identify structural
constructs, which differ–despite obfuscation–between benign and malicious inputs [S1].
In addition, the AST provides a certain level of code abstraction, ignoring, for example,
the variable names to consider them as Identifier nodes and skipping blank spaces.
Therefore, leveraging the arrangement of syntactic units (e.g., statements, expressions,
or declarations) in a given JavaScript file enables us to capture the salient properties of
the code and hence to identify specific and recurrent malicious (or benign) patterns.

Next, we traverse the AST depth-first post-order to extract syntactic units. Fig-
ure 3.2 illustrates the parsing process, where the malicious entity from Figure 3.2a is
transformed into an AST (Figure 3.2b), whose traversal gives a sequence of syntactic
units (Figure 3.2c). Overall the parser Esprima can produce 69 different syntactic
entities ranging from FunctionDeclaration to ImportDefaultSpecifier. For
performance reasons, JaSt performs a simplification of the list of syntactic units re-
turned by the parser. This process consists in grouping elements with the same abstract
syntactic meaning. For example, we refer both to FunctionDeclaration and Vari-
ableDeclaration as Declaration. Similarly, we refer to Statement both for
ForStatement and WhileStatement. In addition, we consider a one-element family
if we could not group it with other entities (e.g., Identifier or Program). This
process enables us to reduce the number of different units from 69 to 19. Still, we
preserve their original syntactic meaning, as we analyze each element within its context,
by using n-gram features.
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n value #All possible n-grams #Selected n-grams Feature reduction (%)

n = 1 19 17 10.53
n = 2 361 114 68.42
n = 3 6,859 570 91.69
n = 4 130,321 2,457 98.11
n = 5 2,476,099 8,025 99.68

Table 3.1: Number of all possible n-grams vs. number of n-grams selected

3.1.2 N-Gram Frequency

To identify specific patterns in JavaScript documents, JaSt moves a fixed-length
window of length n over our list of simplified syntactic units. This way, we col-
lect every sub-sequence of length n, namely n-grams. For example, the first two
3-grams extracted from Figure 3.2c are: (Identifier, ThisExpression, Lit-
eral) and (ThisExpression, Literal, MemberExpression). As shown by
prior work, n-grams are a generic and effective modeling means to, e.g., detect mali-
cious [109, 117, 173] or obfuscated [123] code, or even to identify anomalous network
packets [215].

In fact, n-grams represent how the syntactic units were originally arranged in the
analyzed JavaScript files. Therefore, documents sharing several n-grams with the same
frequency present similarities with one another, while files with different n-grams have
a more dissimilar content. As a consequence, leveraging the frequency of these short
patterns contributes to determining if a given sample is either benign or malicious. To
be able to compare the frequency of all n-grams appearing in several JavaScript files,
JaSt constructs a vector space such that we associate each n-gram with one dimension
while we store its corresponding frequency at this position in the vector R. For this
mapping process, we do not consider all possible n-grams to limit the size of the vector
space (initially of 19n depending on the chosen length n of n-grams), which has a direct
impact on performance. Besides, not all n-gram combinations are plausible, e.g., as the
root of the AST, the Program unit can only be present once. Therefore, we create a
set S containing n-grams we selected on the basis of their prevalence in our dataset.
For this selection process, we consider the suitability criteria defined by Wressnegger et
al. [225], namely perturbation (i.e., the expected ratio of n-grams in a benign sample
that are not part of the training data) and density (i.e., the ratio of the number of
unique n-grams in the dataset to the number of all possible n-grams). In particular,
we aim at significantly reducing the density of our dataset while keeping an extremely
low perturbation. This way, we would limit the number of false positives induced by
unknown n-grams in benign data. For this purpose, we are only considering the n-grams
present in our dataset (knowing that JaSt automatically updates its considered n-grams
list whenever it encounters an unknown n-gram). This process enables to reduce the
number of features by more than 90% for 3-, 4-, and 5-grams, as shown in Table 3.1.

Formally, we define the vector R (containing n-gram frequencies) by using the set S
of n-grams JaSt considers and the set X of JavaScript samples to analyze such as:
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RT = {r1, ..., r|X |}

knowing that ∀i ∈ J1, |X |K, ri = φ(xi)

and φ : xi −→ (φn(xi))n∈S

with φn(xi) the frequency of the n-gram n in the analyzed sample xi .

As a consequence, the φ function maps a JavaScript file xi to the vector space R|S|

such that we set all dimensions associated with the n-grams contained in the set S to
their frequency. To avoid an implicit bias on the length of the inputs, we normalize the
frequencies, such that: ∀i ∈ J1, |X |K, ||ri|| = ||φ(xi)|| = 1. We then use the frequency
vector R as input to the learning components.

3.1.3 Learning and Classification

The learning-based detection completes the design of JaSt. Before being able to predict
if a given JavaScript sample is benign or malicious, our classifier should be trained on a
representative, up-to-date, and balanced set of both benign and malicious JavaScript files.
To build an initial model, update an existing one, or classify JavaScript inputs, we use
the vectorial representation RT = (ri)i∈J1,|X |K of the files X to analyze. We empirically
evaluated different off-the-shelf classifiers (Bernoulli naive Bayes, multinomial naive
Bayes, SVM, and random forest) and determined that random forest yielded the most
accurate results.

We implemented JaSt in Python, and we leverage the Scikit-learn implementation
of random forest to analyze JavaScript inputs [164]. To optimize the predictions of
our learning-based detector, we first determined the tuple of hyperparameters yielding
an optimal model (i.e., that minimizes a predefined loss function on an independent
dataset). Our independent dataset was provided by the German Federal Office for
Information Security (BSI) [24] and labeled according to the protocol described in
Section 3.2.1. It contains 17,500 unique benign samples and as many malicious ones.
To tune the optimal set of hyperparameters, we first performed random search [16]
with 5-fold cross-validation on this dataset. This way, we sampled a fixed number
of parameter settings from the specified distributions to narrow down the range of
possibilities for each hyperparameter. In a second step, we could therefore use grid
search to exhaustively test all resulting combinations with cross-validation.

We selected the following hyperparameters because their combination leads to the
best trade-off between accuracy and performance. In particular, we chose 4-gram
features as the length four provides the best trade-off between false positives and false
negatives. In addition, we construct our random forest with 500 trees, which all have
a maximum depth of 50 nodes. When looking for the best node split, we consider
d
√

2, 457e = 50 features and use the Gini criterion to measure the quality of a split,
based on the Gini impurity [67]. In the following, we use these parameters to train,
update, and test JaSt’s random forest classifier.
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Source Collection #Samples Label Obfuscated

Emails 2017-2018 85,059 Malicious yes

Microsoft 2015-2018 17,668 Benign yes
Games N/A 2,007 Benign no
Web frameworks N/A 434 Benign N/A
Atom 2011-2018 137 Benign no

Table 3.2: Benign and malicious JavaScript datasets

3.2 Detecting Malicious JavaScript

To highlight the accuracy of JaSt, we analyze and classify over 105,000 unique sam-
ples from different sources. After presenting our datasets, we discuss our detection
performance, which we subsequently compare with related work.

3.2.1 Benign and Malicious Datasets

The experimental evaluation of our approach rests on an extensive dataset mainly
provided by the BSI [24]. It comprises 105,305 unique (based on their SHA1 hash)
JavaScript samples. In particular, it includes 20,246 benign and 85,059 malicious
JavaScript files (see Table 3.2) between 100 bytes and 1 megabyte (to retain JavaScript
code with enough features to be representative of its benign vs. malicious intent, without
downgrading the performance with too big a size).

Our malicious samples mainly correspond to JavaScript extracted from emails. In
fact, emails are one of the most common and effective way to spread JScript-loaders,
as a double-click on an attachment is by default sufficient to execute it on Windows
hosts, leading to, e.g., drive-by download or ransomware attacks. JavaScript as infection
vector is particularly relevant and powerful in this setting since it is especially prone
to obfuscation. This way, attackers can build a unique copy of a malicious attachment
for each recipient; thus, foiling classical anti-virus signatures. These samples have been
labeled as malicious based on a score obtained after having been tested by twenty different
anti-virus systems, the malware scanner of the BSI, and a run-time-based analysis.

As for the benign files, we consider several datasets, as underlined in Table 3.2.
In particular, almost 18,000 samples come from Microsoft products (e.g., Microsoft
Exchange 2016 and Microsoft Team Foundation Server 2017). As most of them are
obfuscated, we can ensure that JaSt does not confuse obfuscation with maliciousness
but leverages syntactic features for an accurate distinction between benign and malicious
(obfuscated) inputs. For our benign dataset to be more up-to-date and representative of
the JavaScript distribution found in the wild, we also include some open-source games
written in JavaScript, web frameworks, and the source code of Atom [8] (we tested
these samples either using the previous protocol or directly downloaded them from
the developers’ web pages). These extra samples extend our dataset with some new,
sometimes unusual or specific (e.g., games) coding styles to show that JaSt does not
mistake unseen nor unusual syntactic structures for maliciousness. We chose not to
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Source #Misclassifications #Correct classifications Accuracy (%)

Emails 443 81,116 99.46

Average benign 86 16,660 99.48
- Microsoft 71 14,097 99.50
- Games 10 1,997 99.52
- Web frameworks 4 430 99.03
- Atom 1 136 98.98

Table 3.3: Accuracy of JAST

consider any web-JavaScript extracted from HTML documents at this stage, though. We
discuss our choice and perform a separate analysis in Section 3.3.2, where we showcase
the applicability of our approach also on previously unseen web samples.

3.2.2 JAST Detection Performance

In our first experiment, we study the detection performance of JaSt in terms of true-
positive and true-negative rates (i.e., correct classification of the samples as malicious or
as benign, respectively), false-positive and false-negative rates (i.e., misclassification of
the samples as malicious instead of benign or as benign instead of malicious, respectively),
and overall detection accuracy (i.e., the proportion of samples correctly classified, either
as benign or as malicious). In addition, we discuss Youden’s J statistic to find the
optimal trade-off between false positives and false negatives.

3.2.2.1 Training and Classification

First, we randomly extracted 3,500 unique JavaScript files from the email dataset
(malicious) and as many from the Microsoft dataset (benign) to build a balanced model.
We considered that the remaining samples were unknown, and we leveraged them to
measure the detection performance of JaSt. To limit statistical effects from randomized
datasets, we repeated this procedure five times and averaged the detection results. As
indicated in Table 3.3, JaSt is able to correctly classify 99.48% of our benign dataset
while still detecting 99.46% of the malicious email samples. As both these benign and
malicious files are, for the most part, obfuscated, this demonstrates the resilience of
our system to this specific form of evasion. More importantly, it shows that JaSt does
not confuse obfuscation with maliciousness nor plain text with benign inputs. JaSt
can indeed leverage differences between benign and malicious obfuscation at a syntactic
level to distinguish benign obfuscated from malicious obfuscated files. In fact, while
the former is used to protect code privacy and intellectual property, the latter aims at
hiding its malicious purpose without specific regard to performance. Furthermore, our
system offers a very high true-negative rate for the web frameworks, the source code of
JavaScript games, and Atom, even though these sample families were not present in the
training set. The possible transfer of an email-based model to detect web samples is
further discussed in Section 3.3.2.
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Figure 3.3: Detection performance of JAST depending on Youden’s index

3.2.2.2 Youden’s Index

Both the false-positive (0.52%) and the false-negative (0.54%) rates are very low for
JaSt. This indicates that, based on a frequency analysis of their 4-grams, our classifier
is able to make an accurate distinction between benign and malicious samples almost
99.5% of the time. We achieve this optimal trade-off between false positives and false
negatives by using Youden’s J statistic [168, 232] where J is defined as:

J = sensitivity + specificity− 1 = TPR1 − FPR2

This index corresponds to the area beneath the ROC (Receiver Operating Characteristics)
curve [61] subtended by a single operating point. Its maximum value is used as a criterion
for selecting the optimal cut-off point between false positives and false negatives. In
our case, we determined Youden’s index with 5-fold cross-validation on the independent
dataset presented in Section 3.1.3. We selected the value 0.29, which means that we
consider a sample to be malicious if the probability of it being malicious is above 0.29,
according to our random forest classifier (cf. Section 2.3.1). Figure 3.3 presents the
evolution of the detection performance when the value of Youden’s index varies between
0.19 and 0.99. We obtained the best trade-off between false-positive and false-negative
rates with a threshold of 0.29 and the maximum detection accuracy (of 99.5%) with 0.25.
Also, with an index of 0.23, we have a reduction of the sharp false-positive rate decline
while retaining a low false-negative rate and an extremely high detection accuracy of
99.49%. Besides, trading an extremely low false-positive rate for a higher false-negative
rate downgrades the overall detection accuracy extremely rapidly. In the remaining of
this chapter, we consider a threshold of 0.25, unless stated otherwise.

1True-positive rate
2False-positive rate
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Tool FPR FNR Static Dynamic

JaSt 5.2E-3 5.4E-3 -

Cujo 2.0E-5 5.6E-2
PJScan 1.6E-1 1.5E-1 -
Zozzle 3.1E-6 9.2E-2

Table 3.4: Comparison of our detection performance with related work

Youden’s index FPR FNR

0.7 1.19E-5 2.16E-2
0.8 0 2.91E-2
0.9 0 4.34E-2

(a) On our datasets

Youden’s index FPR FNR

0.7 1.26E-4 -
0.8 1.68E-5 -
0.9 6.71E-6 -

(b) On samples from Alexa top 10k

Table 3.5: Detection performance of JAST for several Youden’s indexes

3.2.3 Comparison with Related Work

In 2010, Rieck et al. introduced Cujo to detect malicious JavaScript embedded in
web pages [173]. For this purpose, they use an SVM classifier, which leverages n-
gram features from lexical units. Similarly, in 2011, Laskov et al. developed PJScan,
which combines n-grams built upon lexical features with a model of normality, to detect
malicious JavaScript embedded in PDF documents [117]. With Zozzle, Curtsinger et al.
combined in 2011 features extracted from the AST with their corresponding node value
to train a Bayesian classification system to detect malicious JavaScript [50].

As shown in Table 3.4, JaSt is heavily optimized to detect malicious JavaScript
instances with its low false-negative rate of 0.54% (threshold 0.29), which is between
10 and 28 times lower than the other tools proposed thus far. Even though Cujo
and Zozzle also used the results of a dynamic analysis to detect malicious JavaScript
samples more accurately, JaSt has a higher overall detection accuracy. Like the majority
of anti-virus systems, they rather traded a low false-positive rate for a higher false-
negative rate. In fact, as indicated by Curtsinger et al., based on the number of URLs
on the web, a false-positive rate of 5% is considered acceptable for static analysis tools
but rates even 100 times lower are not acceptable for in-browser detection.

As mentioned in Section 3.2.2.2, we can leverage Youden’s index to shift the false-
positive and false-negative rates, according to the system use case and dataset. Therefore,
to perform further comparisons with Cujo and Zozzle, we increased the value of
Youden’s index to lower our false-positive rate. With a threshold of 0.7, our system
already has a lower false-positive rate than Cujo while retaining a lower false-negative
rate (see Table 3.5a). To ensure that these results were not coming from a lack of benign
JavaScript samples, we extracted 119,233 unique benign JavaScript files from Alexa
top 10k websites and classified them (see Table 3.5b). Our model does not have such a
low false-positive rate on these samples as previously since we are using an email-based
model to classify web-JavaScript (this concept is further discussed in Section 3.3.2).
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Nevertheless, with a threshold of 0.8, the false-positive rate of JaSt on the Alexa
dataset is lower than Cujo while still retaining a lower false-negative rate. As for
Zozzle, a threshold of 0.8 on our dataset provides both a better false-positive and a
better false-negative rate. As previously, we also performed this comparison on the
samples extracted from Alexa top 10k. With a threshold of 0.9, we have a false-positive
rate of 6.71E-4% (standing for 0.8 false positives, averaged over five runs)–admittedly a
little superior to Zozzle–but still a lower false-negative rate.

Added value of JAST Several parameters are responsible for the higher detection
accuracy of JaSt compared to Cujo and Zozzle. First, we do not trade a very low false-
positive rate for a higher false-negative rate. This way, our system accurately detects
benign samples with an accuracy of 99.48% while still flagging 99.46% of the malicious
ones. As indicated in Figure 3.3, an extremely low false-positive rate significantly
decreases the classifier’s accuracy. Besides, maximizing the detection accuracy also
corresponds to the best trade-off between false positives and false negatives. Furthermore,
the choice of our random forest classifier has an impact on the detection performance.
It performed indeed better than Bernoulli naive Bayes and SVM, used by Zozzle and
Cujo, on our dataset. Last but not least, our syntactic analysis also has an impact on
the detection accuracy. For example, Cujo is based on a lexical analysis, which does
not perform as well as an AST-based one because lexical units lack context information.
We discuss and justify the added value of an AST-based approach, compared to a lexical
one, more thoroughly in Chapter 4.

3.3 Applying JAST in the Wild

We underlined previously both the high true-positive and true-negative rates of JaSt,
which therefore outperforms previous work. Based on the accuracy of our system, we
next study the temporal evolution of JavaScript samples over a year. Subsequently, we
discuss similarities between JavaScript files from different families and showcase that we
can leverage an email-based model to classify web samples. We finally report on JaSt
run-time performance.

3.3.1 Malicious JavaScript Evolution over Time

In this section, we focus on the temporal evolution of malicious JavaScript extracted
from emails received between January 2017 and January 2018. For each month, we
perform the two following steps:
• We first consider that the ground truth of the JavaScript samples collected on a

given month is unknown. For this purpose, we leverage the model we built in the
previous months (the first model being created in January 2017) to classify the
JavaScript instances of the considered month;
• In practice, we know the ground truth of the JavaScript samples collected on the

considered month (cf. Section 3.2.1). Thus, we leverage these samples to build a
new model, including all samples from the previous months.
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Figure 3.4: Evolution of JAST’s accuracy with retraining over time

As a consequence, we classify the samples from January 2018 with a model initially
built in January 2017 and extended each month until December 2017 (included), with
new and up-to-date malicious as well as benign JavaScript instances. Figure 3.4 shows
the detection accuracy of our random forest classifier for three different Youden’s
indexes. Except for June and July, the detection accuracy stays relatively constant over
time, with an average of 96.36% (99.63% without these two months). The predictions
decline in June and, to a lesser extent, in July only depends on malicious JavaScript
misclassifications (over the whole period, we have a mean false-positive rate of 0.22%).
As expected, the decrease gets more important when the value of Youden’s index
increases, as this threshold represents the probability cut-off to consider a sample as
malicious. As a comparison, we replaced the complete relearning of a model each month
by an update function adding 100 new trees to the forest built in the previous months.
As both experiments presented the same decline in June and July, we performed an
in-depth study of these specific samples.

In particular, we combined JSinspect, a project built upon the AST to detect
structurally similar code [96], with a manual analysis. We then showcased that the
misclassifications were coming from several JavaScript waves, each wave containing
samples with the same AST. In fact, attackers abused obfuscation techniques to send
a unique copy of malicious JavaScript email attachments to each recipient. In this
specific case, they only randomized the function and variable names for each JavaScript
file they produced. Since their SHA1 hash is different, we did not consider them as
duplicate, even though they are identical at the AST level.3 In June, there are four
such misclassified waves with respectively 213, 355, 578, and 1,049 files in them. If
one sample of a wave is misclassified, so is the entire wave, which yielded, in our case,
a high number of false negatives. We observe a similar phenomenon in July, with
two waves containing 107 and 354 misclassified samples. These six specific waves are
admittedly composed of malicious samples only, but the classifier labeled each of them
as benign with a probability over 78%. On the contrary, we could have observed the

3Variable and function names are not part of the AST but represented with an Identifier node
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Month #Malicious #Malicious big waves Part of a big wave (%) Part of a FN big wave (%)
Feb 4,894 8 66.92 0
Mar 4,838 4 28.00 0
Apr 4,883 4 30.04 0
May 4,922 4 44.64 0
Jun 4,987 6 73.73 39.74
Jul 4,831 6 53.88 7.32
Aug 6,536 6 64.35 0
Sep 592 0 0 0
Oct 3,610 1 8.80 0
Nov 120 0 0 0
Dec 419 0 0 0
Jan 53 0 0 0

Table 3.6: Insights into our malicious samples
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Figure 3.5: Evolution of JAST’s accuracy depending on the training month

inverse phenomenon, where one sample of a malicious wave would have been recognized
as malicious; thus, as a wave only contains samples with the same AST, the whole
wave would have been classified as malicious, yielding, in turn, a high number of true
positives. Table 3.6 indicates that this is generally not the case, as we reported the
biggest malicious waves4 rather in June and July. Besides, there are only big wave
misclassifications in June and July, as the other waves are being correctly flagged as
malicious with a probability over 50% (in general over 75%).

As a second experiment, Figure 3.5 presents the evolution of the detection accuracy
when the month used to build the initial model varies (the rest of the experiment stayed
unchanged). As previously, the accuracy stays relatively constant except for the decline
in June and July, for the reasons mentioned before. In particular, the accuracy evolution
in June between a model first built in April and the other models highlights the presence
of these big waves (e.g., more misclassifications with the April model), with a similar
observation in July.

4We define a big wave as a wave containing more than 300 syntactically similar samples
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This way, to be long-time effective, JaSt has to adapt to new JavaScript instances.
This adaptation process is achieved by extending the set of n-gram features used with
new and up-to-date JavaScript samples. In fact, our analysis of JavaScript instances
over a year has shown that building a model each month to detect malicious variants in
the current month is only effective if the training set contains enough files, which are
representative of the distribution found in the wild and is not a compilation of different
JavaScript waves received in the past few months.

3.3.2 Analysis of Web-JavaScript

In Section 3.2.2, we trained JaSt with malicious JavaScript extracted from emails (and
Microsoft samples for the benign part). Still, this model yielded accurate predictions
for web frameworks, the source code of Atom, and for JavaScript games, even though
these families were not represented in our training set. For this reason, we discuss the
applicability of an email-based model to detect other types of JavaScript, such as web
samples. In particular, we focus on malicious HTML email attachments, exploit kits, and
Alexa top 10k websites. We finally discuss our choice to separate the email-JavaScript
from the web-JavaScript analysis and highlight syntactic similarities between different
malicious JavaScript families.

3.3.2.1 Experimental Protocol

In this experiment, we used the five previously constructed email-based models to classify
web samples. In particular, we collected inline JavaScript extracted from malicious
HTML email attachments (provided by the BSI), exploit kits (EK) from 2010 to 2017
(provided by Kafeine DNC [100]), and Alexa top 10k websites. Regarding Alexa, we also
extracted third-party scripts and considered that all scripts were benign. Given that we
extracted JavaScript from the start pages of the ten thousand websites with the highest
ranking, we assume these samples to be benign. Although it has been shown that
these websites could host malicious advertisements, our JavaScript extraction process,
which relies on statically parsing the web page with Python and extracting script
and src tags, protected us from these elements generated dynamically. Figure 3.6
presents the detection accuracy (in terms of true-positive rate for the malicious files
and true-negative rate for Alexa) on these web samples. In particular, we consider that
an HTML page or an exploit kit is benign if all the contained JavaScript snippets are
classified as benign. If one malicious JavaScript sample was detected, we labeled the
whole page/exploit kit as malicious.

3.3.2.2 Analysis of Malicious Web-JavaScript

JaSt was able to detect 82.31% of the 13,595 malicious web-JavaScript inputs, which
underlines some similarities at the 4-gram level between email-JavaScript and web-
JavaScript. Further insights into the false negatives indicate that 14.37% of the samples
have been correctly classified as benign. In fact, a manual inspection of 80 exploit kits
showed that in 21.25% of the cases, the malicious part was not embedded in JavaScript
samples. Instead, the attack vector was either contained in an SWF bundle, or the
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Figure 3.6: Accuracy of JAST on web-JavaScript after email-based training

exploit kit merely included a resource trying to exploit an existing flaw without any
scripting code at all. Another issue was related to the quality of JavaScript samples:
while analyzing 110 malicious email attachments and exploit kits, we discovered that
some files were broken and could, therefore, not be parsed. In 3.64% of the cases, the
malicious part could not be parsed, therefore could not be analyzed. This naturally
means that, in an attack, this code would not have been executed. As a consequence,
when considering only HTML documents and exploit kits, which could be entirely parsed
and whose malicious behavior was included in a JavaScript snippet, we got a corrected
true-positive rate of 85.18%, which represents an improvement of 3.36%.

While malicious email-based and web samples present some similarities, they also
have syntactic differences, which prevented JaSt to provide as much confidence in
detecting malicious web-JavaScript as in email-JavaScript. In fact, web samples tend to
contain less malicious patterns, have comments at regular intervals, and benign snippets
next to the malicious parts. Also, they do not use the same obfuscation techniques as
malicious email-JavaScript. As malicious email-JavaScript aims at providing a unique
copy for each recipient, it abuses variable and function names randomization, data
obfuscation, and encoding obfuscation. On the contrary, malicious web-JavaScript
rather tends to identify software vulnerabilities in clients’ machines and exploit them to
upload and executes malicious code on the client side. For this purpose, the attackers
preferably use variable and function names randomization and neatly package their
code, which can slightly degrade JaSt accuracy.

3.3.2.3 Analysis of Benign Web-JavaScript

Next, we focus on detecting benign JavaScript samples extracted from Alexa top 10k
websites. JaSt could detect 46.11% of them. Instead of grouping all JavaScript snippets
of a web page and labeling the website as benign if all samples were recognized as benign,
we performed a second experiment. We collected all JavaScript snippets from Alexa
top 10k (between 100 bytes and 1 megabyte), and we analyzed them independently. In
total, we extracted 119,125 JavaScript samples and got a true-negative rate of 92.79%
(averaged over five runs); thus, a false-positive rate of 7.21%, which is, this time, more

39



CHAPTER 3. JAST: AN AST-BASED MALICIOUS JAVASCRIPT DETECTOR

Parsing N-gram analysis Training Update Classification Sum

Time (s) 96.55 14.43 1.79 0.41 0.26 113.44
Time (%) 85.12 12.72 1.57 0.36 0.23 100

Table 3.7: Run-time performance of JAST on 500 samples

in line with our results from Section 3.2.2. If we consider that an Alexa top 10k website
contains n JavaScript snippets, we can expect a true-negative rate of 0.9279n. On
average, it contains 16 snippets; therefore, the probability of having a true negative
is 30.18%, which is lower than our true-negative rate of 46.11% and underlines the
artificial performance decrease we would introduce by classifying an HTML document
instead of a JavaScript code snippet.

3.3.2.4 Discussion

We chose not to include any JavaScript extracted from HTML documents for the
training and evaluation part of this chapter (i.e., Section 3.2.2) but rather to discuss
the extension of an email-based model to detect web samples for three reasons. First,
we did not have any ground truth regarding the position of the malicious entity in
malicious HTML documents, which would have required a systematic analysis of our
13,595 snippets to detect and use only the malicious JavaScript samples to train our
classifier with. For this reason, we decided to exclude them from the evaluation and
instead chose to flag any HTML documents containing at least one malicious JavaScript
snippet as malicious. For symmetry purposes, we applied the same procedure to benign
HTML files, which thereby reduced the number of benign scripts in our dataset. Last
but not least, splitting email and web evaluation was a way to show that syntax-based
features can be core in classifying JavaScript instances: no matter the obfuscation used
to hide their functionality, malicious JavaScript samples do not necessarily hide their
true function.

3.3.3 Run-Time Performance

Finally, we evaluated the run-time performance of JaSt on a commodity PC with a
quad-core Intel(R) Core(TM) i3-2120 CPU at 3.30GHz and 8GB of RAM. Table 3.7
shows the processing time for all stages of our method on 500 unique JavaScript samples
(half of which are benign, the other half being malicious), which we randomly selected.
The most time-consuming operation is the parsing with Esprima (written in JavaScript
and called from our Python program), which accounts for over 85% of the overall
detection time. In comparison, the production of all 4-grams and the creation of
a 2,457-dimension frequency vector is relatively fast (12.72% of the time). Finally,
building or updating a model and classifying JavaScript inputs represents, on average,
less than 1% of the processing time. Overall, JaSt classified 500 JavaScript files in less
than 2 minutes. Compared to PJScan (implemented in C with its own C library to
classify JavaScript entities), which can analyze a PDF document in 0.0032 seconds, our
approach is slower. In compensation, the accuracy of our predictions is significantly
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better (cf. Section 3.2.3). Similarly, JaSt can analyze on average 0.14MB/s, which is
comparable to the 0.2MB/s of Zozzle for the same amount of features, and we also
retain a higher detection accuracy (99.46% vs. 99.20%). We naturally envision that
JaSt would be parallelized for a deployment in the wild.

3.4 Summary

Many malicious JavaScript samples today are obfuscated to hinder the analysis and
the creation of signatures. To countermand this, and due to the large volume of
JavaScript files in the wild, we proposed our static analyzer JaSt to quickly process the
vast majority of samples. Specifically, our system combines an extraction of features
from the AST with a random forest classifier to detect malicious JavaScript instances
at scale (RQ1 ). Due to our usage of AST-based patterns, our approach can handle
obfuscated inputs and does not confuse obfuscation with maliciousness. In practice,
JaSt yields both a very high true-positive (99.46%) and true-negative rates (99.48%)
and outperforms previous detectors. In addition, we further discussed the evolution of
our accuracy over time and highlighted some syntactic similarities between different
classes of malicious JavaScript.

Even though JaSt has a very high detection accuracy, it is not infallible and still
leads to misclassifications. In fact, it lacks semantic information to go beyond solely
relying on the code syntax. In the following chapter, we present JStap, which goes
beyond the code structure by also considering control and data flows to detect malicious
JavaScript inputs.
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4.1. PRESENTATION OF OUR MODULAR DETECTOR

In the previous chapter, we presented JaSt, our static approach, which leverages
the AST to detect malicious JavaScript instances. While JaSt has an overall detection
accuracy of almost 99.5%, it still misclassifies some inputs. The same applies to prior
work, such as the lexical detector Cujo [173] and the AST-based Zozzle [50]. These
systems even misclassify different samples. In fact, these static detectors solely rely
on the code structure to detect malicious JavaScript inputs; thus, they lack semantic
information to go beyond the lexical and syntactic order of the code.

In this chapter, we focus on RQ2: Can we add more semantic information into
the AST of JavaScript files? Specifically, to what extent can we statically enhance the
AST with control and data flows? Which features, combined with machine learning
algorithms, work best to detect malicious JavaScript instances? For this purpose, we
propose JStap, our static detector, which is composed of ten modules, including five
ways of abstracting code, with differing levels of context and semantic information,
and two ways of extracting features. Similarly to JaSt, we train a random forest
classifier for each module. In practice, JStap outperforms existing systems, which we
reimplemented and tested on our dataset totaling over 273,216 samples. To further
improve the detection accuracy of our approach, we also combine the predictions of
several modules so that only samples with conflicting labels would need further scrutiny.

4.1 Presentation of our Modular Detector

JStap, which we implemented in Python, is composed of several modules, which can run,
independently or combined, to accurately detect malicious JavaScript instances. The ar-
chitecture of each module consists of an abstract code representation (Figure 4.1 stage 1),
a feature-extractor (stage 2), and learning components (stage 3). First, we perform a
static analysis of JavaScript samples, leveraging the AST to build the Control Flow
Graph (CFG) and the Program Dependence Graph (PDG) (Section 4.1.1). We adopt a
definition of the CFG and PDG that slightly differ from Allen [3] and Ferrante et al. [64],
as we chose to enhance the AST with control and data flow edges, for the reasons
mentioned in Section 2.2. Subsequently, we traverse the resulting graphs by following
the control and/or data flow edges to extract syntactic units, whose combination still
carries the original control and/or data flow semantics. We also consider lexical units

Figure 4.1: Architecture of JSTAP with a focus on one module
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Token Value Token Value Token Value

Identifier x Numeric 1 Punctuator )
Punctuator . Punctuator ; Punctuator {
Keyword if Keyword if Identifier d
Punctuator = Punctuator ( Punctuator =
Numeric 1 Identifier x Identifier y
Punctuator ; Punctuator . Punctuator ;
Keyword var Keyword if Punctuator }
Identifier y Punctuator ==
Punctuator = Numeric 1

Table 4.1: Lexical units (tokens) extracted from Listing 4.1

and syntactic units extracted from the AST to extend our approach with node context
information, since control and data flow edges only link statement nodes together. In
particular, we combine the extracted units by groups of n to build n-gram features. At
the same time, and independently of the prior approach, we also combine these units
with variable name information (Section 4.1.2). In both cases, we use the frequency of
the extracted features as input to our random forest classifier, which learns to distinguish
benign from malicious JavaScript samples (Section 4.1.3). In the following sections, we
discuss the details of each stage in turn.

4.1.1 Abstract Code Representations

We chose to perform a static analysis to detect malicious JavaScript instances due
to its speed, precision, and code coverage. In particular, we can leverage different
levels of code abstraction, with more or less semantic information, to identify recurrent
programmatic and structural constructs specific to malicious or to benign inputs. We
focus on four different abstraction levels, which we introduced in Section 2.2.1 First, we
consider a lexical analysis, which directly processes the code, one word after the other.
On the contrary, an AST-based analysis takes into account the JavaScript grammar;
thereby, the syntactic structure of the program. Next, the CFG contains semantic
information, compared to the AST, as it considers the conditions that have to be met
for a specific execution path to be taken. Finally, the PDG also takes into account
the dependencies between variables. This way, with these code representations, we can
process JavaScript inputs at different static levels. This naturally means that we can
combine these representations to model the different code properties more accurately.

4.1.1.1 Lexical Unit Extraction

First, we perform a lexical analysis of JavaScript files with the tokenizer Esprima [79].
Specifically, it linearly converts the source code into a list of abstract symbols representing
lexical units (e.g., Keyword, Identifier). Still, this technique neither uses the
context in which a given word appears nor the overall syntactic structure of the snippet

1Ultimately leading to five ways of abstracting the code, cf. Section 4.1.2.1
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1 x.if = 1;
2 var y = 1;
3 if (x.if == 1) {d = y;}

Listing 4.1: JavaScript code example

Program

ExpressionStatement VariableDeclaration IfStatement

AssignmentExpression

MemberExpression Literal

Identifier Identifier

x if

1

VariableDeclarator

Identifier Literal

y 1

BinaryExpression BlockStatement

MemberExpression Literal

Identifier Identifier

x if

1

ExpressionStatement

AssignmentExpression

Identifier Identifier

d y

Figure 4.2: AST of Listing 4.1

it analyses. As an illustration, Table 4.1 presents the tokens extracted from the code
snippet of Listing 4.1. In particular, for the assignment x.if = 1, a lexical analysis is
unable to infer that the traditionally reserved word if is not used as a Keyword, but
as an Identifier (see Table 4.1 line 3).

4.1.1.2 AST Generation

Contrary to the token approach, the AST describes the syntactic structure of an input
sample, as it rests upon the JavaScript grammar [56]. In particular, we generate the
AST with the parser Esprima, which can produce up to 69 different syntactic units,
referred to as nodes. Inner nodes represent operators, such as VariableDeclaration,
AssignmentExpression, or IfStatement, while the leaf nodes are operands, e.g.,
Identifier or Literal (except for ContinueStatement and BreakStatement).
As an illustration, Figure 4.2 shows the Esprima AST obtained from the code snippet
of Listing 4.1.2 This time, the construct x.if is recognized as a MemberExpression
with x and if being both correctly labeled as Identifier units. Still, the AST only
retains information about the nesting of programming constructs to form the source
code but does not contain any semantic information such as control or data flow.

2For legibility reasons, the variable names and values appear in the graphical representations of the
AST, CFG, and PDG but they are not part of the graphs
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Figure 4.3: AST of Listing 4.1 extended with control & data flows

4.1.1.3 CFG: AST + Control Flow

Subsequently, JStap extends the AST with control flow to reason about the conditions
that should be met for a specific execution path to be taken. We refer to the resulting
structure as the CFG (Control Flow Graph). We construct the CFG by traversing the
AST nodes depth-first pre-order. In particular, we represent flows of control on statement
nodes, which we connect with labeled and directed edges. We label edges originating
from predicates with a boolean, standing for the value the predicate should evaluate to,
for its descendants in the graph to be executed. For non-predicate statement nodes,
we use the label e, standing for epsilon control flows. In addition to the nodes defined
as statement by the JavaScript grammar [56], we also consider CatchClause and
ConditionalExpression, as they both have an impact on the program execution
flow. Contrary to the AST of Figure 4.2, Figure 4.3 (considering only the blue dotted
control flow edges) shows an execution path difference when the if condition is true, and
when it is not. Still, the CFG does not enable to reason about variable dependencies
nor the order in which the resulting statements are executed.

4.1.1.4 PDG: AST + Control Flow + Data Flow

Finally, JStap adds data flow information to the CFG, which we refer to as a PDG. In
particular, we connect two statement nodes with a directed data flow edge if and only if
they have a variable child (also including object and function) defined or modified at the
source node and used at the destination node, taking into account its reaching definition.

In JavaScript, a scope defines the accessibility of variables. If a variable is defined
outside of any function or without the var, let, or const keywords, or using the
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window object, it is in the global scope. On the contrary, variables that can be used
only in a specific part of the code, e.g., block statement, are in a local scope. To
build our PDG, we traverse the CFG depth-first pre-order and maintain two lists of
variables. The first one contains the global variables and the second one the local
variables currently declared in the considered block statement, taking into account the
specific local scope of variables defined with the let or const keywords (in the block
where they are defined). For objects, we keep the order in which they are modified (e.g.,
whenever a method is called on them or one of their properties changes). In fact, we
cannot always statically predict which method should be called on an object first, e.g.,
an XMLHttpRequest must be opened before the send() method is called. In such
cases, we add a data flow edge between the previous version of an object and the current
one, and we update our variable list (local or global according to the context) with a
reference to the modified object. In addition, JStap can analyze functions, respects
their scoping rules, and handles closures and lexical scoping. In particular, we handle
function names as variables (local or global), since functions and variables cannot share a
name in JavaScript. Also, we make the distinction between a function declaration–i.e., a
standalone construct defining a named function variable– and a function expression–i.e.,
a named or anonymous function that is part of a larger expression. Finally, we connect
function call nodes to the corresponding definition nodes with data flow edges, thus
defining the PDG at program level [229].

Overall, this code representation captures the data and control flows between the
different program components. Therefore, it is not influenced by arbitrary sequencing
choices made by programmers but represents the semantic order of the code. Contrary
to the AST of Figure 4.2, Figure 4.3 indicates the order in which statements from
Listing 4.1 should be executed.3 For example, as shown by the data flows (orange
dashed edges), lines 1 and 2 are executed before line 3; we could nevertheless swap
lines 1 and 2 without altering the code semantics. In the remaining of this thesis, we
graphically represent the flows of control with blue dotted edges and data flows with
orange dashed edges. The remaining AST edges (i.e., that do not already have a control
flow edge) are displayed in bold and the variable names and values (that do not belong
to the graphs) with gray tapered edges. Also, we represent statement nodes in blue
squares, while non-statement nodes are in yellow circles.

4.1.2 Feature Extraction

Once JStap built abstract code representations to analyze JavaScript samples, we
extract lexical units, and we traverse the different tree/graphs to collect syntactic
units (Section 4.1.2.1). Overall, we consider five different ways of abstracting the code.
Subsequently, and for each code representation, we consider (independently) n-gram
features and the combination of the extracted units with their corresponding node value
(e.g., variable name), hence two ways of extracting features, meaning that JStap is
composed of ten modules (Section 4.1.2.2). Finally, for each module independently,

3For legibility reasons, we draw the data flow edges between leaf nodes instead of their corresponding
nearest statement nodes
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learning components take the frequency of the extracted features as input for the
classification process (Section 4.1.3).

4.1.2.1 Graph Traversals

As far as the lexical analysis is concerned, we already extracted lexical units (tokens) in
Section 4.1.1.1. For the AST, CFG, and PDG, we traverse each graph by following its
specific edges to extract the name of each node, referred to as a syntactic unit. Specifically,
for the AST, a depth-first pre-order traversal of Figure 4.2 gives the following syntactic
units: ExpressionStatement, AssignmentExpression, MemberExpression,
[...] Identifier (the Program node just represents the root of the AST and does
not have any syntactic meaning). For the CFG, we also traverse the AST but only
store nodes linked by a control flow edge (i.e., the e, True, and False labels), e.g.,
in Figure 4.3: IfStatement, BlockStatement, and ExpressionStatement. In
practice, considering only statement nodes is not informative enough to distinguish
benign from malicious JavaScript inputs (due to both of them linking the same statements
with one another, cf. Section 4.2.2.1). To add more context information to the
control flow-based units, we also traverse once the sub-AST of each node having a
control flow edge. For example, in Figure 4.3, JStap reports the IfStatement node
and traverses its sub-AST before following the control flow edges and traversing the
BlockStatement, then the ExpressionStatement nodes. This time, we do not
traverse their corresponding sub-ASTs, as we already performed this step while handling
the IfStatement node.4 Finally, the process is similar for the PDG, with consideration
of the data flow edges. In the following, we use the term DFG (Data Flow Graph) to
refer to the PDG traversal only along data flow edges and the term PDG to refer to
the PDG traversal along the data flow edges, followed by a second traversal along the
control flow edges.

4.1.2.2 Feature Analysis

For the five abstract code representations, namely tokens, AST, CFG, DFG, and PDG,
we (independently) build features by considering n-gram patterns and the combination
of the extracted units with their corresponding node value. Therefore, JStap contains
ten modules, with five different static code analysis levels and two ways of representing
features extracted from these different code representations.

N-Gram Features To identify specific patterns in JavaScript documents, in the
first scenario, we move a fixed-length window of n symbols over the list of lexical or
syntactic units previously extracted to get every sub-sequence of length n (n-grams) at
each position. For example, the three first 2-grams of Table 4.1 are: (Identifier,
Punctuator), (Punctuator, Keyword), and (Keyword, Punctuator). As
mentioned in the previous chapter, n-grams are an effective means for abstracting

4At the end, we retain the following units: IfStatement, BinaryExpression,
MemberExpression, Identifier, Identifier, Literal, BlockStatement,
ExpressionStatement, AssignmentExpression, Identifier, Identifier,
BlockStatement, ExpressionStatement
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Tokens AST CFG DFG PDG

ngrams 602 11,050 18,105 17,997 24,706
value 24,912 45,159 36,961 45,566 46,375

Table 4.2: Number of selected features per module

the code. We empirically evaluated different n values, and we selected n = 4, which
provides the best trade-off between detection accuracy and run-time performance. In
the following, we use the term ngrams to refer to the 4-gram features we built as
described above.

Node Value Features In the second scenario, we do not use n-gram features, but we
combine each lexical unit with its corresponding value (as presented in Table 4.1) and
each syntactic unit extracted from the AST, CFG, DFG, or PDG with its corresponding
Identifier/Literal value. For example, the first two features of the AST from
Figure 4.2 are (ExpressionStatement, x) and (AssignmentExpression, x). In
the following, we use the term value to refer to the features combining lexical or
syntactic units with their corresponding values, as described above.

4.1.2.3 Feature Space

Next, we leverage the frequency of these ngrams or value features to determine if a
given input is either benign or malicious. In fact, as mentioned in the previous chapter,
JavaScript samples sharing several features with the same frequency present similarities
with one another, while files with different features have a more dissimilar content.

To compare the frequency of the features appearing in several JavaScript files,
we construct a vector space such that each feature is associated with one consistent
dimension, and its corresponding frequency is stored at this position in the vector. To
limit the size of the vector space, which directly impacts the performance, we use the χ2

test to check for correlation. We select only features for which χ2 ≥ 6.63, meaning that
feature presence and script classification are correlated with a confidence of 99% [223].
Table 4.2 presents the number of features considered for each of the ten JStap modules
based on our training set, which we describe in Section 4.2.1. For the ngrams variant,
there are more statistically representative features when the complexity of the code
representation increases, i.e., complex graph structures lead to more edges. This also
holds for the value approach, except for the CFG traversal, for which we both have
fewer representative features and fewer features in general than for the AST or PDG.
We assume that this comes from benign and malicious actors using more similar variable
names in statements with a control flow than in other statements. This is confirmed
to some extent in Section 4.2.2.2, where this approach does not perform as well as the
other ones. Finally, we store the frequency of each feature in Compressed Sparse Row
(CSR matrix) [209] to efficiently represent non-zero values.
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Source Collection #Samples Obfuscated

BSI 2017-2018 83,361 yes
Hynek 2015-2017 29,558 yes
DNC 2014-2018 12,982 yes
VirusTotal 2018 3,056 yes
GoS 2017 2,491 yes

Sum 2014-2018 131,448 yes

Table 4.3: Malicious JavaScript dataset

4.1.3 Learning and Classification

The learning-based detection completes the design of our modules. We first build
and leverage the CSR matrix of a representative and balanced set of both benign
and malicious JavaScript files to train our classifiers (one classifier per module). We
empirically evaluated several off-the-shelf systems (Bernoulli naive Bayes, multinomial
naive Bayes, SVM, and random forest) and selected random forest, which provided again
the most reliable detection results, with the best true-positive and true-negative rates.

4.2 Evaluating JSTAP Modules

In this section, we highlight the accuracy of our ten modules. For this purpose,
we leverage high-quality datasets from various sources, totaling over 270,000 unique
JavaScript samples. In particular, we analyze, compare, and discuss the detection
performance of JStap modules. Subsequently, we compare them to state-of-the-art
detectors, which we reimplemented to evaluate them on our datasets. Finally, we report
on the run-time performance of our ten modules.

4.2.1 Experimental Protocol

The experimental evaluation of our approach rests upon two extensive datasets, with a
total size over 6.2GB. The first one contains 131,448 SHA1-unique malicious JavaScript
samples and the second one 141,768 unique benign files. Next, we leverage these datasets
to train our random forest classifiers.

4.2.1.1 Malicious Dataset

Our malicious dataset (Table 4.3) is a collection of samples mainly provided by the
German Federal Office for Information Security (BSI) [24]. These samples have been
labeled as malicious based on a score provided by the combination of anti-virus systems,
malware scanners, and a dynamic analysis. To reduce possible similarities between sam-
ples from the same source, we got the malware collection of Hynek Petrak (Hynek) [86],
exploit kits from Kafeine DNC (DNC) [100] and GeeksOnSecurity (GoS) [68] as well as
additional samples from VirusTotal [210]. Most of these samples are obfuscated, e.g.,
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Source Collection #Samples Obfuscated

Tranco top 10k 2019 122,910 N/A
Microsoft 2015-2018 16,271 yes
Games N/A 1,992 no
Web frameworks N/A 427 N/A
Atom 2011-2018 168 no

Sum - 141,768 -

Table 4.4: Benign JavaScript dataset

string manipulations, dynamic arrays, or multiple encodings. For performance reasons,
we limited our analysis to samples with a PDG smaller than 10MB.

Even though the samples are malicious, in some cases, we extracted JavaScript
from HTML documents and thereby had to ensure that the maliciousness laid in the
scripts and was not, e.g., contained in an SWF bundle. For this purpose, we manually
analyzed our 19,942 JavaScript samples extracted from HTML documents, 15,475 of
which were malicious (we discarded the other samples, which are also not represented
in Table 4.3). Since our analysis is entirely static, it provides a complete coverage of
the available code. In turn, it is unable to consider dynamically generated JavaScript.
To this end, we parsed each malicious file with Esprima and automatically inlined all
code passed through eval (for invocations with static strings). Thereby, we increased
the code coverage of JStap on 1,868 unique scripts, as we did not merely consider a
CallExpression node with a fixed string parameter anymore but the code contained
in the string, possibly (depending on JStap selected module) along with its control
and/or data flows. Also, 1,094 samples used conditional compilation [143], which
Esprima parses as a large comment. Thus, we automatically replaced this construct
with the corresponding code for the parser to produce the actual ASTs of such scripts.

Overall, our malicious dataset contains different samples performing various activities.
For example, we have JScript-loaders leading to, e.g., drive-by download or ransomware
attacks, and exploit kits (e.g., Blackhole, Donxref, or RIG) targeting vulnerabilities in
old versions of Java, Adobe Flash, or Adobe Reader plugins, also trying to exploit old
browsers versions.

4.2.1.2 Benign Dataset

As for our benign dataset (Table 4.4), we used Chromium to visit the start pages of
Tranco top 10k websites [118].5 For each visited web page, we waited for the load of the
page and observed the site for one second, to also collect dynamically generated scrips.
In particular, we stored all inline scripts from the same document in one file–keeping
the order in which they are executed–and considered all external scripts separately.
This way, we obtained 122,910 unique JavaScript files. Given the fact that we extracted
JavaScript from the start pages of high-profile websites, we assume our dataset to be

5Even though we visited the websites in 2019, the scripts were not necessarily written in 2019 so
that our malicious dataset is not older than our benign dataset
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benign. Based on a study from Skolka et al. [182], over 30% of first-party scripts are
either obfuscated or minified and over 55% of third-party scripts; therefore, we assume
our Tranco dataset to be partially obfuscated/minified. In addition, we consider benign
JavaScript from Microsoft products, the majority of which are also obfuscated, which
enables us to ensure that JStap does not confuse obfuscation with maliciousness. As we
also own malicious scripts from Microsoft (i.e., JScript-loaders), we are not introducing
a bias in our dataset, even if Microsoft uses custom obfuscation methods. Finally, we
collected benign JavaScript from open-source games, web frameworks, and Atom [8].
As these samples may contain new or specific coding styles, we show that JStap does
not mistake unknown or unusual structures for maliciousness either.

4.2.1.3 Classifier Training

Next, to train a random forest classifier per JStap module, we randomly selected 10,000
JavaScript samples from our malicious dataset. We deemed our malicious training set
to be representative of the distribution found in the wild due to our multiple malware
sources and random selection from an initial malicious pool with over 130,000 samples.
Similarly, we randomly selected 10,000 benign files to build a balanced model. In the rest
of this chapter, we consider that the remaining samples are unknown and use them to
evaluate the detection performance of JStap’s ten modules. In addition, we extracted
all features present in our training set before randomly selecting 5,000 new unique
malicious and as many benign samples, to check on this validation set which features
are correlated with the classification, using the χ2 test described in Section 4.1.2.3. In
the remainder of this chapter, we consider only these features.

We specifically chose to assemble balanced datasets, even though, in reality, benign
web pages outnumber malicious ones. With Tesseract [165], Pendlebury et al. argue
that using unrealistic assumptions about the ratio of benign samples to malware in
the data can lead to inflated detection results. In our case, it is not an issue, since
we specifically chose metrics to evaluate the detection performance of JStap both
on benign and malicious samples, and we do not merely consider a score to rate the
proportion of correct predictions of our modules. Finally, to limit any statistical effects
from randomized datasets, we repeated the previous procedure five times and averaged
the detection results. Contrary to 5-fold cross-validation, we explore more ways of
partitioning data, as each sample is not necessarily tested only once.

4.2.2 JSTAP Detection Performance

After training our random forest classifiers, we classified the remaining samples. First,
we discuss the detection performance of all JStap modules in terms of true-positive
and true-negative rates. Specifically, we chose to compare the accuracy of the different
modules over these metrics, and not AUC [61] or F-measure [168], to evaluate how
well our modules can detect both benign and malicious inputs. In fact, AUC and
F-measure would be heavily biased by the composition of our test sets (proportion of
benign and malicious samples), while we aim at having a more realistic estimation of
our modules’ accuracy, both on benign and on malicious samples. Subsequently, we
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Figure 4.4: Detection performance of JSTAP’s ngrams-based modules

argue which modules perform best. Finally, we discuss our modules’ most important
features for classification.

4.2.2.1 ngrams Features

In the first scenario, we consider the ngrams approach. As Figure 4.4 shows, both the
true-positive (TPR) and true-negative rates (TNR) of JStap stay constant across our
five analyses. Specifically, the TPR ranges from 98.73% (tokens) to 99.22% (CFG),
making the CFG the most reliable malicious JavaScript detector in this configuration.
As for the TNR, it ranges from 99.34% (PDG) to 99.62% (AST), meaning that the
AST detects benign JavaScript best. In terms of overall detection rate, defined as the
proportion of samples correctly classified, the AST performs best with an accuracy
of 99.38%, whereas the token-based approach performs worst with a detection rate
of 99.08%, while CFG, DFG, and PDG have similar detection rates between 99.27%
and 99.28%.

As mentioned in Section 4.1.1.1, the lexical level of code abstraction does not
use the context (in terms of syntactic structure) in which a given token occurs (e.g.,
IfStatement, ForStatement, or VariableDeclaration) but merely processes
JavaScript inputs one word after the other. For example, the following two JavaScript
snippets for(i = 0; i < 5; i++) and if(i == 1) j = 2; k--; are composed of exactly the
same tokens (namely Keyword, Punctuator, Identifier, Punctuator, Numeric,
Punctuator, Identifier, Punctuator, Numeric, Punctuator, Identifier,
Punctuator, Punctuator) but perform different actions. On the contrary, the AST-
based analysis leverages the JavaScript grammar, which provides more insights than an
analysis purely based on tokens and makes the distinction, e.g., between the for and
if constructs previously highlighted, which leads to a better detection accuracy.

Even though the AST-based approach performs best, the CFG, DFG, and PDG
variants are also reliable. Still, to distinguish benign from malicious JavaScript inputs,
we observe that the AST code representation may be slightly more informative than
the control and data flows. In fact, we ran the same experiments where we extracted
the CFG, DFG, and PDG features only by following the control and/or data flow edges,
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Figure 4.5: Detection performance of JSTAP’s value-based modules

without also traversing the sub-AST of the corresponding nodes (cf. Section 4.1.2.1).
The TPR stayed relatively similar to the results from Figure 4.4, between 98.87% (DFG)
and 99.33% (CFG), but the TNR decreased between 94.92% (DFG) and 95.50% (PDG).
In fact, the control and data flows are represented only between statement nodes, which
are less representative of benign vs. malicious intent than the whole AST structure.
Specifically, we extracted the five features most representative of malicious vs. benign
intent, for all five ngrams modules, according to the corresponding random forest
models [178]. For these five modules, Identifier nodes are part of the five most
important features, which highlights the importance, in terms of prediction accuracy, of
not solely relying on statement nodes. Thus, adding AST information into the CFG,
DFG, and PDG improved their detection performance up to the AST standards. Still,
these three approaches may inherently be limited if there are no control or data flows in
the considered files. Out of the 253,216 samples we classified (we excluded the samples
from the training set), the CFG could handle on average 231,490.8 of them (91.4%), the
DFG 233,484 (92.2%), and the PDG 237,415.4 (93.8%), while the token- and AST-based
approaches classified them all. Nevertheless, due to the possibility of combining several
modules (cf. Section 4.3.1), JStap can still classify such samples.

4.2.2.2 value Features

In the second scenario, we consider the value approach. Contrary to the ngrams
variant, the TPR and TNR are less constant across our five analyses, as shown in
Figure 4.5, given that considering node value information increases the number of
different features. In particular, the TPR ranges from 98.44% (AST) to 99.23% (CFG).
Even though the CFG performs best to detect malicious JavaScript, it performs worse
to accurately label benign samples, with a TNR of 95.87% compared to 99.67% for
the token-based approach. The overall detection rates across the five analyses are also
more sparse than with the ngrams approach: from 97.55% for the CFG to 99.44% for
the lexical analysis, while AST, DFG, and PDG have similar detection rates between
98.9% and 99.1%.
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This time and contrary to the ngrams variant, the lexical level of code abstrac-
tion leverages context information, since the value approach takes the value of each
token into consideration (cf. Section 4.1.2.2). Thus, the for and if code snippets,
that have an identical abstraction for the ngrams approach, have a different value
representation, which contributes–for the reasons mentioned previously–to a better
overall detection accuracy. In particular, each token has a value by construction, while
only the Identifier and Literal nodes have one in the graph representations.
For this purpose, we mapped the non-identifier and non-literal nodes to their nearest
Identifier/Literal child, if any (on average, only 2.8 samples did not have any
Identifier nor Literal nodes [157], representing 0.001% of our dataset). As a
consequence, the same value is used by several nodes and may not always be informative,
even though it is significant w.r.t. χ2. Besides, the syntactic analyses do not fully
benefit from the JavaScript grammar anymore, as each feature is analyzed indepen-
dently (compared to an ngrams analysis, which combined n units). As mentioned in
Section 4.2.2.1, the context information was mainly responsible for the high detection
results; therefore, the lexical analysis now performs best. To overcome the lack of
context, we tried to merge the current value approach with an n-gram analysis, by
combining pairs of (unit, value) n times, but the TNR dropped to 80%. The features
got indeed too specific to one file and could not be generalized over the whole dataset
anymore. Last but not least, we assume that the CFG approach does not perform as
well as the other ones, since benign and malicious developers may tend to use similar
names for nodes with control flow edges as also suggested by the smaller number of
features, compared to the AST or PDG, in Table 4.2.

4.2.2.3 Summary: Accuracy of JSTAP Modules

To sum up, our ten modules could all correctly classify our JavaScript collection with
an accuracy over 97.55%; eight modules even have an accuracy over 99%. For the
ngrams approach, the AST performs best because of the context information brought
by the combination of syntactic units. Similarly, the value lexical module performs
best thanks to the context information brought by the token values. Nevertheless, the
CFG, DFG, and PDG are also very accurate ways of detecting malicious JavaScript
samples and add all the more semantic information into the considered features.

4.2.2.4 Most Important Features for Classification

To accurately distinguish benign from malicious JavaScript inputs over 97.55% of the
time, JStap leverages differences between benign and malicious samples at several
abstract levels. Specifically, using the way in which given lexical and syntactic units
are arranged in JavaScript files, along with their frequency, provides valuable insight to
capture the salient properties of the code and identify recurrent patterns, specific to
malicious vs. benign intent. For our ten modules, we extracted the five features most
representative of malicious vs. benign intent, according to the corresponding random for-
est models [178]. For example, the most representative feature of the ngrams approach
and for the AST, CFG, DFG, and PDG abstraction levels is the following: [MemberEx-
pression, MemberExpression, Identifier, Identifier], which is in line
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with the tokens most representative feature, namely [Punctuator, Identifier,
Punctuator, Identifier], and represents an element of the form a.b.c. We as-
sume that this construct is rather typical of benign samples, such as jQuery, which
define several objects with multiple properties, while our malicious files rather store
data inside simpler variables or arrays. For instance, the fourth most representative
feature of the value tokens module is (Punctuator, "+"), which might point to the
string splitting/string concatenation obfuscation technique. While it is massively used
in malicious samples to evade, e.g., signatures-based detection, benign inputs might
rather tend to avoid it due to the resulting performance downgrade. Similarly, the fifth
most important feature of the value AST module is (NewExpression, "Array"),
which may this time point to the obfuscation technique where strings are fetched from
a global array.

All in all, malicious JavaScript samples try to hide their maliciousness by using
different obfuscation techniques, which leave specific and recognizable traces in the
source code. While benign documents may also be obfuscated to protect code privacy
and intellectual property, they have more concerns about performance; thus, they use
different techniques. For this reason, we also assume that malicious code is so different
from benign inputs that the natural evolution of the code experienced over a few years
should not change the detection results [S1]. Therefore, we consider that even if our
malicious (Table 4.3) and benign (Table 4.4) datasets have not been collected at the
same time, this does not introduce a bias in our experiments. Still, we discuss the extent
to which attackers could craft malicious samples exactly reproducing a benign feature
distribution in the following Chapter 5.

4.2.3 Analysis of Closely Related Detectors

Several systems already combined differences at a lexical or at an AST level with
off-the-shelf supervised machine learning algorithms to distinguish malicious from
benign JavaScript inputs. In this section, we focus on Cujo [173], Zozzle [50], and
JaSt (Chapter 3), as they are–to the best of our knowledge–the most closely related
work to our token- and AST-based approaches. We first present these detectors before
comparing their implementation with the respective, conceptually similar, JStap module.
We then highlight the overall better detection performance of JStap on our dataset as
well as on samples likely to be trying to evade detection.

4.2.3.1 Presentation of CUJO, ZOZZLE, and JAST

In 2010, Rieck et al. developed Cujo, which extracts n-gram features from JavaScript
lexical units before using an SVM classifier for an accurate malware detection. As the
system is not open source, we contacted the authors who pointed us to the tokenizer
they initially used [172] and encouraged us to leverage the HashingVectorizer
implementation from Scikit-learn [177] to map the extracted features to a corresponding
vector space. In the original implementation, Cujo also leverages an enhanced version
of ADSandbox [54], which executes the code associated with a web page within the
JavaScript interpreter SpiderMonkey [148]. We contacted Dewald et al., who informed
us that ADSandbox is neither maintained nor running anymore. Since we specifically
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focus on static JavaScript detectors, we consider only the static part of Cujo. Also, we
assume that our reimplementation is functionally equivalent to the original one, and,
for reproducibility reasons, we make this system publicly available [T5].

In 2011, Curtsinger et al. implemented Zozzle, which combines the extraction of
features from the AST, as well as their corresponding node value, with a Bayesian
classification system to detect malicious JavaScript instances. We approached the
authors and asked for their code or some inputs but did not get any response. Thus,
we reimplemented the system with automatic feature selection, 1-level features, and
multinomial naive Bayes, based on the information from their paper. Similarly to Cujo,
Zozzle also has a dynamic part, to first hook into the JavaScript engine of a browser
to get the deobfuscated version of the code. As previously, we reimplemented the static
part of the tool, and we make it publicly available [T6].

Last but not least, we presented our system JaSt–which leverages n-gram features
from the AST to detect malicious JavaScript instances–in the previous chapter. As our
tool is open source [T1], we directly used it for the comparisons.

4.2.3.2 Benefits of JSTAP Modules

Conceptually, JStap’s ngrams tokens module is identical to Cujo. In contrast, we rely
on Esprima for the tokenization process, use 4-grams instead of 3-grams, do not consider
all features, but select them with a χ2 test, and use a different classifier (random forest).
For Zozzle, JStap’s value AST module is conceptually equivalent. Still, we consider
all nodes from the AST (and not only expressions and variable declarations), a different
confidence for the χ2 test, and random forest instead of naive Bayes. As for JaSt, it is
conceptually identical to JStap’s ngrams AST module. Still, we do not simplify the
syntactic units returned by the parser but perform a χ2 test to reduce the size of our
feature space.

4.2.3.3 Comparison and Added Value of JSTAP

Overall, and as presented in Figure 4.6, the three corresponding modules of JStap have
a better detection performance than Cujo, Zozzle, and JaSt. Specifically, JStap has
a higher TPR than Cujo (98.73% compared to 98.61%) and a higher TNR (99.4% vs.
97.9%), meaning that we classify 2,051 files more accurately than Cujo. We assume
that our module performs better, given the differences we highlighted in the previous
section. In particular, 4-grams performed better than 3-grams, and random forest
performed better than SVM during our hyper-parameter selection process. Also, we
hypothesize that Cujo performs differently than in its original paper (with a FPR
of 2.0E-3% and 5.6% FNR) mainly due to our malicious dataset, comprising 131,448
samples from different sources, compared to 609 for Cujo originally. This way, our
reimplementation recognizes more malicious JavaScript instances than initially but to
the detriment of benign samples.

We observe a similar trend for Zozzle, which has a significantly lower TPR (94.27%
vs. 98.44%) and TNR (97.35% vs. 99.54%) than the corresponding JStap module, for
the reasons mentioned in the previous section. We also assume that Zozzle performs
differently than in its original paper (with a FPR of 3.1E-4% and 9.2% FNR) due to our
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Figure 4.6: Comparison of our detection performance with related work

malicious dataset. Specifically, Curtsinger et al. considered only 919 malicious samples
and clearly stated in 2011 that “relatively few identifier-renaming schemes [were] being
employed by attackers”, which is not the case anymore, since malicious samples are
heavily obfuscated (as also observed during the manual analysis from Section 4.2.1.1).
While it might be unfair to consider only the static parts of Cujo and Zozzle to
compare these tools with the corresponding JStap modules–as their accuracy might
also stem from their dynamic components–we aim at comparing several static analysis
systems, working at different abstract levels (also, we did not have the original systems
to check the added value, or not, of their dynamic components).

Finally, JaSt has a slightly higher TPR than JStap (99.71% vs. 99.11%) but in
compensation a lower TNR (97.86% vs. 99.62%), meaning that JStap classifies on
average 1,592.8 files more accurately. We believe that the higher accuracy of JStap is
mainly due to us not simplifying the syntactic units returned by the parser this time
(i.e., with JaSt, we grouped units with the same abstract meaning, e.g., we considered
both a ForStatement and an IfStatement as a Statement node, therefore losing
context information). Also, we assume that JaSt’s results slightly differ from the
previous chapter because of our dataset that is bigger and contains more diverse
JavaScript samples than previously, which is in line with the assumptions we made for
Cujo and Zozzle.

4.2.3.4 Samples with Conflicting Labels

As a final comparison step, we study the detection performance of JStap’s modules
on samples for which Cujo, Zozzle, and JaSt made different predictions. Given
the different classification results, such samples may be trying to evade detection.
Specifically, the three detectors made different predictions for 17,178.6 samples (6.78%
of our dataset), 7,943.4 of which are malicious.

Table 4.5 presents the detection performance of all JStap modules, and of Cujo,
Zozzle, and JaSt, on such samples. First, our ngrams tokens approach performs
better than Cujo in this configuration too, with both a significantly higher TPR (87% vs.
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Tool Module TPR TNR Accuracy

JStap

ngrams tokens 0.87 0.94 0.91
ngrams AST 0.89 0.96 0.93
ngrams CFG 0.91 0.93 0.92
ngrams DFG 0.90 0.92 0.91
ngrams PDG 0.90 0.93 0.92
value tokens 0.89 0.96 0.93
value AST 0.84 0.96 0.90
value CFG 0.90 0.70 0.81
value DFG 0.88 0.88 0.89
value PDG 0.88 0.90 0.89

Cujo - 0.78 0.64 0.71
Zozzle - 0.14 0.66 0.42
JaSt - 0.97 0.73 0.84

Table 4.5: Comparison of our detection performance with related work, on samples
with conflicting labels

78%) and TNR (94% vs. 64%). Similarly, we outperform Zozzle by correctly classifying
over twice as many samples with JStap value AST module (overall detection accuracy
of 90% vs. 42%). Still, these results have to be taken with a grain of salt, as we tested
the classifiers on samples likely to try to evade detection. In fact, in Section 4.2.3.3,
Zozzle did not perform as well as Cujo and JaSt. In particular, it reported almost
7,000 false negatives (FNR of 5.7%) compared to 348 for JaSt and 1,675 for Cujo.
Therefore, and out of the 7,943.4 malicious samples considered here, at least 5,300
are initial false negatives from Zozzle, meaning that its TPR could not be over 33%.
Finally, and as previously, JaSt has a higher TPR than our ngrams AST approach
(97% vs. 89%) but at the same time significantly fewer true negatives (73% vs. 96%),
meaning that JStap has a higher overall detection accuracy, classifying 1,550 files more
accurately than JaSt.

As for the remaining JStap modules, they are also impacted by these samples likely
to be evasive. Specifically, they have a mean accuracy between 81% (value CFG)
and 93% (value tokens), compared to over 97.55% (value CFG) and up to 99.44%
(value tokens) in Section 4.2.2, on standard datasets. Overall, and even in this specific
configuration, all JStap modules significantly outperform Cujo, Zozzle, and JaSt.

4.2.4 Run-Time Performance

Besides accurate predictions, we further evaluate the applicability of JStap in practice
by focusing on its run-time performance. For this purpose, we measured its throughput
on a server with four Intel(R) Xeon(R) Platinum 8160 CPUs (each with 48 logical cores)
and a total of 1.5TB RAM. Since JStap runs the analysis of each JavaScript file on
a single core, the run-time reported is for a single CPU only. Table 4.6 presents the
average, median, minimum, and maximum duration to generate each of our considered
code representation. The tokenizing and parsing with Esprima are relatively fast, with
an average time of 17 and 35ms per file. The most time-consuming operation is the
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Code representation Mean (ms) Median (ms) Min (ms) Max (s)

Tokens 16.894 9.000 0.000 0.175
Parsing 34.921 19.000 1.000 0.311
AST from parsing 97.711 11.487 0.038 4.103
CFG from AST 39.085 4.635 0.004 1.114
PDG from CFG 369.490 8.710 0.125 27.270

Table 4.6: Run-time performance to generate JSTAP’s code representations

Module Feature extraction Random forest
Mean (ms) Median (ms) Min (ms) Max (s) Train (ms) Classify (ms)

ngrams tokens 2.344 1.420 0.650 0.203 0.162 0.715
ngrams AST 9.683 2.592 0.635 0.722 0.190 1.427
ngrams CFG 18.288 3.781 0.762 0.778 0.252 1.667
ngrams DFG 19.412 3.736 0.723 1.111 0.228 2.685
ngrams PDG 34.745 5.544 0.799 1.243 0.241 2.763
value tokens 13.251 3.743 0.947 1.397 0.187 1.127
value AST 112.036 11.131 1.085 86.619 0.227 1.370
value CFG 129.770 12.138 0.875 207.255 0.187 1.174
value DFG 101.830 9.707 0.990 107.432 0.195 1.279
value PDG 216.895 21.440 1.003 247.253 0.173 1.311

Table 4.7: Run-time performance of JSTAP per module

PDG generation, which highly depends on the AST size, since we have to traverse it,
pushing and popping the variables encountered all the way down to the leaves. For
performance reasons, we generated the PDGs of all files from our dataset once, and we
stored the PDGs to not have to produce them for each module again. Therefore, we did
not take into consideration the PDGs (and tokens, for comparison purpose) generation
time in Table 4.7.

This table presents the duration to generate the features considered by each module,
for one file. The last two columns stand for the run-time to leverage these features to
train our random forest classifier (averaged for one file) and to classify one unknown
input. Overall, we note that more complicated code representations (e.g., PDG and
CFG, compared to tokens and AST) lead to a higher overhead, since we follow more
edges in the graphs and consider more features. The value approach also is slower
than the ngrams, as we fetch a value for each unit, thereby traversing sub-ASTs down
to the leaves each time.

Specifically, classifying a JavaScript sample with the ngrams tokens module takes
on average 19ms for the feature generation (including tokens production) and 0.71ms
for the classification. For the value AST approach, it takes 112ms to produce features,
with an AST previously generated, and 1.4ms for the classification. Based on the
number of features each module considers (cf. Table 4.2), and an average size of 23KB
per file, we consider the overhead to be reasonable. Also, JStap is fully parallelized to
leverage all available CPU cores for a faster analysis for a deployment in the wild.
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4.3 Combining JSTAP Modules

JStap is a modular malicious JavaScript static detection system for which the user can
choose the analysis type (ngrams or value) as well as its abstraction level (tokens,
AST, CFG, DFG, or PDG). We highlighted previously the high accuracy of each JStap
module independently (except for value CFG, between 98.9% and 99.44% of the
predictions are correct). In this section, we combine several modules to simultaneously
leverage different ways to abstract JavaScript code, leading to a higher detection accuracy.
To this end, we finally discuss combining modules to pre-filter samples with conflicting
labels and send only those few to more costly follow-up analyses.

4.3.1 Module Combination

First, we justify our choice to combine the ngrams AST, value tokens, and value
PDG modules. Then, we present our combination pipeline, where we take the prediction
with the most votes to classify a given input. Finally, we report on the proportion of
samples for which all three modules made the same predictions and discuss our accuracy
both on these samples and on the remaining ones.

4.3.1.1 Module Selection

For the combination process, we chose the value tokens and ngrams AST approaches.
Both of them are indeed very accurate (99.44% and 99.38% correct predictions, cf.
Section 4.2.2). In addition, they use different features that do not overlap. In fact, the
former leverages the lexical structure of a JavaScript file and combines each extracted
token with its corresponding value, while the latter rests upon an AST traversal and
an n-gram combination of the traversed nodes for an accurate malicious JavaScript
detection. To perform majority voting in terms of module predictions, we need an
odd detector number. The value PDG approach then complements the value token
and ngrams AST systems, as it also uses new features, which do not overlap with the
previous ones (i.e., combination of control and data flows with node value information).

4.3.1.2 Majority Voting

Subsequently, we classify our datasets presented in Section 4.2.1 by combining the
predictions of the three selected modules (ngrams AST, value tokens, and value
PDG). In particular, for a given JavaScript input, we chose the prediction with the
most votes. Such a combination presents both a high TPR of 99.2% and a TNR of
99.7%, representing an accuracy of 99.46%. Still, when we considered each module
separately in Section 4.2.2, we had an approaching accuracy for the value tokens
module (best one) with a detection rate of 99.44%. Thus, combining modules leads to a
detection of 36 additional samples (0.015% of our dataset), which we do not see as a
major improvement.

Nevertheless, we also leveraged the combination of these three modules to specifically
classify the 17,178.6 samples for which Cujo, Zozzle, and JaSt made different
predictions, i.e., samples potentially trying to evade detection (cf. Section 4.2.3.4).
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This time, we retain an accuracy of 93.47%, which is, again, better than each module
separately. In particular, with this combination of modules, we detect on average 47.9
extra samples compared to the value tokens approach, which is 1.3 times more samples
than previously with our standard dataset that contains almost 15 times more samples.
Therefore, combining modules brings a real added value when classifying samples likely
to be evasive. Similarly, this combination also enables us to correctly classify 121.9
extra samples compared to the ngrams AST approach. In particular, the value tokens
module correctly classifies 74 extra samples compared to the ngrams AST variant
(0.43% of our evasive dataset), while only classifying 0.07% more of our standard dataset.
Thus, the difference in terms of detection accuracy between these two modules tends
to increase on evasive samples. For this reason, combined JStap modules perform
better than each module separately, in particular on evasive samples. In the case of
evasive samples, some modules may struggle to classify them correctly, while combining
modules limits the proportion of samples evading our system.

4.3.1.3 Unanimous Predictions

Last but not least, we focus on the JavaScript samples for which all three of our combined
modules made the same predictions, and on the contrary, those for which they had
different classification results. On average, ngrams AST, value tokens, and value
PDG labeled 234,875.8 JavaScript inputs the same way (92.76% of our dataset). On
these samples specifically, we have both an extremely high TPR of 99.55% and TNR of
99.9% (standing for an overall detection accuracy of 99.73%). Since modules already
performed better with majority voting compared to each module separately, we naturally
expected this higher accuracy when all three modules make the same predictions.

Finally, we classified the remaining 18,340.2 samples with conflicting labels (over
80% of which are benign), which can also be seen as samples trying to evade detection
(similarly to Section 4.2.3.4). Still, we retain a high TNR of 98.16% on these samples,
with the majority voting system. In turn, we have a TPR of 86.9%, leading to an accuracy
of 96% on samples for which our combined detectors predict conflicting labels, which
we consider to still be relatively high. Also, the overall detection accuracy of JStap
should not be evaluated only on such samples but on our whole dataset (also containing
these samples), where we retain an accuracy of almost 99.5% (cf. Section 4.3.1.2).

4.3.2 Improving the Detection with Pre-Filtering Layers

To detect malicious JavaScript inputs, we specifically chose to perform a static analysis,
which is by construction fast, while still making accurate predictions. Dynamic detectors
may perform better, in particular, if they visit all possible execution paths [105, 108].
Still, they are more costly, as they require specific instrumentations, introduce overhead
inherently depending on the code execution, and the necessary amount of time to
observe a malicious behavior is not defined [190]. Also, such dynamic analyses can be
defeated if samples notice that they are running in a sandboxed environment [11, 23].

To both maximize the detection accuracy and minimize the run-time performance, we
rather envision that JStap could be used to pre-filter JavaScript samples, sending, e.g.,
only those with conflicting labels to much slower dynamic components. In the context
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of Section 4.3.1.3, the 18,340.2 samples (on average) for which ngrams AST, value
tokens, and value PDG made different predictions could be sent to such components.
There is naturally a trade-off (which may be user specific) to find between accuracy
and run-time performance. In fact, we could also consider a second pre-filtering layer to
further limit the number of inputs to be executed in a sandboxed environment. Similarly
to the combination of Cujo, JaSt, and Zozzle, we combined ngrams tokens, ngrams
AST, and value AST to classify the 18,340.2 samples we considered previously. These
three detectors predicted the same labels for 16,469.4 inputs, with an accuracy of 99%,
meaning that only the resulting 1,870.8 samples could be sent to dynamic components.
This way, out of our 253,216 sample set, JStap correctly classified 234,875.8 instances
(92.76%) with an accuracy of 99.73% in a first pre-filtering step (cf. Section 4.3.1.3).
Then, it correctly labeled 16,469.4 additional samples (6.5% of the initial dataset)
with an accuracy of 99% in a second pre-filtering step. Thus, in this configuration, our
detection accuracy lies significantly over 99% for 99.26% of our original dataset, and only
the remaining 0.74% of this dataset would be outsourced to more costly components.

4.4 Summary

In this chapter, we presented JStap, our modular static malicious JavaScript detector,
which goes beyond leveraging purely lexical and syntactic information. In fact, and
contrary to JaSt, JStap also considers semantic information in the form of control and
data flows (RQ2 ). Specifically, we propose ten modules with differing levels of context
and semantic information, which we combine with a random forest classifier to detect
malicious JavaScript instances. In practice, our modules are all, and independently,
very accurate; the best one having an accuracy of 99.44%, with a low false-positive
rate of 0.33% and 0.8% false negatives. For JStap to make more accurate predictions,
we then combined the output of three modules that leverage complementary code
abstractions (i.e., tokens, AST, and PDG) so as to use different aspects of the samples
for classification. This way, we envision that this combination of modules could be
used as a pre-filtering step before sending samples with conflicting labels to more costly
follow-up analyses. In this scenario, we could classify almost 93% of our dataset with a
detection accuracy of 99.73%. A second combination of modules then enabled us to
classify a remaining 6.5% of our dataset with an accuracy still over 99%. Thus, with
these two JStap pre-filtering layers, less than 1% of our initial dataset would require
additional scrutiny.

While JaSt and JStap are both very accurate, they leverage learning components
for their predictions. By construction, such machine learning-based detectors will fail
to detect some attacks, e.g., if a malicious sample has been manipulated so that its
extracted features map a benign distribution. In the next chapter, we go one step
further and propose a generic attack against static classifiers, where we rewrite ASTs of
malicious JavaScript samples to exactly reproduce existing benign ones.
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5.1. MOTIVATION

In the previous chapter, we presented our static and modular malicious JavaScript
detector JStap, which goes beyond traditional lexical- and AST-based pipelines by
also considering control and data flow information. As JaSt, JStap relies on machine
learning algorithms to classify JavaScript inputs. Still, the field of attacks against
machine learning-based approaches is vast. In particular, it has been shown that
attackers with specific and internal knowledge of a target system may be able to
produce input samples, which are misclassified. In practice, the assumption of strong
attackers is not realistic, as it implies access to insider information.

In this chapter, we consider RQ3: Can we present a generic attack against static
malicious JavaScript detectors? More specifically, to what extent and how could attackers
rewrite the ASTs of malicious JavaScript samples to reproduce existing benign ASTs while
keeping the original malicious semantics? How effective would this camouflage be against
static detectors? To investigate these research questions, we propose HideNoSeek,
our camouflage attack, which, by design, evades the entire class of detectors based on
syntactic features, without needing any information about the target systems. To rewrite
malicious ASTs into existing benign ones, HideNoSeek first searches for isomorphic
subgraphs between the considered malicious ASTs and benign ones. If it could find all
malicious syntactic structures in a benign tree, it replaces the benign sub-ASTs with
their malicious equivalents before adjusting the benign data dependencies to retain the
malicious semantics. In practice, we leveraged 22 malicious seeds to generate 91,020
malicious scripts, which perfectly reproduce ASTs of Alexa top 10k websites. Finally,
we evaluate these malicious samples against real-world static detectors and discuss
potential mitigations against our attack.

5.1 Motivation

Due to their speed and accuracy, static malware detectors are particularly relevant
to quickly discard benign samples, leaving only those few, which are likely malicious,
for costly manual analysis or dynamic components. Therefore, static systems have
to be accurate to neither waste expensive resources nor let malicious files through.
Several approaches have been proposed to detect malicious JavaScript statically, such
as Cujo [173], Zozzle [50], JaSt (Chapter 3), and JStap (Chapter 4). All of these
detectors combine static features with machine learning algorithms. Due to their usage
of static features, they represent a subset of the detectors HideNoSeek targets. In this
section, we first present existing attacks against learning-based malware detectors and
highlight their limitations. Next, we motivate our deobfuscation step to increase the
success of our attack.

5.1.1 Limitations of Existing Attacks

As mentioned previously, the field of attacks against machine learning-based systems is
vast [13, 14]. In fact, machine learning rests upon the assumption that training and
test data follow the same distribution [9]. By design, machine learning pipelines are
then vulnerable to crafted examples that violate the previous assumption. In practice,
several attacks have been proposed to evade classifiers. Such attacks transform a
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given input sample so that it keeps its intrinsic properties, but the targeted classifier’s
predictions between the original and the modified input differ, e.g., adversarial attacks
on PDF [129, 183, 190] or Android malware detectors [53, 72, 166], spam filtering [127],
or mutations of malicious samples [51, 228]. However, for these attacks to be effective,
malicious actors need information about the classifier they were trying to evade, e.g.,
some knowledge about the training dataset or the target model internals, or at least
the classification scores assigned to input samples. Another class of attacks focuses
on the transferability in machine learning. In fact, adversarial examples affecting one
model often affect another, even if they have different architectures or training sets,
provided they were trained to perform the same task. Therefore, attackers can also
build and train a surrogate classifier, craft adversarial examples to evade their system
before transferring the samples to the victim classifier [161, 162, 189]. Still, to train
their own classifier, attackers need a specific target system as well as access to it.

By design, all previous attacks are inherently limited because attackers need internal
and specific information about the detector they are trying to evade. On the contrary,
HideNoSeek works independently of any machine learning system and does not need
any knowledge of model internals, training dataset, or a specific classifier to test. In
essence, our system crafts malicious samples, which have exactly the same AST as
existing benign JavaScript files. Therefore, and by construction, our approach directly
foils AST-based detectors. Furthermore, we showcase that our attack is also effective
against detectors leveraging tokens, control, and/or data flow information, as well as
anti-virus systems using structural analysis, e.g., signatures or content-matching. Due
to the exact mapping onto a benign AST, our attack is also naturally more effective
than existing malware, which is, e.g., inserted in bigger benign files, to evade detection
by statistically increasing the proportion of benign features.

5.1.2 Malicious JavaScript Deobfuscation

HideNoSeek leverages the fact that malicious obfuscation leaves specific traces in the
syntax of malicious files, which enable to differentiate malicious instances from benign
(even obfuscated) inputs (as highlighted in the two previous chapters). Instead of trying
to hide the maliciousness of a JavaScript file behind traditional obfuscation layers, which
contribute to their detection, HideNoSeek changes the constructs of malicious samples
to reproduce an existing benign syntax (this camouflaging process can also be seen as
a new form of obfuscation). As a consequence, HideNoSeek automatically foils any
classifier leveraging the syntactic structure for a malicious JavaScript detection, i.e.,
most of the detectors previously outlined. In essence, HideNoSeek specifically crafts
samples that are likely to be labeled as benign by static pre-filtering systems, meaning
that they would not be analyzed by dynamic components.

The core of our attack consists in rewriting malicious ASTs into existing benign
ones. To this end, we first look for isomorphic subgraphs between malicious and benign
ASTs. Since malicious obfuscation is responsible for differences at the AST level, we
first deobfuscated our malicious files, to get the original payload (i.e., the original
syntax), which resembles more benign ASTs than the obfuscated versions. We combined
JSDetox [200] and box-js [28] with a manual analysis for the deobfuscation process. In
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Figure 5.1: Architecture of HIDENOSEEK

the following, we use the term seed to refer to an original malicious payload, i.e., the
state we assume a malicious entity had before obfuscation or packing.

5.2 Rewriting a Malicious AST into an Existing Benign One

HideNoSeek aims at automatically rewriting the AST of a malicious JavaScript input
into an existing benign one while retaining the malicious semantics after execution.
In its core, we implemented HideNoSeek in Python. We first provide a high-level
overview of our system before discussing its three main components, namely an abstract
code representation part, a clone detector, and a malicious code generator, into more
details. Across this section, we illustrate our approach with the following simplified
example: we explain how we crafted the resulting sample from Listing 5.3 by rewriting
the AST of the malicious seed from Listing 5.1 to reproduce the AST of the benign
sample from Listing 5.2.

5.2.1 HIDENOSEEK Conceptual Overview

As illustrated by Figure 5.1, HideNoSeek takes a malicious seed m and a benign
document b as input, and outputs a sample s with the same AST as b while retaining
the malicious semantics of m.

First, we perform a static analysis of the benign and malicious JavaScript samples
considered and augment their respective ASTs with control and data flow informa-
tion (Figure 5.1 stage 1). The resulting two graphs enable to reason about variable
dependencies, the order in which statements are executed, as well as the conditions
that have to be met for a specific execution path to be taken (Section 5.2.2). Subse-
quently, HideNoSeek uses these two graphs to look for identical sub-ASTs between
the malicious seed and the considered benign input (Figure 5.1 stage 2). For this
purpose, HideNoSeek looks for pairs of matching benign and malicious statement
nodes (i.e., same abstract syntactic structure) and slices backward along their control
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and data flow edges as long as it reports further matching statements. We store these
common syntactic structures together in a list (slice) and refer to them as clones. Since a
malicious sub-AST may be found several times in a given benign input, we define criteria
to, e.g., maximize the clone size or minimize the distance between the nodes inside a
clone, thereby reducing the adjustment surface (Section 5.2.3). In fact, HideNoSeek
replaces the benign clones by the malicious ones and follows the original benign data
flow edges to automatically adjust the initial benign nodes–which were impacted by
the replacement process–for them to still respect the original benign AST structure
while keeping the malicious semantics after execution (Figure 5.1 stage 3). Finally, we
transform our crafted AST back to code (Section 5.2.4).

This way, HideNoSeek generated a sample, which reproduces the AST of an
existing benign input while retaining the semantics of a malicious file.

5.2.2 PDG Generation

To detect identical benign and malicious sub-ASTs, with respect to control and data
flows, HideNoSeek is based on an abstract, labeled, and directed code representation.
The AST provides both a hierarchical decomposition of the source code into syntactic
elements and code abstraction, ignoring, e.g., the variable names and values to consider
them as Identifier and Literal nodes. In addition, we add control and data flow
edges to the AST to also take into account execution path conditions and the semantic
order of the code. We use the term PDG to refer to the resulting graph.

5.2.2.1 AST Generation

Similarly to Section 4.1.1.2, HideNoSeek leverages the parser Esprima to generate the
AST of a valid JavaScript sample. Still, to detect syntactic clones (in particular if they
are not contiguous), we also need control and data flow information.

5.2.2.2 CFG: AST + Control Flow

For this purpose, we extend the AST with control flow edges, as described in Sec-
tion 4.1.1.3. As previously, we use the term CFG to refer to the resulting graph.

5.2.2.3 PDG: AST + Control Flow + Data Flow

Finally, we also add data flow edges to the CFG, as described in Section 4.1.1.4. We
refer to the resulting graph as a PDG.

5.2.3 Slicing-Based Clone Detection

Given the space B of benign JavaScript samples and the space M of malicious ones
(according to some oracle), we aim at building a sample space S so that:

S = {x|x ∈M, ∃x′ ∈ B|ast(x) = ast(x′)}

with ast(x) the AST of the sample x .
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Figure 5.2: AST of Listing 5.1 (malicious) extended with control & data flows

To this end, we first look for sub-ASTs from a malicious file that can also be found in a
benign one. We refer to such common structures as clones. To detect clones, we consider
the algorithm of Komondoor et al. [110], which combines PDGs with a variation of
program slicing [83, 217]. Several algorithms have been proposed to detect clones, e.g.,
based on tokens [112], the AST [15], and the PDG [114]. We chose the approach of
Komondoor et al., as the addition of the slicing part enables us to find non-contiguous
syntactic clones and clones in which matching statements have been reordered. First,
we create equivalence classes (Section 5.2.3.1), which regroup common benign and
malicious AST statement nodes based on their abstract syntactic meaning. Then, for
each benign and malicious pair from the same class and with the same AST edges1 (i.e.,
slicing criterion), we add the pair to the current clones list and slice backward along the
control and data flow edges of the corresponding nodes. We add their predecessors to
the current clones list if and only if they match (i.e., same sub-AST), and we iterate as
long as HideNoSeek finds matching statement nodes (Section 5.2.3.2). Finally, as a
malicious sub-AST may be found several times in the same benign document, we define
criteria to select the strongest clones (Section 5.2.3.3).

5.2.3.1 Equivalence Classes

Finding clones between a benign and a malicious file consists in finding isomorphic
subgraphs between their abstract syntactic representations. Computing all pairs of
benign and malicious statement nodes and comparing their syntax, to keep only the
matching nodes, would not be efficient. Thus, HideNoSeek first partitions the benign
PDG statement nodes (displayed with blue squares in the graphical representations)
into equivalence classes based on their syntactic structure. For example, the PDG
of Figure 5.3 has only one class, namely ExpressionStatement, containing five
elements. Then, we complete the equivalence classes with statement node information

1For example, two statement nodes with the same name, e.g., IfStatement, may have a different
sub-AST, meaning that they are no clone; thus, not relevant for us
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Data: benign statement node benign, malicious statement node malicious, clones found so far
clones_list

Result: clones_list updated with the clones found in benign and malicious
1 initialization;
2 if benign and malicious belong to the same equivalence class and have the same sub-AST then
3 if they have already been handled together then
4 search the corresponding clones_list entry;
5 append to this entry the clones found so far;
6 else
7 create a new clones_list entry;
8 add benign and malicious to this entry;
9 benign_parents← backward_slice(benign);

10 malicious_parents← backward_slice(malicious);
11 iterate over benign_parents and malicious_parents;
12 call find_clone on the resulting combinations;
13 end
14 else
15 benign_parents← backward_slice(benign);
16 iterate over benign_parents;
17 call find_clone(benign_parents, malicious);
18 end
19 return clones_list

Algorithm 5.1: find_clone: finds isomorphic subgraphs from two statement nodes

from the considered malicious file. Specifically, the PDG of Figure 5.2 adds two malicious
elements in the ExpressionStatement class. At this stage, a benign and a malicious
node from the same class do not necessarily match, as they could have a different
sub-AST. For instance, the different ExpressionStatement nodes do not all have
the same syntactic structure. We perform this verification in the next step.

5.2.3.2 Clone Detection

Next, we iterate through the equivalence classes list: for each equivalence class, we call
the find_clone function, described in Algorithm 5.1, on every benign and malicious pair
(b, m). To find two isomorphic subgraphs, the former containing b and the latter m,
HideNoSeek verifies that they have the same sub-AST by traversing and comparing
their respective nodes. If they have an identical sub-AST, HideNoSeek adds the
corresponding nodes to our current clones list. Then, HideNoSeek slices backward in
lock step along the control and data flow edges, starting from b and m, and adds their
respective predecessors to the current clones list if and only if they match (i.e., same
class and same sub-AST). We iterate the process as long as we find predecessors that
HideNoSeek have not handled yet. Because of backward slicing along the control and
data flows, this algorithm can find non-contiguous clones (i.e., clones whose components
do not occur directly one after the other in the source code) as well as clones in which
matching statements have been reordered.

In addition, whenever we find a pair of matching statement nodes that HideNoSeek
has already handled, the process stops for the current pair, the system retrieves the
clones, which it found previously on the pair, and adds these nodes to the current
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1 wscript = WScript.CreateObject(’WScript.Shell’);
2 wscript.run("cmd.exe /c \"<malicious powershell>;\"", "0");

Listing 5.1: Malicious JavaScript code example

1 obj = document.createElement("object");
2 obj.setAttribute("id", this.internal.flash.id);
3 obj.setAttribute("type", "application/x-shockwave-flash");
4 obj.setAttribute("tabindex", "-1");
5 createParam(obj, "flashvars", flashVars);

Listing 5.2: Benign JavaScript code example (extract of the plugin jPlayer 2.9.2)

slice. Besides performance improvement, it also ensures that we do not report any
subsumed clone at this stage. Furthermore, when we test a pair of non-matching
statement nodes (b, m), the system still recursively slices backward from b and tests its
predecessors against m which enables to jump over benign data dependencies to find
more non-contiguous clones. Because of this step, we can find two isomorphic subgraphs,
which are no ASTs, therefore expanding the possible set of clones.

For example, HideNoSeek detects that the ASTs of Listing 5.1 and Listing 5.2
match, respectively for the lines 2 and 3 (format: a.b(str1, str2)).2 By slicing backward
along the data dependencies, our system respectively tests the lines 1 and 2, which do
not match. Applying the previous rule, it respectively tests the lines 1 and 1, which
match (format: a = b.c(str)). This way, HideNoSeek found the complete AST of
Listing 5.1 (malicious) in Listing 5.2 (benign).

When the clone detection process finishes, it has identified two isomorphic subgraphs:
one benign and one malicious, which may contain several nodes. HideNoSeek may
report further pairs of isomorphic subgraphs (independent of the previous one) while
iterating through the equivalence classes, hence the need for some metrics to determine
the strongest pair of clones.

5.2.3.3 Strongest Clone Selection

A portion of the same malicious AST can be found several times in the benign one
(the opposite may also be true). Since HideNoSeek needs to replace only one benign
sub-AST by a syntactically equivalent malicious one, it can select only one clone, in
this case. The first criterion consists in choosing the largest clone (based on the number
of matching statement nodes it contains), and not a subsumed version of it. This way,
we maximize the clone coverage, knowing that HideNoSeek can report subsumed
clones only when it jumps over a non-matching benign node to consider its data flow
predecessors. For our attack to be effective, though, the complete malicious sample has
naturally to be replaced in syntactically equivalent parts of the considered benign file.

2HideNoSeek works directly at the AST level. Still, for clarity reasons, we rather chose to illustrate
our approach at the code level. The corresponding ASTs are in Figure 5.2 (malicious), Figure 5.3
(benign), and ultimately Figure 5.4 (crafted)
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The second criterion consists in maximizing the proportion of identical tokens between
the benign and the crafted samples. In fact, reproducing the AST automatically copies
most of the tokens, but we may observe some differences for the syntactic unit Literal,
which can be translated into several tokens, e.g., Int, Numeric, or Null, depending
on the context. If some tokens do not match, HideNoSeek reports them and suggests
how to modify them so that they match the original tokens, e.g., the Bool false is
equivalent to the String "0", and to the Int 0. The third and last criterion consists
in minimizing the distance between the nodes inside non-contiguous clones, to minimize
the adjustment surface (cf. Section 5.2.4.2). In our example, HideNoSeek ultimately
reports one clone, composed of two statement nodes, namely lines 1 and 2 of Listing 5.1
(malicious) have the same syntactic structure as lines 1 and 3 of Listing 5.2 (benign).

Naturally, HideNoSeek does not necessarily report clones for all (b, m) pairs
tested, as they may have different syntactic structures. To maximize the number
of syntactic clones detected, we semi-automatically generated (up to three) different
syntactic versions of a given malicious seed (cf. Section 5.3.1.1). For example, the Vari-
ableDeclaration var a = 10 (in top-level code), the AssignmentExpression
a = 10, and the ExpressionStatement window.a = 10 are semantically equivalent,
but syntactically different.

5.2.4 Malicious Code with a Benign AST

Once HideNoSeek has found identical benign and malicious sub-ASTs, it replaces the
benign sub-ASTs with the corresponding malicious ones (Section 5.2.4.1). This process
then yields some adjustments for the modified AST to correspond to valid code, which
is still able to run. Therefore, HideNoSeek follows the data flows originating from the
initial benign nodes (which have been replaced by their malicious equivalent) to collect
the nodes that have been impacted by our replacement process. This way, we can modify
them, with generic transformations and with respect to the AST (Section 5.2.4.2), so that
we ultimately generate valid code with the original malicious semantics (Section 5.2.4.3).

5.2.4.1 Clone Replacement

As mentioned in Section 4.1.1.2, an AST is composed of inner and leaf nodes, the latter,
which represents the operands. Saying that a benign AST is identical to a malicious one
means that they both have the same nodes, with the same AST edges. Still, the benign
code is different from the malicious one, as the attributes of the benign vs. malicious
AST’s leaves are different, e.g., variable names are not directly contained in the AST,
but are attributes of the leaves. Therefore, HideNoSeek replaces the attributes of the
benign leaves with the attributes of the malicious ones. This way, we did not change
the benign AST, but the portion we replaced will lead to the code of the malicious
seed and not to the benign code anymore. For example, lines 1 and 3 of Listing 5.3
(crafted) illustrate the replacement of Listing 5.1 (malicious) in the corresponding part
of Listing 5.2 (benign). Nevertheless, this replacement process has modified the benign
environment, which might interfere with the benign functionalities and could result in
the crafted sample not running anymore.
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1 wscript = WScript.CreateObject(’WScript.Shell’);
2 wscript.toString(’id’, this.internal.flash.id);
3 wscript.run(’cmd.exe /c "<malicious powershell>;"’, "0");
4 wscript.hasOwnProperty(’tabindex’, ’-1’);
5 parseFloat(wscript, ’flashvars’, flashVars);

Listing 5.3: Resulting crafted JavaScript code with the benign AST of Listing 5.2 and
malicious semantics of Listing 5.1

5.2.4.2 Benign Adjustments

As a countermeasure, HideNoSeek searches for fragments that may have been impacted
by the replacement process and automatically adjusts them to the environment so that
the crafted AST will lead to code that still runs. To this end, our system recursively
explores the data flows originating from benign clone nodes under the conditions that
(a) they do not belong to a clone node, and (b) they have not been handled yet, e.g.,
lines 2, 4, and 5 of Listing 5.2 (benign). HideNoSeek first renames the benign variables,
impacted by the replacement, with the name of the malicious variables, which are now
part of the code, as indicated in the corresponding lines of Listing 5.3 (crafted). At the
AST level, Figure 5.3 (benign) and Figure 5.4 (crafted) have the same AST, but we
renamed the variable obj in wscript.

HideNoSeek then analyses the end of each data flow edge and recursively stores
the nodes it contains in a list, all the way down to the leaves. After that, our system
searches in its database for a sublist of the considered list of nodes. In fact, we aim at
determining the generic modifications HideNoSeek could perform on the benign nodes
for the code to still run while keeping its original AST structure. If HideNoSeek does
not find a match in the database, it reports the missing pattern so that we can search
for a new adjustment and add it to the database. For example, if [CallExpression,
Identifier] is a sublist of the considered list of nodes, it means that the benign
code would look like func(my_obj, [params]), where func and params respectively
refer to a benign function with its parameters, and my_obj stands for the object
the data flow points to, i.e., the object that HideNoSeek modified. Because of our
replacement process, the function may not run anymore. To avoid this phenomenon,
HideNoSeek replaces the original function name with a function, which can be executed
for every possible parameter type and number, without throwing an error or causing side
effects. Such functions include decodeURI(), isFinite(), and parseFloat().
Our current list contains nine different function names so that we can randomly select
one each time that we need such an adjustment. Line 5 of Listing 5.3 illustrates this
specific adjustment process. Other adjustments may include a property or a method
called on an object we modified, e.g., lines 2 and 4 of Listing 5.3. As previously,
HideNoSeek has a list of nine properties that can also be used as methods, such as
hasOwnProperty and toString, which can be combined and are valid in all contexts.
This way, we can automatically adjust the crafted AST with generic modifications to
limit, e.g., undefined variables or run-time errors, in the resulting code.
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78



5.2.
REW

RITIN
G

A
M

A
LIC

IO
U

S
A

ST
IN

TO
A

N
EX

ISTIN
G

BEN
IG

N
O

N
E

ExpressionStatement

AssignmentExpression

IdentifierCallExpression

Identifier

data

wscript

Identifier

data

wscript

MemberExpressionLiteral

IdentifierIdentifier

WScriptCreateObject

WScript.Shell

ExpressionStatement

CallExpression

MemberExpression Literal MemberExpression

Identifier

Identifier

data

wscript

toString

id MemberExpression Identifier

MemberExpressionIdentifier

ThisExpression Identifier

internal

flash

id

ExpressionStatement

CallExpression

MemberExpressionLiteral Literal

Identifier

Identifier

data

wscript

run

cmd.exe /c "<malicious powershell>;" 0

ExpressionStatement

CallExpression

MemberExpressionLiteral Literal

Identifier

wscript

hasOwnProperty

tabindex -1

ExpressionStatement

CallExpression

Identifier LiteralIdentifier

parseFloat flashvarsflashVars

Figure 5.4: AST of Listing 5.3 (crafted) extended with control & data flows (i.e., rewrote the benign AST from Figure 5.3 with the
malicious semantics of Listing 5.1
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Source Collection #Samples #Clusters #Deobf samples

BSI 2017-2018 85,059 10 10
Hynek 2015-2017 30,247 15 15
DNC 2014-2018 4,444 9 11
GoS 2017 2,595 27 19

Sum 2014-2018 122,345 61 55

VirusTotal 2017-2018 13,884 8 8

Table 5.1: Malicious JavaScript dataset

5.2.4.3 Malicious Code Generation

Finally, to transform the crafted AST back to JavaScript code, we leverage the EC-
MAScript code generator Escodegen [199]. Specifically, we generated Listing 5.3 from
its AST in Figure 5.4. By construction, the resulting code has the same AST as the
original benign input from Listing 5.2 (i.e., Figure 5.3 and Figure 5.4 have the same
AST) while keeping the malicious semantics of Listing 5.1.

5.3 HIDENOSEEK Samples

To highlight the feasibility of our attack, we first focus on the samples that HideNoSeek
can generate (we test the crafted samples with different detectors in Section 5.4). For
this purpose, we consider 23 unique malicious seeds (deobfuscated) and 8,546 different
benign scripts. Our system then leverages these inputs to produce malicious samples
that have the same AST as our benign scripts. We first evaluate the number of benign
ASTs our system was able to reproduce per seed before considering the impact our
attack would have. Subsequently, we verify the validity and maliciousness of the samples
we crafted. Finally, we analyze HideNoSeek run-time performance.

5.3.1 Dataset Collection and Setup

To generate HideNoSeek samples, we leverage a malicious and a benign dataset, which
we both describe in this section.

5.3.1.1 Malicious Dataset

Our malicious dataset, presented in Table 5.1, is a collection of 122,345 samples col-
lected between 2014 and 2018 (73% of which have been collected after 2017). It
includes, in particular, exploit kits provided by Kafeine DNC (DNC) [100] and GeeksOn-
Security (GoS) [68] as well as the malware collection of Hynek Petrak (Hynek) [86], and
samples from the German Federal Office for Information Security (BSI) [24]. We consider
that all these files are malicious. In fact, the deobfuscation and the manual analysis of
these inputs, performed in the next step, enabled us to exclude the documents, which
did not present any malicious behavior.
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As outlined in Section 5.1.2, we first deobfuscated our malicious samples with
JSDetox [200] and box-js [28]. Still, we could not automate the process due to malicious
files conducting environment detection and refusing to execute. As a consequence, each
tested sample needed to be, at least partially, manually deobfuscated. To reduce the
number of files to analyze manually, we clustered our data (by source), based on the
syntactic units it contains, using the features from JaSt. From the 122,345 malicious
scripts, we got 61 clusters. Subsequently, we randomly selected one file per cluster,
deobfuscated and unpacked it until the original payload appeared;3 i.e., to a stage where
no JavaScript was dynamically created (e.g., through means of eval or equivalents).
In essence, this is the state we assume a malicious entity would have before obfuscation
or packing. After deobfuscation, we noticed that eight samples were either benign or
incomplete (e.g., we did not have an exploit kit landing page, which prevented us from
unpacking the malicious content), and we could not find any valid substitute in the
corresponding clusters. In contrast, two files had two malicious behaviors depending
on the machine where they were executed. Therefore, they gave us four deobfuscated
samples instead of two. Finally, we got 55 working malicious documents. Specifically,
we have 30 droppers, which download and execute malware from remote servers, 3 call
a PowerShell command, and 2 a VBScript command. We also have 20 different exploit
kits (e.g., donxref, meadgive, or RIG), which target vulnerabilities in old versions of
Java, Adobe Flash or Adobe Reader plugins, or try to exploit old browsers versions.

To avoid duplicates, we manually iterated over the 55 scripts and looked for similar
structures, e.g., the combination of createElement and appendChild is often
semantically equivalent to document.write. As mentioned in Section 5.2.3.3, we kept
the different syntactic variants (up to three for a given file). In particular, we refer to
these variants as one seed. This way, for a given malicious behavior (i.e., seed), we can
try to find clones with up to three different syntactic variants. Besides, we are working
at the AST level; therefore, we consider that two samples with the same AST but a
different behavior are identical. After duplicate deletion, we retain 22 malicious seeds to
which we added a crypto-miner (without users’ consent), as cryptojacking in browsers
has become a widespread threat [82, 111, 216]. These 23 unique seeds represent in total
37 different syntactic variants.

Finally, to verify to what extent our dataset is representative of the malicious
distribution found in the wild, we extracted 13,884 unique samples from VirusTotal [210].
In particular, we collected them after the files we analyzed previously. As before, we
clustered them syntactically. We got 8 clusters (cf. Table 5.1), one file of each we
deobfuscated. As the 8 deobfuscated samples matched our 23-sample set (7 matched
exploit kits and 1 a dropper), we deem our dataset to be saturated.

5.3.1.2 Benign Dataset

Next, we collected benign files, whose ASTs HideNoSeek reproduces. We present
our dataset in Table 5.2. Specifically, we statically scraped the start pages of Alexa
top 10k websites, also including external scripts. Given the fact that we extracted
JavaScript from the start pages of high-profile sites, we assume our samples to be benign.

3We discuss possible drawbacks induced by the deobfuscation process in Section 5.4.1
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Source #Samples #Valid JS

Alexa top 10k 8,673 8,279
Libraries 268 267

Sum 8,941 8,546

Table 5.2: Benign JavaScript dataset

At the same time, we downloaded the most popular JavaScript libraries, according
to W3Techs [211].

5.3.2 Evasive Sample Generation

HideNoSeek leverages our 23 malicious seeds to generate malicious JavaScript samples
whose ASTs match existing benign ones. We first report on the samples our system
could craft per malicious seed before evaluating the impact our attack would have on
the highest-ranked web pages and libraries.

5.3.2.1 Analysis per Malicious Seed

In our first experiment, we study the number of samples that HideNoSeek could
produce per malicious seed, i.e., the number of ASTs of Alexa top 10k websites that
HideNoSeek could reproduce per seed. During the deobfuscation phase presented in
Section 5.3.1.1, we noticed that exploit kits from the same family (based on anti-virus
labels) could have a different syntactic structure as well as a different behavior. In these
cases, they appear several times in the seeds from Table 5.3. This table indicates the
number of malicious samples crafted per malicious seed (#Samples), the number of
nodes that HideNoSeek had to adjust due to the replacement of benign sub-ASTs with
syntactically equivalent malicious ones (#Adjustments), as well as the average number
of nodes contained in the crafted samples (#Nodes)–i.e., the average number of nodes
in the benign samples whose ASTs a given malicious seed reproduces. In particular, we
make a distinction between the samples crafted with the benign AST of a top 1k website
compared to a top 10k one. In practice, HideNoSeek could leverage 22/23 seeds to
generate 91,020 malicious samples, which reproduce ASTs of Alexa top 10k websites.
More specifically, it could rewrite the ASTs of 9,725 top 1k websites, for malicious
purposes. In fact, the number of crafted samples is not linear, and, proportionally, we
tend to produce more samples for the first 1,000 websites. As an example, for Blackhole1
we could have expected to generate around 5,600 samples reproducing ASTs of Alexa
top 10k, but in practice we got 10% less; for Crypto-miner we even got 65% less than
expected. Still, the start pages of the 1,000 most consulted websites do not seem to
be larger (in terms of delivered JavaScript) than the start pages of the top 10k. It is
rather the opposite since, on average, our ASTs contain more nodes for pages from
Alexa top 10k than for Alexa top 1k. Nevertheless, the first 1,000 websites seem to have
a more complicated structure with, in particular, more data flows: for each replacement
HideNoSeek made, it had to adjust more nodes for Alexa top 1k than for the top 10k.
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Seed Alexa top 1k Alexa top 10k
#Samples #Adjustments #Nodes #Samples #Adjustments #Nodes

Blackhole1 558 101 106,897 5,040 76 120,189
Blackhole2 558 157 106,897 5,041 100 120,224
Crimepack1 568 45 107,991 5,424 38 117,841
Crimepack2 532 30 113,575 5,072 35 123,490
Crimepack3 127 74 140,399 1,364 97 156,408
Crypto-miner 90 203 80,943 311 119 133,927
Donxref1 629 90 102,710 5,888 36 112,674
Donxref2 454 262 117,727 4,233 221 133,895
Dropper 0 - - 10 142 153,840
EK 683 27 96,434 6,487 6 104,422
Fallout 427 143 120,639 3,732 67 137,716
Injected1 680 72 97,069 6,447 54 105,217
Injected2 502 131 117,838 4,810 66 128,429
Meadgive 535 55 112,639 5,106 47 122,856
Misc 683 27 96,434 6,487 6 104,431
Neclu1 300 93 122,893 2,890 110 144,388
Neclu2 530 59 113,118 5,031 64 123,925
Packer 204 45 126,836 2,325 48 138,996
PowerShell 507 24 110,891 4,735 22 123,046
RIG1 23 124 179,150 244 171 170,135
RIG2 0 - - 0 - -
VBScript1 584 15 100,254 5,275 8 114,502
VBScript2 551 49 105,198 5,068 16 118,696

Table 5.3: Number of samples crafted per malicious seed (i.e., reproducing ASTs of
Alexa top 1k vs. 10k websites), average number of nodes that HIDENOSEEK adjusted,
and average number of nodes contained in the crafted samples

For this reason, we estimate that the higher complexity of the first 1,000 websites was
more favorable to hide our malicious seeds, as their different statements highly depend
on each other. In the following, we define the process of hiding a malicious seed in a
benign sample to refer to the rewriting of the malicious AST into an existing benign one.

The success of our hiding process also depends on the syntactic structures the
seeds contain, and to what extent their syntax is identical to benign scripts. With
the exploit kit Misc, HideNoSeek was able to generate evasive samples reproducing
ASTs of 78% of the pages from Alexa top 10k. On the contrary, it could craft only
10 samples for the malicious seed Dropper and was unable to produce any output for
RIG2. In fact, these two seeds contain syntactic structures, which are practically never
present in benign documents. For example, our dropper initially uses three times the
construct new ActiveXObject("object"), which we could, e.g., map to the benign construct
new RegExp("regexp"). However, we found no such pattern three times in the same benign
file. Thus, we looked for a new syntactic construct, semantically equivalent but which
could be found in benign documents too. For this purpose, we investigated the most
common syntactic structures that are shared between our malicious seeds and benign
dataset. We found the following structure a.b("") in 118,700 statements that matched our
benign and malicious documents. As a consequence, we replaced the previous malicious
dropper construct with its equivalent WScript.CreateObject("object") and could this time
hide the malicious seed in ten benign documents. Nevertheless, our tool crafted 4,735
samples for the PowerShell seed, which is a dropper too. Therefore, an attacker could
still hide a dropper in 4,735 web pages from Alexa top 10k. As for RIG2, it contains
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Rank Domain #Seeds #Nodes

1 google.com 18 58,322
2 youtube.com 18 151,527
3 facebook.com 13 143,772
4 baidu.com 8 35,018
5 wikipedia.org 0 90
6 qq.com 14 54,450
7 yahoo.com 14 67,264
8 taobao.com 19 89,910
9 tmall.com 17 63,102
10 amazon.com 17 36,060

Table 5.4: Number of samples crafted per Alexa top 10 domain and number of nodes
contained in the crafted samples

complex syntactic structures, such as window.frames[0].document.body.innerHTML,
that benign web pages might tend to simplify by, e.g., storing this statement into
several variables.

Overall, and out of the 23 malicious seeds HideNoSeek got as input, it was able to
produce malicious samples for 22 of them. In total, it generated 9,725 malicious samples,
which reproduce benign ASTs of Alexa top 1k websites and crafted 91,020 samples for
the top 10k. Still, we believe that we could produce even more evasive samples by using
different syntactic structures for the seeds. As shown previously, we can identify the
most common patterns between the benign and malicious datasets; thus, we envision
that malware authors could adjust their code to favor popular constructs that have a
high chance of being used by benign samples too.

5.3.2.2 Impact of the Attack

By design, HideNoSeek can rewrite the AST of a given malicious seed to reproduce
ASTs of different web pages, thereby misleading static detectors. Next, we study the
impact our attack would have. For this purpose, we target specific domains and focus,
in particular, on hiding malicious JavaScript in the most frequented web pages and
libraries. Table 5.4 indicates how many malicious seeds HideNoSeek could hide in
Alexa top 10, i.e., with how many seeds it could reproduce the benign AST of a given
domain. Specifically, we hid 78% of our seeds in the start pages of the two most visited
websites, which would maximize the impact of our attack in terms of infected users.
Except for wikipedia.org, where HideNoSeek did not report any clone,4 we hid on
average more than 61% of our seeds in the remaining top 10 websites. We naturally
know that for the attack to be effective in practice, the server of these websites should
have been compromised so that attackers could replace an original web page with a
HideNoSeek crafted one. Should that happen, the modified website version would

4The start page of wikipedia.org contained almost no JavaScript code. For this reason, its AST only
had 90 nodes, which is, e.g., 648 times less than google.com, and prevented HideNoSeek from finding
any match with malicious seeds
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Library Alexa usage (%) Most common version #Seeds #Nodes

jQuery 73.5 1.12.4 17 35,511
Bootstrap 18.1 3.3.7 12 10,973
Modernizr 11.4 2.8.3 5 3,174
MooTools 2.4 1.6.0 15 27,786
Angular 0.4 1.7.5-min 17 60,234

Table 5.5: Number of samples crafted per popular JavaScript library and number of
nodes contained in the crafted samples

be harder to spot than, e.g., the British Airways attack [107], because of its structure
exactly reproducing an existing benign syntax.

A second way of infecting web pages consists in infecting the libraries they use. In
this experiment, we consider five of the most popular JavaScript libraries, based on the
proportion of websites using them [211], and study the number of malicious seeds we
could hide inside. As presented in Table 5.5, we hid between 22% and 74% of our seeds
in these popular libraries, i.e., we could reproduce the ASTs of the libraries between 5
and 17 times, based on our 23 seeds. While we could hide on average 14 seeds in each
Alexa top 10 website, we can reproduce on average the ASTs of each library 13 times.
Similarly to Android malware in repackaged applications [20, 180, 233], HideNoSeek
could alter benign libraries and present them as an improved version of the original one,
for malicious purpose. In particular, such a modification of jQuery 1.12.4 would affect
29.7% of the websites [211] which underlines the impact our attack could have.

5.3.3 Validity Verifications

Based on the insights that HideNoSeek could leverage 22 out of 23 seeds to craft 91,020
samples, which have the same AST as scripts extracted from Alexa top 10k websites, in
this section, we verify the validity of the samples we produce. After highlighting the fact
that a crafted sample has the same AST as the original benign instance, we showcase
that they also share most tokens. Finally, we analyze the proportion of samples crafted
from jQuery that still run and verify that their malicious semantics can be triggered.

5.3.3.1 Crafted vs. Benign Samples: AST Comparison

First and by construction, all samples crafted by HideNoSeek have the same AST as the
benign scripts used for the replacement process. Without further testing, this guarantees
that malicious JavaScript detectors purely based on syntactic features (e.g., JaSt or
JStap’s ngrams AST module) are not able to distinguish them.

5.3.3.2 Crafted vs. Benign Samples: Token Comparison

Second, most of the tokens are identical between an initial benign file and a crafted
one. The minor differences may come from Literal nodes, which can be translated
into several tokens, as highlighted in Section 5.2.3.3. On average, 0.29 tokens differ for
each 91,020 file crafted from Alexa top 10k websites (containing on average 127,693

85



CHAPTER 5. HIDENOSEEK: CAMOUFLAGING MALICIOUS JS IN BENIGN ASTS

nodes). Depending on the targeted detector, this difference could be sufficient to prevent
the evasion. In practice, though, we showcase in Section 5.4 that the lexical detector
Cujo is highly affected by HideNoSeek. In fact, we would produce, on average, at
most three samples with one token differing from the original benign inputs every ten
crafted script. Thus, the majority of our generated samples also reproduces the original
lexical units.

5.3.3.3 Crafted Samples Still Running?

Third, HideNoSeek rewrites the ASTs of malicious JavaScript inputs into existing
benign ones. To this end, it replaces benign sub-ASTs with syntactically equivalent
malicious ones, which could result in the crafted samples not running anymore. To
decrease the proportion of broken samples, we implemented a module, which adjusts the
nodes impacted by our replacement process by following the data flow edges originating
from the benign nodes we replaced (cf. Section 5.2.4.2). Still, some adjustments may
not be working in the context where they have been transplanted, e.g., trying to get
the length of an undefined object will throw an error. In addition, HideNoSeek
searches for clones between a benign and a malicious input. Nevertheless, it is also valid
to replace two independent benign sub-ASTs with two syntactically equivalent malicious
ones, which include variables declared in the global scope that depend on one another.
In this case, we have to ensure that the execution order of the variables is respected to
avoid a ReferenceError at run-time.

To verify the correct execution of our crafted samples, we used the library jsdom [95]–
which emulates web browser functionalities, e.g., DOM elements–to test, with Node.js,
JavaScript implementations using Web standards. This way, we can ensure that we did
not break functionality that requires DOM components. However, this environment
cannot be used to test scripts extracted from websites, as jsdom is a placeholder, and
the downloaded JavaScript often relies on specific constructs in the DOM. Therefore,
we executed every crafted sample from standalone benign libraries, like jQuery, to verify
if they could still run without throwing, e.g., a ReferenceError. Out of the 1,631
samples we crafted from jQuery, 1,175 were still running (72%).

In addition, we could hide 19/23 malicious seeds in jQuery libraries.5 With the
exception of Crimepack3 (accounting for two jQuery crafted files), each seed has at least
one running sample. Also, our approach is more oriented toward the impact our attack
would have with the working crafted samples and less toward the proportion of working
samples HideNoSeek generates. For this purpose, related works [51, 129, 189, 228]
combined their implementation with an oracle, which dynamically tested the validity and
maliciousness of the samples they produced. In our specific case, such an infrastructure
could not be built given the complexity of emulating environments specific to each
web page that should have been tested. Still, we were able to leverage 19 malicious
seeds to produce 1,175 working versions of jQuery, which have the same AST as the
original ones.

5In Section 5.3.2.2, we could hide 17 seeds in jQuery version 1.12.4 specifically, while we consider all
different jQuery versions in this section
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5.3.3.4 Crafted Samples with a Malicious Behavior?

Finally, besides verifying if we could execute the samples crafted by HideNoSeek,
we checked their maliciousness. To this end, we randomly selected 5 working crafted
samples per malicious seed. In particular, we showed previously that 18/19 seeds
generated running samples, based on jQuery. As one seed only has 3 working samples,
we tested 88 crafted samples. We analyzed them in two dimensions.

First, we executed these 88 crafted samples in a web browser and manually verified
which malicious statements were already called during initialization and which required
manual calling. In particular, the jQuery library defines objects and methods for future
use and does not necessarily directly call them. As a consequence, we searched for all
malicious parts in the considered samples and instantiated, e.g., the functions or objects
(with correct parameter values) required to execute the malicious functionalities. Still,
if the malicious part was defined, e.g., within a closure, we could not call it. In addition,
if the considered malicious element was in an if condition, for the sake of simplicity,
we first changed the condition to true. Out of the 88 samples we analyzed, we validated
the correct execution and the expected malicious behavior of 59 (67%).

Second, changing if conditions to true is not acceptable, as it changes the AST of
the crafted samples, while our attack aims at reproducing existing benign ASTs. Still,
given our attacker model, malicious actors can freely modify the code as long as they do
not change the AST. For this reason, they can either directly manipulate the conditions
that have to evaluate to true for their attack to be effective or change the environment
prior to the conditions (e.g., change the value of a variable defined before the condition
and impacting its outcome), with respect to the AST. To semi-automate this process,
HideNoSeek includes a module, which slices backward along the control flow edges of
a replaced node and outputs the different conditional statements that need to evaluate
to true for the malicious code to be executed. In particular, we applied this module to
the 59 crafted samples and analyzed their conditional statements. To change them to
true, without modifying the AST, we followed these five rules:

1. The and and or operators are both LogicalExpression units and can therefore
be interchanged.

2. The comparison operators ==, !==, and === are all BinaryExpression units
and can also be interchanged. Still, this is not the case for the operator !, which is
an UnaryExpression. Thus, we need both an element, which directly evaluates
to true and another one to false, hence the following point.

3. Any object whose value is neither undefined nor null evaluates to true [149],
e.g., window or String. These objects can then be combined with the functions,
properties, and methods used in Section 5.2.4.2.

4. undefined evaluates to false, therefore also calling a non-existing property on
an object, e.g., console.foo. We cannot leverage the undefined property to call
a method on an object, though. In this case, we can use window.Boolean(false).

5. To access a property of an object, we can use both bracket and dot notations [146],
which are syntactically equivalent.

Finally, by combining these rules on the 59 malicious samples, we could modify all the
required conditions so that they always evaluate to true.

87



CHAPTER 5. HIDENOSEEK: CAMOUFLAGING MALICIOUS JS IN BENIGN ASTS

0 100 200 300 400 500 600
Seconds

google.com

youtube.com

jQuery 1.12.4

Bootstrap 3.3.7

AST
CFG

PDG
Clone detection

Clone selection
Clone replacement

Code generation

Figure 5.5: Run-time performance of HIDENOSEEK to leverage our 23 malicious seeds to
generate samples reproducing ASTs of the two most popular websites and libraries

5.3.4 Run-Time Performance

To evaluate the applicability of HideNoSeek in practice, we measured its run-time
performance on the two highest ranked Alexa websites (i.e., google.com and youtube.com)
and the two most popular JavaScript libraries (i.e., jQuery and bootstrap). As indicated
in Section 5.3.2.2, we could craft 65 samples, which reproduce the ASTs of the original
benign documents.

We took the following measurements from a commodity PC with a quad-core
Intel(R) Core(TM) i3-2120 CPU at 3.30GHz and 8GB of RAM. Figure 5.5 presents
the processing time, for all stages of HideNoSeek, to craft 65 samples. The most
time-consuming operation corresponds to the clone detection, which is NP-complete
and highly depends on the AST size (in terms of nodes). For example, as indicated in
Table 5.4, the AST of youtube.com contains three times more nodes that google.com,
and its clone detection phase is also three times longer. Next, generating the code from
an AST is also time-consuming, as we traverse the AST of a crafted sample so that
Escodegen can produce the code back. Last but not least, the generation of a benign
PDG (knowing that we produced the PDGs only once and stored them for future use)
may take some time depending on the size of the AST and the complexity of the code
(e.g., number of data dependencies).

Overall, the generation of these 65 samples took only sixteen minutes, which under-
lines the feasibility of our attack.

5.4 Evaluation Against Real-World Detectors

Finally, we evaluate HideNoSeek camouflaging of malicious samples on real-world
static detectors. We first target traditional structural-based systems (Section 5.4.1)
before focusing on the following machine learning-based approaches: Cujo, Zozzle,
JaSt, and JStap. We make, in particular, the difference between these classifiers
trained with samples from the wild (Section 5.4.2), and those same classifiers also
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trained with HideNoSeek samples (Section 5.4.3). Based on the effectiveness of our
attack, we ultimately discuss defenses that might prevent our system from crafting
samples that will be misclassified (Section 5.4.4).

5.4.1 Evading Structural-Based Detectors

As motivated in Section 5.1.2, we first deobfuscated our malicious files for them to
have a more benign-looking syntax (which increased the probability of finding clones
in our benign dataset). At the same time, the deobfuscation step implies that we left
the malicious logic of our seeds in the open. For this reason, techniques relying on
content-matching, e.g., signatures, might be able to detect our crafted samples.

To verify if this is the case, we manually reviewed the Yara rules [231] built for
malicious JavaScript detection. These rules are based on strings and specific patterns
to describe malware. In particular, the rules targeting exploits, obfuscation, and exploit
kits would not work on HideNoSeek crafted samples due to our deobfuscation step. In
fact, the considered regular expressions try to match calls to eval, unescape, special
encodings, or specific identifiers (which we renamed during the deobfuscation process)
that are not present in the deobfuscated versions anymore. Nevertheless, some rules
could still detect JavaScript implementing CVEs, e.g., whenever the reference to a
specific instantiated Java object is written in plain text. Yet, in this case, string splitting
would foil the pattern-based detection.

In practice, we analyzed the 88 samples from Section 5.3.3.4 with VirusTotal, with
between 48 and 60 anti-virus systems. Only 8 crafted samples (5 times for Donxref1
and 3 times for PowerShell) were detected and by at most 2 vendors. Even though the
detection accuracy is very low, we envision that HideNoSeek could slightly obfuscate
obvious malicious behaviors, e.g., with percent-encoding, to bypass signature-based
detection. For example, we slightly obfuscated the Donxref1 and PowerShell seeds. In
this case, HideNoSeek could still produce 211 and 795 samples, respectively, but this
time, they all evaded VirusTotal detection.

Initially, attackers abused specific code obfuscation techniques to significantly impede
the detection and analysis of their malicious code. Still, by doing so, they added specific
and recurrent malicious patterns to their JavaScript files. As a consequence, analyses
directly based on the code structure were able to leverage such features for an accurate
detection. Overall, we can see HideNoSeek as a new form of obfuscation, which, this
time, does not add any specific pattern to the samples it modifies. Even though it may
adjust some nodes with generic transformations (cf. Section 5.2.4.2), it does not change
the code syntax. Implementing a system, which would know HideNoSeek internals
and recognize, e.g., function names we changed (such as toString or isFinite)
or integrate a new set of rules targeting deobfuscated malicious JavaScript (such as
ActiveXObject) is deemed to produce a lot of false positives. We further discuss this
assumption in Section 5.4.4.2.

5.4.2 Evading Static Classifiers: Trained from the Wild

Besides evading structural-based detectors, HideNoSeek is also effective against lexical,
syntactic, and even control and data flow-based classifiers. In this section, we train
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several such detectors with samples found in the wild (i.e., there are no HideNoSeek
crafted samples in the training set), and we assess the accuracy of these static systems
on our crafted samples.

5.4.2.1 Classifier Training

To verify the evasion capability of HideNoSeek in practice, we leveraged our reimple-
mentation of Cujo and Zozzle (presented in Section 4.2.3.1) as well as our tools JaSt
and JStap to classify our crafted samples.

First, we trained these detectors with 10,000 unique malicious files from the wild
and as many benign ones. In particular, we randomly picked 8.17% of the malicious
samples from each of our malware providers (BSI, Hynek, DNC, and GoS; introduced
in Section 5.3.1.1). This way, we built a malicious training set containing 10,000 files,
representative of the distribution found in the wild, through our multiple sources and
the respect of their initial proportions (cf. Table 5.1). For the benign part, we randomly
selected 5,000 unique benign samples from Alexa and 5,000 from Microsoft products
(Microsoft Exchange 2016 and Microsoft Team Foundation Server 2017) to combine
both web and non-web JavaScript. We deem our model to be balanced, with as many
malicious as benign samples. To improve the experiment’s reproducibility and limit
statistical effects from randomized datasets, we repeated the previous procedure five
times and averaged the detection results.

5.4.2.2 Evasion in Practice

In practice, we leveraged the previously trained detectors to classify the 118,052 samples6

that HideNoSeek generated. Table 5.6 sums up our main findings in terms of the
number of HideNoSeek crafted samples correctly recognized as malicious (#TP)
and the resulting false-negative rate (FNR). In addition, for the samples previously
accurately recognized as malicious, i.e., true positives, we extracted the original benign
inputs used for the camouflage (we report on their number, #Samples) and classified
them with the same detectors as previously, to report on the false positives (#FP) too.
• JaSt: As expected and by construction, our attack foils JaSt, which purely relies
on the AST for malicious JavaScript detection. In particular, JaSt misclassifies
99.98% of the samples. Still, it could recognize 26.6 crafted samples as malicious
(accuracy: 0.02%). Since these files reproduce existing benign ASTs, we extracted
the original 6.2 benign inputs (on average) used to produce these 26.6 samples and
classified them with JaSt. All of them are naturally false positives, since they have
the same AST as inputs recognized as malicious. We obtain similar results with the
ngrams AST module of JStap, as it also directly leverages the AST for a malicious
JavaScript detection (FNR: 99.98%).
• Zozzle: On the contrary, Zozzle also includes the text of AST nodes as an additional

feature. Nevertheless, it is not sufficient to enable an accurate detection, as Zozzle
could detect only 3.8 crafted samples (accuracy: 3.2E-3%), which used 0.8 benign
files for the hiding process. As none of them were classified as malicious (i.e., no false
6We classify all crafted samples, i.e., also produced by variants from the same seed
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Detector HideNoSeek Alexa considered
#TP FNR (%) #Samples #FP

JaSt 26.6 99.98 6.2 6.2
Zozzle 3.8 100.00 0.8 0.0
Cujo 15.8 99.99 7.6 6.6
JStap: ngrams PDG 28.4 99.98 3.2 2.6
JStap: value PDG 24.4 99.98 2.0 2.0

Table 5.6: Classification of HIDENOSEEK samples: detectors trained from the wild

positives), 0.8 scripts changed classification between the benign and the malicious
variants (which is naturally too low to enable an accurate detection of our samples).
Thereby, HideNoSeek can also evade syntactic detectors leveraging node value
information as additional features.
• Cujo: Similarly, Cujo detected 15.8 crafted samples (accuracy: 0.01%), which
reproduce the AST of 7.6 benign files (on average). Since 6.6 of them are false
positives, 1 script changed classification between the benign and the malicious versions.
Thus, even though some tokens may differ between the two file versions, the slight
token differences have a negligible impact on the overall sample classification.
• JStap’s PDG-based modules: Next, we target control and data flow-based de-
tectors. While our attack mostly kept the control flow structure of our benign files
(mainly due to our clone replacement process), we may observe some differences at the
data flow level. In fact, if we replace two benign statement nodes independent of one
another with two malicious statement nodes depending on each other, the resulting
crafted sample would have a data flow that was not originally present in the benign
file. To determine if this may be sufficient to evade detection, we classified our crafted
samples with the JStap modules working at the PDG level. For the ngrams variant,
we could detect 28.4 samples as malicious, leading to 99.98% misclassifications and
only 0.6 classification changes between benign and malicious versions. Similarly, the
value module has a false-negative rate of 99.98% and no classification changes. We
observed similar results for the purely control or data flow-based modules with between
99.95% (ngrams CFG) and 99.98% (ngrams DFG) misclassifications, meaning that
there are few differences at control and data flow levels between benign and crafted
samples. Therefore, HideNoSeek can also evade detectors leveraging control and/or
data flow information to detect malicious JavaScript samples.
• JStap’s pre-filters: Finally, we leveraged the pre-filtering pipelines of JStap to

classify our crafted samples. We report on our findings in Table 5.7. As described in
Section 4.3.1.3, in a first pre-filtering step, we classified only the samples for which the
ngrams AST, value tokens, and value PDG modules made the same predictions.
In fact, we have shown that this combination is a way to have extremely reliable
predictions on a subset of our samples. With HideNoSeek, though, 118,003.4 samples
on average have unanimous predictions, but they are all classified as benign, leading
to a false-negative rate of 100% (and to no benign input considered for further analysis
as no malicious file was detected). In a second pre-filtering step (cf. Section 4.3.2), we
classified the remaining 48.6 samples with the unanimous predictions (if any) of the
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HideNoSeek Alexa considered
#Unanimous #TP FNR (%) #Unanimous #FP

Pre-filter 1 118,003.4 0 100 - -
Pre-filter 2 23.2 0 100 - -

Table 5.7: Classification of HIDENOSEEK samples: JSTAP’s pre-filters trained from the wild

ngrams tokens, ngrams AST, and value AST modules. As previously, they made
the same predictions only to label samples as benign. All in all, JStap’s pre-filtering
pipelines did not enable to classify a single input correctly, due to the combined
detectors only making the same predictions to classify the crafted samples as benign
(only the remaining 25.4 samples, on average, that had different predictions, may be
recognized as malicious, after more costly manual or dynamic analyses).

5.4.2.3 Summary

To sum up, and as expected, HideNoSeek foils detectors directly and solely leveraging
the AST structure to distinguish benign from malicious JavaScript inputs. In addition,
we showcased that systems using node value information, tokens, control, and/or data
flow features are also vulnerable to our attack. In fact, reproducing an AST also
reproduces most of the previous features, thereby evades the corresponding detectors.
Finally, we combined the predictions of several classifiers, which were unanimous in
misclassifying our crafted samples as benign. Overall, the tested static detectors, trained
with samples from the wild, all have a false-negative rate between 99.95% and 100% on
our HideNoSeek crafted samples, which highlights the effectiveness of our attack.

5.4.3 Evading Static Classifiers: Retrained with HIDENOSEEK Samples

Still, the considered classifiers all combine static features with machine learning algo-
rithms to distinguish benign from malicious inputs. In this section, we now leverage
the fact that these detectors are able to learn. In particular, we retrained the previous
classifiers with samples found in the wild and samples crafted by HideNoSeek so that
our attack is not unknown anymore. As previously, we then assess the accuracy of the
detectors on our crafted samples and, for the true positives, on the benign files used for
the camouflage.

5.4.3.1 Classifier Training

To verify the effectiveness of our attack when the targeted detectors are aware of
HideNoSeek, we retrained these classifiers by also including some crafted samples in
our five training sets. Specifically, we randomly selected 5,000 malicious files from our
previous training sets (cf. Section 5.4.2.1) and randomly added 5,000 HideNoSeek
samples to illustrate the adaptation of the targeted detectors to our attack. We kept the
same benign sets as previously. This way, we built five new training sets containing each
time 10,000 malicious and as many benign samples. To avoid any bias on the detectors’
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Detector HideNoSeek Alexa considered
#TP FNR (%) #Samples #FP FPR (%)

JaSt 108,164.4 4.32 5,907.8 5,907.8 100.00
Zozzle 103,513.4 8.44 5,695.0 5,054.0 88.74
Cujo 108,489.0 4.04 5,941.6 5,564.6 93.65
JStap: ngrams PDG 106,911.4 5.42 5,781.2 5,757.6 99.59
JStap: value PDG 107,023.8 5.32 5,888.0 5,665.0 96.21

Table 5.8: Classification of HIDENOSEEK samples: detectors retrained with HIDENOSEEK
samples

accuracy, we excluded the HideNoSeek samples we used to train the classifiers from
their corresponding test sets. Therefore, in the following, we present our new detection
results on the remaining 113,052 HideNoSeek samples.

5.4.3.2 Evasion in Practice

Contrary to the previous experiment, where the detectors had never seen HideNoSeek
samples before and misclassified nearly all of them, most of our crafted samples are now
correctly labeled as malicious. Table 5.8 sums up our main findings.
• JaSt: Specifically, JaSt was this time able to detect 108,164.4 crafted samples
on average, meaning that it has a false-negative rate of only 4.32% on such inputs
(compared to 99.98% previously). Nevertheless, the 5,907.8 benign files used to
generate the true positives are now all misclassified as malicious, hence a false-
positive rate of 100% on these samples. In fact, we trained JaSt with malicious
inputs, which have the same AST as existing benign samples. Therefore, JaSt could
not learn any feature specific to one class and had to decide whether to classify all
such files as malicious (thereby, the benign samples would be false positives, actual
case) or as benign (therefore, HideNoSeek crafted samples would be false negatives).
This way, most of our crafted samples are now detected but at the cost of the benign
inputs, which are misclassified as malicious.
• Zozzle and Cujo: We observe a similar trend for Zozzle and Cujo, which accurately

detected 103,513.4 and 108,489 crafted samples, respectively. Thus, the corresponding
false-negative rates are 8.44% and 4.04% (compared to over 99.99% in the previous
experiment). For Zozzle, 5,695 benign inputs led to the true positives, 5,054 of which
it misclassified as malicious, meaning that it has a false-positive rate of 88.74%. It
also means that 641 samples changed classification between the benign and malicious
variants, which represents only 11.26% of our benign set. Similarly, Cujo has a
false-positive rate of 93.65% on the benign inputs used for the camouflage, and
Cujo reported 377 classification changes. For both tools, even if the proportion of
classification changes is higher than in Section 5.4.2, it is still too low to provide a
reliable detection mechanism against our attack. Therefore, considering node value
information from the AST or token-based features (including type information) does
not enable to accurately detect HideNoSeek samples.
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HideNoSeek Alexa considered
#Unanimous #TP FNR (%) #Unanimous #FP

Pre-filter 1 108,783.2 106,101.2 2.47 83.2 83.2
Pre-filter 2 1,452.8 190.6 86.88 18.4 18.4

Table 5.9: Classification of HIDENOSEEK samples: JSTAP’s pre-filters retrained with
HIDENOSEEK samples

• JStap’s PDG-based modules: Next, we classified our crafted samples with the
PDG-based modules from JStap. As for JaSt, Zozzle, and Cujo, most of our
malicious samples are correctly detected, as indicated by our low false-negative rates
of 5.42% (ngrams variant) and 5.32% (value). Still, and as previously, these correct
predictions occur at the cost of the benign samples, between 96.21% and 99.59%
of which are misclassified as malicious. We note, in particular, that 23.6 (ngrams)
and 223 (value) samples changed classification between the benign and malicious
versions. While it is again too low to be leveraged as a defense mechanism, we
observe that having node value information, similarly to Zozzle, contributes to these
classification changes. Still, too many features stay identical between the original
benign inputs and our crafted samples, thereby leading to such high false-positive
rates on the benign samples used for the camouflage. The results are similar for
the purely control or data flow-based detectors, with a false-negative rate between
5.27% (ngrams DFG) and 5.83% (ngrams CFG) on HideNoSeek samples and a
false-positive rate between 96.23% (value CFG) and 100% (ngrams CFG) on the
corresponding benign inputs.
• JStap’s pre-filters: Finally, and similarly to Section 5.4.2, we applied JStap’s
two pre-filtering layers to classify our crafted samples. As presented in Table 5.9,
our first pre-filter could unanimously classify 96% of our crafted sample set with a
false-negative rate of only 2.47%. Still, it misclassified all the 83.2 benign inputs for
which the three detectors made the same predictions. Also, it would send almost
6,000 benign samples to more costly manual or dynamic components because of the
absence of unanimous predictions. In a second pre-filtering step, we classified the
remaining 4,268.8 malicious samples, which had conflicting labels previously. This
time, we could classify only 34% of them unanimously (standing for a remaining
1.3% of our initial malicious set) and with a high false-negative rate of 86.88%. In
addition, all the benign samples with unanimous predictions got misclassified. Overall,
combining JStap modules enabled us to slightly increase the true-positive rate on
HideNoSeek samples. In turn, all benign inputs with unanimous predictions were
misclassified, meaning that our pre-filtering pipelines also cannot accurately classify
our crafted samples.

5.4.3.3 Summary

To sum up, the targeted machine learning-based detectors are unable to learn from
HideNoSeek samples. When they are not aware of our attack, they misclassify our
samples over 99.95% of the time (cf. Section 5.4.2). On the contrary, after having
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been trained with such samples, they can recognize HideNoSeek inputs with a true-
positive rate of 95.96%, in the best case7 but at the cost of the benign files used for
the camouflage, which they misclassify between 88.74% and 100% of the time. This
way, retraining the classifiers is not a defense against HideNoSeek, which still foils
the lexical, syntactic, control, and/or data flow-based detectors we considered, even
when combined.

5.4.4 Potential Detection Strategies

We highlighted and quantified previously the effectiveness of our attack in terms of
sample misclassifications. In this section, we present defenses against attacks on machine
learning systems and argue why they would not work for HideNoSeek. We finally
discuss some strategies that might enable to detect our crafted samples.

5.4.4.1 Existing Defenses

The field of attacks against systems using machine learning for classification purposes
is vast, e.g., in the malware (cf. Section 5.1.1) or image domains [69, 160]. Different
studies assessed the security of learning-based detection techniques by evaluating the
hardness of evasion, according to the information leaks an attacker might have, such as
black-box access to a targeted classifier or dataset related insights [18, 30, 31, 52, 62, 189].
More recently, systems have been proposed to detect adversarial examples–i.e., inputs
specifically crafted to foil a target classifier. They rely on the detection of unreliable
results [184], statistical tests [71], dimensionality reduction [17, 227], the detection
of adversarial perturbations [131, 133], vectorization [97], or differential privacy [119].
Nevertheless, we envision that none of them would work for our attack, as we perfectly
reproduce an existing benign syntax instead of merely injecting benign features.

5.4.4.2 Mitigation Strategies

Nevertheless, HideNoSeek adjusts the code it crafted with calls to, e.g., toString
or isFinite, which can create seemingly dead code (due to the lack of proper usage
of the result) whose frequency could be an indicator of our crafted samples. Still,
relying on such artifacts is likely to produce a lot of false positives. Specifically, we
showcased in Section 5.4 that the classifiers we considered were not able to learn from
such patterns. In addition, new detectors focusing solely on such features are likely
to fail as also evidenced by, e.g., Google sites making extensive use of parameterless
toString invocations [170]. Similarly, given the quality of JavaScript code in the
wild, our experience leads us to believe that otherwise useless variables are not a good
indicator of HideNoSeek crafted samples either: for example, when calls to console.log
are commented out without removing the assignments of variables only used in that call.

Apart from this, another possibility to detect HideNoSeek samples would be to
(a) recognize the original benign input used for the camouflage attack, and (b) notice that
it differs from the benign file it is supposed to be. If the original sample is recognized,
a checksum test should indicate whether it is the original version or not. Still, official

797.53% for JStap’s first pre-filtering layer, on 96% of our crafted sample set
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library source code can be altered for benign purposes, like functionality extension,
caching proxies, or stored together with other libraries. In particular, we leveraged
retire.js [156] to detect the different versions of jQuery used by Alexa top 10k websites.
In practice, none of the 73 versions matched the hash given on the official jQuery web
page. In fact, they were either combined with other JavaScript code or contained, e.g.,
the name of the caching proxy, essentially nullifying a checksum. Therefore, hash testing
is not a reliable solution against our attack either.

Last but not least, HideNoSeek is an attack against static malicious JavaScript
detectors. Therefore, it does not necessarily foil hybrid or dynamic systems such as
Rozzle [108], J-Force [105], or JSForce [85], which force the JavaScript execution engine
to test and analyze all execution paths systematically. Similarly, Kapravelos et al. could
detect with Revolver [103] that an original benign and a crafted sample have the same
AST, but the dynamic part of Revolver would classify the samples differently, hence
underlining the evasion attempt. We contacted the authors to test our crafted samples
with Revolver, but the system is not available anymore, which prevented this experiment.

Nevertheless, dynamic detectors are usually slow, thus rather work on pre-filtered
lists of samples likely to be malicious [27]. In practice, such lists are rather generated
by static systems, e.g., lexical or syntactic detectors, which are faster and (generally)
accurate. Still, we showcased in Section 5.4.2 that, when the classifiers have no knowledge
about our attack, they misclassify our crafted samples as benign. Therefore, in this
case, our HideNoSeek samples may not even be dynamically analyzed.

5.5 Summary

In this chapter, we proposed HideNoSeek, our generic camouflage attack, which
automatically rewrites the ASTs of malicious JavaScript inputs to reproduce existing
benign ones (RQ3 ). To generate an evasive sample, HideNoSeek builds the AST of a
benign and the AST of a malicious input, both of which it enhances with control and
data flows before looking for syntactic clones. If HideNoSeek can find all the malicious
syntactic structures in the considered benign AST, it replaces the benign clones with
their malicious syntactic equivalents. Then, HideNoSeek leverages the benign data
flows to adjust the remaining code, with respect to the original benign AST, to retain
the malicious semantics. By construction, our attack evades detectors directly and
solely relying on the AST for malicious JavaScript detection, e.g., JaSt. In addition, we
showcased that HideNoSeek is also effective against lexical, syntactic, control and/or
data flow-based classifiers, even when they are combined, e.g., Cujo, Zozzle, JStap
and its pre-filters. In fact, reproducing benign ASTs also reproduces most of the benign
features leveraged by such detectors. In practice, when these classifiers have never seen
HideNoSeek samples before, they have a false-negative rate between 99.95% and 100%
on such inputs. On the contrary, when the classifiers are aware of our attack and have
been trained with our samples, they may be able to accurately detect most of them
but, in turn, misclassify between 88.74% and 100% of the benign inputs used for the
camouflage. As a consequence, most of the static detectors relying on, e.g., lexical,
syntactic, control, and/or data flow features, are impacted by our attack, thus are inept
to handle HideNoSeek samples.
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5.5. SUMMARY

This chapter concludes the research work we conducted in this thesis about malicious
JavaScript, both in terms of detection and evasion. Still, the different static code
abstraction and analysis techniques, which we implemented and leveraged previously,
can be extended to analyze browser extensions. In particular, the following chapter
is orthogonal to our previous contributions, insofar as we do not focus on deliberately
malicious code anymore but on suspicious data flows in extensions, which may lead to
security- and privacy-critical issues.
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6.1. THREAT MODEL

In the three previous chapters, we focussed on JavaScript samples that are inherently
benign or malicious. Specifically, we presented JaSt and JStap to automatically distin-
guish benign from malicious JavaScript instances. Then, we showed with HideNoSeek
that we could automatically rewrite malicious JavaScript files into having the same
syntactic structure as existing benign samples, thus misleading the considered detectors.
Still, besides malicious documents, attackers can also leverage benign-but-buggy code to
perform malicious activities.

Due to their high privileges, browser extensions are a target of choice for malicious
actors. In practice, web pages and extensions may be isolated, but they can still
communicate through messages, which may be controlled by attackers. This chapter
thus revolves around RQ4: To what extent and how can we statically analyze browser
extensions to detect suspicious data flows from and toward security- and privacy-critical
APIs? To answer the previous question, we introduce our static analyzer DoubleX.
DoubleX abstracts extension code with a graph, including control and data flows,
pointer analysis, and models the message interactions within and outside of an extension.
This way, we track and detect suspicious flows between external actors and dangerous
APIs, as such flows can lead to, e.g., arbitrary code execution in an extension privileged
context or sensitive user data exfiltration. In practice, we evaluate DoubleX on 154,484
Chrome extensions and highlight both its precision and recall in terms of vulnerable
extensions detected. Finally, we discuss its applicability for an accurate analysis at scale.

6.1 Threat Model

Browser extensions can interact both with web applications and other extensions. By
design, malicious actors can send specific messages to a vulnerable extension, tailored
to exploit its flaws. In this section, we first discuss the capabilities attackers could gain
before motivating and describing the two attacker scenarios we consider.

6.1.1 Attacker Capabilities

By exploiting the privileges of vulnerable extensions, attackers could gain the following
capabilities:
• Code Execution: attackers can execute arbitrary code in an extension’s (or content
script’s) context. For example, a call to eval would enable them to exploit all
permissions of a vulnerable extension. Also, through tabs.executeScript, they
may gain a universal XSS (i.e., the ability to execute code in every website even
without a vulnerability in the site itself);
• Triggering Downloads: they can download and save arbitrary files on users’ ma-

chines without prior notice;
• Cross-Origin Requests: they can bypass the Same Origin Policy (cf. Section 2.1.2);
• Data Exfiltration: they can access sensitive user information such as cookies,
browsing history, or most visited sites, leading to, e.g., session hijacking or browser
fingerprinting [175, 181, 192, 194].

To gain such capabilities, attackers should be able to influence the input of security-
critical sinks or collect the output of privacy-critical APIs in browser extensions. We
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Flaw category All components High-privilege components
Code Execution eval, setInterval, setTimeout tabs.executeScript
Triggering Downloads downloads.download

Cross-Origin Requests

$.ajax, jQuery.ajax, fetch, $.get,
jQuery.get, $http.get, $.post,
$http.post, XMLHttpRequest().open,
jQuery.post, XMLHttpRequest.open

Data Exfiltration bookmarks.getTree, cookies.getAll,
history.search, topSites.get

Table 6.1: Security- and privacy-critical APIs considered depending on an extension
components

list the corresponding APIs in Table 6.1. We indicate, in particular, if all extension
components can access them or only the high-privilege ones. Also, DoubleX is
highly modular and can recognize and analyze other APIs (which did not fit in our
attacker models); thus, flag additional suspicious data flows. We give an example
in Section 6.2.4.4.

6.1.2 Attacker Models

In this chapter, we focus on two attacker scenarios to exploit the privileges of vulnerable
extensions: a Web Attacker and an attacker abusing a Confused Deputy through an
unprivileged extension.

In the first scenario, the attackers can trick a user into visiting a web page that is
allowed to communicate with an extension. This page can subsequently send messages to
exploit a vulnerable extension. In this chapter, we assume that an extension is susceptible
even if only one page is allowed to send messages, i.e., even if only one page can exploit
the capabilities of an extension. This is motivated by the fact that WhiteHat Security
reported 38% of the applications as having at least an XSS vulnerability in 2018 [204]
and even high-profile sites like Google have recently had XSS vulnerabilities [155]. While
an XSS in such a high-profile page is in itself troublesome, a compromised extension
is more powerful than an XSS in a single page as the Web Attacker can leverage the
extension privileges, e.g., to attack entirely unrelated sites.

In the second scenario, the attackers can trick a user into installing a specific
extension under their control. As previously, this extension would send the payload to
exploit a vulnerable extension (i.e., a confused deputy). A malicious extension using this
technique would be harder to detect than a classical malicious one, as it does not need
any permission, nor uses any dangerous API, nor makes any suspicious resource access so
that its maliciousness stays hidden [25]. The only aim of this malicious extension would
be to exploit the privileges of vulnerable ones. As a cover, it could implement innocuous
functionality that does not require any privilege, making it easy to pass through the
review process [43]. To evaluate the feasibility of an attack through an unprivileged
extension, we uploaded such an extension to the Chrome Web Store. Under the pretense
of customizing the default new tab page in Chrome, our extension was sending malicious
payloads to exploit two vulnerable extensions reported by DoubleX. Our extension
was reviewed, and we were notified of its acceptance one day later. Once accepted, we
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Figure 6.1: Architecture of DOUBLEX

installed the extension along with the two vulnerable ones, and we confirm that we
could exploit their vulnerabilities against ourselves. Similarly to CrossFire [25], we
would like to stress that our extension was designed as a case study. Specifically, we
did not test it against real users, nor harm anyone; we set the extension visibility to
unlisted (i.e., only people with the link could see it), we did not advertise it, and we
confirm that it was downloaded only once (by us, to test it), and then we promptly
removed it. Hence, we are confident that neither users were harmed nor details of the
vulnerable extensions made public.

In this chapter, we consider that an extension is vulnerable when at least another
extension or web page can exploit its privileges to lead to the security or privacy issues
we presented.

6.2 DOUBLEX

DoubleX performs a fully static data flow analysis of browser extensions to detect
those with suspicious external flows. We chose to conduct a static analysis due to its
speed and code coverage. This section first provides a high-level overview of our system
before presenting its three main components into more details. In particular, we describe
how we build the PDG of each extension component independently. Subsequently, we
model the interactions between components by leveraging the invoked message-passing
APIs; thus, we define the PDG at extension level. We then leverage this graph to detect
suspicious data flows.

6.2.1 Conceptual Overview

As illustrated by Figure 6.1, DoubleX abstracts the source code of an extension with
semantic information and models the interactions within and outside of an extension.
This way, we can perform a data flow analysis to identify any path between the attackers
and dangerous APIs. In its core, we implemented DoubleX in Python. First, we build
an AST for each extension component, which we enhance with control and data flow,
and pointer analysis information. We refer to the resulting graph as a PDG (Figure 6.1
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stage 1). This way, we have a semantic abstraction of extension code, enabling us to
reason about conditions leading to specific execution paths and variable dependencies
(Section 6.2.2). Next, DoubleX leverages the PDG of each component to build a joint
structure representing the extension PDG (Figure 6.1 stage 2). For this purpose, we
traverse the PDG of each component independently and collect all message-passing
APIs. Based on the component and the API used, we can infer with whom it is
exchanging messages. For internal messages, DoubleX links, e.g., the message sent
by component A to the message received by component B (for all components) with
a message flow, to represent the interactions between the components, thus defining
the PDG at extension level. In addition, we detect external message-passing APIs to
collect both attacker-controllable data and data that could be exfiltrated to the attackers
(Section 6.2.3). Finally, we leverage the extension PDG to perform a data flow analysis
targeting security- and privacy-critical APIs (Figure 6.1 stage 3). In particular, we look
for data flows between the dangerous or sensitive data previously collected and security
or privacy-critical APIs. DoubleX summarizes its findings in a fine-grained data flow
report (Section 6.2.4).

6.2.2 Generating a PDG per Extension Component

To analyze a browser extension, we first abstract the source code of each component
independently. In particular, we model each component with a separate PDG, which
includes AST edges, control and data flow edges, and pointer analysis information.

6.2.2.1 Syntactic Analysis

Similarly to Section 4.1.1.2, DoubleX leverages the parser Esprima to generate the AST
of each component. Next, to detect whether an extension executes attacker-controllable
data or exfiltrates sensitive user information, we need a more complex abstraction of the
code that goes beyond its syntactic order. Specifically, DoubleX gives more semantics
to the AST nodes by (1) generating and storing their control flows, (2) their data flows,
and (3) computing variable values.

6.2.2.2 Control Flow Analysis

DoubleX extends the AST with flows of control to reason about the conditions that
should be met for a specific execution path to be taken. To this end, we use our CFG
implementation from Section 4.1.1.3. As highlighted previously, Figure 6.2 (considering
the blue dotted control flow edges) presents an execution path difference when the
if condition is true vs. false. Still, the CFG does not enable us to infer whether the
condition is true or not.

6.2.2.3 Data Flow Analysis

To reason about variable dependencies and compute variable values, DoubleX adds
data flow edges to the CFG, which becomes a PDG. In this chapter, we significantly
improve the data flow implementation from Section 4.1.1.4 to tailor it to our extension
analysis use case. For example, we add a pointer analysis module to generate the values
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1 b = 1;
2 if (b === 1) {
3 a = 2;
4 } else {
5 a = 3;
6 }
7 var c = a*a;

Listing 6.1: JavaScript code example

of variables. For this reason, we are now considering, e.g., function argument passing
(while we previously only needed to know if/where the functions were called). Even
though data flow and pointer analyses are interlinked and we perform them in the same
CFG traversal, we present them in two sections, for clarity reasons. Also, we chose to
build the PDG by traversing the CFG one time (vs. iterating until we reach a fix point),
for performance reasons. While it may lead to under-approximations, our analysis stays
accurate (cf. Section 6.2.4.4) and is able to scale (cf. Section 6.3). We discuss some
drawbacks of our static approach in Section 8.1, though.

Contrary to our previous PDG implementation, to ease the value computation
process, we represent data flows between Identifier nodes. In particular, we connect
Identifier nodes (referencing, e.g., variables, functions, or objects) with a directed
data flow edge if and only if they are defined or modified at the source node and used
(or called) at the destination node, with respect to the scoping rules. If a variable is
defined with the window object, directly assigned or defined outside of any function, it
is in the global scope. Otherwise, the variable can only be accessed in specific parts of
the code (the local scope). To keep track of variables currently defined and accessible in
a given scope, DoubleX defines a list of Scope objects. In particular, we leverage CFG
information to build different and independent Scope objects to handle variables from
branches triggered by exclusive predicates (e.g., a true vs. false if branch), to avoid
impossible data flows. When exiting such a conditional node, we merge all variables
defined or modified in the different branches to their corresponding scope (i.e., global or
specific local scope) to respect the scoping rules and make these variables accessible for
future use. This way, DoubleX traverses the CFG and links the encountered variables
to their definition or modification sites with a data flow edge. For example, the orange
dashed data flow edges in Figure 6.2 represent variable dependencies. Specifically, we
link variable b from its definition site (Listing 6.1 line 1) to its usage (line 2). The same
applies to a (defined line 3 and used two times line 7).1

As far as functions are concerned, we hoist FunctionDeclaration nodes at the
top of the current scope (as indicated by the ECMAScript specification [56], as they may
be first used then defined), and distinguish them from (Arrow)FunctionExpression
nodes (which have to be defined before usage) [141]. In addition, DoubleX respects
the function scoping rules, e.g., closures and lexical scoping. Also, we define a parameter
flow to link function parameters at the call sites to the definition site, and we keep track

1For its definition in line 5 and the absence of a data flow, see the following section
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Figure 6.2: AST of Listing 6.1 extended with control & data flows

of the returned values. This way, our analysis is inter-procedural, and we define our
PDG at program level.

6.2.2.4 Pointer Analysis

Finally, to compute variable values we follow four main principles:
1. If we already computed a node value, we fetch it from the node value attribute.
2. We know the value of a Literal, which Esprima stores as a node attribute.
3. Whenever there is a data flow between two Identifier nodes (from source to

destination), the destination has the same value as the source.
4. We define different rules to compute the values of variables, which undergo specific

operations. Specifically, we handle assignment, arithmetic, string, comparison,
and logical operators.

We illustrate these principles in Algorithm 6.1, which is a simplified extract of our
pointer analysis. We call this script at specific nodes while we traverse the graph to
perform the data flow analysis.

For example, in Figure 6.2, there is an AssignmentExpression (Algorithm 6.1
lines 11-17). Here, the Identifier b is declared. To compute its value, we determine
the value of its symmetric node (line 15): as the Literal value is 1 (lines 3-4), so is b
(line 16). Next, there is an IfStatement, whose condition is a BinaryExpression
(lines 18-22). By following the data flow from b backward, we get its value 1 (lines 19
and 5-7). As the condition always evaluates to true (lines 20-22), DoubleX solely
focuses on this branch (meaning that Listing 6.1 line 5 is never analyzed, hence no
data flow from here, which limits over-approximations due to impossible cases). Finally,
DoubleX fetches the value 2 from the symmetric node of a and computes the operation

106



6.2. DOUBLEX

Data: node object n
Result: n computed value

1 if n.value is not None then
2 return n.value;
3 else if n.name == "Literal" then
4 value← n.attributes["value"];
5 else if n.name == "Identifier" then
6 if n is the destination of a data flow from source then
7 value← source.value;
8 else
9 value← n.attributes["name"];

10 end
11 else if n.name in ("VariableDeclaration", "AssignmentExpression") then
12 value← None;
13 find the defined/assigned Identifier nodes; // variable names

14 for each Identifier node i do
15 p← calculate the symmetric path to i;

// + some refinements for Array, Object nodes etc.

16 i.value← call compute_value(p)
17 end
18 else if n.name == "BinaryExpression" then
19 operand1← compute_value(n.children[0]);
20 operand2← compute_value(n.children[1]);
21 operator ← n.attributes["operator"];
22 value← operand1 operator operand2;
23 else if ... then
24 ...
25 n.value← value;
26 return value

Algorithm 6.1: compute_value: computes, sets, and returns a node value

to get the value 4 for c. For clarity reasons, we chose a simplistic example. In particular,
DoubleX also analyzes asymmetric variable declarations, e.g., in cases of arrays,
objects, functions, or for loops (which we can therefore simulate), and destructuring
assignments. Also, it handles variables defined with this, self, window, and top
keywords, and recognizes their aliases.

As far as objects and arrays are concerned, we store a handler to their definition site.
This way, whenever a specific property is used or modified, we follow the data flows to
access the definition site, traverse the corresponding sub-AST to find the property/index,
and compute its value. If an object or array is defined on the fly, we store its components
in a dictionary, which becomes the handler to the considered object/array. Finally,
whenever a function is called, we follow the data flows to find the function definition
site.2 DoubleX then passes the function parameters at the call site(s) to the definition
site by leveraging the parameter flows (cf. Section 6.2.2.3) before retraversing the
function. For reproducibility purposes, we made our source code available [T4].

2Since we hoisted FunctionDeclaration nodes at the top of the current scope in Section 6.2.2.3,
the function is always first defined, then called
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1 // Content script code
2 chrome.runtime.sendMessage("Hi BP", function(response) {
3 csReceived = response.farewell; // csReceived = "Bye CS"
4 });
5

6 // Background page code
7 chrome.runtime.onMessage.addListener(
8 function(request, sender, sendResponse) {
9 bpReceived = request; // bpReceived = "Hi BP"

10 sendResponse({farewell: "Bye CS"});
11 });

Listing 6.2: Content script and background page communication example

6.2.3 Generating the Extension PDG

In the previous step, DoubleX generated the PDG of each extension component
independently. Still, to detect suspicious data flows in an extension, we also need to
understand the intricate relations between the extension components and detect external
messages. To this end, we collect all messages sent and received by each component and
order them per message API. This way, DoubleX leverages the APIs to know (for a
given message) which components are communicating (or if the message is coming from
a web page or another extension). In the case of internal messages, we subsequently
link the message sent by component A to the message received by component B; thus,
defining a PDG at extension level.

6.2.3.1 Collecting Messages

To collect the messages exchanged within and outside of an extension, we traverse the
PDG of each component and look for specific messaging APIs. We consider all APIs pre-
sented in Section 2.4.3 (both for Chromium-based browsers and Firefox), as well as depre-
cated APIs, which Chromium still supports, e.g., chrome.extension.sendMessage,
chrome.extension/runtime.sendRequest [36, 38]. Since we compute node val-
ues with DoubleX pointer analysis module, we can also detect messaging APIs not
written in plain text, e.g., string concatenation or referred to over aliases. Once we find
a message-passing API, we look for the specific message that is sent (with a distinction
between an initial message, sent, and a response, responded) or received (similarly,
getting a message, received, and a response, got-response). For this purpose, we
created an abstract representation of each API (based on the official documentation
from Chrome and Mozilla) to know, depending on the number of arguments, which
parameter corresponds to the message. For example, in Listing 6.2, the first parameter
of chrome.runtime.sendMessage is the message sent by the content script, while
the second one is a callback to receive the response from the background, UI page,
or WAR [37] (the API used also indicates which components are communicating).
Once we know the message position, we collect the message. It can either be directly
accessible (e.g., "Hi BP" Listing 6.2, line 2), or accessible only after callback resolution,
which DoubleX performs by following the data and parameter flows (e.g., the callback
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Content script Background page

message 1 sent: "Hi BP" received: request
message 2 got-response: response responded: {farewell: "Bye CS"}

Table 6.2: Message collection entry for the extension of Listing 6.2 (channel: one-time,
deprecated APIs: no)

sendResponse is defined Listing 6.2 line 8 and called line 10 with the message as first
parameter). In addition, DoubleX analyzes Promise [145], such as calls to .then or
.resolve, which Firefox can use instead of callbacks like Chromium. Finally, we store
the collected messages. For internal messages, we order them per pair of components,
one-time vs. long-lived channels, and deprecated APIs usage or not. Table 6.2 sums up
the messages that DoubleX collected. As indicated in Listing 6.2, the content script
sends one message and gets a response, while the background page gets a message and
responds. For external messages, we keep track of which extension component received
(or sent) a message, at which line in the code, and store the corresponding node object
for future analyses (cf. Section 6.2.4.3). For example, in Listing 6.3, DoubleX reports
the external message event, received line 1 in the content script.

6.2.3.2 Linking Messages

Next, for internal messages, we link the messages sent (sent, responded) by a compo-
nent to the messages received (received, got-response) by the other component.
This way, DoubleX joins the individual component PDGs with a message flow. As
represented in Figure A.2 (green solid edges), the message sent by the content script is
linked to the message received by the background page, the same applies to the response.
Besides, to keep track of variable values, we update the values of the receiver nodes (and
those depending on it) with the sender node values. For the example of Table 6.2, we
now know the following values: request = "Hi BP" and response = {farewell: "Bye CS"}.
Therefore, we can compute the value of csReceived (Listing 6.2 line 3) by leveraging
the ObjectExpression {farewell: "Bye CS"} with the key farewell, getting "Bye CS"
(cf. pointer analysis from Section 6.2.2.4). Similarly, the value of bpReceived (line 9) is
"Hi BP". All in all, DoubleX statically produces a graph structure, which gives an
abstract semantic meaning to the extension code and models the interactions within
and outside of an extension. We refer to this graph as the extension PDG.

6.2.4 Detecting Suspicious Data Flows

Finally, DoubleX leverages the extension PDG to detect and analyze suspicious data
flows. First, and for each extension, we prefilter dangerous APIs (i.e., that an attacker
could exploit to gain access to an extension’s privileged capabilities) based on an
extension’s permissions. Then, we traverse the extension PDG to collect any prefiltered
dangerous APIs. As we flagged external messages in Section 6.2.3.1, we can subsequently
perform a data flow analysis (from source to sink) to detect if these critical APIs are
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executed with attacker-controllable data or could exfiltrate sensitive user information.
Finally, we evaluate DoubleX on a ground-truth dataset.

6.2.4.1 Permission Filtering

Given that an extension cannot be exploited if it does not have the corresponding
permissions, DoubleX parses the manifest to automatically generate, for each extension,
a list of sensitive APIs that the extension is allowed to access. We list the sensitive
APIs we consider in Table 6.1. In practice, for XMLHttpRequest and its derivatives
(such as fetch), we only consider extensions that are allowed to make requests to
arbitrary hosts (e.g., through the <all_urls> permission). For the exfiltration APIs,
such as bookmarks.getTree or history.search, we ensure that the extensions
are allowed to access these APIs (i.e., bookmarks or history permission). Finally, for
tabs.executeScript, we verify that the extensions can either make requests to
arbitrary hosts (similarly to XMLHttpRequest) or have the activeTab permission [47],
which enables to execute code in the active tab without specific host permission. In
addition, for the code execution APIs (e.g., eval or tabs.executeScript) in high-
privilege components, we verify that the extensions define a Content Security Policy
(CSP) [40] that allows their invocations.

6.2.4.2 Dangerous API Collection

To perform its intended functionality, an extension may use specific APIs, which lead to
security or privacy issues when attackers can exploit them. The component presenting
the vulnerability will determine the attack surface. While background pages and WARs
have high privileges, content scripts have lower ones. For this reason, we consider
different dangerous APIs, depending on the components we are analyzing (see Table 6.1).
As explained in Section 6.2.4.1, we only consider APIs that have relevant permissions.

We detect these APIs by traversing the extension PDG and computing node values.
Whenever DoubleX reports a dangerous API, we store the API name, the node object,
and its corresponding value for further analyses (cf. following section). Besides, we keep
track of the extension component, which uses the dangerous API and the corresponding
line number. For example, DoubleX accurately reports the call to eval in Listing 6.3,
line 2. Even though it is not written in plain text (see the corresponding PDG in
Figure A.1), our pointer analysis module computes the correct value. We also report
eval line 4. Both reports are stored as dangerous APIs for the content script.

6.2.4.3 Data Flow Tracking

After collecting external messages, i.e., messages potentially exchanged with the at-
tackers (cf. Section 6.2.3.1), and detecting the relevant dangerous API invocations
(cf. Section 6.2.4.2), DoubleX performs a data flow analysis (from source to sink).
Specifically, we aim at finding any path between dangerous or sensitive data and security-
or privacy-critical APIs. Based on the way they operate, we distinguish three categories
of dangerous APIs (which we refer to as danger):
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1 addEventListener("message", function(event) {
2 window["e" + "v" + "" + "al"](event.data);
3 event = {"data": 42};
4 eval(event.data);
5 })

Listing 6.3: Vulnerable content script example

1 {"direct-danger1": "eval",
2 "value": "window.eval(event.data)",
3 "line": "2 - 2",
4 "dataflow": true,
5 "param1": {
6 "received": "event",
7 "line": "1 - 1"}},
8 {"direct-danger2": "eval",
9 "value": "eval(42)",

10 "line": "4 - 4",
11 "dataflow": false}

Listing 6.4: Extract of the data flow report for Listing 6.3

• Direct dangers can directly leverage attacker-controllable data as parameter to
perform malicious activities. Such APIs include downloads.download and
tabs.executeScript, knowing that only the high-privilege components can call
them (while eval can also be used by the content scripts). To handle such APIs,
DoubleX extracts their parameters so that it can verify if they depend on data
coming from the attackers. To limit false positives, we only extract the relevant
parameters. For example, it is dangerous to have an attacker-controllable input in
the second parameter of tabs.executeScript (or the first parameter if the tab
ID is not indicated), provided it contains the code to be executed [150]. The first
parameter, though, only allows to choose the tab to execute a script in, which is
worthless for attackers if they cannot control the code.
• Indirect dangers work in two steps: first, they have to be called on attacker-
controllable data; second, they need to send the results back to the attackers. For
example, to perform cross-origin requests, all components can use fetch or jQuery
APIs such as ajax or post. We analyze these APIs in two steps: first, we verify if
the attackers can control the relevant API parameters and if it is the case; second, we
verify if the data sent back to the attackers depends on data the extension received.
• Exfiltration dangers directly exfiltrate sensitive user data and do not necessar-
ily need any input from the attackers. Such APIs can only be used by the high-
privilege components and include cookies.getAll, bookmarks.getTree, and
topSites.get. DoubleX extracts the callback parameters of the dangerous APIs
and analyzes if they are being sent back to the attackers.

Also, we can handle cases where messages with attacker-controllable data (or data to
be exfiltrated) are forwarded back and forth between the extension components before
being exploited (as the extension PDG models the interactions between the components).
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DoubleX summarizes its findings in a data flow report. Specifically, it indicates the
dangerous APIs it found per extension component and danger category (including API
name, line number, and computed value), and if it detected a suspicious data flow.
When it is the case, it indicates if data was received from or sent back to the attackers
(including in which extension component, the line number, API value, etc.).

For example, Listing 6.4 is a simplified extract of the data flow report for the
vulnerable content script of Listing 6.3 (the full report is in Listing A.1). In particular,
the value entry line 2 indicates that DoubleX accurately computes the first call to eval,
despite string obfuscation. Lines 2-7 show that DoubleX detects a data flow between
the first parameter of eval line 2 (of Listing 6.3) and the message event received line 1
(of Listing 6.3), from a web page. Thus, we report here that the critical API eval can
be called on attacker-controllable data. The second danger entry (lines 8-11) revolves
around the second call to eval(event.data) (Listing 6.3 line 4). DoubleX detects that
the event object has been redefined, as it computes the value 42 for event.data (line 9)
and labels the danger as not having an externally controllable data flow (line 11). This
way, the combination of our data flow and pointer analyses enables us to accurately label
the first call to eval(event.data) as vulnerable without misclassifying the second one.

6.2.4.4 Evaluation on a Labeled Dataset

To evaluate the accuracy of DoubleX, we rely on a ground-truth dataset of vulnerable
extensions identified by Somé [186]. His paper provides a list of extension IDs and
corresponding vulnerabilities. Based on the 171 Chrome extensions he reported as
vulnerable in 2019, 82 still existed on March 16, 2021, when we collected our extension
set (as described in the following Section 6.3.1). We manually analyzed them to verify
if they still have the vulnerabilities previously reported. Out of the 82 extensions, 73
are still vulnerable and have a total of 163 vulnerabilities. As Somé considered some
APIs that are not part of our attacker models (e.g., storage-related APIs3), we added
them to our dangerous API list (only for this experiment).

DoubleX detects all vulnerabilities for 62 out of 73 extensions, which corresponds
to the accurate detection of 151 / 163 flaws (92.64%). For the twelve missing flaws,
four are related to dynamic arrays, such as invocations of a function through han-
dlers[event.message], which we cannot statically resolve. For four other cases, the
handler function invokes a function that is not defined at this point in the parsing
process. While DoubleX correctly hoists FunctionDeclaration nodes, this occurs
in cases where a function is defined as a variable (i.e., (Arrow)FunctionExpression
such as foo = function() {...}), which should be defined before usage, according to the
ECMAScript specification [56, 141]. The last four cases are data flow issues related to
circular references (i.e., a property within an object accesses another property in the
same object).

In addition, for six extensions, which have not been updated since Somé’s analysis,
we report three XMLHttpRequest and four storage vulnerabilities, which had not
been found previously. Thus, we showcased on a labeled dataset that DoubleX is

3Storing and extracting data from an extension storage is not part of our attacker models, as we
cannot assess to what extent that may cause damage
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working in practice and is highly modular, which enables an analysis of additional
dangerous APIs. In the following section, we highlight the fact that our data flow
analysis also enables us to provide a much smaller number of falsely reported extensions
than prior work.

6.3 Large-Scale Analysis of Chrome Extensions

To highlight the feasibility and precision of DoubleX regarding suspicious data flows
detected, we apply it to Chrome extensions. In the following, we first outline how we
collected 154,484 extensions and extracted their components. Subsequently, we describe
our large-scale data flow analysis results with a focus on the vulnerable extensions
we found.

6.3.1 Extension Collection and Setup

We designed DoubleX to analyze both Chromium-based and Firefox extensions. In
this section, we focus solely on Chrome, while we discuss and analyze Firefox extensions
in Section 6.4.2. We first report on our extension set before discussing the number of
extensions we could analyze.

6.3.1.1 Collecting Extensions

To collect extensions, we leveraged the Chrome Web Store sitemap [35], which contains
links to all extensions. Out of the 195,265 listed extensions, we could successfully
download 174,112 of them on March 16, 2021.4 The remaining extensions were either
not available for download for an OS X user agent or only available for sale. Also, 19,628
downloaded extensions were themes, i.e., had no JavaScript component [48]. Thus, we
retain 154,484 extensions for further consideration.

For each extension, we parsed its manifest.json [44] to extract the source code
of its different components. Even though DoubleX can analyze UI pages, they are not
part of our threat model, as they cannot be forcefully opened (i.e., attackers cannot be
guaranteed to deliver their messages to UI pages). In the following, we consider content
scripts, background pages, and WARs. Specifically, we combined all content scripts into
a single JavaScript file. For background pages, we considered both the content of the
HTML background page and the scripts listed in the manifest background section. As
for WARs, we collected all HTML files flagged as accessible and extracted both inline
and external scripts. In doing so, we chose to remove jQuery files (based on the output
of retire.js [156] and file names such a jquery-3.5.1.js), to not analyze the well-known
library to avoid running into timeouts. Finally, to ease the manual verification of our
data flow reports, we leveraged js-beautify [122] to produce a human-readable and
normalized version of each extracted file.

4This part of the results was updated after the initial thesis submission in October 2020
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#Analyzed #Parsing errors #Timeouts/Crashes

Extensions 154,484 3,674 9,500
- Content scripts 65,047 1,871 5,586
- Background pages 98,974 1,847 4,227
- WARs 7,668 597 1,454

Table 6.3: Analyzed Chrome extensions

6.3.1.2 Running DOUBLEX

To analyze the considered Chrome extensions, we ran DoubleX with pairwise combined
content scripts/background pages and content scripts/WARs. This allows us to reason
about the capabilities of a Web Attacker (who communicates with an extension through
external messaging APIs or via the content scripts) as well as the ability of other
extensions to send messages (since for background pages and WARs, we also analyze
external messages). For performance reasons, we set a timeout of 40 minutes to analyze
two components of an extension (in particular, we set four 10-minute timeouts for
specific steps of our analysis). We discuss DoubleX throughput into more details
in Section 6.4.1.

As indicated in Table 6.3, we could analyze 91.5% of our extension set completely.
For 2.4%, Esprima reported errors (mostly related to syntax errors in the code or usage
of the unsupported spread syntax), while 6.1% ran into a timeout or the resulting PDGs
crashed the Python interpreter. Nevertheless, DoubleX could analyze the remaining
extensions partially. While the parsing errors are specific to some extensions, the
timeouts concern independent components. For example, even if the PDG generation
of an extension’s content script timed-out, we could analyze the background page
independently for vulnerabilities. While DoubleX analyzed between 88.5 and 93.9% of
the content scripts and background pages completely, Esprima encountered more parsing
errors for WARs (7.8%), which also timed-out more often (19%). By checking the size
of the WARs, we noticed that they are larger than the other components as numerous
HTML files are exposed due to extensions allowing all files to be web-accessible.

6.3.2 Analyzing DOUBLEX Reports

Overall, and out of our 154,484 extension set, DoubleX reported 278 extensions as
suspicious, which sums up to 309 suspicious data flows. In this section, we report on
the exploitability of these flows. In particular, we aim at verifying if the suspicious
data flows DoubleX reported exist. If they do, we analyze whether attackers from
our threat model could exploit these flaws in practice. Subsequently, we illustrate our
approach with two case studies of vulnerable extensions, which DoubleX detected.
Subsequently, we discuss the evolution of vulnerable extensions between 2020 and 2021
and discuss vulnerability disclosure. Finally, we compare our detection accuracy to
directly related work.
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Dangerous API #Reports #DF #1-way DF #Exploitable
Code Execution 113 102 - 63
- eval 38 34 - 30
- setInterval 1 1 - 0
- setTimeout 18 15 - 1
- tabs.executeScript 56 52 - 32

Triggering Downloads 21 21 - 21

Cross-Origin Requests 95 75 11 49
- ajax 6 6 0 5
- fetch 4 4 0 3
- get 4 4 0 3
- post 1 1 0 1
- XMLHttpRequest.open 80 60 11 37

Data Exfiltration 80 77 - 76
- bookmarks.getTree 31 29 - 29
- cookies.getAll 23 23 - 22
- history.search 23 22 - 22
- topSites.get 3 3 - 3

Sum 309 275 11 209

Table 6.4: DOUBLEX findings on Chrome extensions

6.3.2.1 Suspicious Data Flows

As mentioned in Section 6.2.4.3, DoubleX produces fine-grained data flow reports. In
particular, they contain precise information about extension components, line numbers,
and corresponding computed values, where a potentially dangerous data flow was
detected. Thus, we could directly look for the code logic at precise line numbers to verify
what happens in practice with data from/to the attackers. Table 6.4 summarizes our
findings. For each dangerous API (with a subtotal per flaw category), we first indicate
the number of data flow reports (#Reports), which DoubleX generated. Subsequently,
we present the results of our manual analysis, regarding the number of reports with a
data flow between the attackers and a dangerous API (#DF), the number of reports
with a data flow between the attackers and a specific API, but not back to the attackers
(#1-way DF),5 and finally the number of reports that attackers could exploit based on
our threat model (#Exploitable).

For the code execution APIs, the majority of the reports (102 / 113) contains an
attacker-controllable flow to a sink, and 63 can be confirmed as vulnerable. Regarding
download triggering, all of our 21 reports have a verified dangerous data flow and could
be exploited to download arbitrary files. For cross-origin requests, we can exploit 49 / 95
flaws, even though 75 have a confirmed dangerous data flow (both from and back to an
attacker). In such cases, the attacker could only control a part of the URL (hence the

5Only relevant for the cross-origin request APIs such as XMLHttpRequest, where the attackers aim
at executing arbitrary code and getting the response back from the server
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data flow), while we aim at making arbitrary requests. We also observe 11 reports where
an attacker could make any request but did not receive the response (but a status code,
for example). Finally, regarding data exfiltration, we can exploit almost all dangerous
data flows reported (76 / 80).

All in all, out of 309 reports, 275 (89%) have a full data flow between dangerous APIs
and attackers, and 11 cross-origin requests have a data flow from the attackers to the sink
but not back to the attackers. Therefore, we only have 23 reports without any data flow.
In such cases, we observe a common limitation related to data flow over-approximation,
e.g., we handle data flows at the object level and not at its properties. While our
static analysis is neither sound nor complete, in the spirit of soundiness [125], we chose
a trade-off between accuracy and run-time performance. Also, our approach is more
oriented toward detecting suspicious data flows and less toward proving the absence
of vulnerability. Specifically, we could detect 184 vulnerable extensions, totaling 209
vulnerable data flows, and impacting between 2.4 and 2.9 million users. Notably, almost
40% of these extensions can be exploited by any website or extension. Overall, 172
extensions are susceptible to a Web attacker, and 12 extensions are exploitable through
an unprivileged extension. Besides, we could confirm 89% of the suspicious flows reported
by DoubleX. While it is more challenging to evaluate the vulnerable extensions we
may have missed, our analysis on the ground-truth dataset in Section 6.2.4.4 showed a
true-positive rate of 92.64%. Overall, this highlights both our high precision and recall.

6.3.2.2 Case Studies

Based on our data flow reports and findings, we now describe two case studies regarding
vulnerable extensions that DoubleX detected. In doing so, we underline the versatility
of our tool in detecting non-obvious vulnerabilities.

Arbitrary Downloads with a Confused Deputy The extension
eflehphffapiajamoknfnpfapdgaeffk registers an external message handler but does not
specify the externally_connectable field in its manifest. Therefore, the handler
accepts messages from any extension. The messages are then forwarded to several
functions before ending in the url property of the downloads.download API, which
allows an attacker to download arbitrary files. This example highlights the dangers of
implicitly allowing any extension in externally connectable message handlers.

Arbitrary Code Execution The extension cdighkgkcaadmonmbocgpcnenffjjdfc can be
exploited by any website to execute arbitrary code in the extension context. In fact,
the content script, which can receive messages from any website, forwards all messages
to the background page. In the background page, the messages subsequently flow into
the code property of tabs.executeScript, without any sanitization. This example
highlights the dangers of trusting input data which can be provided by an attacker.

6.3.2.3 Comparison Between 2020 and 2021

In this section, we discuss the evolution of vulnerable extensions between 2020 and 2021.
Specifically, we focus on the life cycle of vulnerable extensions, i.e., whether vulnerable
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extensions from 2020 are still in the store in 2021 and, if so, whether they are still
vulnerable. To perform these analyses, we crawled the Chrome Web Store also on June
19, 2020. Of the 166,513 extensions we could extract, 132,231 (79%) were still present
in the store on March 16, 2021 (and 65,546 had not been updated in this nine-month
time frame).

Similarly to Section 6.3.2.1, we ran DoubleX on our 2020 extension set. Specifically,
our tool flags 279 extensions (0.17%) as having a suspicious data flow, which is similar
to our results from 2021 (278 / 154,484 extensions). These 279 suspicious extensions
expand to 317 suspicious data flows. As previously, we manually reviewed all reports
from 2020, and we confirm that 286 (90%) have a verified dangerous data flow between
an attacker and the sensitive APIs we consider. As already highlighted for our 2021
extension set, DoubleX has a very high precision regarding flagged data flows. Besides,
we could exploit 219 of these flows, which leads to 193 vulnerable extensions. While we
found 184 vulnerable extensions in 2021, the overall number of extensions in the Chrome
Web Store slightly decreased in 2021, so that the proportion of vulnerable extensions
did not change between 2020 and 2021 (0.12% of extensions). Still, 30 extensions that
were vulnerable in 2020 are not in the store anymore, and only three have been fixed (by
removing permissions or the vulnerable API call; we discuss disclosure in the following
section). While there are 19 new vulnerable extensions, which were not in the store
in 2020, five extensions existed before but turned vulnerable in 2021 (three due to
permission changes, one due to the addition of a vulnerable API call, and one due to
allowing the communication with web pages directly in the background page).

Overall, we observe that 87% of the extensions that are vulnerable in 2021 were
already vulnerable in 2020 (even though half of them were updated in between). Thus,
we need a system like DoubleX to prevent vulnerable extensions from entering the
store in the first place (we discuss integrating DoubleX in Chrome’s vetting process in
Section 6.4.3), especially as they tend to stay in the store. This is confirmed by the
fact that the majority of developers we contacted did not take any action after our
disclosure, as discussed in the next section.

6.3.2.4 Disclosure to Developers

We contacted the Chrome extension developers regarding the vulnerable extensions we
detected. Due to the impact of the flaws, we focussed on the extensions that can be
exploited by any website or extension, e.g., leading to arbitrary code execution in any
website. We first reported our findings, including proof-of-concept exploits, regarding
vulnerable extensions from 2020. On October 3, 2020, we contacted 22 developers via
emails, 4 over contact forms, and reported 9 issues directly to Google when we did
not have any contact information. As of June 2021, the developers of one extension
acknowledged the bug and asked us to help them fix it. In addition, one extension
(> 300k users) was updated to remove the <all_urls> permission to only allow the
sites related to the extension, thus limiting the damage to third parties. Finally, another
extension (> 50k users) fixed the vulnerability (arbitrary read). Similarly, we reported
13 additional vulnerable extensions in 2021. On May 4, we contacted 9 developers
via emails and reported 4 issues directly to Google. As of June 2021, one developer
acknowledged the vulnerabilities.
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6.3.2.5 Comparative Analysis

Finally, we compare our approach to related work. The only prior work that leveraged
a similar threat model and conducted a large-scale analysis on Chrome extensions is
EmPoWeb. Hence, we contrast our results against EmPoWeb’s here and defer discussion
of additional related work to Chapter 7. For this comparison, we ran the open-source
version of EmPoWeb [185] on our 154,484 extensions and filtered its reports to keep
only the dangerous APIs that are part of our threat model. Similarly, we excluded our
WARs reports from this analysis, as EmPoWeb does not consider them; i.e., we analyze
the same APIs and the same extension set; hence our overall results differ slightly from
Section 6.3.2.1).

As expected, EmPoWeb flags significantly more extensions as suspicious than
DoubleX: it reports 2,665 extensions compared to our 268 (corresponding to 4,379
reported flaws vs. 299). Since EmPoWeb does not rest on a data flow analysis to
generate reports, it mostly over-approximates the presence of an external message and
of a sensitive API as a potential flaw. With DoubleX, though, we would flag such an
extension only if we can find a data flow between attackers and critical APIs, hence
yielding significantly fewer reports and significantly fewer false positives. In addition to
being significantly more precise than EmPoWeb, DoubleX also detects vulnerabilities
that EmPoWeb misses. Specifically, if we consider the 204 reports that we found
vulnerable after manual review, 27 of them (13%) are not reported by EmPoWeb. It
is especially prevalent for the cookies.getAll API, where 7 out of 22 flaws are not
detected and tabs.executeScript (9 / 32).

We assume that our data flow and pointer analyses are responsible for our significantly
better vulnerable extension detection rate. In fact, we recognize dangerous APIs and
message-passing APIs even if they are not written in plain text, because we compute
their values, while Somé rested on a fixed list of possible ways to invoke them. In
addition, we handle calls by reference and aliasing (such as when developers redefine
message listeners, e.g., to support multiple APIs, including the deprecated ones), while
EmPoWeb misses such messages too.

6.3.3 Summary: Benefits of DOUBLEX

To sum up, out of the 154,484 Chrome extensions DoubleX analyzed, it reported only
278 extensions (0.18%) as having a data flow between the attackers and the dangerous
APIs we considered. These suspicious flows expand to 309 reports, 275 (89%) of which
have a verified dangerous data flow. Therefore, DoubleX is highly accurate to detect
suspicious data flows. In addition, we verified that we could exploit 209 reports according
to our threat model. These 209 flaws correspond to 184 vulnerable extensions, with a
total of over 2.4 million users. Regarding vulnerable extensions we may have missed, we
evaluated DoubleX on the vulnerable extension set provided by EmPoWeb, where we
accurately flag almost 93% of the flaws (cf. Section 6.2.4.4).

In addition, we observed that 87% of the vulnerable extensions we detected in 2021
were already in the store and vulnerable one year ago (despite disclosure and half of
the extensions being updated in between). As extension developers do not necessarily
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Figure 6.3: Run-time performance of DOUBLEX

have any incentive to patch vulnerable extensions, we believe that DoubleX could be
integrated into the vetting process already conducted by Google (cf. Section 6.4.3).

6.4 Practical Applicability of DOUBLEX

We highlighted previously the precision (89%) and recall (92.64%) of our data flow
analysis, and we showcased its added value compared to related work. In this section,
we focus on DoubleX’s applicability in practice. Specifically, with a median run-time
of 2.5 seconds per extension, we can perform an analysis at scale. Besides Chromium-
based extensions, we then showcase its applicability to other ecosystems like Firefox
extensions. Finally, to identify suspicious extensions before large-scale deployment and
complement current vetting workflows (focussing on malicious extensions), we envision
that DoubleX could be integrated into Chrome vetting system.

6.4.1 Run-Time Performance

We evaluated DoubleX run-time performance on a server with four Intel(R) Xeon(R)
Platinum 8160 CPUs (each with 48 logical cores) and a total of 1.5TB RAM. Since
DoubleX runs the analysis of each extension on a single core, the run-time reported is
for a single CPU only.

As expected, the most time-consuming step of our approach is related to the data flow
and pointer analyses. These operations naturally highly depend on the AST size as we
traverse it to store the variables newly declared or look for variables previously defined,
and we retraverse functions whenever they are called. On average, DoubleX needs 11
seconds to analyze an extension with content scripts and background pages, and 96.5
seconds for content scripts and WARs (as the WARs are larger, cf. Section 6.3.1.2). Still,
the corresponding median times are 2.5 and 31.8 seconds, while the maximum amount
of time are 1,498 and 1,116 seconds. In practice, our average results are heavily biased
by a few extensions, whose analysis lasted a long time (but still under our 40-minute
timeout). Figure 6.3 presents the Cumulative Distribution Function (CDF) [136] for
our run-time performance. In particular, we could analyze 93% of our extension set for
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Dangerous API #Reports #DF #1-way DF #Exploitable
ajax 1 1 0 0
downloads.download 3 3 - 3
eval 2 2 - 0
fetch 4 3 1 1
setTimeout 5 5 - 0
tabs.executeScript 2 2 - 1
XMLHttpRequest.open 7 6 1 3

Sum 24 22 2 8

Table 6.5: DOUBLEX findings on Firefox extensions

content scripts (CS) and background pages (BP) in less than 20 seconds and 45% for
the content scripts and WARs. This way, DoubleX can effectively analyze extensions
from the wild, with an analysis time of mostly a few seconds per extension.

6.4.2 Analyzing Firefox Extensions

Besides Chromium-based extensions, DoubleX can also analyze Firefox. In particular,
we consider Firefox extensions using the WebExtension API (a cross-browser technology,
compatible with the API supported by the Chromium-based browsers) [138], and not
the deprecated XPCOM interface [154]. To collect these extensions, we visited the
Firefox gallery [137], which contains links to all extensions, ordered per category. We
used Puppeteer [171] to automatically download and unpack the extensions. We crawled
the store on April 6, 2021, and could successfully collect 19,577 extensions. As for
Chrome, we parsed the manifest.json of each extension to extract their components
and ran DoubleX on them. Table 6.5 summarizes our findings. Out of 24 reports, we
detected 8 that are exploitable under our threat model. As for Chrome, we flagged more
data flows (22); for example, and as previously, we consider that merely controlling a
URL prefix for an ajax request is not exploitable. As mentioned in Section 6.2.3.1, we
took into account the specific message-passing APIs for Firefox and handled responses
with a Promise. For the exfiltration APIs, though, we still look for callbacks and leave
the Promise implementation for future work.

6.4.3 Extension Vetting: Workflow Integration

Given the performance of DoubleX, we believe that it can be integrated into the vetting
process already conducted by Google for newly uploaded extensions [43]. Currently, this
system aims at identifying extensions that request powerful permissions or are clearly
malicious, e.g., by spreading malicious software. Still, we envision that a feedback
channel to alert developers regarding potential vulnerabilities would be relevant. It is
particularly important for extensions that have privileges such as <all_urls>, which
would allow an attacker who can exploit them to make arbitrary and authenticated
requests and leak their content. As Google readily points out, high-privilege extensions
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require a more thorough analysis; hence, the information about vulnerabilities can also
be of interest to the auditor, to limit the number of vulnerable extensions entering
the store. This is all the more important as we noticed that very few developers
acknowledged and fixed the vulnerabilities we reported (cf. Section 6.3.2.4).

6.5 Summary

While the three previous chapters focussed on JavaScript samples that are inherently
benign or malicious; in this chapter, we highlighted the fact that attackers can also
leverage benign-but-buggy code to perform malicious activities. In particular, we consid-
ered browser extensions, which are–due to their high privileges–a target of choice for
malicious actors (RQ4 ). With our static analyzer DoubleX, we studied to what extent
a malicious web page, or a malicious extension without any specific privilege, could
exploit the capabilities of a vulnerable extension. Specifically, we provide a semantic
abstraction of extension source code, including control and data flows, pointer analy-
sis, and we model the intricate interactions within and outside of an extension. This
way, we can perform a data flow analysis to detect suspicious flows between external
actors (i.e., potential attackers) and security- and privacy-critical APIs. In practice,
we analyzed 154,484 Chrome extensions and flagged 278 as having suspicious data
flows. Subsequently, we verified that 89% of these flows could effectively be influenced
by attackers. Overall, we detected 184 extensions that are vulnerable and lead to,
e.g., arbitrary code execution in an extension privileged context. Finally, and due to
DoubleX fine-grained data flow reports, we hope to raise the awareness of extension
developers toward these security and privacy issues and contribute to detecting such
flaws before large-scale deployment.

This chapter concludes the research work we implemented and evaluated throughout
this thesis to answer our four research questions. In the following chapter, we present
and discuss related work, and we underline the added value of our contributions.
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7.1. MALICIOUS JAVASCRIPT DETECTION AND ANALYSIS

In this chapter, we discuss research work related to this thesis. We first present
approaches to analyze and detect malicious JavaScript samples. While our primary
focus is static detectors, we also highlight some dynamic systems. Next, we discuss
limitations of learning-based malware detectors, which are vulnerable to adversarial
attacks. Subsequently, we present different academic work that leverages the AST or
PDG for vulnerability detection. Finally, we focus on the browser extension ecosystem
and discuss different approaches to detect vulnerable extensions.

7.1 Malicious JavaScript Detection and Analysis

As explained in Section 2.2, static and dynamic analysis are two possible ways to detect
and analyze malicious JavaScript samples.

7.1.1 Static Detectors

In the literature, several approaches have been proposed to characterize JavaScript
inputs by means of static features. Such techniques mostly rely on lexical units or
leverage the AST for an improved analysis. At the same time, these lexical or syntactic
features can also be used to detect obfuscated JavaScript inputs. More recently, we also
noted that new systems are using features with more semantic information, such as
control and data flows, to detect malicious JavaScript instances.

In 2010, Rieck et al. developed Cujo, which combines n-gram features from
JavaScript lexical units with dynamic code features before using an SVM classifier
to detect malicious JavaScript samples [173]. As highlighted in Chapters 3 and 4, both
JaSt and JStap perform better than Cujo, mainly due to lexical units lacking context
information. Stock et al. also used tokens for their analysis in 2016. In particular,
they implemented Kizzle, a malware signature compiler to cluster and detect exploit
kits [198]. In 2011, Canali et al. worked on a faster collection of malicious web pages
with Prophiler [27]. For this purpose, they leverage HTML-derived lexical features, the
JavaScript AST, and an URL-based analysis to discard benign pages. With JStap’s
pre-filtering pipelines, we also aim at quickly and accurately classifying JavaScript
inputs to send only samples with conflicting labels to more costly dynamic components.
Given our differing application level (i.e., web pages vs. JavaScript), our features are
naturally different. Also, Canali et al. extract very specific features from the AST, such
as the number of calls to eval or other built-in functions, which may have become
more challenging at the time of writing, due to malicious code getting more obfuscated.
Specifically, to address the issue of obfuscation and dynamic code generation, in 2015,
Wang et al. first deobfuscated the code to analyze before focusing on specific attacks [214].
To this end, they combine specific static features based on a textual analysis and on the
AST, and dynamic features that leverage browser-level system calls.

In fact, relying on the AST is also a way to analyze JavaScript samples. In particular,
Curtsinger et al. implemented Zozzle in 2011, which combines the extraction of features
from the AST and their corresponding node value with a Bayesian classifier to detect
malicious JavaScript [50]. To address the issue of obfuscation, Zozzle is integrated
with the browser JavaScript engine to collect and process the code created at run-time.
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On the contrary, JaSt and JStap do not need a deobfuscation pre-processing step and
can accurately analyze both benign and malicious obfuscated files. Also, due to our
n-gram analysis, we leverage the overall code syntactic structure instead of handling
syntactic units separately, which leads to higher detection performance. A naive Bayes
classification algorithm was also used by Hao et al. in 2014 to analyze JavaScript code
by benefitting from extended API symbol features by means of the AST [75].

Beyond leveraging lexical units or the AST to detect malicious JavaScript inputs,
additional work focuses on code obfuscation. For example, in 2009, Likarish et al.
defined specific lexical features, based on detecting obfuscation, to recognize malicious
JavaScript instances [123]. Nevertheless, in 2011, Kaplan et al. quantified the fact
that obfuscation does not imply maliciousness [101]. For this purpose, they introduced
NoFus, their bayesian classifier trained over the AST (similarly to Zozzle, based on
syntactic units combined with their corresponding node values) to distinguish obfuscated
from non-obfuscated JavaScript code. Similarly, with JSOD, Blanc et al. proposed an
anomaly-based detection system over the AST to detect obfuscated scripts including
readable patterns (2012) [19].

More recently (and after the publication of JStap), several systems have been
proposed to detect malicious JavaScript inputs by means of a static analysis containing
semantic information. Specifically, Liang et al. proposed JSAC in 2019, which combines
program analysis techniques with a deep learning approach [121]. To capture both
syntactic and semantic features, they combine the AST with a tree-based convolutional
neural network (CNN) and the CFG with another graph-based CNN. Similarly, in 2020,
Song et al. analyzed previously deobfuscated JavaScript samples with a deep learning
approach on features extracted from the PDG, for preselected critical APIs [187]. The
main advantage of our detectors JaSt and JStap is related to their capability of
handling obfuscated inputs, which avoids this costly, mostly manual, deobfuscation step.

7.1.2 Dynamic Detectors

Additional analyses instead rely on dynamic approaches to process (malicious) JavaScript
code. Given their usage of dynamic features, they are not the main focus of this thesis.
Still, they are relevant for, e.g., JStap, which could pre-filter JavaScript samples to
send only those with conflicting labels to more costly dynamic components, and for
HideNoSeek, as the misclassified benign samples used for our camouflage attack
could be analyzed by such dynamic systems. In 2005, Hallaraker et al. monitored
JavaScript code execution and compared it to high-level policies to detect malicious
behavior [73]. Similarly, with JSAND, Cova et al. combined anomaly detection with
emulation to identify malicious JavaScript instances by comparing their behaviors to
benign established profiles (2010) [49]. In 2011, Heiderich et al. proposed IceShield to
execute JavaScript code in the context of a browser before leveraging machine learning
techniques to detect specific attacks [76]. With EarlyBird, Schütt et al. presented
their dynamic approach, combined with machine learning, to optimize the time to
detect malicious JavaScript in order to limit the damage malicious code execution could
already have done (2012) [176]. To improve the code coverage of dynamic approaches
and detect environment-specific malware, Kolbitsch et al. implemented Rozzle in

126



7.2. ADVERSARIAL ATTACKS

2012 [108]. This tool imitates multiple browser and environment configurations to
explore various execution paths to detect malicious JavaScript dynamically. Similarly,
J-Force from Kim et al. (2017) [105] and JSForce from Hu et al. (2018) [85] also force
the JavaScript execution engine to test all execution paths systematically. Beyond pure
malicious JavaScript detection, Invernizzi et al. introduced EvilSeed, in 2012, to search
the Web for pages likely to be malicious, by similarity detection and relation to an initial
set of malicious seeds [87]. Regarding similarity detection, Kapravelos et al. presented
Revolver in 2013, which aims at detecting evasive malicious JavaScript instances. To
this end, they leverage the ASTs of the considered files to identify similarities between
them while Revolver dynamic detector labels the files [103]. If similar files are labeled
differently, they are reported as evasive. As discussed in Section 5.4.4.2, the system is
not available anymore; thus, we could not evaluate HideNoSeek on it.

7.2 Adversarial Attacks

We discussed previously several ways to detect malicious JavaScript samples. In this
section, we present different approaches, which aim at evading learning-based malware
detectors. In particular, the difficulty of generating adversarial examples in the malware
field revolves around the feature mapping function, which is traditionally not invertible.
Therefore, contrary to, e.g., the image domain, it is not clear which impact some
transformations in the feature space may have in the malware space. Specifically, the
generated adversarial samples should still be valid code, able to run, and with the
expected malicious behavior.

Previous attacks against learning-based malware detectors mostly fit into two
categories. White-box attacks consider very strong attackers, which have various
information about the system they are trying to evade, e.g., knowledge about the
training dataset or the target model internals. For example, in 2005, Lowd et al.
discussed the task of learning enough information about a given classifier to construct
adversarial examples tailored for it before evaluating their approach against spam
filtering [127]. On the contrary, with black-box attacks, malicious actors do not have
any insider information but have a specific target system and access to the classification
scores assigned to input samples or at least to the classifier’s predictions. By design,
both attacker models need a specific victim classifier as well as information about the
system. With HideNoSeek, we go one step further and propose a generic and novel
attack against static malicious JavaScript detectors. While it evades purely AST-based
pipelines by construction, we also showcased its effectiveness against more complex
features, such as control and data flow, as well as combinations of classifiers. In fact,
and contrary to previous approaches, HideNoSeek does not try to statistically enhance
the proportion of benign features in a malicious file (or put a malicious sample in a
significantly bigger benign one) but exactly reproduces existing benign JavaScript ASTs,
which, by construction, foils most static detectors.

In the following, we present several approaches that have been proposed to evade
targeted learning-based malware detectors. These attacks all need to have at least a
black-box access to the system they are trying to evade. We focus on attacks targeting
PDF and Android malware detectors.
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In 2012, Smutz et al. discussed an attack scenario where the attackers know the
most informative features of a PDF malware classifier so that they can change the
features to mimic a normal distribution [183]. Nevertheless, they performed their attack
in the feature space and did not generate any evasive variants in the malware space.
Instead of reproducing benign features, Maiorca et al. injected malicious content in
benign PDF documents to introduce minimum differences within their benign structures
while retaining the malicious behavior (reverse mimicry, 2013) [129]. On the contrary, in
2013 and 2014, Šrndić et al. modified malicious PDF documents to mimic the features
of a chosen benign target [190]. In addition, they explored the strategy of training a
substitute model to find evasive inputs. They also assessed the security of learning-
based detection techniques by studying the range of possible attacks, according to the
information leaks an attacker might have [189]. In 2016 and 2017, Xu et al. [228] and
Dang et al. [51], respectively, developed a system, which stochastically manipulates
malicious samples to find a variant, preserving the malicious behavior (i.e., they needed
an oracle) while being classified as benign by the targeted PDF malware detectors
(i.e., they also needed a black-box access to the targeted detector). Besides pure
adversarial attacks, Chen et al. presented an approach to increase the cost of evading
PDF malware classifiers (2020) [34]. To this end, they evaluated their system against
different attacker settings.

In addition, several attacks have been proposed against the Android static malware
detection system Drebin [6]. Specifically, in 2017, Grosse et al. adapted the algorithm
of Papernot et al. [160] (2016)–initially defined for images–to determine which features
should be changed to craft adversarial samples in the malware field [72]. In 2019,
Demontis et al. focused on the transferability of evasion and poisoning attacks under
different threat models. They tested their approach on Drebin as well as images, and
a face recognition system [53]. They also built a Secure SVM (Sec-SVM) learning
algorithm to impede evasion approaches [52]. In particular, Pierazzi et al. proposed
a formalization of evasion attacks in different problem spaces, including the malware
space, before testing their approach on Drebin and Sec-SVM (2020) [166].

7.3 Data Flow Analysis for Vulnerability Detection

In this thesis, we used different static code representation techniques, e.g., AST or
PDG, to abstract the source code of malicious and benign JavaScript files, as well as
browser extensions, before analyzing these JavaScript instances. Such techniques are
also used in the field of security analysis, such as vulnerability detection. In particular,
Jovanovic et al. focussed on PHP in 2006 and implemented Pixy, a static data flow
analysis tool, to discover cross-site scripting vulnerabilities [92]. In 2012, Holler et al.
proposed LangFuzz, their approach to automatically discover vulnerabilities, which they
tested against a JavaScript and a PHP interpreter [81]. While the fuzzing ecosystem is
out of the scope of this thesis, their analysis is related to HideNoSeek. In fact, they
aimed at automatically generating JavaScript samples based on inputs known to have
caused invalid behavior before. To this end, they replaced a given code fragment of
an input file with a fragment of the same type (according to the grammar) known to
have led to vulnerabilities. With HideNoSeek, we replace a benign sub-AST by a
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syntactically equivalent malicious one (with respect to control and data flows) before
adjusting the remaining code to generate adversarial examples. In 2012, Yamaguchi
et al. extrapolated known vulnerabilities using structural patterns from the AST to
find similar flaws in other projects [230]. To mine a more significant amount of source
code for vulnerabilities, they introduced, in 2014, the code property graph, merging
AST, CFG, and PDG into a joint data structure [229]. This way, they leveraged graph
traversals to model templates for known vulnerabilities in order to find similar flaws
in other projects. This new data structure was also used by Backes et al. to identify
different types of web application vulnerabilities (2017) [10]. Similarly, with VulSniper,
Duan et al. leveraged control flow information to encode a program as a feature tensor
and feed it to a neural network to detect vulnerabilities (2019) [55]. Contrary to these
approaches, to find vulnerabilities in browser extensions, DoubleX does not need any
prior information.

7.4 Browser Extension Analysis

In contrast to our approach, which targets benign-but-buggy extensions, prior work
rather focuses on inherently malicious extensions. Specifically, several approaches
have been proposed to detect malicious extensions, e.g., by monitoring their behav-
ior [102, 213], detecting anomalous ratings [159], or tracking the reputation of develop-
ers [88]. Such malicious behavior includes stealing users’ credentials, tracking users [218],
spying on them [1], and voluntarily exfiltrating sensitive user information [32].

In this thesis, as we consider benign-but-buggy extensions, they are the primary focus
of this section. In the following, we discuss different approaches related to analyzing
vulnerable extensions that may involuntarily lead to security and privacy issues. In 2010,
Bandhakavi et al. introduced Vex, which leverages static information flow tracking
on 2,452 XPCOM [154] (now deprecated) Firefox extensions [12]. Due to this Firefox
infrastructure, they did not have to consider any message-passing APIs, while it is the
core of our approach. Regarding Chrome, Carlini et al. combined, in 2012, a network
traffic analysis of 100 extensions with a manual review to evaluate the effectiveness
of Chrome security mechanisms [29]. In 2015, Calzavara et al. proposed a purely
formal security analysis of browser extensions [26]. In particular, they discussed the
privileges attackers might escalate if a specific extension component was compromised.
In 2017, Starov et al. showcased that most privacy leakages are not intentional [193].
For this purpose, they implemented BrowsingFog and performed a dynamic analysis
to detect privacy leakage from 10,000 Chrome extensions. Similarly to DoubleX, Salih
et al. considered Confused Deputy-style attacks against users (2016) [25]. To this end,
they leveraged the fact that XPCOM Firefox extensions shared the same JavaScript
namespace, i.e., every installed extension could access the JavaScript variables defined
in the global scope of all extensions. In particular, they implemented CrossFire,
which performs a static data flow analysis to identify flows between globally accessible
variables from extensions and security-sensitive XPCOM calls. Nevertheless, they
leveraged a limitation of the XPCOM architecture (now deprecated) and, contrary
to DoubleX, they did not consider the message-passing APIs as a way to exploit
browser extensions’ capabilities. In contrast, Somé focussed on messaging APIs to
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detect vulnerable extensions (2019) [186]. For this purpose, he relied on the invocation
of message handlers, combined with a lightweight call graph, to determine if they
could contain dangerous API calls. Still, due to the absence of data flow tracking, he
reported 3,300 suspicious extensions, only 5% of which were vulnerable in practice.
With DoubleX, we go several steps further. The most noticeable difference comes from
our data flow analysis, which includes control and data flow tracking, variable scoping,
and pointer analysis (therefore aliasing) which leads to a much higher success rate.

7.5 Summary

In this chapter, we discussed related work and underlined the added value of our
contributions. First, we presented different approaches to detect malicious JavaScript
samples. Contrary to the majority of them, JaSt and JStap can handle obfuscated
samples statically (i.e., they are purely static systems and do not need a dynamic
or manual deobfuscation pre-processing step). Subsequently, we discussed different
adversarial attacks and settings against learning-based malware detectors. Contrary
to these systems, HideNoSeek is a generic attack (due to the perfect mapping onto
existing benign ASTs), which does not need any prior knowledge about the systems it
evades. Similarly, in contrast to previous approaches to detect vulnerabilities by means
of ASTs or PDGs, DoubleX does not need any information regarding vulnerability
patterns. Finally, we presented prior work to detect vulnerable Chrome and Firefox
extensions. The added value of our contribution revolves around the modeling of the
intricate relations between extension components, pointer analysis, and suspicious data
flow tracking. This way, we limit the manual effort of verifying the reported extensions
and propose a system that can statically analyze browser extensions at scale.

In the following chapter, we consider limitations of our approaches and, based on
these, discuss potential future work. We finally sum up our contributions, which we
link to our research questions, before concluding this thesis.
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In this chapter, we first present future research work that could be performed
to supplement our current approaches and results. Subsequently, we summarize our
contributions and answer our initial research questions before concluding this thesis.

8.1 Discussion and Future Work

In this section, we discuss additional research directions to extend the work presented
in this thesis and tackle some limitations our approaches may have. We first introduce
different ideas to impede the evasion of our detectors JaSt and JStap, and to improve
the detection of evasive samples (including HideNoSeek). Subsequently, we discuss
adding a forced execution pipeline to analyze specific JavaScript constructs to limit over-
approximations due to static analysis, without downgrading the run-time performance
with too much code execution. Finally, we envision that DoubleX could be extended
with additional sources and sinks to model further classes of attackers and interactions
within an extension.

Detecting Evasive Samples Like all learning-based approaches, our detectors JaSt
and JStap could be tampered with adversarial examples, e.g., which would mimic
features of the other class or which could have been stochastically manipulated until
their classification changed. To further complicate the evasion of our systems, we
could leverage additional features, which would be more tamper-resistant. For example,
such features could be representative of the maliciousness of a JavaScript sample at a
given point in the source code. In fact, instead of analyzing the complete AST of a
JavaScript input, we could split the AST to analyze, e.g., each basic block separately
before computing a maliciousness score based on the maliciousness of each sub-AST.

Another class of attacks is related to the perfect mapping onto existing benign
features, e.g., HideNoSeek. We showcased in Chapter 5 that static detectors are
highly impacted by our attack. While combining them with dynamic systems could
be a mitigation strategy, it would not scale to the large volume of JavaScript files in
the wild. A static possibility might be to cluster JavaScript inputs based on their
syntactic structure and to look for textual or lexical differences between instances of
the same cluster. These differences could then be classified to detect the suspicious
ones. Another research direction may be related to plagiarism detection. In fact,
HideNoSeek reproduces benign ASTs, but there are still some, e.g., textual or data
flow-based, differences between the benign and crafted files. Thus, we believe that
systems measuring the similarity between input data [33] or their PDGs [124] could
contribute to distinguishing benign from crafted samples. For scalability reasons, such
plagiarism detection systems also work without any prior knowledge regarding the
original documents that may have been partially reproduced [59].

Toward Additional JavaScript Analyses In this thesis, we performed several static
analyses of JavaScript files, i.e., to detect malicious inputs and suspicious data flows
in inherently benign samples. On the one hand, a static approach is fast, accurate,
not environment- nor time-dependent, and provides complete coverage of the available
code. On the other hand, static analysis is subject to the traditional flaws induced by
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the dynamic character of JavaScript [4, 63, 89, 90, 196]. For example, JavaScript can
generate code at run-time, e.g., with the eval function, a dynamically constructed
string can be interpreted as a program fragment and executed in the current scope. In
addition, JavaScript uses prototype chaining [142] to model inheritance, where properties
can be added or removed during execution, and property names may be dynamically
computed. While our static analyses are neither sound nor complete, in the spirit of
soundiness [125], we chose a trade-off between accuracy and run-time performance.

To further improve the precision of our systems, they could be combined with
additional analysis techniques, such as forced execution. To retain the scalability of
our systems, specific JavaScript constructs, e.g., known to lead to over-approximations,
could be selected for this dynamic analysis. The resulting execution traces could be
stored in a new data structure that would enhance our current PDG with additional
(run-time-based) information. In practice, we envision that having such a hybrid system
could further improve the accuracy of DoubleX.

Further Securing the Extension Ecosystem DoubleX detects suspicious data flows
between external actors and security- and privacy-critical APIs in browser extensions.
Similarly to Mystique [32], which employs dynamic taint-tracking to detect intentional
information leakage, DoubleX could also be extended to detect malicious extensions
that exfiltrate data from the browser. To this end, we could retain our current imple-
mentation and update our list of sensitive sources. Also, we could consider additional
ways for extension components to communicate, such as their shared extension storage.
Similarly, the localStorage property of web pages could be considered as an extra
way for an extension to communicate with external actors, which we assume would lead
to the detection of additional vulnerable extensions.

8.2 Summary of Contributions

The Web has become a widespread ecosystem, interconnecting billions of people every
day. Due to its popularity, it naturally also attracts the interest of attackers. Specifically,
they leverage JavaScript, one of the core technologies of the Web platform, to perform
malicious activities, such as drive-by downloads. While JavaScript can be abused to
exploit bugs in the browser or further vulnerabilities, it is, at the same time, the most
popular client-side scripting language, which is used by almost all websites to improve
their interactivity and user-friendliness. Due to the widespread character of JavaScript
in the wild, we need accurate systems to distinguish benign from malicious JavaScript
instances at scale. Also, such detectors should neither be foiled by obfuscated inputs
nor by malicious samples that are time- or environment-dependent. These reasons
motivated our choice to perform a purely static analysis.

To sum up, we first showcased that we could combine features extracted from
the AST with machine learning algorithms to accurately detect malicious JavaScript
samples. Second, we statically generated the CFG and PDG of JavaScript programs,
thus enhanced the AST with more semantic information. Combining different static code
abstractions then led to a higher malicious JavaScript detection performance. Third, we
showed that such static systems are vulnerable to a generic camouflage attack, which
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consists in rewriting malicious ASTs into existing benign ones. Fourth, we considered
another adversarial setting, where attackers leverage vulnerable browser extensions to
perform malicious activities, such as executing arbitrary code in an extension’s privileged
context. In the following, we summarize our contributions, highlight our main findings,
and answer the corresponding research questions.

8.2.1 Detecting Malicious JavaScript Through AST Analysis (RQ1)

To answer RQ1: To what extent can we detect malicious (obfuscated) JavaScript inputs
by combining an analysis at the AST level with machine learning algorithms?, we
developed our static AST-based analyzer JaSt. After abstracting the source code of
JavaScript instances to their ASTs, we traversed the tree to extract syntactic units.
Subsequently, we built 4-grams, which enabled us to preserve the units’ context, and
fed them to our random forest classifier.

We evaluated JaSt on a 105,305 sample set and highlighted both its high true-positive
rate of 99.46% and true-negative rate of 99.48%. Due to our optimal trade-off between
true positives and true negatives, we outperform the related work Cujo and Zozzle. In
fact, given our usage of 4-gram features from the AST, we leverage the overall syntactic
structure of the considered JavaScript files to classify them, which performs better than
previous work, lacking context information. In addition, using syntactic patterns enabled
us to directly handle obfuscated files. Finally, we also underlined syntactic similarities
between different malicious JavaScript categories, which confirms the strength of the
AST code abstraction for malicious JavaScript detection. For practical detection of
malicious JavaScript samples, we make JaSt publicly available [T1].

8.2.2 Improving the Detection with Semantics in the AST (RQ2)

At the same time, we wondered if we could further improve our detection accuracy by
going beyond relying on the sole code structure. To this end, we considered RQ2: Can
we add more semantic information into the AST of JavaScript files? Specifically, to what
extent can we statically enhance the AST with control and data flows? Which features,
combined with machine learning algorithms, work best to detect malicious JavaScript
instances? To address these research questions, we built JStap, our modular static
malicious JavaScript detection system. Our detector combines five ways of abstracting
the code, namely tokens, AST, CFG, DFG, and PDG, as well as two ways of extracting
features, i.e., n-grams and node values. This way, JStap is composed of ten modules–
with differing levels of context and semantic information–each of which we combined
with a random forest classifier.

We evaluated our approach on a 273,216 sample set. We subsequently underlined
both the high accuracy of our modules and our better detection performance compared to
related work, which we reimplemented and tested on our dataset. Finally, we combined
our modules to leverage the strength and knowledge of multiple code abstractions. A
first pre-filtering pipeline, regrouping the predictions of a lexical, syntactic, control flow,
and data flow analysis, led to unanimous predictions on almost 93% of our dataset, with
a detection accuracy of 99.73%. A second pre-filtering layer on the remaining samples
enabled us to classify an extra 6.5% of our dataset with an accuracy of 99%. This way,
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we showcased that combining multiple code abstraction techniques further improved
our accuracy. For direct deployability of our modules to detect malicious JavaScript
inputs, we make JStap publicly available [T2].

8.2.3 Camouflaging Malicious JavaScript in Benign ASTs (RQ3)

While learning-based static systems are fast, accurate, and have a high code coverage,
they are highly dependent on the static code abstraction techniques leveraged by the
classifiers. This statement led to RQ3: Can we present a generic attack against static
malicious JavaScript detectors? More specifically, to what extent and how could attackers
rewrite the ASTs of malicious JavaScript samples to reproduce existing benign ASTs
while keeping the original malicious semantics? How effective would this camouflage be
against static detectors? To answer these research questions, we designed HideNoSeek,
our generic camouflage attack. Our system first looks for syntactic clones between a
benign and a malicious JavaScript input, with respect to control and data flows. Then,
it replaces the reported benign sub-ASTs with their malicious syntactic equivalents.
Subsequently, HideNoSeek follows the original benign data flow edges to adjust the
nodes impacted by our replacement process before generating the modified AST’s code.
This way, HideNoSeek leverages a benign and a malicious JavaScript input to rewrite
the malicious one so that its syntactic structure exactly corresponds to the benign
structure while keeping the original malicious semantics.

In practice, we could generate 91,020 malicious samples, which have the same AST
as Alexa top 10k websites. We then classified those crafted samples with JaSt, JStap
as well as our reimplementations of Cujo and Zozzle. When the classifiers have
been trained with JavaScript files from the wild (i.e., the detectors are not aware of
our attack), they have false-negative rates between 99.95% and 100% on our evasive
samples. On the contrary, when their training set included such crafted files, the
classifiers correctly label most of our adversarial samples. In turn, they are unable to
classify the benign inputs used for the camouflage as showcased by false-positive rates
between 88.74% and 100%. We observed such results both for the traditional lexical
and AST-based pipelines, for the control and data flow-based detectors as well as for
a combination of these approaches, thus paving the way for additional research in the
malware detection field.

8.2.4 Statically Analyzing Browser Extensions at Scale (RQ4)

Finally, beyond generating and spreading malicious JavaScript instances, attackers can
also perform more stealthy, yet powerful, attacks by leveraging vulnerable browser
extensions. This assumption led to RQ4: To what extent and how can we statically
analyze browser extensions to detect suspicious data flows from and toward security- and
privacy-critical APIs? To address our last research question, we developed DoubleX,
which statically abstracts an extension source code to its PDG and models the interac-
tions within and outside of an extension. More specifically, DoubleX builds the PDG
of each extension component and enhances the graph with pointer analysis informa-
tion to also handle aliased or slightly obfuscated API calls. We then combine these
per-component PDGs with message flows between the individual components to define
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a PDG at extension level. Based on our attacker models through web pages or other
extensions, DoubleX then collects and leverages external messages to perform a data
flow analysis to detect suspicious flows between sensitive APIs in browser extensions
and external actors.

When evaluated against a ground-truth dataset, DoubleX was capable of finding
92.64% of the known vulnerabilities. We then applied DoubleX to the Chrome Web
Store, where it flagged 278 / 154,484 extensions as having suspicious data flows. We
could confirm that 89% of the reported flows could be controlled by external actors.
Overall, we detected 184 vulnerable extensions that attackers could exploit to, e.g.,
execute arbitrary code in an extension context or exfiltrate sensitive user data. To raise
awareness and enable developers and extension operators to automatically detect such
threats, we make DoubleX publicly available [T4].

8.3 Concluding Thoughts

We hope that our work regarding the detection of malicious JavaScript instances and
our resulting attack against static classifiers will pave the way to additional research in
different directions. First, we highlighted the necessity for reliable and fast malware
detectors. Second, there is also a need to impede the evasion of such (learning-based)
systems so that they remain trustworthy in adversarial settings. In addition, we
underlined the fact that malicious actors can also stealthily exploit vulnerable browser
extensions. We believe that our research work could contribute to limiting such attacks.
To this end, we hope to increase the awareness of well-intentioned developers toward
unsafe programming practices, leading to security and privacy issues. Finally, we
believe that integrating DoubleX into extension vetting systems could contribute to
the detection of such flaws before the large-scale deployment of the impacted extensions,
thus contribute to further protecting users’ security and privacy.
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This appendix complements Chapter 6.
In particular, Figure A.1 represents the PDG of the vulnerable content script from

Listing 6.3. As explained in the corresponding Section 6.2.4.2, and as shown in the
PDG, the first call to eval does not appear in plain text but is correctly computed
by our pointer analysis module while we traverse the graph. Subsequently, DoubleX
accurately flags this call to eval as having a suspicious data flow. The corresponding
full report is in Listing A.1.

Finally, we illustrate an extension PDG, including control, data, and message flows
in Figure A.2.
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Figure A.1: AST of the vulnerable content script from Listing 6.3 extended with control &
data flows
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APPENDIX A. APPENDIX

1 {
2 "extension": "vuln-extension",
3 "cs": {
4 "direct_dangers": {
5 "danger1": {
6 "danger": "eval",
7 "value": "window.eval(event.data)",
8 "sink-param1": "event.data",
9 "line": "2 - 2",

10 "filename": "vuln-extension/content-script.js",
11 "dataflow": true,
12 "param_id0": {
13 "received_from_wa_1": {
14 "wa": "event",
15 "line": "1 - 1",
16 "filename": "vuln-extension/content-script.js",
17 "where1": "event",
18 }
19 }
20 },
21 "danger2": {
22 "danger": "eval",
23 "value": "eval(42)",
24 "sink-param1": 42,
25 "line": "4 - 4",
26 "filename": "vuln-extension/content-script.js",
27 "dataflow": false,
28 "param_id0": {}
29 }
30 },
31 "indirect_dangers": {},
32 "exfiltration_dangers": {}
33 },
34 "bp": {
35 "direct_dangers": {},
36 "indirect_dangers": {},
37 "exfiltration_dangers": {}
38 }
39 }

Listing A.1: Full data flow report for Listing 6.3
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Figure A.2: AST of the extension from Listing 6.2 extended with control, data & message flows
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