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ABSTRACT

The global demand for pharmaceuticals is continuously growing. As
a result, one can observe an increase in adverse drug reactions, which
pose a critical risk to patients. The primary triggers for adverse drug
reactions are drug-drug- and drug-gene-interactions. Model-informed
drug discovery and development as well as model-informed precision
dosing can help to mitigate the risks of drug-drug and drug-gene inter-
actions.

Thus, this work aimed to improve and to apply physiologically-based
pharmacokinetic modeling strategies in the context of model-informed
drug discovery and development as well as model-informed precision
dosing.

For this purpose, best practices for data digitization as an essential
step in the development process of most physiologically-based pharma-
cokinetic models have been established. Moreover, models for zoptare-
lin doxorubicin and simvastatin were developed and evaluated. The
zoptarelin doxorubicin model was used to guide the development pro-
cess of this drug. In contrast, the simvastatin model was utilized in a
drug-drug-gene interaction network to generate 10 368 dose recommen-
dations for different interaction scenarios, which were made available
in a digital decision support system.

In conclusion, the work can be seen as a beacon project to illustrate
how physiologically-based pharmacokinetic modeling of drug-drug
and drug-gene interactions can be applied in model-informed drug
discovery and development as well as in model-informed precision
dosing.
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ZUSAMMENFASSUNG

Der globale Arzneimittelbedarf steigt kontinuierlich an. Infolgedessen
kommt es vermehrt zu unerwünschtenArzneimittelwirkungen, die eine
Gefahr für Patienten darstellen. Einewichtige Rolle beimAuftreten uner-
wünschter Arzneimittelwirkungen spielen Arzneimittel-Arzneimittel-
undArzneimittel-Gen-Wechselwirkungen. Umdas Risiko solcherWech-
selwirkungen zu minimieren, kann die modellgestützte Arzneimittel-
entwicklung und Präzisionsdosierung angewendet werden.

Das Ziel dieser Arbeit war es, physiologie-basierte pharmakokineti-
sche Modelle zum Zweck der modellgestützten Arzneimittelentwick-
lung und Präzisionsdosierung einzusetzen.

Dafür wurde die Datendigitalisierung als wesentlicher Bestandteil
der Entwicklung neuer physiologie-basierter pharmakokinetischer Mo-
delle untersucht. Außerdem wurden Modelle für Zoptarelin Doxoru-
bicin und Simvastatin entwickelt. Das Zoptarelin Doxorubicin Modell
wurde verwendet, um die Entwicklung dieses Medikaments zu un-
terstützen. Mittels des Simvastatin Modells wurden in einem Interak-
tionsnetzwerk 10 368 Dosisempfehlungen für verschiedene Szenarien
generiert und in einem digitalen Entscheidungsunterstützungssystem
verfügbar gemacht.

Zusammenfassend kann die Arbeit als Leuchtturmprojekt gesehen
werden, das zeigt, wie die physiologie-basierte pharmakokinetische
Modellierung von Arzneimittel-Arzneimittel- und Arzneimittel-Gen-
Wechselwirkungen in der modellgestützte Arzneimittelentwicklung
und Präzisionsdosierung angewendet werden kann.
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Ein Mensch, gestellt auf harte Probe,
Besteht sie, und mit höchstem Lobe.
Doch sieh da: es versagt der gleiche,

Wird er gestellt auf eine weiche!

— Eugen Roth - Ernst und heiter [6]
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Part I

INTRODUCT ION AND AIMS

The chapter provides an overview of why drug-drug-gene-
interactions (DDGIs) place a heavy burden on our health
care system. It also explains how DDGIs can be overcome
with the help of model-informed drug discovery and devel-
opment (MID3), model-informed precision dosing (MIPD)
and in particular with physiologically-based pharmacoki-
netic (PBPK) modeling. Finally, it specifies the aims of the
presented work.





1
INTRODUCT ION

1.1 adverse drug reactions and adverse drug events

Adverse drug reactions (ADRs) and adverse drug events (ADEs) are
an essential and increasing burden for our healthcare and economic
system [7, 8]. An ADR is “a response to a medicinal product which is
noxious and unintended” while an ADE is “an injury resulting from
medical intervention related to a drug” [8]. They are assumed to be a
leading cause of morbidity and death worldwide as shown for instance
by a meta-analysis of 39 prospective studies, which found that ADRs
are responsible for 1.0% to 16.8% of admissions to hospitals in the
United States of America (USA) [7].

Significantly related to the frequency of ADRs is the sharp increase in
pharmaceuticals use as observed over the last decades. For instance, the
number of prescriptions dispensed in the USA rose from 5.308 billion in
2014 up to 5.770 billion in 2018 [9]. Even more striking: when looking
at the total nominal spending on medicines, they reached a volume of
482 billion $ in 2018, as shown in Figure 1.1 [10].
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Figure 1.1: Total nominal spending on medicines in the USA from 2002 to 2018
[10].

As a result, it is estimated that 60% of the elderly take at least one
prescription medicine per week [11]. In parallel, the incidence of ADRs
is increasing too, as shown by an analysis from the USA National Vital
Statistics System (NVSS) that showed an increase inADR-related deaths
from 8 to 12 per 1000 persons per year, during the timespan from 1999
to 2006 [8]. In contrast, it is estimated that 70% of ADRs, which lead

3



4 introduction

to an emergency department visit are preventable [8]. Reasons for
ADRs are manifold and can be traced back to medication errors, drug
interactions, diseases, or patient characteristics [8, 12]. Nevertheless,
the impact of ADRs on our social and economic system remains vast
and has even led to the development of a specialized branch of research
called pharmacovigilance [12, 13].

1.2 drug-drug-, drug-gene- and drug-drug-gene interac-
tions

To tackle ADRs, a drug therapy tailored to the patient’s needs, charac-
teristics, and circumstances is required [12, 14–16]. This therapy indi-
vidualization is summarized under the term “precision dosing” [14–
16]. Precision dosing is defined as “dose selection by a prescriber for
an individual patient at a given time” [14]. Furthermore, it “focuses
on the individualization of drug treatment regimens based on patient
factors known to alter drug disposition and/or response” [16]. Very
well known factors which are capable of altering drug disposition are
drug-drug-interactions (DDIs), drug-gene-interactions (DGIs) and the
combination of both, DDGIs [17–23].

DDImeans that one drug, commonly called the perpetrator, alters the
pharmacokinetic (PK) or pharmacodynamic (PD) profile of another
drug, which is then called the victim compound [20]. DDIs do often
happen in polypharmaceutical settings like in cancer treatments [24,
25]. A DGI, on the other hand, occurs “when an individual carrying
one or more variant forms of a gene that codes for a drug-metabolizing
enzyme or drug transporter with altered function receives a drug that
is a substrate for the given enzyme or transporter” [17].

Unfortunately, although investigation of DDIs during drug develop-
ment ismandatory and the knowledge about DGIs on pharmacotherapy
is continuously growing, the development of precision dosing recom-
mendations is lagging [16, 26, 27]. One reason for this is that DDI effects
in certain situations cannot be investigated in a clinical trial [2]. For
example, DDI studies of new therapeutic entities (NTEs) in oncology
require special ethical considerations that may prevent a study from
being conducted [2]. Thus, in such scenarios, advanced translational
strategies are necessary to interpolate preclinical investigations to pre-
dict clinical effects [2].

Another reason is that clinical studies alone are often not sufficient to
reflect the complicated situation of a post-approval setting. For instance,
since the majority of polymorphisms are quite rare, most clinical trials
compare DGIs individually rather than in combination to recruit a suffi-
cient number of patients [3, 16]. The same applies to DDIs studies were
mostly dedicated index drugs are used for effect quantification [27].
Moreover, commonly only homogeneous study populations are selected
for clinical DDI studies, consisting of young and healthy individuals



1.3 examples: zoptarelin doxorubicin and simvastatin 5

without comorbidities or comedications. This is done to reduce the po-
tential impact of covariates on study outcome and to ensure significant
results [16, 28]. However, in a real-life polymedication environment,
where people regularly take more than five drugs [29], DDIs and DGIs
occur not purely as individual cases but rather in combination and as
DDGIs [3, 21]. Therefore, novel approaches are needed to integrate
the information on DDIs and DGIs obtained in clinical studies to ap-
ply them to more complex DDGI scenarios. This way precision dosing
recommendations could be generated, and ADRs prevented [3, 20–23].

1.3 case examples: zoptarelin doxorubicin and simvastatin

Zoptarelin doxorubicin was an investigational chemotherapeutic agent
designed for drug targeting of luteinizing hormone-releasing hormone
receptor (LHRHR) positive tumors [2, 30]. It is a fusion molecule of the
chemotherapeutic doxorubicin and a small peptide agonist to LHRHR
[31]. The structure of zoptarelin doxorubicin is shown in Figure 1.2.
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Figure 1.2: Molecular structure of zoptarelin doxorubicin [31].

It was hypothesized that by adding the LHRHR agonistic moiety,
improved internalization of zoptarelin doxorubicin in LHRHR positive
tumor cells and a reduced cardiotoxicity compared to unconjugated
doxorubicin could be achieved [2, 30]. Zoptarelin doxorubicin is mainly
metabolized by spontaneous and carboxylesterase-mediated hydrolysis
[2]. In in vitro experiments, zoptarelin doxorubicin shows inhibitory
effects on solute carrier organic anion transporter family member 1B3
(OATP1B3) and organic cation transporter 2 (OCT2) with 𝐼𝐶50 values
of 16.5µmol l−1 and 3.26µmol l−1, respectively [2]. As a consequence,
in vivo interactions with prominent substrates of those transporters
like simvastatin (OATP1B3) and metformin (OCT2) were likely and
had to be further investigated during the development process [2].
However, clinical DDI studies with deoxyribonucleic acid (DNA) inter-
calating agents are hardly feasible due to ethical aspects [2]. In the case
of zoptarelin doxorubicin this could have led to a knowledge gap and



6 introduction

potential patient safety risks [2].

As already indicated, another good example compound which is
prone to be influenced by DDGIs is simvastatin. Simvastatin is an oral
𝛽-hydroxy 𝛽-methylglutaryl-coenzyme A (HMG-CoA) reductase in-
hibitor and counts to the most prescribed drugs in industrial nations
[9]. Although simvastatin shows excellent cost-effectiveness and an op-
timal benefit-risk ratio [32, 33], over-dosage can lead to rhabdomyolysis
which is a feared and potentially life-threatening ADR [34]. Multiple
singleDGIs andDDIs have been identified to change simvastatin PK and
subsequently raise the risk of over-dosages [35–39]. This is because sim-
vastatin has a complex PK with high inter-individual variability, which
involves many different drug transporters and metabolic enzymes [39–
41]. A simplified overview of processes relevant to simvastatin’s PK is
given in Figure 1.3.
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Figure 1.3: Simvastatin lactone and simvastatin acid molecular structure. Sim-
vastatin is given as a prodrug (simvastatin lactone), which is hy-
drolysed by chemical and enzymatic processes to the more active
form simvastatin acid [42]. Both are substrates for different trans-
porters [43–45] and undergo further oxidative metabolism [42].
In addition, simvastatin acid can lactonize back to simvastatin lac-
tone by chemical lactonization or via a glucuronide intermediate
metabolite [42].

Hence, if a DGI or DDI alter transporter or enzyme activity, simvas-
tatin’s PK can change dramatically, as observed in several clinical trials
[35–39]. To compare the effects more or less independent of the given
dose it is helpful to look at the relative change of non-compartmental
analysis (NCA) parameters like area under the plasma-concentration
time curve (AUC) under DGI or DDI conditions compared to placebo
as calculated in Equation 1.1.

By doing so, a relative change of −94% (simvastatin acid (SA), AUC)
under rifampicin co-treatment [46] and a relative change of +1117%
(SA, AUC) under clarithromycin co-treatment [47] is observed. Unfor-
tunately, despite these already very strong observed effects for single
DDIs, no recommendations for combined effects of DGIs and DDIs in
the form of DDGIs for simvastatin were available [26]. That is because
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investigation and evaluation of all possible combination scenarios, as
outlined in Section 1.2, is of course not feasible with clinical trials alone
[3, 16].

%𝑁𝐶𝐴𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑁𝐶𝐴𝑜𝑏𝑠,𝐷𝐷𝐼/𝐷𝐺𝐼 − 𝑁𝐶𝐴𝑜𝑏𝑠,𝑝𝑙𝑎𝑐𝑒𝑏𝑜

𝑁𝐶𝐴𝑜𝑏𝑠,𝑝𝑙𝑎𝑐𝑒𝑏𝑜
∗ 100 (1.1)

where:

%𝑁𝐶𝐴𝑐ℎ𝑎𝑛𝑔𝑒 Relative change of the NCA estimate under DDI
or DGI compared to placebo

𝑁𝐶𝐴𝑜𝑏𝑠,𝐷𝐷𝐼/𝐷𝐺𝐼 Observed NCA estimate under DDI or DGI con-
ditions

𝑁𝐶𝐴𝑜𝑏𝑠,𝑝𝑙𝑎𝑐𝑒𝑏𝑜 ObservedNCA estimate under placebo conditions

1.4 model informed drug development and precision dosing
- the use of pharmacometrics

To overcome the knowledge gaps mentioned above MID3 and MIPD
strategies can be applied [14–16, 48–52]. MID3 is a ”quantitative frame-
work for prediction and extrapolation, centered on knowledge and
inference generated from integrated models of compound, mechanism
and disease level data and aimed at improving the quality, efficiency
and cost effectiveness of decision making” [52]. MIPD on the other
hand is the targeted use of pharmacometrics (PMx) modeling tech-
niques together with the individually measured patient and disease
characteristics to find the optimal dose for a patient [53]. Thereby, PMx
is a science that aims to quantify drug, disease, and clinical trial char-
acteristics using mathematics and statistics [54]. Since its debut in the
1950s PMx has evolved into an essential cornerstone of pharmacother-
apy, which, as shown in Figure 1.4, can be found in each phase of a
drug’s life-cycle [51, 52, 54–57].

While PMx initially focused on empirical or semi-mechanistic models,
the recently available computing power made it possible to develop
physiologically more accurate models [58–67]. Subsequently, they are
called physiologically-based pharmacokinetic (PBPK)models, and they
are seen as one of the main pillars of the modeling and simulation
revolution in pharmaceutical sciences [59, 60, 67]. PBPK models are
multiple compartment systems and try to depict the physiological sit-
uation as detailed as necessary [59, 66]. Thus, their parameters and
equations are based on real tissue characteristics like volume, surface
area, or protein expression [59, 66]. Compartments are mathematically
connected to represent the blood flow and to simulate the liberation,
absorption, distribution, metabolization and excretion (LADME) be-
havior of drugs [59, 66]. PBPK models vary in complexity and can be
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Figure 1.4: Different phases of drug development and tasks that can be in-
formed by PMx techniques. Adapted from Mould and Upton [55].

established as minimal or whole-body PBPK models [61, 62, 64, 68].
Moreover, they can be integrated into systems biology networks [63,
69]. To establish a PBPK model, system and drug dependent parame-
ters are required [59, 66]. System dependent parameters describe the
physiological environment and include the aforementioned parame-
ters like tissue characteristics [59, 66]. Drug dependent parameters are
compound-specific parameters such as lipophilicity, acidity, or molecu-
lar weight [59, 66]. Figure 1.5 visualizes the step-by-step process for the
development of a PBPK model, while Figure 1.6 summarizes the struc-
ture of a whole-body PBPK model and the different building blocks [1,
66, 67].

Since its conceptualization in 1937 [70], PBPK modeling has proven
its usefulness in many different application areas [66, 70–72]. Issues
that can be addressed with PBPK modeling are, for example, cross-
species extrapolations or scaling to special populations like pediatric
or organ impaired patients [66]. Due to these versatile application
possibilities, especially for questions which for ethical reasons, or due
to their feasibility can hardly be answered by clinical studies, PBPK
modeling is recognized by regulatory agencies like the Food and Drug
Administration (FDA) and the European Medicine Agency (EMA) as
valuable method [51, 66, 70–72]. They emphasize, for example, the use
of PBPKmodeling to explore and quantitatively predict the PK of drugs
for DDIs and to support dose selection and labeling [27]. Although
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and separation

2. Model 
development

3. Model 
validation

4. Model 
simulation

Initial model

Model evaluation

Model optimization

1 Literature research

2 Data digitiziation

3 Study data

TrainingTest

Answer the inital
question!

Can the model 
describe the

test data?

Test

Figure 1.5: Stepwise PBPK model development workflow. In a first step, data
are acquired. The data are then split into training and test dataset.
Following, an initial model is set up and continuously refined. In
step three, the model has to be validated and can lastly be used to
answer the initial questions.

the potential of PBPK modeling is acknowledged, the technique is,
as already mentioned, relatively new compared to other MID3 and
MIPD strategies [3, 48, 65]. Thus, best practices for PBPK modeling
are currently under development, and many work steps important for
PBPK model building require a detailed evaluation [1].

1.5 physiologically based pharmacokinetic modeling strate-
gies for drug-drug-, drug-gene- and drug-drug-gene in-
teractions

As mentioned, PBPK modeling is regularly used and emphasized for
DDI assessment and predictions, for instance, during the drug devel-
opment process [2, 51, 66, 70–72]. The convenient aspect of the PBPK
approach is that the models can be developed individually for each
substance [3, 74–79]. Subsequently, they can be connected as required
to investigate the DDI of interest [2, 3, 74–79]. Thus, theoretically, net-
works of any size can be created even for very complicated DDIs [2, 3,
76–78]. The first examples of such DDI networks can already be found
in the literature [3, 76–78].Besides, PBPK modeling can also be used to
predict DGIs [3, 76]. By combining the two approaches for DGIs and
DDIs, complex interactions can be predicted similarly for DDGIs [3, 80].
Figure 1.7 illustrates the process with a puzzle in which the individual
building blocks are developed separately and then put together for
therapy optimization.

Thus, PBPK driven MIPD is a useful technique to derive therapy rec-
ommendations and this way to come as close as possible to the ultimate
goal of a pharmacotherapy tailored to the patient [3, 15, 16, 50]. This
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Figure 1.6: PBPK model building blocks and model structure. The upper part
lists different sources of information necessary for the development
of a PBPK model. The lower part of the figure visualizes the dif-
ferent compartments in a PBPK model, which represent the organ
tissues. Each compartment is further subdivided into vascular, in-
terstitial, and intracellular space. Adapted from Kuepfer et al. [66].
Illustrations of organs were taken from CC BY 3.0 Servier Medical
Art by Servier [73].
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Figure 1.7: PBPK modeling approach for the prediction of DDGIs. Substrate
and interaction PBPK models are developed individually and after-
ward connected. In addition, pharmacogenomic (PGx) and special
population effects can be included. Tom and Jerry illustrations were
taken from CC BY-NC 4.0 by pngimg.com [81].

way, ADRs could be prevented, lives saved and the healthcare system’s
burden reduced [15]. However, the pure distribution of PBPK models
is not sufficient [16]. Rather, the recommendations derived from them
must be made available in a way that they can be easily implemented in
a clinical setting [16]. Thereby, decision support systems (DSSs) have
been proven to be important tools to integrate the derived knowledge
[16, 50]. Such systems allow clinicians to enter their patient characteris-
tics, genotype information, and comedication data [3]. Subsequently,
the system evaluates the input information, compares them with the
MIPD analyses results, and generates an individual therapy recommen-
dation [3].





2
AIMS

One aim of this thesis was to improve current PBPKmodeling strategies.
Further, PBPKmodeling ofDDIs, DGIs, andDDGIs should be applied in
the context of MID3 and MIPD for the example compounds zoptarelin
doxorubicin and simvastatin, respectively. The thesis’ aimswere realized
within the scope of the following projects:

project i - data digitizing: The project aimed to assess the rele-
vance of data digitizing for PBPK modeling and to establish rec-
ommendations for the digitizationworkflow. For this purpose, the
general usage of data digitizing software in quantitative systems
pharmacology (QSP) and PBPK modeling should be analyzed.
Subsequently, the accuracy and precision of relevant digitizing
software packages should be evaluated. Moreover, investigation
of discrepancies between reported and graphically presented data
as well as identification of covariates which might influence the
digitizing process was aspired. Finally, recommendations regard-
ing the creation of digitizable plots and the digitization process
itself should be proposed.

project ii - zoptarelin doxorubicin: Purpose of the secondproject
was to support the drug development process of the anticancer
drug zoptarelin doxorubicin. In detail, a whole-body PBPKmodel
of zoptarelin doxorubicin and its active metabolite doxorubicin
should be established. Further, themodel should be used to assess
the DDI potential for OATP1B3 and OCT2 substrates.

project iii - simvastatin: The third project’s objective was to estab-
lish dose recommendations for different DDGIs of simvastatin. In
order to achieve this, the following specific goals have been de-
fined. The first part aimed to develop a PBPK simvastatin DDGI
network, including DDIs of five clinically relevant perpetrator
drugs and the DGIs of four PGx relevant polymorphisms. The
second objective was to use the developed network and to derive
new dose recommendations in the context of MIPD. Finally, the
results should be made publicly available as a web-based DSS for
easy and quick access, especially for health care professionals.
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Part II
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This chapter presents the scientific publications used for the
presented work.
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ARTICLE

Data Digitizing: Accurate and Precise Data Extraction for 
Quantitative Systems Pharmacology and Physiologically-
Based Pharmacokinetic Modeling

Jan-Georg Wojtyniak1,2, Hannah Britz1, Dominik Selzer1, Matthias Schwab2,3,4 and Thorsten Lehr1,*

In quantitative systems pharmacology (QSP) and physiologically-based pharmacokinetic (PBPK) modeling, data digitizing is 
a valuable tool to extract numerical information from published data presented as graphs. To quantify their relevance, a lit-
erature search revealed a remarkable mean increase of 16% per year in publications citing digitizing software together with 
QSP or PBPK. Accuracy, precision, confounder influence, and variability were investigated using scaled median symmetric 
accuracy (ζ), thus finding excellent accuracy (mean ζ = 0.99%). Although significant, no relevant confounders were found 
(mean ζ ± SD circles = 0.69% ± 0.68% vs. triangles = 1.3% ± 0.62%). Analysis of 181 literature peak plasma concentration 
values revealed a considerable discrepancy between reported and post hoc digitized data with 85% having ζ > 5%. Our find-
ings suggest that data digitizing is precise and important. However, because the greatest pitfall comes from pre-existing 
errors, we recommend always making published data available as raw values.

During the past few years, quantitative systems phar-
macology (QSP) and especially physiologically-based 
pharmacokinetics modeling (PBPK) have proven to be an 
important cornerstone of model-informed drug discov-
ery and development.1 However, for model development, 
time-dependent data of pharmacological relevant pro-
cesses are a crucial requirement. Unfortunately, published 
data are typically presented in aggregate form as plots or 
graphs without providing access to the underlying raw, un-
condensed data. As a result, researchers must extract the 
information of interest from the graphical representation to 
use the data for their modeling approaches. Despite the 
potential to automatically data-mine population average 

pharmacokinetic (PK) data for certain applications,2 data 
extraction from graphical representations still requires man-
ual efforts. To illustrate the scale of this issue, it should be 
noted that PBPK projects not uncommonly rely on extracted 
data gathered from up to 50 articles.3–9 Fortunately, several 
off-the-shelf digitization software packages that allow the 
extraction of numerical information from their two-dimen-
sional graphical representation are currently available.10–13 
These software solutions have been in active use for some 
time for the well-established population PK approaches.14 
However, neither for them nor for QSP or PBPK modeling is 
information available regarding the importance and use of 
digitizing software. Moreover, to the best of our knowledge, 

1Clinical Pharmacy, Saarland University, Saarbrücken, Germany; 2Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; 3Department of 
Clinical Pharmacology, Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany; 4Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally 
Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany. *Correspondence: Thorsten Lehr (thorsten.lehr@mx.uni-saarland.de)
Received: October 10, 2019; accepted: April 9, 2020. doi:10.1002/psp4.12511

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  In quantitative systems pharmacology (QSP) and 
physiologically-based pharmacokinetic (PBPK) modeling, 
data digitizer becomes a valuable tool to translate litera-
ture data from a graphical representation into numerical 
values.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  This study investigated the usage of digitizing software 
in QSP and PBPK modeling. Moreover, it evaluated the 
software accuracy, precision, confounder influence, and 
variability between software. In addition, the discrepan-
cies between reported and graphically presented data 
were analyzed.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  The results of this study contributed to an im-
proved  understanding of the precision and accuracy of 
digitizing software.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DE-
VELOPMENT, AND/OR THERAPEUTICS?
✔  The study findings could help improve the quality of the 
QSP and PBPK models, which were developed based on dig-
itized literature data. Furthermore, they can protect the mod-
eler from using biased data that could subsequently lead to 
false in silico predictions and hence hamper the drug discov-
ery and development process or, even worse, harm patients 
as a result of erroneously derived therapy recommendations.

3.1 publication i - data digitizing 19
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there is no systematic evaluation of the accuracy and pre-
cision of these software solutions, nor have any interfering 
factors that could potentially bias the digitized output been 
identified. In addition, little is known about the extent of dis-
crepancy between reported and graphically presented data 
that is typically only revealed after post hoc digitization and 
the nature of these errors and confounding factors when it 
comes to the digitization process. Consequently, these fac-
tors can potentially interfere with model development and 
evaluation processes and ultimately lead to false predic-
tions and questionable model-based decisions.

Thus, the first objective of this analysis was to assess the 
general usage of the data digitizing software for QSP and PBPK 
modeling. Second, this analysis aimed to evaluate the accuracy 
and precision of a relevant digitizing software. Moreover, dis-
crepancies between reported and graphically presented data 
were quantified, and the covariates influencing the digitizing 
process were identified. Finally, recommendations regarding 
the creation of digitizable plots and graphs and the digitization 
process itself were proposed.

METHODS
Literature search
In a first step, literature published between January 2005 and 
September 2019 were queried for terms regarding the most 
common digitizing software in combination with the two termi-
nologies “systems pharmacology” and “physiologically based 
pharmacokinetic.” For this purpose, the software Publish or 
Perish15 was used using the Google Scholar search engine for 
terminology queries. Google Scholar was used because the 
search engine allows a full-text analysis, which was a prereq-
uisite because the use of digitizing software is, in most cases, 
only mentioned in the Methods sections of texts. For each dig-
itizing software, the search query “systems pharmacology OR 
physiologically based pharmacokinetic AND software name” 
was used. The search was performed by one author (J.-G.W.) 
and reviewed by two other authors (H.B., D.S.). The search 
query results were not further edited or restricted by specific 
exclusion criteria. Moreover, no gray literature analysis was 
performed. Subsequently, the annual publications that con-
tain the terms were used as a surrogate marker of importance. 
Furthermore, Poisson regression was applied to describe 
and predict the trends in software usage from 2005 to 2021. 
Moreover, a detailed search for publications from 2012 to 2019 
in CPT: Pharmacometrics & Systems Pharmacology (CPT:PSP) 
was also performed. For this, the search query “systems phar-
macology OR physiologically based pharmacokinetic AND 
software name” was used. To identify unreported uses of 
digitization, all publications from CPT:PSP containing only the 
terms “systems pharmacology OR physiologically based phar-
macokinetic” without the name of a digitization software were 
selected. Following this, the cumulative publication frequency 
was calculated. Afterward, based on the assumption that data 
digitization is necessary for every project related to QSP or 
PBPK, the relative frequency of unreported digitizing software 
usage was estimated. Finally, to investigate the reporting rate 
of digitizing techniques in the methods, all published articles 
from CPT:PSP from 2018 were reviewed manually to identify 
articles related to PBPK that referenced a digitizing software 
and most likely had used literature data.

Software evaluation
A study was performed to assess the accuracy and pre-
cision of the digitizing software GetData Graph Digitizer10 
and to identify the interfering factors that potentially have 
an influence on the digitized output. As study inclusion cri-
teria, the subjects had to be at least 18 years old and be 
able to use the digitization software independently after 
a standardized software introduction. Furthermore, they 
had to give informed consent and, following this, were 
randomly split into two groups (group 1 and group 2). All 
subjects had to fill out a standardized questionnaire to col-
lect demographics such as age and education. They were 
asked to digitize the same steady-state plasma concentra-
tion-time graph of a hypothetical drug (two-compartment 
model, absorption constant (Ka) = 3 hour−1, plasma clear-
ance (CL)  =  4  L/hour, central volume of distribution 
(V1) = 20 L, intercompartmental clearance (Q) = 3 L/hour, 
peripheral volume of distribution (V2) = 70 L, oral bioavail-
ability (F) = 100%, dose = 1 mg simulated using Berkeley 
Madonna V 8.3.18 developed by Robert Macey and George 
Oster, University of California, Berkeley, CA) three times in 
a row. The two-compartment model was chosen as it can 
be easily parametrized and because the simulations can be 
easily reproduced. To minimize a possible bias attributed 
to learning effects, the plasma concentration-time profile in 
group 1 consists of 10 values marked as circles following 10 
values marked as triangles (sample time points: 0, 1, 2, 3, 
5, 7, 10, 13, 16, 20, 24, 25, 26, 27, 29, 31, 34, 37, 40, 44). The 
profile in group 2 was designed as triangles first and circles 
last. The random allocation sequence for the study subjects 
was generated with Excel 2016 (Microsoft, Redmond, WA) 
using a two-sized block randomization and implemented 
via consecutive questionnaire numbers. No blinding was 
performed. To validate that demographics are equally dis-
tributed within the groups, an analysis of variance (ANOVA) 
or chi-square goodness-of-fit tests were performed for 
continuous and categorical demographics, respectively. If 
the study data were missing, it was imputed with calculated 
median values for continuous variables and with calculated 
modal values for categorical variables. To evaluate a po-
tential bias attributed to missing values, statistical analyses 
were performed with and without imputed values whenever 
necessary, and the results were compared afterward.

For comparing accuracy and precision, the scaled me-
dian symmetric accuracy (ζ)16 and ζ standard deviation 
(SD) were calculated as shown in Eqs. 1–4. Scaling (mini-
mum–maximum normalization17) as depicted in Eq. 1 was 
independently performed for time and concentration values. 
ζ was calculated over the combined vector of scaled values 
for time and concentration values.

(1)xscaled=
x−xmin

xmax−xmin

+�machine

(2)Qi =
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xscaled,simulated
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−1

)
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With xscaled  =  scaled value, x  =  original value, xmin  =  min-
imum of the original values, xmax  =  maximum of the original  
values, �machine=machine epsilon, Qi  =  accuracy ratio,  
xscaled,digitized =  scaled digitized value, xscaled,simulated  =  scaled 
simulated value, n = number of ζ values, and xi = ζ, x = mean ζ.

Because ζ for values equal zero is not defined, the ma-
chine epsilon (2.2E-16) was added to each value. Afterward, 
the impact of demographic variables (age, sex, education, 
average computer usage per day, experience with digitizing 
software, and right-handedness) and study-specific vari-
ables (digitizing time, symbol shape, type of computer used, 
and mouse usage) on ζ were investigated using multiple lin-
ear regression. Moreover, to analyze if multiple digitization 
leads to better results, an ANOVA with different repetitions 
on ζ was performed.

The required study sample size was calculated for comparing 
two sample means with an equal variance. Because no literature 
reference values were available, a mean ζ of 5% and a variance 
of 2% for circle shapes were assumed. Furthermore, a 1.5% 
increase of ζ in the triangle group was assumed compared with 
circles. From this, the necessity of at least 62 subjects was cal-
culated to get a significant result with a statistical power of 80%, 
and a significance level of 5% and a dropout rate of 10% were 
assumed (28*2*1.1 = 61.6).

Subsequently, to investigate the impact of the use of dig-
itized data on parameter estimation, the PK parameters of 
the hypothetical drug were estimated for each of the dig-
itized profiles via nonlinear optimization using the lbfgsb3 
R package.18 Afterward, the relative deviation compared 

to the parameters used for simulation were calculated and 
visualized.

Consequently, a substudy with 14 subjects from the 
main study group was conducted to compare the accu-
racy and precision of the digitization software packages 
DataThief, Engauge Digitizer, and GetData Graph Digitizer. 
In this study, the subjects digitized the graph from group 1 
with each digitization software. Afterward, ζ and ζ SD were 
calculated for the digitized profiles and subsequently ana-
lyzed via an ANOVA and pairwise t-test. The graphs of both 
groups and an overview of the whole study procedure are 
shown in Figure 1. The three digitization software packages 
DataThief, Engauge Digitizer, and GetData Graph Digitizer 
were selected based on the criteria of software availability, 
usability, included features, and the feedback from a small 
user survey (10 subjects from our group). A comprehen-
sive list of the different digitization software features can be 
found in Table S1.

Analysis of published PK data
Finally, the extent of discrepancy between the reported 
and graphically presented data were investigated based on 
published sample time points and mean peak plasma con-
centration (Cmax) values. For this, digitized readouts as well 
as published raw values from single and multiple dose pro-
files that were previously digitized in-house with GetData 
Graph Digitizer were used. A complete list from all stud-
ies included can be found in the supplementary material in 
Tables S2 and S3. Unscaled ζ was calculated individually 
for all available values. Following this, a stepwise multivar-
iate linear regression analysis (forward inclusion P ≤ 0.05, 
backward elimination P ≤ 0.01) was performed to investi-
gate the relationship between the ζ values and the portable 
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√√√
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Figure 1 Schematic overview of the study protocol as well as the concentration-time profiles digitized by study subjects.
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document format (PDF) (scanned vs. not scanned), the 
publishing year, and the investigated parameter (Cmax or 
sample time points). In addition, for values that revealed a 
ζ greater than 5%, a root cause analysis was performed.

All graphical and statistical analysis as well as the sample 
size calculations were performed using R and R-Studio.19,20

RESULTS
Literature search
Digitizing software is increasingly used in QSP and PBPK 
modeling as shown in Figure 2a. The free and open-source 

Engauge Digitizer was most frequently cited, followed by 
the GetData Graph Digitizer (see Figure b2). For most soft-
ware, an increase in use during the analyzed time span was 
observed. Arithmetic mean increase per year was 16%, 
with the highest increase for WebPlotDigitizer (87%) and 
the highest decrease for DataThief (−8%) (see Figure S1).

The Publish or Perish search query for QSP or PBPK in 
the journal CPT:PSP from 2012 to 2019 revealed 477 publi-
cations. In contrast, for the search terms QSP or PBPK and 
the names of the most important digitization software pack-
ages, only 31 entries were found. Based on the assumption 
that every QSP or PBPK project requires the use of digitiza-
tion software, these findings led to an underreporting rate of 
94%. Figure 2c shows the cumulative number of publica-
tions for both search queries. In addition, after the manual 
review of articles published in CPT:PSP in 2018, 20 origi-
nal research articles that presented PBPK modeling results 
were found. Among those, 16 used concentration-time or 
other PK data for model development or validation. Among 
the 16 studies, 12 used literature data that most likely had 
to be digitized, 3 had access to individual level data, and 1 
study used data from a database for their model develop-
ment. Among the 12 studies that used literature information, 
17% (n = 2) reported that they had used a digitization soft-
ware, leading to an underreporting rate of 83%. A detailed 
overview of the manual review process is shown in Figure 
S2 and Table S4.

Software evaluation
Overall, 70 subjects (51% male) were enrolled in our study. 
Their mean age was 30 years (range of 18–65 years), and 
they engaged in a mean computer usage of 4.1 (±3.0) hours 
per day. Only 4% of them had worked with a digitizing soft-
ware before. All subjects had an educational degree, with 
the lowest being lower secondary school–leaving certificate 
and the highest being a doctorate. Demographic character-
istics and the number of subjects were equally distributed 
in both groups as summarized in Table 1. The ANOVA and 
chi-square goodness-of-fit tests revealed no significant dif-
ferences in study demographics between the groups, with 

Figure 2 Results from  literature search. (a)  Number of 
publications containing the terms “systems pharmacology” 
or “physiologically based pharmacokinetic” and the names 
of the digitization software packages investigated during 
the past few years. Labels and the dashed purple line shows 
model-estimated values. Solid lollipops represent the 
observed values. (b) Total number of publications containing 
the terms “systems pharmacology” or “physiologically based 
pharmacokinetic” and the name of the digitization software 
package for each package investigated. The names investigated 
were “Engauge Digitizer,” “GetData Graph Digitizer,” “Un-Scan 
it,” “WebPlotDigitizer,” “DigitizeIt,” “GraphClick,” “DataThief,” 
“Dagra,” “WinDig,” “g3data,” and “im2graph.” (c) Analysis of the 
cumulative publication frequency in CPT: Pharmacometrics & 
Systems Pharmacology of the terms “systems pharmacology” 
or “physiologically based pharmacokinetic” (blue solid line, 
triangles) when compared with “systems pharmacology” or 
“physiologically based pharmacokinetic” and the names of 
the digitization software packages (orange solid line, circles) 
investigated during the the past few years. QSP, quantitative 
systems pharmacology; PBPK, physiologically-based 
pharmacokinetics.
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P values always greater than 0.08. The demographic infor-
mation for all study participants was complete. Thus, no 
data had to be imputed.

Mean ζ was small for all digitized profiles (0.99%), indicat-
ing excellent accuracy. Furthermore, ζ SD was low (0.72%), 
revealing a good precision of the software. The regression 
analysis revealed a significant (P  <  0.001) effect of symbol 
shape and digitizing time on ζ. These effects are visualized 
in Figure 3. Triangles had a 1.9-fold increased mean ζ when 
compared with circles (1.3% vs. 0.69%) and, hence, were less 
accurately digitized. Furthermore, subjects digitizing slowly 
were more accurate than subjects digitizing faster (Figure 3b). 
Besides that, no other covariates had a significant effect on ζ.

From the first to the last repetition, the mean digitiz-
ing time declined moderately (first, 3.01  minutes; second, 
2.24 minutes; third, 2.16 minutes). No statistical difference 
in accuracy or precision was observed between the three 
replicates as shown in Figure S3.

Furthermore, the estimated PK parameters based on the 
digitized profiles revealed only small deviations when com-
pared with the parameters used for profile simulation with a 
mean modulus of the relative deviation of 0.5%. The devia-
tion of all parameters is visualized in Figure 3c.

An ANOVA analysis of the performed substudy revealed 
statistically significant differences in accuracy and preci-
sion among the investigated software (Figure 3d). GetData 
Graph Digitizer and Engauge Digitizer had a similar mean ζ 
value (0.2%), whereas DataThief had a markedly increased 
value (0.5%). The ζ SD was 0.1%, 0.2%, and 0.4% for 
GetData Graph Digitizer, Engauge Digitizer, and DataThief, 
respectively.

Analysis of published PK data
For investigating the literature profile quality, 181 mean Cmax 
values and 3499 sample time points of concentration-time 
profiles obtained from 81 literature studies published between 
1984 and 2017, which were presented as graphs and as nu-
meric values, were analyzed. Digitization was carried out as 
part of two of our in-house model developments (simvastatin, 
ketoconazole). The digitized profiles were originally derived 
from graphs that had either linear or logarithmic scaled axes 
and were depicted either as single or panel plots. Therefore, 
3% of the sample time points and 85% of the mean Cmax val-
ues had a ζ greater than 5%. The linear regression analysis 
revealed that besides the parameter investigated (sample 
time points or Cmax), neither the PDF format (scanned vs. not 
scanned) nor the publishing year had a significant effect on ζ. 

The subsequently performed root cause analysis found for all 
sample time points with ζ greater 5% a justification, namely, 
either the x axis was not sufficiently resolved or the x axis 
in the graphic had an uneven resolution. In contrast, a rea-
son for the discrepancy could be identified in only 40% of the 
mean Cmax values with ζ greater than 5%. Specifically, they 
were caused either by poor graphic quality, incorrect labeling, 
or different types of central tendencies presented in the table 
and graphic. For the remaining digitized mean Cmax values, 
no justification could be found, leading to an assumption of 
either incorrectly stated mean Cmax values in the depicted 
concentration-time profile or in the presented table. An over-
view of the error frequencies and ζ distribution is presented 
in Figure 4.

Finally, based on the most important study findings, a 
digitization algorithm as depicted in Figure  5 was formu-
lated that can help guide scientists through the digitization 
process.

DISCUSSION
Literature search
The reuse of data through digitization from published ar-
ticles  is an easy-to-use and attractive way for gathering 
necessary information, especially in QSP and PBPK mod-
eling. This is also evident in the investigated publication 
frequencies of “systems pharmacology” or “physiologi-
cally based pharmacokinetic” in combination with the 
names of the investigated digitization software solutions. 
Thus, a remarkable, constant, and exponential increase 
in the number of literature references was observed. This 
was observed not only for the pooled number of publi-
cation frequencies but also for most of the software 
packages themselves. However, it should be mentioned 
that because of the large number of different software 
solutions, it is very unlikely that all digitizing software 
available was investigated. In addition, we assume that 
the actual number of unreported digitizing software 
usage is significantly higher and that the software is often 
not reported. This is supported by the cumulative number 
of publications from 2012 to 2019 in the journal CPT:PSP, 
where 477 publications citing “systems pharmacology” or 
“physiologically based pharmacokinetic” are published 
but only 31 publications additionally mention the name of 
a digitizer software. Subsequently, even if not every pub-
lication on the subject requires digitization software, this 
still suggests a massive underreporting. This assumption 
is further validated by the manual review of publications 

Table 1 Study demographics

Parameter and descriptive measures Group 1, N = 36 Group 2, N = 34 Total, N = 70

Age, y, mean (SD) 30 (13) 30 (12) 30 (13)

Average computer usage per day, hour, mean (SD) 4.5 (3.1) 3.7 (2.9) 4.1 (3.0)

Mouse usage, count (%) 31 (86) 30 (88) 61 (87)

No experience with digitization software, count (%) 33 (92) 34 (100) 67 (96)

Right-handedness, count (%) 30 (83) 32 (94) 62 (89)

Male, count (%) 20 (56) 16 (47) 36 (51)

SD, standard deviation.
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from 2018 in CPT:PSP on PBPK modeling, revealing a re-
porting rate of 17%.

As a drawback of the performed literature search, one 
can state that the search query results were not further 
revised, and no gray literature analysis was carried out as 

recommended for systematic reviews. However, the pur-
pose of the literature search was not the development of 
a systematic and exhaustive review but, rather, the identi-
fication of general trends. For this reason, the methodology 
differs from that of a systematic review. For example, search 

Figure 3 Results from the multiple linear regression analysis.  Influence of the symbol shape (a) on median symmetric accuracy is 
visualized as a boxplot with the Wilcoxon rank sum test. Effect of digitizing time (b) on median symmetric accuracy is depicted as a 
scatterplot with linear regression formula and coefficient of determination. (c) Relative pharmacokinetic parameter deviation of the 
estimated parameters when compared with the values used for profile simulation is shown as boxplots. Parameter estimation was 
performed for each digitization run. (d) Median symmetric accuracy for different digitization software shown as boxplots. ANOVA as 
well as pairwise Wilcoxon rank sum tests were performed. ANOVA P value is stated. For Wilcoxon rank sum test P values, the following 
annotation was used: ****≤ 0.0001, **≤ 0.01; *≤ 0.05; NS > 0.05. In addition, in d arithmetic, the mean of all groups is shown as a dashed 
line. All boxplots visualize the following descriptive statistics: The median value, the interquartile range, and the 1.5-fold interquartile 
range. ANOVA, analysis of variance; NS, not significant.
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queries were not carried out in various databases such as 
PubMed or Embase as recommended for systematic re-
views. Instead, the search engine Google Scholar was used, 
whose algorithm screens many different databases and 
sources; moreover, this is better suited to get an overview of 
the frequency of use in literature.

Nevertheless, it can be assumed that the usage of digitiz-
ing software in QSP and PBPK modeling will further increase 
in the next few years as shown in Figure 2.

Software evaluation
For the study with 70 subjects, ζ was chosen as an error met-
ric because of its intuitive interpretation as a relative error.16 
With a mean ζ of 0.99% and a mean ζ SD of 0.725%, the 
digitized readouts were tremendously accurate and precise. 
This is also reflected in the accuracy of the PK parameters 
subsequently fitted to the digitized profiles showing a mean 
modulus of relative deviation of 0.5% when compared with 
the original values. This further suggests the assumption that 
the accuracy of individual digitized values is less important 
because they are not independently analyzed in the model 
but as time-dependent series of values. Apart from this, the 
symbol shape and digitizing time revealed a significant ef-
fect on the accuracy (ζ), leading, for example, to a 1.9-fold 

lower mean ζ value for circles when compared with triangles. 
Nevertheless, these effects are still negligible, considering 
the overall small ζ. Although the average digitizing time de-
clined with each repetition, no advantages in accuracy were 
observed if the same graph was digitized more than once. 
Based on these results, we recommend that one-time, slow-
paced digitizing is sufficient for a proper readout.

The additionally performed substudy revealed significant 
differences in accuracy comparing DataThief and the two 
software products Engauge Digitizer and GetData Graph 
Digitizer. Here, DataThief showed a 1.5-fold decline in ac-
curacy when compared with Engauge Digitizer and GetData 
Graph Digitizer. As mentioned previously, this effect is still 
negligible because the mean ζ for all three software pack-
ages was still less than 0.6%. This led to the assumption 
that although significant differences between the software 
exist, accuracy is still excellent, and thus, other software 
features are more important. For example, the freely avail-
able and open-source software Engauge Digitizer is still 
under active development on GitHub, providing a wide 
range of functionalities and available in different languages 
for multiple operating systems. Although this might raise 
the question of whether, apart from the software, other fac-
tors such as the operating system also have an impact on 

Figure 4 Discrepancy between reportedand graphically presented sample time points and mean Cmax values. Relative frequency of ζ 
< 5% and justifications for ζ values ≥ 5% were presented as bar charts. Distribution of ζ values were in addition shown as boxplots. (a) 
depicts the results for digitized sample time points while (b) displays the digitized mean Cmax values.  Cmax, peak plasma concentration.
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Figure 5 Proposed digitization algorithm to improve the daily digitizing and graph creation practice in the fields of quantitative 
systems pharmacology and physiologically-based pharmacokinetics. Examples are taken from refs. 22 to 25. AUC0–24h, area under 
the plasma concentration-time curve calculated from 0 to 24 hours post dose; Cmax, peak plasma concentration.
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accuracy, at least for Engauge, this is very unlikely because 
it is programmed in Qt, an operating system–independent 
programming language.12,21

Analysis of published PK data
Data that were redundantly presented as numeric values 
as well as in a graphs or plots were analyzed using ζ as 
an error metric for the differences between reported values 
and the corresponding digitized graphical representation. 
If ζ was > 5%, the graphs and plots were further explored 
to determine the article properties that may impede re-
searchers from retrieving correct readouts. ζ of the digitized 
sample time points were in good agreement with the results 
derived from the previously conducted study. However, a 
few sources of errors could be identified. Specifically, the 
resolution of the axes seemed to have an important influ-
ence on the quality of the digitized readout. If one of the 
axis resolutions is uneven or the resolution does not allow 
cleanly distinguishing between individual measuring points, 
the result can be falsified. Surprisingly, with 80% of the 181 
mean Cmax values having a ζ  >  5% and a maximum ζ of 
1760%, alarmingly large differences between the published 
numerical values and the values in graphs were found. Even 
worse, as shown in Figure 4, after the performed root cause 
analysis for 40% of the Cmax values with ζ greater 5%, no 
justification could still be identified. This leads to the as-
sumption that either the wrong graph was plotted or a wrong 
Cmax was reported. Based on these findings, we strongly 
recommend that published data should additionally always 
be made available as raw data. Furthermore, if such access 
is available, digitizing reported and graphically presented 
data should be avoided; instead, raw data should be used. 
Moreover, if access to raw data is not available, researchers 
should check that each axis scaling is uniformly and opti-
mally resolved, the graphics quality is high, and the correct 
labeling is used. In addition, they should try to double check 
their digitized values based on values that are additionally 
published in a numeric form. However, although following 
the last recommendation may prevent the use of corrupted 
data, there is no option to correct the readout if the errors 
that are already present before digitization get detected. 
Consequently, it is very likely that many profiles cannot be 
reused after all. For this reason, it is hoped that in the long 
run, all data published in condensed form as graphs will 
also be made available to scientists as raw values.

In summary, it was found that digitizing software has be-
come more popular, especially in QSP and PBPK modeling. 
The presented results indicate that they are a great tool to 
gather data from graphical representations with excellent 
accuracy and precision. Moreover, neither user-dependent 
nor software-dependent relevant confounders could be 
identified. Although the digitizing time, symbol shape, and 
software used had a statistically significant influence on dig-
itizing accuracy, the impact on the routine digitizing practice 
seems negligible. Digitizing a graph more than once did not 
improve the quality of the readout and thus is redundant. 
However, it was also found that the greatest danger of incor-
rectly derived analysis results based on digitized data does 
not come from the process of digitizing but from pre-existing 
errors in the published data. Overall, the results of this study 

are the results of the first systematic investigation on the 
accuracy and precision of digitizing software. Hopefully, the 
derived recommendations as summarized in Figure 5 may 
guide and improve the daily digitizing and graph creation 
practice in the field of QSP and PBPK modeling and even-
tually enhance the quality of models developed based on 
digitized readouts.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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Abstract
Purpose Zoptarelin doxorubicin is a fusion molecule of the chemotherapeutic doxorubicin and a luteinizing hormone-
releasing hormone receptor (LHRHR) agonist, designed for drug targeting to LHRHR positive tumors. The aim of this study 
was to establish a physiologically based pharmacokinetic (PBPK) parent-metabolite model of zoptarelin doxorubicin and to 
apply it for drug–drug interaction (DDI) potential analysis.
Methods The PBPK model was built in a two-step procedure. First, a model for doxorubicin was developed, using clinical 
data of a doxorubicin study arm. Second, a parent-metabolite model for zoptarelin doxorubicin was built, using clinical 
data of three different zoptarelin doxorubicin studies with a dosing range of 10–267 mg/m2, integrating the established 
doxorubicin model. DDI parameters determined in vitro were implemented to predict the impact of zoptarelin doxorubicin 
on possible victim drugs.
Results In vitro, zoptarelin doxorubicin inhibits the drug transporters organic anion-transporting polypeptide 1B3 (OATP1B3) 
and organic cation transporter 2 (OCT2). The model was applied to evaluate the in vivo inhibition of these transporters in 
a generic manner, predicting worst-case scenario decreases of 0.5% for OATP1B3 and of 2.5% for OCT2 transport rates. 
Specific DDI simulations using PBPK models of simvastatin (OATP1B3 substrate) and metformin (OCT2 substrate) predict 
no significant changes of the plasma concentrations of these two victim drugs during co-administration.
Conclusions The first whole-body PBPK model of zoptarelin doxorubicin and its active metabolite doxorubicin has been 
successfully established. Zoptarelin doxorubicin shows no potential for DDIs via OATP1B3 and OCT2.

Keywords AEZS-108 · AN-152 · Doxorubicin · PBPK modeling · Drug–drug interaction · Targeted chemotherapy

Introduction

Zoptarelin doxorubicin (also known as AEZS-108, AN-152 
and ZEN-008) is a fusion molecule of the chemotherapeutic 
doxorubicin and an LHRHR agonist [1]. The DNA interca-
lating agent doxorubicin is chemically linked to the carrier 
molecule d-Lys6-LHRH, which enables specific binding 
and selective uptake of zoptarelin doxorubicin by tumors 
expressing receptors for LHRH (“drug targeting”), followed 
by the intracellular release of the active component doxo-
rubicin. The rationale for the synthesis and development of 
this hybrid molecule is to increase the cytotoxic specific-
ity, while decreasing the general toxicity when compared to 
doxorubicin alone.
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In vitro, zoptarelin doxorubicin has shown stronger anti-
proliferative effects in human LHRHR positive ovarian and 
endometrial cancer cells compared to doxorubicin [2], as 
well as higher cytotoxic potency in LHRHR expressing 
human oral and laryngeal carcinoma cells [3]. In nude mice 
bearing subcutaneous human LHRHR positive endometrial 
and ovarian tumors, equimolar doses of zoptarelin doxo-
rubicin were significantly more effective in tumor growth 
inhibition compared to doxorubicin. Furthermore, in the 
high-dose study arm, seven of the ten mice treated with 
doxorubicin died, while all ten mice treated with zoptarelin 
doxorubicin survived [4]. Growth of subcutaneous human 
urinary bladder cell tumors in nude mice was more potently 
inhibited by zoptarelin doxorubicin compared to doxorubicin 
[5].

In clinical Phase I and Phase II studies, zoptarelin doxoru-
bicin has shown therapeutic activity in patients with LHRHR 
positive ovarian and endometrial cancer [6, 7]. The PK prop-
erties of zoptarelin doxorubicin have been assessed in the 
first-in-human, dose escalation Phase I study in patients. 
Plasma half-life and clearance were calculated to be approxi-
mately 2 h and 1 L/(min*m2), with the reservation that in 
this early study the measured plasma concentrations showed 
a high variability [8]. Due to the size and hydrophilicity of 
zoptarelin doxorubicin (decapeptide coupled via a glutaryl 
linker to doxorubicin), passive distribution into tissues is 
limited, but cellular entry is expected to be facilitated by 
target binding to LHRHR, followed by internalization of the 
drug–receptor complex and intracellular cleavage to release 
the doxorubicin moiety within the target cells. In aqueous 
solution and in blood plasma, zoptarelin doxorubicin is sub-
ject to spontaneous and carboxylesterase-mediated hydroly-
sis into doxorubicin and probably d-Lys6-LHRH-glutarate. 
Metabolite profiles in liver microsomal incubations suggest a 
minor role of oxidative metabolism compared to hydrolysis.

Doxorubicin PK studies in patients show that doxorubicin 
follows a multiphasic disposition after intravenous infusion. 
The initial distribution half-life of approximately 5 min 
indicates rapid tissue uptake, while a terminal half-life of 
20–48 h reflects slow elimination from tissues. Steady-state 
distribution volumes exceed 20–30 L/kg revealing extensive 
drug uptake into tissues. Plasma clearance is in the range of 
8–20 mL/min/kg and is governed by metabolism and biliary 
excretion [9–11].

To evaluate the zoptarelin doxorubicin DDI poten-
tial in vitro, a DDI screening on cytochrome P450 (CYP) 
enzymes and recommended drug transporters has been per-
formed. In these assays, zoptarelin doxorubicin showed no 
inhibition or induction of CYP enzymes, but in the trans-
porter studies, zoptarelin doxorubicin inhibited OATP1B3 
and OCT2 with  IC50 values of 16.5 and 3.26  μmol/L, 
respectively. Doxorubicin itself and d-Lys6-LHRH-glu-
tarate inhibited OATP1B3 with  IC50 values > 100 µmol/L 

and OCT2 with  IC50 values > 200 µmol/L. Based on these 
results, in vivo interactions with drugs that are substrates of 
OATP1B3 (e.g. simvastatin) or OCT2 (e.g. metformin) could 
not be ruled out. As these victim drugs are widely used, their 
co-administration with zoptarelin doxorubicin would be very 
likely, creating a need to investigate the impact of these 
potential DDIs. However, clinical DDI studies involving 
DNA intercalating agents are, for ethical reasons, difficult 
to conduct. PBPK modeling offers an excellent alternative 
to dedicated clinical DDI studies and is recommended and 
supported by the FDA (US Food and Drug Administration) 
and EMA (European Medicines Agency) to predict the mag-
nitude of in vivo DDIs from in vitro results [12, 13].

The objectives of this modeling investigation were (1) 
to establish the first whole-body PBPK model of zoptare-
lin doxorubicin and its active metabolite doxorubicin, (2) to 
apply the zoptarelin doxorubicin model for a general assess-
ment of the DDI potential with OATP1B3 and OCT2 victim 
drugs and (3) to predict the magnitude of zoptarelin doxo-
rubicin DDIs with simvastatin and metformin in worst-case 
scenarios.

Materials and methods

Clinical studies used

The results of three different clinical studies with PK blood 
sampling were available for model development (Table 1). 
Study 1 (ZEN-008-Z023) is a Phase I first-in-human sequen-
tial group dose escalation and PK study, performed in 17 
female patients with LHRHR positive tumors. Zoptarelin 
doxorubicin was administered as a 2-h intravenous infu-
sion, once every 21 days, in doses of 10, 20, 40, 80, 160 or 
267 mg/m2 [8]. Data of two patients were excluded due to 
bioanalytical issues. Study 2 (AEZS-108-046) is a combined 
Phase I/II study, with PK sampling performed in a sub-set 
of 14 male or female patients with locally advanced unre-
sectable or metastatic LHRHR positive urothelial carcinoma 
who failed platinum-based chemotherapy. Zoptarelin doxo-
rubicin was administered as a 2-h infusion every 21 days 
in doses of 160, 210 or 267 mg/m2 (results not published, 
yet). Data of four patients were excluded because of sample 
hemolysis. Study 3 (AEZS-108-053) is a Phase I cardiac 
safety and PK study comparing zoptarelin doxorubicin and 
doxorubicin therapy in 21 and 11 female patients, respec-
tively, with locally advanced recurrent or metastatic cancer. 
Zoptarelin doxorubicin was administered as a 2-h infusion of 
267 mg/m2. Doxorubicin was administered as a 1-h infusion 
of 60 mg/m2 (results not published, yet). Data of two patients 
were excluded due to sampling issues. Details on the patient 
demographics of these studies (age, weight, body surface 
area) are listed in Table 1.
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To supplement the measurements of the doxorubicin arm 
of Study 3, published human in vivo data of doxorubicin 
in plasma, white blood cells, urine and feces were added, 
to build the “training dataset” for the development and 
 parameter optimization of the doxorubicin model. As train-
ing data for zoptarelin doxorubicin model development and 
parameter optimization, the four lowest dose applications 
of Study 1 (10, 20, 40, 80 mg/m2) plus the measurements 
of Study 3 (267 mg/m2, highest clinical dose) were chosen. 
Evaluation of the zoptarelin doxorubicin model was carried 
out with the clinical data of the remaining dosing groups of 
Study 1 as well as the complete clinical Study 2 as the “test 
dataset”.

Software

PBPK modeling was performed with PK-Sim® and MoBi® 
(Open Systems Pharmacology Suite, Version 7.0.0, Bayer 
AG, Leverkusen, Germany). Parameter optimization was 
accomplished using the Monte Carlo algorithm of the 
“Parameter Identification Toolbox” in MATLAB® (Version 
R2013b, The MathWorks, Inc., Natick, MA, USA). Sensitiv-
ity analysis was performed within PK-Sim®. Graphics and PK 
parameter analyses were compiled with MATLAB® R2013b.

Doxorubicin model development

Model development was started with the establishment of 
a model of the active metabolite doxorubicin. To limit the 

parameters to be optimized during model development, the 
minimal number of processes necessary was implemented 
into the model. For the doxorubicin model these are (1) 
doxorubicin binding to DNA, (2) an unspecific metabolic 
hepatic clearance and (3) an unspecific elimination to bile. 
Glomerular filtration and enterohepatic cycling were ena-
bled, as they are active under physiological conditions. A 
diagram of the PBPK model structure is given in Zoptare-
lin Doxorubicin Supplementary Fig. 1.

To model the binding of doxorubicin to DNA as the 
cause of the extensive distribution into and slow elimi-
nation from body tissues, a binding partner was imple-
mented into the DNA-rich organs, with published values 
for Kd and koff [14]. In the literature, there are reports of 
doxorubicin concentration measurements in plasma and 
white blood cells [15, 16] that were utilized to inform the 
distribution (cellular permeability, see below) and DNA 
binding processes. As there is no white blood cell (WBC) 
compartment in PK-Sim, the red blood cell (RBC) com-
partment was used as a substitute to represent the nucle-
ated white blood cells. The volume of this red blood cell 
compartment is larger than the physiological volume of 
the white blood cells; therefore, a relative concentration 
of DNA binding sites (that are absent in the anucleate 
RBCs) was implemented into the RBC compartment and 
estimated. The DNA binding site reference concentration 
(concentration in the tissue with the highest concentration 
of binding sites) was also optimized.

Table 1  Studies used for zoptarelin doxorubicin PBPK model development and evaluation

Values given for age, weight and BSA are arithmetic means, minima and maxima
a Assumed, BSA: body surface area, iv: intravenous, n: number of individuals studied, QD: once daily, SD: single dose, test: test dataset (model 
evaluation), training: training dataset (model development and parameter optimization)

Dose (mg/m2) Administration n Women (%) Age (years) Weight (kg) BSA  (m2) Dataset Study references

Doxorubicin
 36 iv (96 h), SD 7 50a 30.0a 64.0a 1.73a Training [15]
 30 iv (bolus), QD 7 50a 30.0a 64.0a 1.73a Training [16]
 60a iv (1 h),  SDa 3a 100a 71.0 (67–74)a 67.0 (58–84)a 1.64 (1.57–1.77)a Training [18]
 60 iv (1 h), SD 9 100 59.9 (44–74) 64.1 (41–84) 1.63 (1.28–1.81) Training Study 3 (AEZS-108-053)

Zoptarelin doxorubicin
 10 iv (2 h), SD 1 100 58.0 84.0 1.89 Training Study 1 (ZEN-008-Z023)
 20 iv (2 h), SD 1 100 48.0 65.0 1.70 Training Study 1 (ZEN-008-Z023)
 40 iv (2 h), SD 1 100 69.0 145.0 2.48 Training Study 1 (ZEN-008-Z023)
 80 iv (2 h), SD 1 100 44.0 55.0 1.63 Training Study 1 (ZEN-008-Z023)
 160 iv (2 h), SD 6 100 59.3 (55–69) 83.2 (58–107) 1.89 (1.60–2.12) Test Study 1 (ZEN-008-Z023)
 267 iv (2 h), SD 5 100 48.8 (31–63) 66.9 (59–85) 1.73 (1.64–1.89) Test Study 1 (ZEN-008-Z023)
 160 iv (2 h), SD 3 0 64.0 (63–65) 78.3 (69–90) 1.97 (1.84–2.07) Test Study 2 (AEZS-108-046)
 210 iv (2 h), SD 3 29 66.0 (55–83) 89.6 (64–121) 2.02 (1.71–2.38) Test Study 2 (AEZS-108-046)
 267 iv (2 h), SD 4 25 69.0 (62–87) 70.0 (52–86) 1.81 (1.51–1.98) Test Study 2 (AEZS-108-046)
 267 iv (2 h), SD 21 100 61.6 (46–78) 71.4 (45–108) 1.73 (1.35–2.13) Training Study 3 (AEZS-108-053)
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To account for hepatic metabolism to doxorubicinol and 
other metabolites, an unspecific metabolic first-order clear-
ance was implemented into the liver and optimized.

To model biliary excretion, an unspecific first-order trans-
port from liver to bile was implemented and estimated. As 
the lipophilicity of doxorubicin is very low (logP = 1.27), 
calculated passive cellular permeability is low. However, 
doxorubicin has been reported to be a substrate of diverse 
transporters, including the human isoforms of OATP1A and 
OATP1B [17]. To accurately describe the available clinical 
data, passive cellular permeability was increased, to com-
pensate for active transport processes that have not been 
implemented into the model.

To obtain values for the parameters that could not be 
adequately informed from literature or in-house preclinical 
studies, optimization was performed by simultaneously fit-
ting the model to the data of the doxorubicin arm of Study 3 
(9 patients), measured doxorubicin plasma and white blood 
cell intracellular concentration–time profiles of Speth et al. 
[15, 16] (two studies with mean values of 7 patients each) 
and published fraction of doxorubicin dose administered 
excreted unchanged to urine and feces information [18].

Zoptarelin doxorubicin model development

The final doxorubicin model was then used in the estab-
lishment of the zoptarelin doxorubicin model, together 
with clinically observed plasma concentration–time pro-
files of zoptarelin doxorubicin and doxorubicin following 
intravenous administration of zoptarelin doxorubicin. The 
following processes were implemented into the zoptarelin 
doxorubicin model: (1) zoptarelin doxorubicin binding to the 
LHRHR target, (2) internalization of zoptarelin doxorubicin 
by LHRHR and (3) hydrolysis of zoptarelin doxorubicin to 
release the active doxorubicin moiety within blood plasma 
as well as intracellularly. A diagram of the PBPK model 
structure is given in Zoptarelin Doxorubicin Supplementary 
Fig. 1.

To model the binding of zoptarelin doxorubicin to its 
target LHRHR, this receptor was implemented and values 
for Kd, koff as well as the LHRHR reference concentration 
were estimated. Expression of LHRHR is described in the 
literature to occur in non-malignant pituitary, ovary, testis, 
prostate and breast cells, as well as in cancer cells of diverse 
origin [19, 20]. In the model, LHRHR was implemented 
into the gonadal compartment (approximate organ volume of 
0.013 L). To compensate for the missing pituitary, prostate, 
breast and, most notably, cancer cell expression, as these 
tissues are not represented in standard PK-Sim individuals, 
LHRHR expression was further added at a 50% expression 
level to the lung compartment (approximate organ volume of 
1 L). The lung was chosen as a well perfused organ with no 
special pharmacokinetic function in this analysis (as would 

have been the case with liver or kidney). Implementation of 
zoptarelin doxorubicin binding to LHRHR into the model 
clearly improved the shape of the simulated zoptarelin doxo-
rubicin plasma concentration–time curves.

Internalization of zoptarelin doxorubicin was imple-
mented as a cellular uptake facilitated by LHRHR (into 
gonads and lung), followed by intracellular hydrolysis to 
release the doxorubicin moiety. As KM value of this uptake 
process an  IC50 value of 7.45 nmol/L was used, measured 
in a radio ligand displacement assay with very low concen-
trations of the radiolabeled ligand [21]. Therefore, it was 
assumed that  IC50 = Ki and this value was used as KM value 
for the internalization process. A very similar  IC50 value of 
10 nmol/L has been described in the literature for the bind-
ing of the endogenous agonist LHRH to LHRHR [22]. The 
internalization turnover number was estimated.

To model the hydrolysis of zoptarelin doxorubicin to 
d-Lys6-LHRH-glutarate and doxorubicin, a hydrolytic clear-
ance was implemented into blood plasma, gonads and lung. 
The hydrolysis rate in plasma was optimized, informed by 
the measured concentrations of zoptarelin doxorubicin being 
hydrolyzed and of doxorubicin resulting from this hydroly-
sis. The hydrolysis rate in gonads and lung was assumed to 
be the same as in plasma.

Parameter optimization was performed by simultaneously 
fitting the model to measured zoptarelin doxorubicin and 
doxorubicin plasma concentration–time profiles after admin-
istration of zoptarelin doxorubicin obtained in Study 1 (10, 
20, 40, 80 mg/m2) and Study 3 (267 mg/m2).

Virtual population characteristics

To predict the variability of the simulated plasma concen-
tration–time profiles, virtual populations of 100 individuals 
were generated according to the population demographics of 
each respective dosing group of the Studies 1, 2 and 3. The 
ICRP (International Commission on Radiological Protec-
tion) database in PK-Sim [23] was used for generation of 
virtual Caucasian populations. In the generated virtual popu-
lations, age, height, weight, corresponding organ volumes, 
tissue compositions, blood flow rates, etc. are varied by an 
implemented algorithm within the limits of the ICRP data-
base. In addition, the zoptarelin doxorubicin hydrolysis rate, 
the reference concentrations of the binding partners LHRHR 
and DNA, as well as the doxorubicin hepatic and biliary 
clearance rates were set to be log-normally distributed with 
variabilities of 25%CV (relative standard deviation). To cre-
ate a virtual population for the DDI predictions, reflecting 
an even larger demographic variability and representing the 
target cancer patient population, preliminary demographics 
of a large clinical Phase III study (Study 4, AEZS-108-050 
[24]) were used.
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Model evaluation

Model performance was evaluated by comparison of the pre-
dicted concentration–time profiles of the virtual populations 
to the plasma concentrations observed in the clinical studies, 
which had not been used during parameter optimization (test 
dataset). All population predictions compared to observed 
plasma concentration–time profiles are documented in the 
“Results” section or in the supplementary material, together 
with predicted compared to observed  AUClast and Cmax val-
ues of all studies. Furthermore, the biological plausibility of 
optimized parameters was checked and sensitivity analyses 
were conducted for the doxorubicin and zoptarelin doxoru-
bicin models.

Sensitivity of the final models to single parameters (local 
sensitivity analysis) was investigated, measured as changes 
of the AUC extrapolated to infinity  (AUCinf) of a simula-
tion of the highest applied dose. All parameters relevant to 
the respective model were included into the analysis, opti-
mized parameters as well as parameters fixed to literature 
values. Parameters were defined as relevant if they have 
been optimized (see Zoptarelin Doxorubicin Supplementary 
Tables 4 and 5), if they might have a strong influence due to 
calculation methods used in the model (lipophilicity, frac-
tion unbound), if they are related to optimized  parameters 
(doxorubicin-DNA Kd, doxorubicin-DNA koff, doxorubicin 
blood/plasma ratio) or if they had significant impact in for-
mer models (solubility, intestinal permeability, EHC con-
tinuous fraction, cellular permeability, blood/plasma ratio, 
GFR fraction). A sensitivity value of − 1.0 signifies that 
a 10% increase of the examined parameter causes a 10% 
decrease of the simulated  AUCinf.

General assessment of the zoptarelin doxorubicin 
DDI potential

To obtain a general statement on the DDI potential of zop-
tarelin doxorubicin, the final model was applied to predict 
the in vivo inhibition of OATP1B3 and OCT2 in a generic 
manner (independent of the victim drug affected by this inhi-
bition), by calculating the relative change of these transport-
ers’ KM values due to inhibition by zoptarelin doxorubicin.

Assuming a competitive inhibition and Michaelis–Menten 
kinetics, we expect a change in the KM value of the transport 
of the affected victim drugs, but not of the maximal trans-
port rate, as competitive inhibition can be overcome by high 
victim drug concentrations. Therefore, the inhibition is char-
acterized by the relative change of KM according to Eq. 2: 

(1)

KM apparent, victim drug (μmol∕L)

= KM victim drug ∗

(

1 +
inhibitor concentration

inhibitor K
i

)

Simulations to assess the DDI potential of zoptarelin 
doxorubicin were performed for the highest clinical dose 
of 267 mg/m2 zoptarelin doxorubicin as intravenous infu-
sion over 2 h. OATP1B3 is predominantly expressed at 
the basolateral membranes of hepatocytes located around 
the central vein, facilitating the uptake of organic anions 
for hepatic clearance [25]. To estimate the effect of zop-
tarelin doxorubicin on OATP1B3, predicted population 
interstitial unbound concentrations of zoptarelin doxo-
rubicin in the liver were used as input for Eq. 2. OCT2 
is mainly expressed at the basolateral membrane of renal 
tubule cells, facilitating the uptake of organic cations from 
the blood for subsequent renal secretion [26]. To estimate 
the impact of zoptarelin doxorubicin on OCT2, predicted 
population interstitial unbound concentrations of zoptare-
lin doxorubicin in the kidney were employed.

The zoptarelin doxorubicin Ki values for inhibition of 
OATP1B3 and OCT2 were calculated from  IC50 values 
determined in vitro (16.5 and 3.26 µmol/L), the substrate 
concentrations applied in these assays (0.05 µmol/L estra-
diol-17beta-glucuronide and 10.0 µmol/L metformin) and 
the OATP1B3 and OCT2 transport KM values for these 
substrates (15.8 [27] and 990.0 µmol/L [28]), according 
to the Cheng-Prusoff equation for competitive inhibition 
[29]: 

Ki values for pure competitive inhibition are independent of 
the affected victim substrate, the substrate concentration and 
the assay conditions [30]. Therefore, the relative changes 
of KM calculated from Eq. 2 are in theory applicable to all 
putative zoptarelin doxorubicin victim drugs transported by 
OATP1B3 and OCT2.

Specific assessment of the zoptarelin doxorubicin 
DDI potential

To evaluate the in vivo interaction potential of zoptarelin 
doxorubicin with actual OATP1B3 and OCT2 victim drugs, 
the model was coupled to PBPK models of simvastatin and 
metformin (for details on the simvastatin and metformin 
PBPK models see the Simvastatin and Metformin Supple-
mentaries). Simvastatin acid, the pharmacologically active 
metabolite of the prodrug simvastatin, is recommended by 
the FDA as a victim drug for the clinical investigation of 
OATP1B1/1B3 DDIs [31]. Metformin is recommended 
by the FDA as well-established substrate of the cationic 

(2)
KM apparent, victim drug (%)

= 100% ∗

(

1 +
inhibitor concentration

inhibitor K
i

)

(3)K
i
=

IC50

1 + substrate concentration∕ KM
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transport system for the use in clinical studies of DDIs 
involving OCT2/MATE [31].

Simvastatin is administered in the form of the inac-
tive lactone that is hydrolyzed after ingestion to the active 
 simvastatin acid. Only the acid form is transported by 
OATP1B1 and OATP1B3 from blood plasma into hepato-
cytes. The model applied for DDI prediction is a whole-body 
parent-metabolite PBPK model of simvastatin lactone and 
simvastatin acid. Because of the overlapping substrate spe-
cificities of OATP1B1 and OATP1B3, it is difficult to pin-
point the exact contribution of each isoform to simvastatin 
acid transport [32]. As the goal of this analysis was to assess 
worst-case scenarios, a combined OATP1B1/3 transport was 
modeled and this whole transport was inhibited with the 
zoptarelin doxorubicin  Ki determined for OATP1B3, even 
though OATP1B1 was not affected in vitro. This approach 
results in an overprediction of the impact of OATP1B3 inhi-
bition, but avoids underprediction of the DDI potential due 
to misspecification of the OATP1B3 contribution.

As worst-case co-administration scenarios, simultaneous 
administrations of 267 mg/m2 zoptarelin doxorubicin with 
80 mg simvastatin (once daily, day 5) or 1000 mg metformin 
(three times daily, day 5) were simulated, and victim drug 
plasma concentrations with and without co-administration 
of zoptarelin doxorubicin were assessed in population pre-
dictions. Different time intervals between the start of zop-
tarelin doxorubicin infusion and the day 5 morning dose of 
the victim drugs were simulated, to find the administration 
schemes resulting in highest drug–drug interaction impact 
for worst-case scenario assessment.

Results

A comprehensive parent-metabolite PBPK model for the 
prediction of zoptarelin doxorubicin and doxorubicin con-
centrations following different intravenous doses of zoptare-
lin doxorubicin has been successfully developed.

A schematic representation of the parent-metabolite 
model structure is shown in Zoptarelin Doxorubicin Supple-
mentary Fig. 1. All drug-dependent parameters of the final 
model, taken from literature or preclinical studies as well 
as all optimized parameter values, are given in Zoptarelin 
Doxorubicin Supplementary Table 4. All system-dependent 
parameters of the final model, particularly expression levels 
of the implemented binding partners in the different tissues 
with their geometric standard deviations of lognormal distri-
bution in virtual populations, are given in Zoptarelin Doxo-
rubicin Supplementary Table 5. No other system-dependent 
parameters were changed or adjusted.

PBPK model development and performance

The established doxorubicin and zoptarelin doxorubicin 
PBPK models show excellent descriptive and predictive 
performance.

The data used for doxorubicin model development con-
sisted of individual plasma concentration–time profiles fol-
lowing application of 60 mg/m2 of doxorubicin to a total of 
nine patients. These measurements were supplemented by 
literature data of white blood cell concentrations and excre-
tion to urine and feces information (Table 1). Predicted and 
observed doxorubicin plasma concentrations of Study 3 
as well as fractions excreted to urine and feces following 
administration of doxorubicin are presented in Zoptarelin 
Doxorubicin Supplementary Fig. 2 (training dataset). Pre-
dicted and observed doxorubicin plasma and white blood 
cell concentrations following administration of doxorubicin 
as published by Speth et al. are shown in Zoptarelin Doxo-
rubicin Supplementary Fig. 3 (training dataset). These con-
centrations were fitted with lower weight compared to the 
measurements of Study 3, given the age of the data and the 
assumption underlying the blood cell concentrations that  109 
cells equal a volume of 1 mL, knowing that white blood 
cells are very divers in size and shape. Prediction of the 
doxorubicin concentrations resulting from administration of 
zoptarelin doxorubicin is presented in Figs. 1 and 2 as well 
as in Zoptarelin Doxorubicin Supplementary Figs. 4 and 5.

The data used for zoptarelin doxorubicin model estab-
lishment included individual plasma concentration–time 
profiles collected in three clinical trials, following applica-
tion of seven different doses of zoptarelin doxorubicin in a 
range of 10–267 mg/m2. Plasma concentrations of zoptarelin 
doxorubicin and doxorubicin were collected in a total of 46 
patients (Table 1). Model performance of the final zoptarelin 
doxorubicin model is demonstrated in Fig. 1 and Zoptarelin 
Doxorubicin Supplementary Fig. 4 for the studies used dur-
ing parameter optimization (training dataset) and in Fig. 2 
and Zoptarelin Doxorubicin Supplementary Fig. 5 for the 
independent clinical data (test dataset).

As can be seen in Fig. 1, the inter-individual variabil-
ity of the measured concentrations is wider for zoptare-
lin doxorubicin than for doxorubicin. This is unexpected, 
as the variability of its main ADME mechanism, namely 
the hydrolysis of zoptarelin doxorubicin to doxorubicin, 
affects both analytes. The more pronounced variability 
of the parent compound concentrations in blood plasma, 
where zoptarelin doxorubicin and doxorubicin are sam-
pled, might result from its very low permeability com-
pared to doxorubicin, which extensively distributes into 
body tissues [11]. The predicted variability in the popula-
tion simulations is also wider for zoptarelin doxorubicin.

Furthermore, the variance of the measured concentra-
tions in the very first clinical Study 1 is higher than in the 
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following trials (see Zoptarelin Doxorubicin Supplemen-
tary Fig. 5, test dataset). This high variability might be the 
result of errors in sampling time or of hydrolytic cleavage 
of zoptarelin doxorubicin prior to freezing of some of the 
blood samples [8]. These issues could be resolved and, 
therefore, did not affect later measurements.

Precision of model parameter estimates is shown in the 
tables listing the drug-dependent and system-dependent 

zoptarelin doxorubicin PBPK model parameters (Zoptarelin 
Doxorubicin Supplementary Tables 4 and 5).

Using the final model, pharmacokinetic parameters 
 (AUClast and Cmax) of all dosing groups have been cal-
culated from population simulations as mean values with 
standard deviation and compared to observed values (see 
Zoptarelin Doxorubicin Supplementary Tables 1 and 2). 
Prediction errors for  AUClast and Cmax values are also 

Fig. 1  Training dataset: a Population simulations (semilog scale) 
compared to observed data of zoptarelin doxorubicin (blue) and doxo-
rubicin plasma concentrations (red) following intravenous adminis-
tration of 267 mg/m2 zoptarelin doxorubicin. Clinical data (Study 3, 
n = 21) are shown as dots. Population simulation medians are shown 
as lines; the shaded areas depict the 5th−95th percentile popula-

tion prediction intervals. b Goodness of fit (GOF) plots (log scale) 
demonstrating the correlation of individual predicted with observed 
zoptarelin doxorubicin (blue) and doxorubicin plasma concentrations 
(red) of the study shown above. The solid lines represent the line of 
unity; the dashed lines indicate twofold deviation

3.2 publication ii - zoptarelin doxorubicin 37



298 Cancer Chemotherapy and Pharmacology (2018) 81:291–304

1 3

given in Zoptarelin Doxorubicin Supplementary Tables 1 
and 2. Plots of predicted versus observed  AUClast and Cmax 
values with twofold prediction success limits are shown in 
Zoptarelin Doxorubicin Supplementary Fig. 6.

PBPK model sensitivity analysis

Sensitivity analyses were conducted for the doxorubicin 
and the zoptarelin doxorubicin model, with simulations of 

Fig. 2  Test dataset: Population simulations (semilog scale) compared 
to observed data of zoptarelin doxorubicin (blue) and doxorubicin 
plasma concentrations (red) following intravenous administration of 
160, 210 or 267 mg/m2 zoptarelin doxorubicin. Clinical data (Study 

2, n = 3, n = 3 and n = 4) are shown as dots. Population simulation 
medians are shown as lines; the shaded areas depict the 5th–95th per-
centile population prediction intervals
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single intravenous administrations of 60 mg/m2 doxoru-
bicin (1-h infusion) and of 267 mg/m2 zoptarelin doxoru-
bicin (2-h infusion), respectively. The investigated model 
parameters and results are listed in Fig. 3. The doxorubicin 
model is sensitive to the values of fraction unbound in 
plasma (sensitivity value of − 0.6) and cellular permeabil-
ity (sensitivity value of − 0.3). The zoptarelin doxorubicin 
model is sensitive to the values of fraction unbound in 
plasma (sensitivity value of − 1.0) and zoptarelin doxoru-
bicin hydrolysis rate (sensitivity value of − 1.0).

General assessment of the zoptarelin doxorubicin 
DDI potential

To obtain a general assessment of the in vivo DDI potential 
of zoptarelin doxorubicin via OATP1B3 and OCT2, inde-
pendently of the substrate affected by this inhibition, the 
relative changes of the apparent KM values for these two 
transporters were calculated according to Eq. 2. As input 
inhibitor concentrations, predicted population interstitial 
unbound concentrations of zoptarelin doxorubicin in the 
liver and the kidney, respectively, were used (267 mg/m2 
zoptarelin doxorubicin, 2-h infusion). Zoptarelin doxo-
rubicin Ki values were calculated to be 16.45 µmol/L for 

Fig. 3  Doxorubicin and zoptare-
lin doxorubicin model sensitiv-
ity analysis results. Conc: con-
centration, EHC: enterohepatic 
circulation, GFR: glomerular 
filtration rate, kcat: catalytic 
rate constant, Kd: dissociation 
constant, koff: dissociation rate 
constant, LHRHR: luteinizing 
hormone-releasing hormone 
receptor, rel expr: relative 
expression, normalized to tissue 
with highest expression
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OATP1B3 and 3.23 µmol/L for OCT2 (see “Materials and 
methods”). The resulting relative changes of apparent KM 
values amount to less than 0.5% for OATP1B3 and to less 
than 2.5% for OCT2, as illustrated in Fig. 4.

To rate the impact of a 2.5% change in KM, the relation of 
initial reaction velocity v0 and KM can be applied: 

For substrate concentrations significantly below KM 
and unchanged maximal reaction velocity Vmax (competi-
tive inhibition assumed), a 2.5% increase of KM results in 
a 2.5% decrease of initial reaction velocity. For higher sub-
strate concentrations, the influence of increased KM will be 
even smaller.

DDI potential of zoptarelin doxorubicin 
with simvastatin and metformin

For specific DDI predictions with simvastatin and met-
formin, victim drug steady-state plasma concentrations 
after administration of the highest common doses of 80 mg 
simvastatin (once daily, day 5) or 1000 mg metformin (three 
times daily, day 5) with and without co-administration of 
267 mg/m2 zoptarelin doxorubicin were simulated.

Testing of different time intervals between the start of 
zoptarelin doxorubicin infusion and administration of the 
victim drugs showed highest DDI impact on simvastatin 
acid, when the zoptarelin doxorubicin infusion is started 2 h 
after the administration of simvastatin (zoptarelin doxoru-
bicin Cmax at the time of simvastatin acid Cmax); and highest 
DDI impact on metformin, when the zoptarelin doxorubicin 

(4)v0 =
Vmax ∗ substrate concentration

KM + substrate concentration

infusion is started 1 h before the administration of metformin 
(zoptarelin doxorubicin Cmax at the time of metformin Cmax).

The identified administration regimens for maximum 
DDI impact and the resulting plasma concentrations of 
zoptarelin doxorubicin, simvastatin acid and metformin 
are illustrated in Fig. 5a, b. Victim drug plasma concentra-
tions of simvastatin acid and metformin, with and without 
co-administration of zoptarelin doxorubicin are presented 
in Fig. 5c, d. DDI impact on victim drug AUC and Cmax 
values, simulated with the different tested dosing regimens 
is shown in Zoptarelin Doxorubicin Supplementary Table 3. 
The identified worst-case co-administration scenarios result 
in a 0.114% increase of the plasma  AUC96–120 of simvastatin 
acid and a 0.096% increase of the  AUC96–104 of metformin, 
due to liver and kidney uptake inhibition.

Discussion

Doxorubicin model

The presented doxorubicin model is the first whole-body 
PBPK model developed with clinical data from humans and 
a mechanistic implementation of the binding of doxorubicin 
to DNA. This binding is essential to describe the pharma-
cokinetics of doxorubicin, as it is the driving force behind 
the unusual distribution behavior of this drug [33]. The 
developed model accurately describes doxorubicin plasma 
concentrations following direct administration of doxoru-
bicin and also very successfully predicts the concentrations 
of doxorubicin released following administration of a variety 
of different doses of zoptarelin doxorubicin.

Fig. 4  Zoptarelin doxorubicin DDI potential: Maximum impact of 
zoptarelin doxorubicin on OATP1B3 and OCT2. a Relative change 
of OATP1B3 apparent KM during inhibition by 267 mg/m2 zoptarelin 
doxorubicin. b Relative change of OCT2 apparent KM during inhibi-

tion by 267  mg/m2 zoptarelin doxorubicin. Population simulation 
medians are shown as lines; the shaded areas depict the 5th–95th per-
centile population prediction intervals
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The sensitivity of the doxorubicin model to the value of 
fraction unbound is to be expected, as this parameter deter-
mines the doxorubicin concentration available for all phar-
macokinetic processes. The value used in the model has been 
carefully determined in vitro at Aeterna Zentaris and has not 
been optimized. The doxorubicin fraction unbound meas-
ured in-house (26.3%) is in very good accordance with the 
literature (25%, [34]). The moderate sensitivity of the model 
to the cellular permeability value underlines the influence 
of this parameter. Adjustment of this value greatly improved 

the model performance and, therefore, it has been included 
into the set of optimized parameters.

Several other PBPK models of doxorubicin have been 
developed so far, mostly established from animal data with 
the benefit of measured doxorubicin concentrations in dif-
ferent tissues [35–38]. Among those is a very nice model of 
doxorubicin in mice, that has been extrapolated to humans 
including evaluation of the predicted serum concentrations 
with actual clinical data, as well as mechanistic modeling 
of DNA binding to describe the tissue distribution of doxo-
rubicin [35]. The only other model directly developed from 

Fig. 5  Zoptarelin doxorubicin DDI potential: Specific DDI worst-
case scenario predictions with simvastatin acid and metformin as 
OATP1B3 and OCT2 victim drugs. a Predicted zoptarelin doxoru-
bicin (blue), doxorubicin (red), simvastatin (green) and simvastatin 
acid (pink) plasma concentrations (semilog scale) of a typical indi-
vidual during administration of 80  mg simvastatin every 24  h, plus 
267  mg/m2 zoptarelin doxorubicin once, on the morning of day 5. 
The last administration of simvastatin is at 96 h; zoptarelin doxoru-
bicin infusion (2 h) is started 2 h later at 98 h, resulting in simulta-
neous peak plasma concentrations of zoptarelin doxorubicin and 
simvastatin acid at 100 h. b Predicted zoptarelin doxorubicin (blue), 
doxorubicin (red) and metformin (dark yellow) plasma concentra-

tions (semilog scale) of a typical individual during administration of 
1000  mg metformin every 8  h, plus 267  mg/m2 zoptarelin doxoru-
bicin once, on the morning of day 5. The last administration of met-
formin is at 96 h; zoptarelin doxorubicin infusion (2 h) is started 1 h 
earlier, at 95 h, resulting in simultaneous peak plasma concentrations 
of zoptarelin doxorubicin and metformin at 97  h. c Overlay of pre-
dicted simvastatin acid plasma concentrations using the administra-
tion protocol shown in a, without (pink) and during co-administration 
of zoptarelin doxorubicin (dashed black line). d Overlay of predicted 
metformin plasma concentrations using the administration protocol 
shown in b, without (dark yellow) and during co-administration of 
zoptarelin doxorubicin (dashed black line)
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human data lacks a mechanistic implementation of the tissue 
binding, but features a physiologically based description of 
the effects of aging on the distribution clearance of doxo-
rubicin [36].

In the presented doxorubicin model, DNA binding sites 
have so far only been implemented into 8 of the 22 model 
compartments, resulting in an overestimation of the doxo-
rubicin accumulation in these tissues and an underestima-
tion of the doxorubicin concentration in the tissues without 
binding partner (not counting the blood cell compartment, 
as the DNA concentration within this volume has been sepa-
rately adjusted to match literature data). Although the DNA 
binding site reference concentration of the virtual patients 
has been optimized (Kd and koff have been fixed to litera-
ture values), the obtained value is biologically plausible. A 
rough estimate of the number of DNA base pairs per human 
is 6.0 × 1022 (6.0 × 109 base pairs per cell, 1.0 × 1013 cells 
per human). This equals 0.1 mol of base pairs per human. 
As the doxorubicin binding partner was implemented only 
into the 8 most important tissues of the model patient, these 
DNA binding sites are distributed into 4 L of tissue with 
equal expression of this binding partner, resulting in a refer-
ence concentration of 0.025 mol/L. The optimized value of 
0.046 mol/L is in the same order of magnitude. Furthermore, 
there are reports of binding of doxorubicin not only to DNA, 
but (with a lower affinity) also to cardiolipin and DNA-asso-
ciated enzymes, which have not been implemented into the 
model [9, 39]. To predict the doxorubicin concentrations and 
pharmacodynamics within a distinct organ, the distribution 
of the DNA binding sites will have to be implemented in an 
anatomically correct way, as has been proposed by Gustaf-
son et al. [35].

Despite minor limitations, this model is a suitable basis 
for further refinement and subsequent extrapolation to vul-
nerable populations receiving doxorubicin treatment such as 
children, elderly and patients with organ impairment.

Zoptarelin doxorubicin model

The presented zoptarelin doxorubicin model is the first 
PBPK model of zoptarelin doxorubicin and accurately 
describes and predicts plasma concentrations of zoptarelin 
doxorubicin and its active metabolite doxorubicin following 
infusion of different doses of zoptarelin doxorubicin. This 
is remarkable, as the model has been developed with data 
collected in three clinical trials investigating patients with 
different types of cancer.

As for the doxorubicin model, the sensitivity of the zop-
tarelin doxorubicin model to the value of fraction unbound 
was to be expected and the value used in the model has also 
been carefully measured in-house. The relatively high sensi-
tivity of the model to the zoptarelin doxorubicin hydrolysis 
rate value emphasizes the impact of this parameter on the 

elimination of zoptarelin doxorubicin and on the predicted 
AUC.

The primary aim of this PBPK analysis was to 
assess the DDI potential of zoptarelin doxorubicin with 
OATP1B3 and OCT2 victim drugs. Future applications 
of the presented model could include the implementation 
of a tumor compartment to enable the prediction of zop-
tarelin doxorubicin and doxorubicin concentrations in the 
target tissue and to answer questions regarding efficacy 
and pharmacodynamics of zoptarelin doxorubicin. For a 
first estimate, the model can be employed to simulate the 
internalization and intracellular concentrations of zopta-
relin doxorubicin as well as the resulting concentrations of 
doxorubicin in the gonads. The lack of a tumor compart-
ment (compensated by a low expression of LHRHR in the 
lung) does not impact the results and interpretation of the 
presented PBPK analysis of the interaction with OATP1B3 
and OCT2, as these DDIs are determined by the concentra-
tions in liver and kidney.

Zoptarelin doxorubicin DDI potential

Zoptarelin doxorubicin shows no inhibition or induction 
of cytochrome P450 enzymes in vitro, as well as no inhi-
bition of investigated transporters other than OATP1B3 
 (IC50 = 16.5 µmol/L) and OCT2  (IC50 = 3.26 µmol/L). P-gly-
coprotein (P-gp), breast cancer resistance protein (BCRP), 
organic anion transporter 1 (OAT1), OAT3 and OATP1B1 
are not inhibited in vitro  (IC50 values > 200 μmol/L). The 
predicted maximum relative changes of transport rate during 
treatment with the highest clinical dose of zoptarelin doxoru-
bicin are 0.5% for OATP1B3 and 2.5% for OCT2 at the end 
of the infusion. In line with this general interaction potential 
assessment, no impact of zoptarelin doxorubicin on plasma 
concentrations of the OATP1B3 and OCT2 victim drugs 
simvastatin acid and metformin was found in worst-case sce-
nario simulations. These results are in accordance with the 
expectations due to low interstitial concentrations of zopta-
relin doxorubicin in relation to the zoptarelin doxorubicin Ki 
values for inhibition of OATP1B3 and OCT2. As zoptarelin 
doxorubicin (MW = 1893.06 g/mol) is a 10-amino acid poly-
peptide linked to doxorubicin and positively charged at two 
amino groups at physiological pH, its passive permeability 
is low, leading to low interstitial concentrations.

This example demonstrates that PBPK modeling is a val-
uable technique to analyze the risk of investigational drugs 
suspected to cause drug–drug interactions in vivo. In vitro 
results and pharmacokinetic data from early clinical studies 
are used to establish mechanistic and physiologically based 
models that allow the in vivo prediction of drug–drug inter-
actions. This approach is supported by drug approval agen-
cies [12, 13] and can help to minimize patient risk, costs 

42 results



303Cancer Chemotherapy and Pharmacology (2018) 81:291–304 

1 3

and time needed for drug development. Furthermore, PBPK 
modeling has the capability to generate information when-
ever the conduct of clinical trials is not ethical, as is the case 
in all frail populations such as children, elderly and patients.

Conclusion

This is the first report of a whole-body PBPK model of zop-
tarelin doxorubicin and its active metabolite doxorubicin. 
The model was applied for the evaluation of the zoptarelin 
doxorubicin drug–drug interaction potential (1) by a general 
assessment of the OATP1B3 and OCT2 inhibition poten-
tial of zoptarelin doxorubicin in vivo and (2) by specific 
DDI simulations of the impact of zoptarelin doxorubicin 
on  simvastatin acid and metformin exposure in worst-case 
scenarios. No DDI potential of zoptarelin doxorubicin was 
detected in these analyses.
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Physiologically Based Precision Dosing 
Approach for Drug-Drug-Gene Interactions:  
A Simvastatin Network Analysis
Jan-Georg Wojtyniak1,2 , Dominik Selzer1, Matthias Schwab2,3,4 and Thorsten Lehr1,*

Drug-drug interactions (DDIs) and drug-gene interactions (DGIs) are well known mediators for adverse drug 
reactions (ADRs), which are among the leading causes of death in many countries. Because physiologically based 
pharmacokinetic (PBPK) modeling has demonstrated to be a valuable tool to improve pharmacotherapy affected by 
DDIs or DGIs, it might also be useful for precision dosing in extensive interaction network scenarios. The presented 
work proposes a novel approach to extend the prediction capabilities of PBPK modeling to complex drug-drug-
gene interaction (DDGI) scenarios. Here, a whole-body PBPK network of simvastatin was established, including 
three polymorphisms (SLCO1B1 (rs4149056), ABCG2 (rs2231142), and CYP3A5 (rs776746)) and four perpetrator 
drugs (clarithromycin, gemfibrozil, itraconazole, and rifampicin). Exhaustive network simulations were performed 
and ranked to optimize 10,368 DDGI scenarios based on an exposure marker cost function. The derived dose 
recommendations were translated in a digital decision support system, which is available at simva statin.preci 
siond osing.de. Although the network covers only a fraction of possible simvastatin DDGIs, it provides guidance 
on how PBPK modeling could be used to individualize pharmacotherapy in the future. Furthermore, the network 
model is easily extendable to cover additional DDGIs. Overall, the presented work is a first step toward a vision on 
comprehensive precision dosing based on PBPK models in daily clinical practice, where it could drastically reduce 
the risk of ADRs.

Adverse drug reactions (ADRs) are a burden to our health care 
and economic systems. The US Food and Drug Administration 
(FDA) assumes that annually >  2,216,000 serious ADRs in 
hospitalized patients lead to over 106,000 deaths in the United 

States—ranking them as the fourth leading cause of death.1,2 The 
associated costs are tremendous and are estimated to add up to 
US $200 billion per year.1 This situation is likely to become more 
acute as a result of ever-growing prescription use. According to 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Drug-drug interactions (DDIs), drug-gene interactions, and 
drug-drug-gene interactions (DDGIs) are well known triggers 
of adverse drug reactions that might be preventable by precision 
dosing. One example compound prone to DDGIs is simvastatin.
WHAT QUESTION DID THIS STUDY ADDRESS?
 How physiologically based pharmacokinetic (PBPK) mod-
eling can be utilized for model-informed precision dosing 
(MIPD) of complex DDGIs.
WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 This study presents whole-body PBPK models for simvas-
tatin lactone and simvastatin acid, including variation of four 

pharmacogenes and was tested against four DDI perpetrator 
drugs and one DDI victim. In addition, the model was used to 
develop a digital decision support system based on dose recom-
mendations for 10,368 simulated interaction scenarios.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 The presented dose recommendations might help to better 
assess risks of simvastatin therapy in pharmacogenomic and 
polypharmacy context. Furthermore, the study highlights and 
guides how PBPK can help to bring MIPD into daily clinical 
practice.
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the Centers for Disease Control and Prevention, the proportion 
of Americans taking > 5 prescription drugs on a regular basis has 
almost tripled in the past 20 years.3

Drug-drug interactions (DDIs) and drug-gene interactions 
(DGIs) are the most common reasons for ADRs.2,4,5 Unfortunately, 
in current clinical practice DDIs and DGIs are considered sepa-
rate entities that are typically handled in a nonholistic fashion.4 
However, as shown recently, 19% of potentially clinically signifi-
cant interactions occur as a combination of DDIs and DGIs (drug-
drug-gene interaction (DDGIs)).4,5 Tackling DDIs, DGIs, or 
DDGIs using guidelines on dose adaption could reduce the num-
ber of ADRs substantially, because it is assumed that 80% of ADRs 

are dose-related and, hence, could be prevented.6,7 This concept 
can be summarized as precision dosing for DDIs and DGIs.8

The current approach of developing such guidelines would be 
the investigation of DDGIs in clinical trials analogous to presently 
conducted trials on DDIs and DGIs.8,9 Those studies are typically 
performed in healthy volunteers, in a homogenous study population 
and with a controlled treatment plan (Figure 1a).8 Consequently, 
they do not reflect the situation in multimorbid patients, affected 
by polypharmacy and genetic polymorphisms, which is the patient 
group most susceptible to ADRs (Figure 1b).1,8 Moreover, due 
to the combinatorial explosion of all possible DDGIs, exhaustive 
studies might not be feasible at all (Figure 1c).

Figure 1 Difference between a clinical study setting and a real-world post-approval setting. (a) The upper part shows the research situation 
in a clinical setting. A homogenous study population receives a defined treatment regimen in a standardized procedure. The subsequently 
obtained results are used for the development of therapy recommendations for the post-approval setting. The lower part depicts the real-
world postapproval setting with a higher variability in demographics, variant distribution, and a higher degree in polypharmacy compared 
with the clinical study population. As a result, as shown in (b) various possible DDGI scenarios are conceivable depending on the amount of 
concomitantly used perpetrator drugs and occurring polymorphisms. For the calculation it was assumed that each preparator has two DDI 
states (preparator is given or perpetrator is not given) and each clinically relevant polymorphism could have three independent phenotypes. 
Following the number of possible scenarios was calculated with nscenarios = 2

xperpetrator
∗ 3

y
polymorphism. The increase of possible DDGI scenarios is 

shown as a heatmap. The number of possible DDGI scenarios is shown on a log-scale. Some figure elements are taken from smart.servi 
er.com (CC BY 3.0). DDGI, drug-drug-gene interaction; DDI, drug-drug interaction.
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To overcome this problem, a promising approach would be the 
application of whole-body physiologically based pharmacokinetic 
(PBPK) modeling.4 PBPK models hold the capability to predict 
the DDGI potential of drugs in silico and to develop alternative 
precision dosing regimens for patients.4 The reliability of this tech-
nique has already been demonstrated in several DDI and DGI 
studies and is acknowledged by regulatory agencies.10–12 However, 
although PBPK modeling has been accepted as a useful option to 
predict the extent of DDGIs, examples on how PBPK modeling 
can be used for model informed precision dosing (MIPD) are still 
scarce.12

Thus, the aim of this work was to illustrate the complexity of 
DDIs, DGIs, and DDGIs based on the example of simvastatin. 
Simvastatin was selected as it is among the most prescribed drugs in 
industrial nations and is highly susceptible to potentially life-threat-
ening ADRs due to its complex pharmacokinetics (PKs).13–18 
Moreover, this work should provide guidance for the development 
of an PBPK-based MIPD approach. Therefore, a comprehensive 
simvastatin DDGI PBPK network model was implemented to serve 
a web-based decision support system that offers quick and easy ac-
cess to optimized dose recommendations for individual patients.

METHODS
Software
PBPK model development was performed with PK-Sim and MoBi (version 
8 – Build 21) as part of the Open Systems Pharmacology Suite.19 Model pa-
rameter identification was accomplished using Monte-Carlo optimization. 
Local sensitivity analysis was also performed within PK-Sim. Published 
plasma concentration-time profiles were digitized using GetData Graph 
Digitizer (version 2.26.0.20, S. Fedorov).20 Graphics and statistical analy-
sis were produced and implemented using R (version 3.6.3).21

Simvastatin PBPK model building
The simvastatin model was developed in a stepwise procedure. In a first 
step, physicochemical parameters of simvastatin lactone (SL) and sim-
vastatin acid (SA) as well as information on absorption, distribution, 
metabolism, and excretion processes were extracted from literature. 
Subsequently, mean plasma concentration-time profiles of SL and SA 
after oral single dose and multiple dose administration were digitized 
from published studies and separated into training and test datasets for 
model development and evaluation, respectively. Model input parame-
ters, which were not available as PK-Sim reference values or that could 
not be informed from published literature values were optimized by fit-
ting the model to measured plasma concentration-time profiles from the 
training dataset. PBPK study simulations were built based on healthy 
individuals with the reported mean values for age, weight, height, and ge-
netic background, as stated in the corresponding study protocol, respec-
tively. If parameter information was lacking, a PK-Sim mean individual 
(healthy male European, 30 years of age, body weight of 73 kg, a height 
of 176 cm, and based on the International Commission on Radiological 
Protection database) with wild type genotype was substituted. For all 
simulated individuals, glomerular filtration and enterohepatic cycling 
was implemented. A detailed description of the model development pro-
cess, including information about digitized studies and model parame-
ters can be found in the Supplementary Material, chapter 2.

DGI implementation and DDI network development
DGI effects were implemented assuming a changed enzyme turnover 
number (kcat) compared with wild type. Here, the homozygous wild 
type kcat as well as kcat for homozygous polymorphic individuals were 

estimated during model training (see Supplementary Material, chapter 
1.1.2 and chapter 2.4).

A DDI network was built to further evaluate the performance of the 
developed model. Thus, previously developed models of clarithromycin, 
gemfibrozil, itraconazole, rifampicin, and midazolam were coupled with 
the simvastatin model.12,22,23 Population mean profiles as well as area 
under the curve (AUC) and peak plasma concentration (Cmax) values 
were predicted and compared against observed study data to evaluate the 
network quality.20

A detailed overview on the implementation of the DDI network, 
including relevant interaction parameters from in vitro experiments as 
well as the mathematical implementation of the drug interaction pro-
cesses, is provided in the Supplementary Material in chapter 1 and 
chapter 3.

PBPK network evaluation and sensitivity analysis
PBPK model evaluation was performed using different statistical and 
graphical evaluation techniques. Predicted plasma concentration-time 
profiles were compared with observed profiles. Moreover, goodness-
of-fit plots for predicted vs. observed plasma concentrations were ex-
amined. Mean relative deviation24 and median symmetric accuracy25 
were calculated for all differences between observed and predicted 
plasma concentrations. In addition, the performance was evaluated 
by comparison of the noncompartmental analysis parameters AUC 
from last dose to last observation and Cmax. AUC was computed using 
a linear-up log-down method. Geometric mean fold errors (GMFEs) 
were derived for differences between observed and predicted AUC and 
Cmax values. For DGI and DDI predictions, AUC effect ratios were 
compared, in which a deviation of the observed from the predicted ef-
fect ratio less than two times was considered sufficient. Finally, local 
sensitivity analysis of the final model to single parameter changes 
was calculated as relative changes of the AUC of one dosing inter-
val in steady-state conditions. A detailed overview of performance 
measurements and the local sensitivity analysis can be found in the 
Supplementary Material, chapter 1.4.

Dose optimization
Simvastatin dose optimization for several DDGI scenarios, including in-
dividual DDIs and DGIs was performed. As reference, plasma concentra-
tion-time profiles for SL and SA in a mean individual after administration 
of 5 mg up to 80 mg (5 mg steps) SL once daily for 7 days were simulated and 
SL and SA AUCs from the time of the last dose up to 24 hours postdose 
derived. In a second step, a DDGI matrix was set up covering every pos-
sible combination of the three polymorphisms SLCO1B1 (rs4149056), 
ABCG2 (rs2231142), and CYP3A5 (rs776746) and comedication with 
the four perpetrator drugs clarithromycin, itraconazole, gemfibrozil, and 
rifampicin. DDGI scenarios were simulated with administered SL doses 
according to the reference (7 days + 24 hours postdose) and reasonable 
perpetrator dosing regiments (see Table 1). For each simulation, SL and 

Table 1 Investigated perpetrator regimens

Perpetrator Half-life, monotherapy Regimen

Clarithromycin 3.3–4.9 hours 500 mg b.i.d.

Itraconazole ~ 24 hours 200 mg daily

Rifampicin 2.5 hours 600 mg daily 
concomitant with 

simvastatin

Rifampicin 2.5 hours 600 mg daily 17 hours 
after simvastatin 

dosing

Gemfibrozil 7.6 hours 600 mg b.i.d.
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SA AUCs were calculated. Following, relative AUC deviations of SL and 
SA from the reference values were computed for each DDGI scenario 
with an exposure marker cost function as shown in Eq. 1:

With Exposure Marker  =  Relative differences of SL and SA exposure 
per simvastatin dose as a cost function for dose optimization (the smaller 
the better), AUCSL−DDGIx = AUC for SL under DDGI condition, 
AUCSL− ref  = reference AUC for SL, AUCSA−DDGI = AUC for SA 
under DDGI condition, AUCSA− ref  = reference AUC for SA.

For each DDGI scenario, the exposure marker cost function was 
minimized to identify the simvastatin dose with the smallest exposure 
deviation (matching exposure). For different therapeutic dose levels of 
simvastatin (20  mg, 40  mg, and 60  mg) relative frequency of recom-
mended doses and the relationship between the number of DDGIs and 
the optimal dose level were analyzed. Moreover, a hierarchical Euclidian 
distance cluster analysis stratified against the DDIs and DGIs was per-
formed to identify patterns for generalized dose recommendations. 
Clustering was computed with complete linkage using the hclust func-
tion in R.

Results from the dose optimization were transferred into a DDS web ap-
plication implemented with the R package “shiny,” allowing users to easily 
filter simulation analysis tailored to DDGIs and simvastatin doses of interest.

RESULTS
Simvastatin PBPK model building and evaluation
We successfully developed a whole-body PBPK model of SL and 
SA. For placebo and DGI model development and evaluation 
mean data from 57 studies were extracted including 59 SL and 
57 SA plasma-concentration time profiles, which represent infor-
mation from 1,271 study participants. For DGI implementation, 
plasma-concentration time profiles or AUC and Cmax values for 
SLCO1B1 (rs4149056) c.521C/C, c.521T/C, c.521T/T, ABCB1 
(rs1128503 rs2032582 and rs1045642) c.1236T-c.2677T-
c.3435T, c.1236C-c.2677G-c.3435C, ABCG2 (rs2231142) 
c.421A/A, c.421C/A, c.421C/C, and CYP3A5 (rs776746) 
CYP3A5*3/*3, CYP3A5*3/*1, CYP3A5*1/*1 were used for 
model development and optimization. System-dependent pa-
rameters like reference concentrations and enzyme expression 
profiles were taken from the PK-Sim database or extracted from 
literature as described in Supplementary Material, chapter 1.3. 
Doses available for model development and evaluation ranged 
from 10 mg to 80 mg simvastatin after single and multiple doses.

Extensive model evaluations, as described in the Supplementary 
Material, chapter 2.3, revealed good model performance for pla-
cebo PK profiles. Mean ratios predicted vs. observed AUCs were 
1 for SL and 0.9 for SA. Mean predicted vs. observed Cmax ratios 
were 0.9 and 0.8 for SL and SA, respectively. GMFE values were 
1.3 for SL AUC, 1.5 for SL Cmax, 1.5 for SA AUC, and 1.7 for SA 
Cmax, respectively.

DGI model evaluation
The model was capable to precisely describe and predict the DGI 
profiles in the training and test datasets. The average AUC ratio 
was 1.0 for SL and 0.7 for SA, whereas the mean Cmax ratio was 

0.8 for SL and 0.6 for SA. For DGIs the GMFE values were 1.3 
for SL AUC and 1.4 for SL Cmax, 1.8 for SA AUC, and 2.2 for SA 
Cmax, respectively (see Supplementary Material, chapter 2.4.6). 
Figure 2a shows an example prediction of SA for SLCO1B1 
(rs4149056) c.521C/C and c.521T/T genotype.

DDI network development
A DDI network was built by coupling models for clarithro-
mycin, gemfibrozil, itraconazole, rifampicin, and midazolam 
with the newly derived simvastatin model (see Supplementary 
Material, chapter 3). Figure 2b shows an example prediction 
of SL under clarithromycin cotreatment. Mean predicted vs. ob-
served AUC ratios for SL, SA, and midazolam were 1.2, 1.5, and 
0.9, respectively. Average predicted vs. observed Cmax ratios for 
SL, SA, and midazolam were 0.9, 1.1, and 1, respectively. GMFE 
values were 1.3 for both SL AUC and Cmax, 1.7 and 1.8 for SA 
AUC and Cmax, as well as 1.1 for both midazolam AUC and 
Cmax.

Moreover, predicted DDI and DGI effect ratios were in good 
agreement with observed effect ratios, as shown in Figure 2c. 
Overall, only 1 of 18 AUC effect ratios for SL and 1 of 14 AUC 
effect ratios for SA showed a deviation from the observed effect 
ratio greater than twofold. Figure 3 summarizes the metabolic 
and transportation processes involved in the DDI network and 
visualizes the relationships between the included compounds and 
processes.

Dose optimization
For each simvastatin therapeutic dose (5 to 80 mg in 5 mg steps) 
648 DDGIs were optimized, which led to a total of 10,368 DDGI 
dose recommendations derived from the exposure marker cost 
function as described in Eq. 1. Cluster analysis revealed that clus-
ter groups differ vastly with several subclusters and no observable 
pattern (Figure 4a). Thus, no generally applicable rule could be 
established on how to dose simvastatin.

Descriptive statistics revealed that for 13% (60 mg simvastatin 
therapeutic dose) to 25% (20 mg simvastatin therapeutic dose) of 
the investigated DDGI scenarios no alternative simvastatin dose 
could be found. Median optimal dose levels over all investigated 
DDGIs were 5 mg, 10 mg, and 20 mg for simvastatin therapeutic 
doses of 20  mg, 40  mg, and 60  mg, respectively. Analyses of the 
number of DDGIs against the optimal doses revealed a trend for all 
therapeutic dose levels: a greater number of DDGIs leads toward a 
lower optimal dose. For a therapeutic dose level of 40 mg, results 
are visualized in Figure 4a (cluster analysis), Figure 4b (relative 
frequency of optimal doses), and Figure 4c (number of DDGIs 
against optimal dose values).

DDGI network simulations were processed and transferred 
into a web-based interactive decision support system, which can 
be accessed at simva statin.preci siond osing.de. The system al-
lows users to investigate simvastatin DDGI situations of interest 
and explore different scenarios. Here, the user can select a given 
simvastatin dose, the active comedication, and the SLCO1B1, 
ABCG2, and CYP3A5 genotype. Then, the application presents 
the optimization results, including recommended dose com-
pared with therapeutic dose and allows the further investigation 

(1)

ExposureMarker =

|
|
|
AUCSL−DDGIx − AUCSL− ref

|
|
|

AUCSL− ref

+

|
|
|
AUCSA−DDGI − AUCSA− ref

|
|
|

AUCSA− ref
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of SL and SA exposures for the placebo situation, the investi-
gated DDGI situation, and the situation after dose optimiza-
tion. Figure 5 depicts case examples analyzed with the support 
system.

DISCUSSION
PBPK modeling is increasingly applied during preclinical and 
clinical development allowing prospective prediction of drug 
exposure for various scenarios. Investigation of DDIs for reg-
ulatory labeling recommendations and problems regarding 
organ impairment, drug absorption, and pediatric starting dose 
selection demonstrated the usefulness of this class of mecha-
nistical models in the past.26 Because DDIs and DGIs can be 
considered as major drivers of ADRs2,4,5 the application of 
PBPK-based MIPD to reduce the incidence of ADRs seems 
sensible. However, efforts toward the application of physiolog-
ically based models for MIPD are still scarce.12 In this work, 
we investigated the adaption of PBPK modeling approaches 
for precision dosing regarding DDGI-sensible compounds in 

complex interaction networks and the integration of finding 
into a decision support system.

Current techniques to address MIPD typically include Bayesian 
adaptive control methods.8,27 However, these approaches are lim-
ited to interactions, which are already studied and implemented in 
the model.8 An extension with other, clinically untested perpetrator 
or victim drugs or further genetic polymorphisms, is challenging or 
even impossible. In contrast, PBPK models are well-suited to tackle 
this limitation and are emphasized by regulatory agencies to inves-
tigate new, untested scenarios.4,8,10–12 At the moment, most whole-
body PBPK models purely account for interindividual variability 
by adapting the physiology of the underlying virtual patient. Hence, 
the estimation of individual parameters, as it is accomplished in 
Bayesian methods, is hardly feasible. Consequently, future devel-
opments should focus on connecting approaches like maximum a 
posteriori estimation to the realm of PBPK modeling in order to 
allow PBPK Bayesian techniques to come within reach, combining 
the best from both worlds. As an application example, such mod-
els could use the interindividual variability of a metabolic enzyme 

Figure 2 Example profiles and model evaluation plots for the developed simvastatin PBPK DDGI network. (a) Example profiles of the observed 
vs. predicted simvastatin acid plasma concentration-time profiles for SLCO1B1 (rs4149056) c.521C/C, and c.521T/T genotypes.54 (b) 
Example profiles of the predicted vs. observed simvastatin lactone plasma concentration-time profiles with and without clarithromycin co-
treatment.55 In a and b dots are observed mean values extracted from literature. Error bars display the observed SDs. Solid lines show the 
predicted median profile of 100 simulated individuals. Shaded area depicts the predicted 90% confidence interval. (c) Depicts the observed 
vs. predicted dose normalized AUC effect ratios (dose normalized AUC under DDI/DGI conditions divided by dose normalized AUC under 
placebo conditions). Solid lines show the line of identity as well as the twofold deviations. Dotted lines are the quality limits as proposed 
by Guest et al.56 AUC, area under the curve; DDGI, drug-drug-gene interaction; DDI, drug-drug interaction; PBPK, physiologicallybased 
pharmacokinetic.
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and, based on the measured individual plasma concentration of a 
harmless reference substance, predict the optimal treatment regime 
for another compound that is metabolized by this very enzyme. 
This will require further technical development, the availability of 

sufficient individual data, and additional physiological knowledge, 
but could consequently improve the precision of the PBPK-based 
MIPD approach. Fortunately, the continuous research efforts, as 
for example, shown by the open systems pharmacology community, 

Figure 3 Relationships between the PK pathways of the compounds included in the presented DDGI network. For the six different drugs 
simvastatin, itraconazole, rifampicin, gemfibrozil, clarithromycin, and midazolam metabolic, inhibitory and inductive effects are shown as lines. 
DDGI, drug-drug-gene interaction; PK, pharmacokinetic.

Simvastatin
Lactone

Simvastatin
Acid

Midazolam

Clarithromycin

Itraconazole

Hydroxy-
itraconazole

Keto-
itraconazole

N-desalkyl-
itraconazole

Rifampicin

Gemfibrozil

Gemfibrozil
glucuronide Unspecific renal

clearance
Chemical
hydrolysis

PON3

CYP3A4

AADAC

CYP3A5

BCRP
P-gp

OATP1B1

UGT2B7

Unspecific
liver influx

MRP2

OATP1B3

UGT1A1

UGT1A3

Unspecific
liver

lactonization
Unspecific

plasma
hydrolysis

CYP2C8

Efflux transporter

Influx transporter

Metabolic enzyme

Molecule

Process

Substrate

Inhibtor

Inductor

ARTICLE

3.3 publication iii - simvastatin 51



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 0 NUMBER 0 | Month 2020 7

constantly extend the library of available PBPK models and model 
features.28 This progressive trend is encouraging that current 
knowledge and technical gaps can steadily be narrowed.

We demonstrated the applicability of physiologically based 
precision dosing using the example of simvastatin. Because it is 
among the drugs most frequently involved in major interactions, 

Figure 4 Results from the dose optimization analysis. (a) Heatmap of the performed cluster analysis. Investigated DGIs are shown on the 
x-axis, whereas DDIs are listed on the y-axis. A color-coding as described on the right side of the plot depicts the optimal doses for each DDGI 
combination. Cluster analysis results are shown as dendrograms on the right and top site of the heatmap. Furthermore, simvastatin treatment 
without additional DDI-partner, single cotreatment with itraconazole or clarithromycin and the DGI situation for SLCO1B1 (rs4149056) c.521C/C 
are highlighted with rectangles. (b) Shows the relative distribution of optimal doses for simvastatin. Solid lines depict the therapeutic dose. 
(c) Boxplots visualizing the number of DDGIs against the optimal simvastatin doses. All boxplots show the following descriptive statistics: 
The median value, the interquartile range, and the 1.5-fold interquartile range. All analyzes are shown for a therapeutic dose level of 40 mg 
simvastatin. DDGI, drug-drug-gene interaction; DDI, drug-drug interaction; DGI, drug-gene interaction.
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simvastatin is a perfect candidate to showcase the feasibility of 
physiologically based dose recommendations for known DGIs 
and comedication with frequently used DDI partners.5 For sim-
vastatin, only two whole-body or semimechanistic PBPK models 
are described in the literature yet.29,30 Despite good predictive per-
formance for the area of application, they typically focused on a 
single polymorphism (e.g., SLCO1B1 (rs4149056)) and one DDI 
CYP3A4 inhibition effect. In contrast, our work vastly broadens 
the area of application by the successful development of a newly 
built whole-body simvastatin PBPK model covering multiple 
crucial PK processes. Subsequently, the model was connected to 
a comprehensive DDGI network to extensively study and simu-
late complex DDGI scenarios. The final model covered four im-
portant polymorphisms in the ABCB1, SLCO1B1, ABCG2, and 
CYP3A5 genes20,31–35 relevant for simvastatin’s PK and was tested 
using previously developed and evaluated models for the perpe-
trators itraconazole, rifampicin, clarithromycin, gemfibrozil, and 
the victim midazolam.10–12,23 The simvastatin network showed 
overall good descriptive and predictive performance and was hence 
used for further dose optimization analysis. Despite good perfor-
mance, the model has some limitations, which are primarily caused 
by insufficient or lacking model input data. For example, for all 
studies where no information about the genotype was provided, 

homozygous wild type genotypes were assumed. Fortunately, the 
prediction of included placebo profiles with unknown genotype 
showed that this assumption is sufficient to achieve good model 
accuracy. Information about the known polymorphism in ABCB1 
was rare and could only be included in the model training dataset 
and not for testing. Moreover, for some simvastatin PK pathways 
no data regarding their significance or activity could be gathered 
(see Supplementary Material, chapter 2). Those pathways and 
associated processes could either not be included in the model 
or their affinity (Km) or activity (kcat) values had to be estimated. 
Here, additional in vitro studies could help to fill this knowledge 
gaps in the future and, subsequently, further improve the model 
quality.36

Although precision dosing is considered a public health need, 
the amount and availability of recommendations for adjustments 
in case of DDGIs, including DDIs and DGIs, are lagging behind. 
For simvastatin, 5 pharmacogenes are listed on pharm gkb.org 
as level 2 variants, which equals at least moderate evidence for a 
significant influence on the pharmacotherapy.15 Yet, only for one 
polymorphism in SLCO1B1 (rs4149056) recommendations on 
how to adapt the dose are on hand.15,37,38 For the poor function 
SLCO1B1 genotype (c.521C/C) low dosing, prescription of an 
alternative statin or routine creatine kinase surveillance is typically 

Figure 5 Case examples analyzed with the developed decision support system. Therapeutic simvastatin dose was 40 mg and SL and SA 
exposure deviation were equally weighted. From left to right, different recommendations for action are given depending on the deviation 
between the optimal dose under DDGI condition compared with the therapeutic dose. DDGI, drug-drug-gene interaction; SA, simvastatin acid; 
SL, simvastatin lactone.
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recommended.37,38 Our developed model-based dose recommen-
dations agree on the Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guideline by also recommending an alter-
native drug for the SLCO1B1 c.521C/C polymorphism (see 
Figure 5).37,38 The FDA drug label of simvastatin (Zocor) con-
traindicates the concomitant use of strong CYP3A4 inhibitors 
like itraconazole or clarithromycin.39 This is also reflected by 
the presented PBPK DDGI network as shown in Figure 4a (red 
highlighting rectangles) for single clarithromycin or itraconazole 
cotreatment. Except for DDGIs with some CYP3A5 activity 
(*1/*1 or *1/*3), the model always predicts that no optimal sim-
vastatin dose could be found (optimal dose = 0 mg). This is not 
surprising, because the originally published clarithromycin and 
itraconazole models did not include CYP3A5 inhibition (see 
Supplementary Material, chapter 3).10,23 Although there are 
hints of CYP3A5 inhibition by itraconazole or clarithromycin in 
past studies, information available were too sparse to include this 
process in the models.40,41 This lack of information is most likely 
due to the fact that the CYP3A5*3/*3 nonexpressor genotype is 
the major genotype in many populations without recent African 
ancestry. Although only 10–25% of Europeans have detectable lev-
els of hepatic CYP3A5, this rate increases to 55–95% in African 
Americans.42–44 For scenarios were CYP3A5 shows activity, it 
partly replaces the metabolic clearance of CYP3A4 in the net-
work. Whether this holds true and a DDGI with clarithromycin 
or itraconazole and CYP3A5 only leads to a slightly increased SL 
exposure should be further investigated.

Apart from individual DDIs or DGIs, there is currently no rec-
ommendation for simvastatin DDGIs available.39 Unfortunately, 
this is not only the case for simvastatin but reflects the situation 
for the majority of available drugs.4 The standard to overcome 
this deficiency are clinical trials. However, due to the combinato-
rial explosion of possibilities for complex DDGIs exhaustive in-
vestigation via clinical studies is not feasible.4,9 As shown in the 
performed cluster analysis (Figure 4a) for complicated DDGIs, 
no generally valid rule or therapy recommendation can be given, 
making it indeed necessary to investigate DDGIs on an individual 
level. With the rapid increase in efficiency and availability of com-
putational resources (e.g., via cloud computing) the application of 
rich PBPK DDGI networks for MIPD, as shown in the presented 
study, seems feasible. Yet, clinical studies evaluating more complex 
situations like DDGIs are urgently needed to challenge, refine, and 
validate MIPD predictions.12

Even though the presented work exceeds the number of cur-
rently available dose recommendations by far, it still only applies 
to a small fraction of possible simvastatin DDGIs. Furthermore, 
it should be noted that dose optimization was only performed 
for matching exposure and not linked with a pharmacodynamic 
(PD) model connecting SL and SA exposure with drug efficacy 
like change in LDL levels or drug toxicity.43,45,46 Such a PBPK/
PD MIPD decision support system could enable clinicians to 
individually balance therapy risks and chances.47,48 However, as 
recent investigations have shown, those models should also regard 
the exposure of SL, which had not been recognized for a long 
time.49 Results from Tahaa et al. indicate that SL could be more 
relevant for drug’s toxicity, whereas SA could be more important 

for efficacy.49 For this reason, the exposure marker cost function 
used for dose optimization was derived from both exposure devi-
ations in order to account for SL exposure deviations as well. By 
further implementing a weighting factor, the clinician is still free 
to set the influence for both species individually. Nevertheless, 
this highlights that further models and model extensions are 
required to enlarge the current network. Fortunately, the estab-
lished PBPK network shows enough flexibility to be extended as 
soon as more models for PD effects, perpetrator, or victim com-
pounds are available.10–12,23 Such models can then easily be linked 
with the current network and subsequently be used for further 
optimizations.10–12,23

The simulation analyses for DDGI scenarios were simulated for 
7 days + 24 hours postdose. Although, for single drug treatment, 
this simulation time should be sufficient to reach PK steady-state 
conditions for all compounds investigated,50–53 this assumption 
might not hold true for complex DDGI scenarios. However, as a 
priori effect estimations of complex DDGI scenarios on drug half-
lives is not feasible, this should be considered for any follow-up 
simulation analysis.

As stated by Gonzalez and coworkers, a precision dosing strategy 
for clinical practice does not only rely on the development of pre-
dictive dosing models, but also on the integration into a decision 
support system accessible by the physician.8 Thus, we provide an ex-
emplary implementation of such a system for simvastatin to demon-
strate ease of use for modeling nonexperts via a web-based solution.

In conclusion, a novel physiologically based precision dosing 
approach was successfully developed to study complex DDGI 
network scenarios for the model drug simvastatin. Findings from 
extensive cluster analysis of various DDGIs showed no generalized 
pattern for dose adjustments suggesting the need for individualized 
MIPD approaches to ensure effectiveness of therapy and prevention 
of severe ADRs. It could be demonstrated that adaption of whole-
body PBPK modeling for MIPD allows the flexible extension and 
requalification of already established interaction networks more 
easily and with greater confidence for unknown scenarios than al-
ready established tooling for MIPD. Future developments should 
focus on enhancing the capabilities of PBPK modeling by inte-
gration of Bayesian adaptive control mechanisms like maximum 
a posteriori estimation allowing more fine-grained personalized 
readjustment for DDI-sensible and DGI-sensible drugs. Efforts for 
open access model deployment should be promoted for more wide-
spread utilization. Besides open access to models, the integration 
with easy to use decision support systems is crucial to allow the 
adaption into clinical practice. Thus, for further use, all simvastatin 
DDGI network model files are publicly available (https://github.
com/Clini cal-Pharm acy-Saarl and-Unive rsity) and the physiologi-
cally based precision dosing decision support system is deployed 
for open access at simva statin.preci siond osing.de.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).

FUNDING
This work was funded by the Robert Bosch Stiftung (Stuttgart, Germany), 
the European Commission Horizon 2020 UPGx grant 668353, a grant 

ARTICLE

54 results



VOLUME 0 NUMBER 0 | Month 2020 | www.cpt-journal.com10

from the German Federal Ministry of Education and Research (BMBF 
031L0188D), and the Deutsche Forschungsgemeinschaft (DFG, 
German Research Foundation) under Germany’s Excellence Strategy—
EXC 2180—390900677.

ACKNOWLEDGMENTS
Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declared no competing interests for this work.

AUTHOR CONTRIBUTIONS
J.-G.W., D.S., M.S., and T.L. wrote the manuscript. J.-G.W., M.S., and T.L. 
designed the research. J.-G.W. performed the research. J.-G.W., D.S., 
and T.L. analyzed the data.

© 2020 The Authors. Clinical Pharmacology & Therapeutics published 
by Wiley Periodicals LLC on behalf of American Society for Clinical 
Pharmacology and Therapeutics.

This is an open access article under the terms of the Creative Commons 
Attribution-NonCommercial License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited 
and is not used for commercial purposes.

 1. Elsevier.Elsevier joins forces with pharmaceutical industry leaders 
to build new drug-drug interaction risk calculator <https://www.
elsev ier.com/about/ press -relea ses/clini cal-solut ions/elsev 
ier-joins -force s-with-pharm aceut ical-indus try-leade rs-to-build -new-
drug-drug-inter actio n-risk-calcu lator> (2019). Accessed July 12, 
2020.

 2. US Food and Drug Administration. Preventable adverse drug 
reactions: a focus on drug interactions <https://www.fda.gov/
drugs/ drug-inter actio ns-label ing/preve ntabl e-adver se-drug-
react ions-focus -drug-inter actions> (2018). Accessed July 12, 
2020.

 3. Carr, T. Too many meds? America’s love affair with prescription 
medication <https://www.consu merre ports.org/presc ripti 
on-drugs/ too-many-meds-ameri cas-love-affai r-with-presc ripti on-
medic ation/> (2017). Accessed July 12, 2020.

 4. Malki, M.A. & Pearson, E.R. Drug-drug-gene interactions and 
adverse drug reactions. Pharmacogenomics J. 20, 355–366 
(2020).

 5. Verbeurgt, P., Mamiya, T. & Oesterheld, J. How common are 
drug and gene interactions? Prevalence in a sample of 1143 
patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. 
Pharmacogenomics 15, 655–665 (2014).

 6. Routledge, P.A., O’Mahony, M.S. & Woodhouse, K.W. Adverse 
drug reactions in elderly patients. Br. J. Clin. Pharmacol. 57, 
121–126 (2004).

 7. Alhawassi, T.M., Krass, I., Bajorek, B.V. & Pont, L.G. A systematic 
review of the prevalence and risk factors for adverse drug 
reactions in the elderly in the acute care setting. Clin. Interv. 
Aging 9, 2079–2086 (2014).

 8. Gonzalez, D. et al. Precision dosing: public health need, proposed 
framework, and anticipated impact. Clin. Transl. Sci. 10, 443–454 
(2017).

 9. Tornio, A., Filppula, A.M., Niemi, M. & Backman, J.T. Clinical 
studies on drug-drug interactions involving metabolism and 
transport: methodology, pitfalls, and interpretation. Clin. 
Pharmacol. Ther. 105, 1345–1361 (2019).

 10. Britz, H. et al. Physiologically-based pharmacokinetic models for 
CYP1A2 drug-drug interaction prediction: a modeling network of 
fluvoxamine, theophylline, caffeine, rifampicin, and midazolam. 
CPT Pharmacometrics Syst. Pharmacol. 8, 296–307 (2019).

 11. Hanke, N. et al. PBPK models for CYP3A4 and P-gp DDI prediction: 
a modeling network of rifampicin, itraconazole, clarithromycin, 
midazolam, alfentanil, and digoxin. CPT Pharmacometrics Syst. 
Pharmacol. 7, 647–659 (2018).

 12. Türk, D. et al. Physiologically based pharmacokinetic models 
for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) 
drug–drug–gene interactions: a modeling network of gemfibrozil, 
repaglinide, pioglitazone, rifampicin, clarithromycin and 
itraconazole. Clin. Pharmacokinet. 58, 1595–1607 (2019).

 13. Mendes, P., Robles, P.G. & Mathur, S. Statin-induced 
rhabdomyolysis: a comprehensive review of case reports. 
Physiother. Can. 66, 124–132 (2014).

 14. Drugs.com. Simvastatin drug interactions <https://www.drugs.
com/drug-inter actio ns/simva statin.html> Accessed July 5, 
2020.

 15. Whirl-Carrillo, M. et al. Pharmacogenomics knowledge for 
personalized medicine. Clin. Pharmacol. Ther. 92, 414–417 
(2012).

 16. Talreja, O., Kerndt, C.C. & Cassagnol, M.S. StatPearls <http://
www.ncbi.nlm.nih.gov/pubme d/30422514> (2020). Accessed 
July 31, 2020.

 17. Moßhammer, D., Schaeffeler, E., Schwab, M. & Mörike, K. 
Mechanisms and assessment of statin-related muscular adverse 
effects. Br. J. Clin. Pharmacol. 78, 454–466 (2014).

 18. IQVIA Institute for Human Data Science. Medicine use and 
spending in the U.S. <https://www.iqvia.com/insig hts/the-iqvia 
-insti tute/repor ts/medic ine-use-and-spend ing-in-the-us-a-revie 
w-of-2018-and-outlo ok-to-2023> (2019).

 19. Open Systems Pharmacology Community. Open systems 
pharmacology suite <www.open-syste ms-pharm acolo gy.org> 
(2019). Accessed July 31, 2020.

 20. Wojtyniak, J., Britz, H., Selzer, D., Schwab, M. & Lehr, T. 
Data digitizing: accurate and precise data extraction for 
quantitative systems pharmacology and physiologically-based 
pharmacokinetic modeling. CPT Pharmacometrics Syst. Pharmacol. 
9, 322–331 (2020).

 21. R Core Team. R: A Language and Environment for Statistical 
Computing <https://www.r-proje ct.org> (2020).

 22. Hanke, N. et al. PBPK models for CYP3A4 and P-gp DDI prediction: 
a modeling network of rifampicin, itraconazole, clarithromycin, 
midazolam, alfentanil, and digoxin. CPT Pharmacometrics Syst. 
Pharmacol. 7, 647–659 (2018).

 23. Moj, D. et al. Clarithromycin, midazolam, and digoxin: application 
of PBPK modeling to gain new insights into drug-drug 
interactions and co-medication regimens. AAPS J. 19, 298–312 
(2017).

 24. Edginton, A.N., Schmitt, W. & Willmann, S. Development and 
evaluation of a generic physiologically based pharmacokinetic 
model for children. Clin. Pharmacokinet. 45, 1013–1034 
(2006).

 25. Morley, S.K., Brito, T.V. & Welling, D.T. Measures of model 
performance based on the log accuracy ratio. Space Weather 16, 
69–88 (2018).

 26. Wagner, C. et al. Application of physiologically based 
pharmacokinetic (PBPK) modeling to support dose selection: 
report of an FDA public workshop on PBPK. CPT Pharmacometrics 
Syst. Pharmacol. 4, 226–230 (2015).

 27. Mould, D.R., D’Haens, G. & Upton, R.N. Clinical decision support 
tools: the evolution of a revolution. Clin. Pharmacol. Ther. 99, 
405–418 (2016).

 28. Lippert, J. et al. Open systems pharmacology community-an open 
access, open source, open science approach to modeling and 
simulation in pharmaceutical sciences. CPT Pharmacometrics 
Syst. Pharmacol. 8, 878–882 (2019).

 29. Lippert, J. et al. A mechanistic, model-based approach to safety 
assessment in clinical development. CPT Pharmacometrics Syst. 
Pharmacol. 1, e13 (2012).

 30. Tsamandouras, N. et al. Development and application of a 
mechanistic pharmacokinetic model for simvastatin and 
its active metabolite simvastatin acid using an integrated 
population PBPK approach. Pharm. Res. 32, 1864–1883 
(2015).

 31. Kim, K.-A., Park, P.-W., Lee, O.-J., Kang, D.-K. & Park, J.-Y. Effect 
of polymorphic CYP3A5 genotype on the single-dose simvastatin 
pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 47, 
87–93 (2007).

ARTICLE

3.3 publication iii - simvastatin 55



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 0 NUMBER 0 | Month 2020 11

 32. Choi, H.Y. et al. Impact of CYP2D6, CYP3A5, CYP2C19, 
CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms 
on the pharmacokinetics of simvastatin and simvastatin acid. 
Pharmacogenet. Genomics 25, 595–608 (2015).

 33. Pasanen, M.K., Neuvonen, M., Neuvonen, P.J. & Niemi, M. 
SLCO1B1 polymorphism markedly affects the pharmacokinetics of 
simvastatin acid. Pharmacogenet. Genomics 16, 873–879 (2006).

 34. Keskitalo, J.E., Pasanen, M.K., Neuvonen, P.J. & Niemi, 
M. Different effects of the ABCG2 c.421C>A SNP on the 
pharmacokinetics of fluvastatin, pravastatin and simvastatin. 
Pharmacogenomics 10, 1617–1624 (2009).

 35. Keskitalo, J.E., Kurkinen, K.J., Neuvoneni, P.J. & Niemi, M. 
ABCB1 haplotypes differentially affect the pharmacokinetics of 
the acid and lactone forms of simvastatin and atorvastatin. Clin. 
Pharmacol. Ther. 84, 457–461 (2008).

 36. Kuepfer, L. et al. Applied concepts in PBPK modeling: how to build 
a PBPK/PD model. CPT Pharmacometrics Syst. Pharmacol. 5, 
516–531 (2016).

 37. Bank, P. et al. Comparison of the Guidelines of the Clinical 
Pharmacogenetics Implementation Consortium and the Dutch 
Pharmacogenetics Working Group. Clin. Pharmacol. Ther. 103, 
599–618 (2018).

 38. Ramsey, L.B. et al. The clinical pharmacogenetics implementation 
consortium guideline for SLCO1B1 and simvastatin-induced 
myopathy: 2014 update. Clin. Pharmacol. Ther. 96, 423–428 
(2014).

 39. Merck & Co., Inc. Zocor (Simvastatin) [package insert]. U.S. Food 
and Drug Administration website <https://www.acces sdata.fda.
gov/drugs atfda_docs/label/ 2019/01976 6s100 lbl.pdf> Accessed 
July 5, 2020.

 40. Shirasaka, Y. et al. Effect of CYP3A5 expression on the inhibition 
of CYP3A-catalyzed drug metabolism: impact on modeling 
CYP3A-mediated drug-drug interactions. Drug Metab. Dispos. 41, 
1566–1574 (2013).

 41. Michaud, V. & Turgeon, J. Assessment of competitive and 
mechanism-based inhibition by clarithromycin: use of 
domperidone as a CYP3A probe-drug substrate and various 
enzymatic sources including a new cell-based assay with freshly 
isolated human hepatocytes. Drug Metab. Lett. 4, 69–76 (2010).

 42. Bains, R.K. et al. Molecular diversity and population structure 
at the cytochrome P450 3A5 gene in Africa. BMC Genet. 14, 34 
(2013).

 43. Scherer, N., Dings, C., Böhm, M., Laufs, U. & Lehr, T. Alternative 
treatment regimens with the PCSK9 inhibitors alirocumab and 

evolocumab: a pharmacokinetic and pharmacodynamic modeling 
approach. J. Clin. Pharmacol. 57, 846–854 (2017).

 44. Kuehl, P. et al. Sequence diversity in CYP3A promoters and 
characterization of the genetic basis of polymorphic CYP3A5 
expression. Nat. Genet. 27, 383–391 (2001).

 45. Kim, J. et al. A population pharmacokinetic-pharmacodynamic 
model for simvastatin that predicts low-density lipoprotein-
cholesterol reduction in patients with primary hyperlipidaemia. 
Basic Clin. Pharmacol. Toxicol. 109, 156–163 (2011).

 46. Tsamandouras, N. et al. Identification of the effect of multiple 
polymorphisms on the pharmacokinetics of simvastatin and 
simvastatin acid using a population-modeling approach. Clin. 
Pharmacol. Ther. 96, 90–100 (2014).

 47. Marshall, S. et al. Model-informed drug discovery and 
development: current industry good practice and regulatory 
expectations and future perspectives. CPT Pharmacometrics Syst. 
Pharmacol. 8, 87–96 (2019).

 48. EFPIA MID3 Workgroup, et al. Good practices in model-informed 
drug discovery and development: practice, application, and 
documentation. CPT Pharmacometrics Syst. Pharmacol. 5, 93–122 
(2016).

 49. Taha, D.A. et al. The role of acid-base imbalance in statin-induced 
myotoxicity. Transl. Res. 174, 140–160.e14 (2016).

 50. Todd, P.A. & Ward, A.G. A review of its pharmacodynamic 
and pharmacokinetic properties, and therapeutic use in 
dyslipidaemia. Drugs 36, 314–339 (1988).

 51. Acocella, G. Clinical pharmacokinetics of rifampicin. Clin. 
Pharmacokinet. 3, 108–127 (1978).

 52. Heykants, J. et al. The clinical pharmacokinetics of itraconazole: 
an overview. Mycoses 32(suppl. 1), 67–87 (1989).

 53. Rodvold, K.A. Clinical pharmacokinetics of clarithromycin. Clin. 
Pharmacokinet. 37, 385–398 (1999).

 54. Pasanen, M.K., Fredrikson, H., Neuvonen, P.J. & Niemi, 
M. Different effects of SLCO1B1 polymorphism on the 
pharmacokinetics of atorvastatin and rosuvastatin. Clin. 
Pharmacol. Ther. 82, 726–733 (2007).

 55. Jacobson, T.A. Comparative pharmacokinetic interaction 
profiles of pravastatin, simvastatin, and atorvastatin when 
coadministered with cytochrome P450 inhibitors. Am. J. Cardiol. 
94, 1140–1146 (2004).

 56. Guest, E.J., Aarons, L., Houston, J.B., Rostami-Hodjegan, A. 
& Galetin, A. Critique of the two-fold measure of prediction 
success for ratios: application for the assessment of drug-drug 
interactions. Drug Metab. Dispos. 39, 170–173 (2011).

ARTICLE

56 results



Part III

D I SCUSS ION AND CONCLUS IONS

The chapter provides a comprehensive and concluding dis-
cussion of the results presented in this thesis.





4
DISCUSS ION

Our modern healthcare and economic system is heavily burdened by
ADRs and ADEs [7, 8]. Significant drivers of ADRs and ADEs are DDIs,
DGIs, and DDGIs [17, 19, 82]. A promising solution to overcome them,
is to improve the drug development process by MID3 as well as to
optimize post-marketing drug therapy regimen by MIPD techniques [3,
50, 51]. PBPKmodeling, which belongs to theMID3 andMIPDportfolio,
is particularly useful for this purpose as it can also reduces the number
of expensive and complex clinical trials that would otherwise have had
to be carried out to investigate the DDGIs [52, 83–85].

Thus, the presented work had three objectives. Namely, to improve
the PBPKmodelingworkflow, to support the drug development process
of the NTE zoptarelin doxorubicin and to propose therapy recommen-
dations for simvastatin DDGIs including the development of a DSS.

4.1 data digitizing for model development

The first publication presented in this thesis focused on data digitiz-
ing as an important cornerstone of PBPK and QSP modeling (see Sec-
tion 3.1). Commonly, PBPK models rely on a priori information for
estimating unknown system and drug dependent parameters [1, 74–
79]. Hence, the quality and accuracy of a PBPKmodel is correlated with
the amount of data and information available for parameter estimation
[86]. Moreover, like for other predictive models, training and test data
are necessary to evaluate the predictive performance of PBPK models
[1, 78, 87]. Unfortunately, if published, the necessary information and
in particular, clinical time-dependent data like plasma-concentration
time profiles are rarely available as tabulated numerical values as de-
scribed in Section 3.1. They are often presented in a condensed way
as mean profiles and in the form of graphs (see Section 3.1). This is
where data digitizing is a useful and increasingly used technique to
translate the graphical presentation into numerical values to overcome
potential knowledge gaps [1]. As shown in Section 3.1, a 16% increase
per year in publications citing digitizing software together with PBPK
or QSP was found. It was also observed that the investigated digitizing
software showed an overwhelming precision with a mean median sym-
metric accuracy (MSA) of 0.99% [1]. In contrast, it was noticed that
digitized data errors are rather related to preexisting inconsistencies in
the published manuscripts.
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These findings are of high importance also for the established simvas-
tatin PBPK DDGI network, as presented in Section 3.3 and Section A.3,
because a PBPK model developed with biased data, could lead to false
predictions [1, 52, 88]. Following, this can result in unsafe dose recom-
mendations which pose potentially harm for patients [1, 52, 88]. For this
reason, it is important to follow the workflow presented in Section 3.1,
which includes some quality control (QC) approaches to verify data
quality and integrity. If identified inconsistencies cannot be resolved,
the digitized data should be used very carefully and only if they are
critical for model development. To mitigate the risk of ”outlier data”
that subsequently bias the final PBPK model, one could follow the law
of large numbers and increase the number of digitized studies [89]. For
example, in the model presented in Section 3.3 and Section A.3, in total
132 simvastatin lactone (SL) and SA profiles were digitized to reduce
the impact of single, potentially biased profiles.

Another approach for identifyingmodelmisspecifications is the afore-
mentioned use of training and test datasets as shown in Figure 1.5. How-
ever, for PBPK modeling, currently, no best practices how to separate
the available data in test and training datasets are established. In con-
trast, for other predictive modeling strategies, recommendations are on
hand [87, 90]. For example, one regular approach is to follow the Pareto
principle, which wouldmean a random distribution of all data available
at a ratio of 80 to 20 in training and test dataset [87, 90–92]. Neverthe-
less, this would only make limited sense for developing a PBPK model,
since, as shown in Section 3.3 and Section A.3, literature data are only
sparsely available for many investigated effects. For example, for most
of the investigated DDIs only one profile and sometimes only a single
peak plasma concentration (Cmax) or AUC value were on hand (see
Section 3.3 and Section A.3).

Another problem is that many sampling points have a dependence
on the study in which they were generated. However, especially time-
dependent measurements differ in the number and distribution of sam-
pling points per study (see Section A.3). Thus, not every profile is
suitable for informing a model regarding, for instance, terminal elimi-
nation or Cmax. For the two reasons mentioned above, a purely random
split could easily lead to uneven distribution, making either the im-
plementation of an effect or its evaluation impossible [92]. Therefore,
for most published PBPK models, a subjective, manual division of the
data into test and training was performed [74–79]. The influence of
this procedure on model quality, as well as rational, alternative best
practices should be part of further investigations.

4.2 zoptarelin doxorubicin drug-drug interaction potential

The second publication aimed to assess the DDI potential of zoptare-
lin doxorubicin concerning OATP1B3 and OCT2 (see Section 3.2 and
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Section A.2). The detection and characterization of DDIs is an integral
part of drug development, and detailed regulatory guidance on this
topic is available [27, 93, 94]. Experiments for DDI characterization are
commonly carried out in the preclinical development phase to identify
drug interaction potentials [94]. Unfortunately, the translation of these
preclinical results into clinical effects proves to be difficult [3, 94]. For
this reason, extensive clinical studies have to be carried out regularly
[27]. However, this is problematic in particular for oncological sub-
stances [24, 25]. As cancer patients receive many drugs at once that
cannot be discontinued during a clinical study, they are very susceptible
to DDIs [24, 25]. This circumstance also makes the interpretation of
clinical study results difficult [24, 25]. In addition, the performance of
such studies with NTEs whose efficacy and toxicity have not yet been
conclusively investigated can be ethically challenging [2]. All in all,
new techniques are needed to better translate the preclinical data and
possibly avoid clinical studies altogether [2].

Two such approaches were presented in detail in Section 3.2. The first
promising technique utilized PBPK modeling to predict unbound tis-
sue concentration of zoptarelin doxorubicin in organs where OATP1B3
and OCT2 are expressed. Subsequently, a relative change of appar-
ent Michaelis-Menten constant (𝐾𝑀) and transportation velocity of
OATP1B3 and OCT2 could be calculated, indicating a limited risk for
a clinical relevant DDI. Going even further; by developing additional
PBPK models for the OATP1B3 and OCT2 substrates simvastatin and
metformin, clinical worst-case scenarios were predicted further confirm-
ing this assumption(see Section 3.2). Besides, these precursor models
of simvastatin and metformin laid the foundation for further DDGI
networks as shown in Section 3.3 and by Hanke et al. [80].

4.3 simvastatin drug-drug-gene interaction network

The third publication dealt with the development of a simvastatin PBPK
DDGI network, the derivation of dose recommendations, and the es-
tablishment of a DSS (see Section 3.3).

Simvastatin shows a complex PK, which is influenced by several DDIs
and DGIs (see Figure 1.3). Despite several available PK models for sim-
vastatin, no recommendations for potential DDGIs are on hand so far
[3, 39, 95–98]. This could be because previously developed models
were only empirical or semi-mechanistical simvastatin PK models [3,
39, 95–98]. Although they are well suited to study single influencing
factors, they are limited in their extensibility [59]. For instance, for
each feature added to such a model, additional study data are required
to quantify the observed effects [59]. In contrast, whole-body PBPK
models are capable of also predicting unobserved DDIs by coupling
individually developed models together as depicted in Figure 1.7 [74–
79]. Thus, even if the presented simvastatin model (see Section 3.3)
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does currently not cover every conceivable simvastatin DDGIs, it can
be easily extended to do so. Fortunately, due to the active scientific
community, likely, further perpetrator and victim models will soon be
available, which then can be coupled with the established simvastatin
model to derive further recommendations for DDGIs [99].

Besides, a particular focus was placed on the correct implementation
of cytochrome P450 3A4 (CYP3A4). Cytochrome P450 (CYP) enzymes
account for roundabout 75% of the total drug metabolism [100] and
CYP3A4 in particular, has a leading role within the CYP family [101], as
shown in Figure 4.1. This also applies to simvastatin whereas CYP3A4
is the most influencing metabolic enzyme of simvastatin’s PK and also
responsible for many of simvastatin related DDIs (see Section 3.3 and
Section A.3).
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Figure 4.1: Fraction of clinically used drugs metabolized by various CYP iso-
forms [101].

To validate the correct implementation of CYP3A4 into the model,
it was extensively evaluated as shown in Section A.3. This includes, as
recommended by the recently released EMA guideline on how to report
a PBPK model, sensitivity analyses [102]. Thereby, the final sensitivity
analysis, as presented in Section A.3 nicely showed the importance of
CYP3A4 on SL and SA exposure in the model.

Although several different DDIs and DGIs could be predicted accu-
rately by the presented work, it has to be noted that some of the data
available may only be of limited credibility for model evaluation. By
performing QCs measures as described in Section 3.1, several studies
revealed unexpected heterogeneity regarding their presented data. For
example, Choi et al. [103] listed AUC and Cmax values for many dif-
ferent DGIs. However, QCs revealed that presented dose-normalized
values shown by Choi et al. [103] for SA were significant and consis-
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tently larger than to most of the studies available (see Section A.3). A
possible explanation could have been the ethnicity of the study pop-
ulations. While most of the available studies recruited predominantly
Caucasians, it can be assumed that Choi et al. [103], because their study
was conducted in Korea, had mainly involved Koreans. The assumption
of PK differences for simvastatin among various ethnic groups was
partly confirmed by another recent study focusing on simvastatin PK
changes between the three East Asian populations and Caucasian’s
[104].

Another problem concerning the NCA values’ quality was encoun-
tered in the DDI study with itraconazole [105]. In this study for quan-
tification of SL and SA exposure, different analysis techniques (high-
performance liquid chromatography (HPLC) and gas chromatogra-
phy–mass spectrometry (GC-MS)) were used. As a result the lower
limit of detection (LLOD) for SL was high (10 ngml−1), which led to
many SL samples below the LLOD in the placebo phase. Moreover, in
the same study, SA was quantified as total SA after hydrolysis of SL
and other SL metabolites in the probes. All in all, this meant that the
plasma concentration-time profiles given by Neuvonen, Kantola, and
Kivistö [105] could not directly be used for model evaluation. Similar
conclusions were drawn by Tsamandouras et al. [95] in his attempt of
reusing the data for model evaluation. Luckily, Neuvonen, Kantola, and
Kivistö [105] stated that for SL an at least 10-fold increase in exposure
under itraconazole co-treatment was observed compared to placebo.
This value was subsequently used for model evaluation. In contrast, a
published increase of SA exposure was not be used for evaluation since,
due to assay limitations mentioned earlier, it could not be compared to
any model output.

Both examples, the data from Choi et al. [103] and Neuvonen, Kan-
tola, and Kivistö [105], highlight the necessity of additional DDI and
DGI or even DDGI intervention studies to support further PBPK model
development and evaluation. Also, the same conclusion as drawn in
Section 3.1 applies. Instead of condensed information, the complete
study protocol and observed raw values for such interaction studies
should be available. This way, for example, the question of which ethnic-
ity the participants in the study performed by Choi et al. [103] belong
to could have been answered.

After model development and evaluation, the final model was used
to optimize several DDGI scenarios using matching exposure. For this
purpose, a combined exposure marker for SL and SA was derived as
described in Section 3.3. An alternative approach would have been to
couple the model with a suitable PD model extension. However, this
was waived since neither an appropriate extension was available nor
the necessary data were on hand. For example, in a study by Lippert
et al. [96] a toxicodynamic marker for simvastatin acid was derived as a
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function of solute carrier organic anion transporter family member 1B1
(OATP1B1) transporter activity. However, this toxicodynamic marker
would not have been suitable for the presented work since the aim
was to cover several DDGIs, some of them not focusing on OATP1B1.
Moreover, as described by Taha et al. [106] there is evidence that the
toxicokinetic of simvastatin is more dependent on exposure of SL com-
pared to SA. Thus, a suitable PD model extension should differentiate
between the effects of SL and SA exposure. Moreover, it should not
only focus on simvastatin toxicokinetics but also cover therapy relevant
efficacy biomarkers like low-density lipoprotein cholesterol (LDL-C)
[107]. If both components, efficacy and toxicity of simvastatin, would
be covered by a PD model extension, it could be coupled with the pre-
sented simvastatin PK model to calculate a therapy related net clinical
benefit (NCB) [108]. The NCB could subsequently be used to compare
different therapy regiments and optimize them under DDGIs condi-
tions based on hard endpoints like probabilities for ADEs or therapy
success rates. Similar approaches can already be found in the literature
[109]. However, until then, matching exposure is a suitable alternative
as this approach is, for instance, recommended for other applications
like pediatric extrapolation [110].

The results from the dose optimization process were afterward trans-
ferred into an interactive DSS that allows deriving MIPD recommenda-
tions tailored to each DDGI of interest (see Section 3.3). However, it has
to be noted that although PBPK modeling is emphasized for the predic-
tion of DDIs and DGIs [51, 66, 70–72, 76] further evaluation whether
also complicated DDGIs can be predicted using PBPK modeling, is still
pending.

Apart from that, the developed DSS has yet to prove its acceptance
and usefulness in clinical practice. For this purpose, further studies and
user surveys should be conducted. Those could focus on the perceived
usefulness and the perceived ease-of-use of the tool as parameters re-
lated to the probability that a technology will be accepted by potential
users [111, 112]. Nevertheless, even if further evaluations of the pre-
sented DSS are needed, it shows exemplarily how MIPD can be truly
brought from pure theory to the patient’s bedside [48].



5
CONCLUS IONS

The presented work added valuable knowledge on improving digitized
data quality, necessary for PBPK model development and evaluation.
This will most likely also affect the accuracy of the developed PBPK
models and thus their quality for use inMID3 andMIPD. Further, it was
shown how to assess the DDI potential of NTEs based on the example of
zoptarelin doxorubicin using PBPKMID3 techniques instead of ethically
challenging clinical DDI studies. Moreover, complex DDGIs scenarios
for simvastatin were addressed with a PBPK MIPD approach. Finally,
the derived simvastatin therapy recommendations were made available
online in the form of a newly developed DSS. Since PBPK MIPD is a
novel approach in the management of DDGIs, additional studies will
be necessary to conclusively evaluate this technique, especially in the
prevention of ADEs.
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Figure S1 Number of publications containing the terms “systems pharmacology” or “physiologically 

based pharmacokinetic” and the names of the digitization software packages investigated over the 

last few years. Labels and dashed purple line show model estimated values and increase per year 

using Poisson regression. For all subplots, solid lollipops represent the observed values. 

 

82 supporting information



 

Figure S2 Flow-chart of the performed literature search in CPT CPT: PSP (Online ISSN: 2163-8306) 
from 2018. Records were reviewed manually in order to identify articles related to PBPK that 
referenced a digitizing software and most likely had used literature data. 
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Figure S3 Boxplot of the median symmetric accuracy for each digitization run performed in the study. 
In addition, arithmetic mean of all groups in shown as dashed line. 
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Table S1: Software solutions for data digitization1 

Software Name Platform Cost [$] 

Total number of 

publication frequencies 

Features 

Dagra Windows 49.95 18 

Import: From clipboard, via built-in screen-shot tool. Supported formats: .bmp, .emf, .gif, .jpg, .jpeg, .png, .tif, 

.tiff, .wmf. Digitizing features: One graph at once, point digitization (1 point per click), curve digitization (curve 

tracing using Bezier curves), zoom panel, axis scaling: linear, log10 or loge. Export: To clipboard, to text file, Dagra 

files can be opened in Matlab, Python or Excel. Other: Appearance rating from 0 (not appealing) to 10 (appealing): 

3 

DataThief  

Windows, 

MacOS, Unix 

25 20 

Supported formats: .gif, .jpg, .jpeg, .png Digitizing features: One graph at once, point digitization (1 point per 

click), curve digitization (line tracing), can digitize polar coordinates, axis scaling: user defined Export: To text 

file Other Appearance rating from 0 (not appealing) to 10 (appealing): 6, written in Java (no installation required) 

dcsDigitiser  Windows 423 0 Trial version could not be tested since the software interfere with windows defender. 

DigitizeIt 

Windows, 

MacOS, Unix 

49 58 

Import: From clipboard. Supported formats: .bmp, .jfif, .gif, .jpg, .jpeg, .png, .tif, .tiff, .ico Digitizing features: 

One graph at once, point digitization (1 point per click or automatic), curve digitization (line tracing), axis scaling: 

linear, logarithmic, 1/x. Export: To csv, to clipboard Other Appearance rating from 0 (not appealing) to 10 

(appealing): 7, graphs can be zoomed, mirrored and rotated, can handle tilted or distorted graphs, axes do not need 

to be orthogonal 

Engauge 

Windows, 

MacOS, Unix 

Free 418 

Supported formats: .bmp, .cur, .gif, .icns, .ico, .jpeg, .jpg, .pbm, .pdf, .pgm, .ppm, .png, .pgm,. .tga, .tif, .tiff, 

.wbmp, .webp, .xbm, .xpm Digitizing features: Multiple graphs at once, point digitization (1 point per click or 

automatic), curve digitization (line tracing cubic spline interpolation), axis scaling: linear, logarithmic, date and 
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time values, or as degrees, minutes and seconds, can digitize polar coordinates, image processing, grid lines 

Export: To csv/tsv, to clipboard Other Appearance rating from 0 (not appealing) to 10 (appealing): 8, various 

wizards (interactive tutorials), axes checker, axes with only one known coordinate (floating axes) can be digitized, 

geometry window displays geometric information about the selected curve, curve Fitting Window fits a polynomial 

function to the selected curve, various customization options. 

g3data Windows Free 15 Could not be tested because the software needs separate compilation. 

GetData  Windows 30 225 

Import: From clipboard. Supported formats: .bmp, .jpg, .tif, .pcx Digitizing features: One graph at once, 

point digitization (1 point per click), curve digitization (curve tracing), zoom panel, axis scaling: linear, log10 

Export: To clipboard, to text file, to csv Other Appearance rating from 0 (not appealing) to 10 (appealing): 8 

GraphClick  MacOS Free 22 No longer under development. 

im2graph 

Windows, 

Linux 

Free 1 

For installation of the freeware version a download-link is required. However, we did not receive a link and thus, 

could not test the software.  

Un-Scan it 

Windows, 

MacOS 

345 120 

Import: From clipboard Supported formats: .bmp, .gif, .jpeg, .jpg, .tiff, .png, .tga, .pcx Digitizing features: One 

graph at once, point digitization (1 point per click), curve digitization (curve tracing – also for intersecting lines 

and dashed/dotted lines), bar-chart digitization, contour plot digitization, shape/Drawing digitization, polar 

coordinate digitization, zoom panel, separate “graph-screen-mode”, axis scaling: linear, log10 Export: To 

clipboard, to text file, to csv file Other Appearance rating from 0 (not appealing) to 10 (appealing): 7, grid line 

filters, automatic line follow mode, raster scan mode, corrects for tilted graphs and variable line thickness, various 

post-processing features (area integration between cursors / data smoothing etc.). 
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WebPlotDigitzer  Web based Free 103 

Supported formats: Not directly stated. Probably the most important formats. Digitizing features: One graph at 

once, point digitization (1 point per click or automatic), curve digitization (curve tracing), bar-chart digitization, 

ternary diagram digitization, map with scale bar digitization, polar coordinate digitization, image digitization, 

zoom panel, axis scaling: linear, log10, measurement calculations (distance, area, angle), dataset cleaning functions 

(sorting/renaming), can remove gridlines Export: To csv file, save project as .json file, to plotly, to clipboard 

Other Appearance rating from 0 (not appealing) to 10 (appealing): 8, as software or as browser-plugin available, 

can run javascripts 

WinDig  Windows Free 15 Could not be tested since it is only available as 16bit version 

xyExtract Windows 45 2 Could not be tested since no windows 10 version is available. 
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Table S2: Studies used for comparing published numeric and digitized Cmax values 

Author Mean ζ [%]  Smallest ζ [%] 

Largest ζ 

[%] 

N ζ  Reference 

Alakhali 2013 1.3 1.3 1.3 1 1 

Ayalasomayajula 2007 2.8 0.75 4.1 4 2 

Ayalasomayajula 2016 12 6.8 17 2 3 

Backman 2000 15 2.5 41 4 4 

Bergman 2009 13 8.4 20 4 5 

Boulenc 2016 15 9.4 23 3 6 

Cermak 2009 19 9 36 4 7 

Chin 1995 3.4 3.4 3.4 1 8 

Dai 2013 13 0.92 25 4 9 

Daneshmend 1984 16 4.6 37 8 10 

Devineni 2015 16 13 23 4 11 

Dingemanse 2014 15 5.8 35 8 12 

Eap 2004 17 7.9 27 2 13 

Huang 1986 19 8.2 29 3 14 

Jacobson 2004 13 0.35 42 6 15 

Kang 2004 0.038 0.038 0.038 1 16 

Kantola 1998 17 6.8 35 6 17 

Keskitalo 2008 24 11 35 4 18 

Keskitalo 2009 20 4.9 64 6 19 

Kim 2007 32 25 40 3 20 

88 supporting information



 

 

 

 

Knupp 1993 15 15 15 1 21 

Kosoglou 2011 22 7.2 33 4 22 

Krishna 2012 8.9 1.3 16 8 23 

Kyrklund 2000 25 12 35 4 24 

Lam 2003 18 14 23 2 25 

Lilja 1998 21 11 34 4 26 

Lilja 2000 31 31 31 1 27 

Lilja 2004 13 3.7 27 4 28 

McKenney 2006 21 20 22 2 29 

Neuvonen 1998 89 19 160 2 30 

Obrien 2003 34 23 49 4 31 

Pasanen 2006 18 5 34 6 32 

Polk 1999 12 12 12 1 33 

Polli 2013 16 2.9 29 2 34 

Sekar 2008 4.3 4.3 4.3 1 35 

Shanmugam 2011 6.7 0.3 13 2 36 

Stephen 1991 9.8 9.8 9.8 1 37 

Stoch 2009 7.9 3.9 12 4 38 

Sugimoto 2001 9.9 5.7 14 2 39 

Teng 2013 16 4.5 31 4 40 

Tham 2006 170 0.67 330 2 41 

Tubic-Grozdanis 2008 18 7 50 6 42 
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Tuteja 2014 32 13 54 4 43 

Ucar 2004 32 2.2 63 4 44 

Winsemius 2014 94 52 170 12 45 

Xu 2014 440 0.69 1800 6 46 

Zhao 2015 24 3.7 54 10 47 

a: Number of values extracted from the study for which ζ was calculated 

 

References 

1. Alakhali, K., Hassan, Y., Mohamed, N. & Mordi, M. N. Pharmacokinetic of simvastatin study in 

Malaysian. IOSR J. Pharm. 3, 46–51 (2013). 

2. Ayalasomayajula, S. P. et al. Evaluation of the potential for steady-state pharmacokinetic interaction 

between vildagliptin and simvastatin in healthy subjects. Curr. Med. Res. Opin. 23, 2913–20 (2007). 

3. Ayalasomayajula, S. et al. In vitro and clinical evaluation of OATP-mediated drug interaction potential of 

sacubitril/valsartan (LCZ696). J. Clin. Pharm. Ther. 41, 424–31 (2016). 

4. Backman, J. T., Kyrklund, C., Kivistö, K. T., Wang, J. S. & Neuvonen, P. J. Plasma concentrations of 

active simvastatin acid are increased by gemfibrozil. Clin. Pharmacol. Ther. 68, 122–9 (2000). 

5. Bergman, A. J. et al. Effect of sitagliptin on the pharmacokinetics of simvastatin. J. Clin. Pharmacol. 49, 

483–8 (2009). 

6. Boulenc, X. et al. CYP3A4-based drug-drug interaction: CYP3A4 substrates’ pharmacokinetic properties 

and ketoconazole dose regimen effect. Eur. J. Drug Metab. Pharmacokinet. 41, 45–54 (2016). 

7. Cermak, R., Wein, S., Wolffram, S. & Langguth, P. Effects of the flavonol quercetin on the bioavailability 

of simvastatin in pigs. Eur. J. Pharm. Sci. 38, 519–24 (2009). 

8. Chin, T. W. F., Loeb, M. & Fong, I. W. Effects of an acidic beverage (Coca-Cola) on absorption of 

ketoconazole. Antimicrob. Agents Chemother. 39, 1671–5 (1995). 

9. Dai, L.-L. et al. Assessment of a pharmacokinetic and pharmacodynamic interaction between simvastatin 

and Ginkgo biloba extracts in healthy subjects. Xenobiotica. 43, 862–7 (2013). 

10. Daneshmend, T. K. et al. Influence of food on the pharmacokinetics of ketoconazole. Antimicrob. Agents 

Chemother. 25, 1–3 (1984). 

11. Devineni, D. et al. Effect of canagliflozin on the pharmacokinetics of glyburide, metformin, and 

simvastatin in healthy participants. Clin. Pharmacol. drug Dev. 4, 226–36 (2015). 

12. Dingemanse, J., Nicolas, L. B. & Bortel, L. Van Investigation of combined CYP3A4 inductive/inhibitory 

properties by studying statin interactions: A model study with the renin inhibitor ACT-178882. Eur. J. 

Clin. Pharmacol. 70, 675–684 (2014). 

13.  Eap, C. et al. Oral administration of a low dose of midazolam (75microg) as an in vivo probe for 

CYP3A activity. Eur. J. Clin. Pharmacol. 60, 237–246 (2004). 

14. Huang, Y. C., Colaizzi, J. L., Bierman, R. H., Woestenborghs, R. & Heykants, J. Pharmacokinetics 

and dose proportionality of ketoconazole in normal volunteers. Antimicrob. Agents Chemother. 30, 206– 

10 (1986). 

90 supporting information



 

 

 

 

15. Jacobson, T. A. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and 

atorvastatin when coadministered with cytochrome P450 inhibitors. Am. J. Cardiol. 94, 1140–6 (2004). 

16. Kang, B. K. et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral 

bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274, 65–73 (2004). 

17. Kantola, T., Kivistö, K. T. & Neuvonen, P. J. Erythromycin and verapamil considerably increase serum 

simvastatin and simvastatin acid concentrations. Clin. Pharmacol. Ther. 64, 177–82 (1998). 

18. Keskitalo, J. E., Kurkinen, K. J., Neuvoneni, P. J. & Niemi, M. ABCB1 haplotypes differentially affect 

the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 

84, 457–61 (2008). 

19. Keskitalo, J. E., Pasanen, M. K., Neuvonen, P. J. & Niemi, M. Different effects of the ABCG2 c.421C>A 

SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10, 1617–24 

(2009). 

20. Kim, K.-A., Park, P.-W., Lee, O.-J., Kang, D.-K. & Park, J.-Y. Effect of polymorphic CYP3A5 genotype 

on the single-dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 47, 87–93 (2007). 

21. Knupp, C. A., Brater, D. C., Relue, J. & Barbhaiya, R. H. Pharmacokinetics of didanosine and 

ketoconazole after coadministration to patients seropositive for the human immunodeficiency virus. J. 

Clin. Pharmacol. 33, 912–7 (1993). 

22. Kosoglou, T. et al. Assessment of potential pharmacokinetic interactions of ezetimibe/simvastatin and 

extended-release niacin tablets in healthy subjects. Eur. J. Clin. Pharmacol. 67, 483–92 (2011). 

23. Krishna, G. et al. Effect of posaconazole on the pharmacokinetics of simvastatin and midazolam in healthy 

volunteers. Expert Opin. Drug Metab. Toxicol. 8, 1–10 (2012). 

24. Kyrklund, C. et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin. 

Pharmacol. Ther. 68, 592–7 (2000). 

25. Lam, Y. W. F., Alfaro, C. L., Ereshefsky, L. & Miller, M. Pharmacokinetic and pharmacodynamic 

interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J. Clin. 

Pharmacol. 43, 1274–82 (2003). 

26. Lilja, J. J., Kivistö, K. T. & Neuvonen, P. J. Grapefruit juice-simvastatin interaction: effect on serum 

concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin. Pharmacol. 

Ther. 64, 477–83 (1998). 

27. Lilja, J. J., Kivistö, K. T. & Neuvonen, P. J. Duration of effect of grapefruit juice on the pharmacokinetics 

of the CYP3A4 substrate simvastatin. Clin. Pharmacol. Ther. 68, 384–90 (2000). 

28. Lilja, J. J., Neuvonen, M. & Neuvonen, P. J. Effects of regular consumption of grapefruit juice on the 

pharmacokinetics of simvastatin. Br. J. Clin. Pharmacol. 58, 56–60 (2004). 

29. McKenney, J. M. et al. Study of the pharmacokinetic interaction between simvastatin and prescription 

omega-3-acid ethyl esters. J. Clin. Pharmacol. 46, 785–91 (2006). 

30. Neuvonen, P. J., Kantola, T. & Kivistö, K. T. Simvastatin but not pravastatin is very susceptible to 

interaction with the CYP3A4 inhibitor itraconazole. Clin. Pharmacol. Ther. 63, 332–341 (1998). 

31. O’Brien, S. G. et al. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, 

a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br. J. Cancer 89, 1855–9 

(2003). 

32. Pasanen, M. K., Neuvonen, M., Neuvonen, P. J. & Niemi, M. SLCO1B1 polymorphism markedly affects 

the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 16, 873–9 (2006). 

33. Polk, R. E. et al. Pharmacokinetic interaction between ketoconazole and amprenavir after single doses in 

healthy men. Pharmacotherapy 19, 1378–84 (1999). 

34. Polli, J. W. et al. Evaluation of drug interactions of GSK1292263 (a GPR119 agonist) with statins: From 

in vitro data to clinical study design. Xenobiotica 43, 498–508 (2013). 

35. Sekar, V. J., Lefebvre, E., Pauw, M. De, Vangeneugden, T. & Hoetelmans, R. M. Pharmacokinetics of 

darunavir/ritonavir and ketoconazole following co-administration in HIV-healthy volunteers. Br. J. Clin. 

A.1 publication i - data digitizing 91



 

 

 

 

Pharmacol. 66, 215–221 (2008). 

36. Shanmugam, S., Ryu, J.-K., Yoo, S.-D., Choi, H.-G. & Woo, J.-S. Evaluation of Pharmacokinetics of 

Simvastatin and Its Pharmacologically Active Metabolite from Controlled-Release Tablets of Simvastatin 

in Rodent and Canine Animal Models. Biomol. Ther. 19, 248–254 (2011). 

37. Piscitelli, S. C. et al. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob. 

Agents Chemother. 35, 1765–1771 (1991). 

38. Stoch, S. A. et al. Effect of different durations of ketoconazole dosing on the single-dose pharmacokinetics 

of midazolam: Shortening the paradigm. J. Clin. Pharmacol. 49, 398–406 (2009). 

39. Sugimoto, K. et al. Different effects of St John’s Wort on the pharmacokinetics of simvastatin and 

pravastatin. Clin. Pharmacol. Ther. 70, 518–524 (2001). 

40. Teng, R., Mitchell, P. D. & Butler, K. A. Pharmacokinetic interaction studies of co-administration of 

ticagrelor and atorvastatin or simvastatin in healthy volunteers. Eur. J. Clin. Pharmacol. 69, 477–87 

(2013). 

41. Tham, L. S. et al. Ketoconazole renders poor CYP3A phenotype status with midazolam as probe drug. 

Ther. Drug Monit. 28, 255–261 (2006). 

42. Tubic-Grozdanis, M. et al. Pharmacokinetics of the CYP 3A substrate simvastatin following 

administration of delayed versus immediate release oral dosage forms. Pharm. Res. 25, 1591–600 (2008). 

43. Tuteja, S. et al. Pharmacokinetic interactions of the microsomal triglyceride transfer protein inhibitor, 

lomitapide, with drugs commonly used in the management of hypercholesterolemia. Pharmacotherapy 34, 

227–39 (2014). 

44. Ucar, M. et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin 

acid. Eur. J. Clin. Pharmacol. 59, 879–82 (2004). 

45. Winsemius, A. et al. Pharmacokinetic interaction between simvastatin and fenofibrate with staggered and 

simultaneous dosing: Does it matter? J. Clin. Pharmacol. 54, 1038–47 (2014). 

46. Xu, D. et al. Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes. 

Acta Pharmacol. Sin. 35, 1215–25 (2014). 

47. Zhao, Q., Jiang, J. & Hu, P. Effects of four traditional Chinese medicines on the pharmacokinetics of 

simvastatin. Xenobiotica 8254, 1–8 (2015). 

 

92 supporting information



 

 

 

 

Table S3: Studies used for comparing published numeric and digitized sample time point values 

Author Mean ζ [%]  Smallest ζ [%] Largest ζ [%] N ζa
  Reference 

Alakhali 2013 0.64 0 2.2 10 1 

Ayalasomayajula 2007 0.01 0 0.057 71 2 

Ayalasomayajula 2016 5.8 0 47 24 3 

Backman 2000 0.29 3.40E-05 2.3 40 4 

Bergman 2004 0.0051 0 0.045 76 5 

Bergman 2009 0.54 5.00E-04 4.2 44 6 

Cermak 2009 1 0 4.5 56 7 

Chung 2006 1 6.80E-04 9.5 24 8 

Dai 2013 0.0027 0 0.028 98 9 

DeGorter 2012 0.83 0.031 3 11 10 

Derks 2010 0.0081 0 0.071 44 11 

Devineni 2015 0.64 0 4.7 45 12 

Falcao 2013 0.68 0 9.4 43 13 

Geboers 2016 0.24 0 2.9 99 14 

Gehin 2015 0.86 3.10E-04 18 49 15 

Hasunuma 2016 0.68 0.032 4 22 16 

Hoch 2013 0.1 0 2.5 118 17 

Hoch 2013 0.017 0 0.07 48 18 

Hsyu 2001 0.001 0 0.0053 49 19 

Itkonen 2015 0.28 0 2.6 65 20 

Jacobson 2004 0 0 0 34 21 
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Kang 2004 1.6 0.0029 13 11 22 

Kantola 1998 0.29 0.0042 5.4 46 23 

Kasichayanula 2012 1.6 0 13 43 24 

Keskitalo 2009 0.42 0 2.7 59 25 

Kim 2007 1.7 0.0083 9.3 33 26 

Kosoglou 2011 0.014 0 0.056 56 27 

Krishna 2007 0 0 0 8 28 

Krishna 2009 0 0 0 78 29 

Krishna 2012 1.4 0 11 63 30 

Kyrklund 2000 0.071 0 1.2 40 31 

Lee 2017 1.1 0.0021 9.3 20 32 

Lilja 1998 0.23 0 3.3 35 33 

Lilja 2000 0.069 0 1.3 80 34 

Lilja 2004 0.33 0 4.1 38 35 

Marino 2000 32 0.21 140 18 36 

Martin 2016 0.62 0 8.3 22 37 

McKenney 2006 0.0031 0 0.019 88 38 

Mousa 2000 0.82 0.013 4.5 20 39 

NDA 206679 4.1 6.20E-04 74 72 40 

NDA 22425 0.0053 0 0.024 94 41 

Neuvonen 1998 0.14 5.20E-05 0.72 22 42 

Obrien 2003 0.82 0 5.6 38 43 
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Offman 2017 0.023 0 0.075 60 44 

Park 2016 0.046 0 0.18 52 45 

Pasanen 2006 0.43 0 1.3 60 46 

Patel 2011 0.0064 0 0.026 44 47 

Polli 2013 1.5 0.019 17 18 48 

Prueksaritanont 2005 1.6 2.90E-04 15 49 49 

Schmitt 2011 0.43 0 7.6 46 50 

Shanmugam 2011 2.7 0.082 19 23 51 

Simard 2001 0.013 0 0.089 89 52 

Sugimoto 2001 42 0.16 180 29 53 

Sunkara 2007 0.014 0 0.077 66 54 

Teng 2013 1.3 0 23 44 55 

Teng 2013 0.03 0 0.087 91 56 

Tubic-Grozdanis 2008 1.1 0.005 16 84 57 

Tuteja 2014 0.2 0 3.2 44 58 

Ucar 2004 0.45 0 4.8 40 59 

Vree 2001 2.4 0.058 15 34 60 

Winsemius 2014 0.21 0 6.4 204 61 

Xu 2014 1 0 9.3 92 62 

Yu 2009 1.6 0.002 22 46 63 

Zhao 2015 1.6 0 19 92 64 

Zhi 2003 2.2 0 25 35 65 
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Ziviani 2001 0.0092 0 0.044 47 66 

a: Number of values extracted from the study for which ζ was calculated 
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Table S3: Studies used for comparing published numeric and digitized sample time point values 

Author Mean ζ [%]  Smallest ζ [%] Largest ζ [%] N ζa
  Reference 

Alakhali 2013 0.64 0 2.2 10 1 

Ayalasomayajula 2007 0.01 0 0.057 71 2 

Ayalasomayajula 2016 5.8 0 47 24 3 

Backman 2000 0.29 3.40E-05 2.3 40 4 

Bergman 2004 0.0051 0 0.045 76 5 

Bergman 2009 0.54 5.00E-04 4.2 44 6 

Cermak 2009 1 0 4.5 56 7 

Chung 2006 1 6.80E-04 9.5 24 8 

Dai 2013 0.0027 0 0.028 98 9 

DeGorter 2012 0.83 0.031 3 11 10 

Derks 2010 0.0081 0 0.071 44 11 

Devineni 2015 0.64 0 4.7 45 12 

Falcao 2013 0.68 0 9.4 43 13 

Geboers 2016 0.24 0 2.9 99 14 

Gehin 2015 0.86 3.10E-04 18 49 15 

Hasunuma 2016 0.68 0.032 4 22 16 

Hoch 2013 0.1 0 2.5 118 17 

Hoch 2013 0.017 0 0.07 48 18 

Hsyu 2001 0.001 0 0.0053 49 19 

Itkonen 2015 0.28 0 2.6 65 20 

Jacobson 2004 0 0 0 34 21 
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Kang 2004 1.6 0.0029 13 11 22 

Kantola 1998 0.29 0.0042 5.4 46 23 

Kasichayanula 2012 1.6 0 13 43 24 

Keskitalo 2009 0.42 0 2.7 59 25 

Kim 2007 1.7 0.0083 9.3 33 26 

Kosoglou 2011 0.014 0 0.056 56 27 

Krishna 2007 0 0 0 8 28 

Krishna 2009 0 0 0 78 29 

Krishna 2012 1.4 0 11 63 30 

Kyrklund 2000 0.071 0 1.2 40 31 

Lee 2017 1.1 0.0021 9.3 20 32 

Lilja 1998 0.23 0 3.3 35 33 

Lilja 2000 0.069 0 1.3 80 34 

Lilja 2004 0.33 0 4.1 38 35 

Marino 2000 32 0.21 140 18 36 

Martin 2016 0.62 0 8.3 22 37 

McKenney 2006 0.0031 0 0.019 88 38 

Mousa 2000 0.82 0.013 4.5 20 39 

NDA 206679 4.1 6.20E-04 74 72 40 

NDA 22425 0.0053 0 0.024 94 41 

Neuvonen 1998 0.14 5.20E-05 0.72 22 42 

Obrien 2003 0.82 0 5.6 38 43 
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Offman 2017 0.023 0 0.075 60 44 

Park 2016 0.046 0 0.18 52 45 

Pasanen 2006 0.43 0 1.3 60 46 

Patel 2011 0.0064 0 0.026 44 47 

Polli 2013 1.5 0.019 17 18 48 

Prueksaritanont 2005 1.6 2.90E-04 15 49 49 

Schmitt 2011 0.43 0 7.6 46 50 

Shanmugam 2011 2.7 0.082 19 23 51 

Simard 2001 0.013 0 0.089 89 52 

Sugimoto 2001 42 0.16 180 29 53 

Sunkara 2007 0.014 0 0.077 66 54 

Teng 2013 1.3 0 23 44 55 

Teng 2013 0.03 0 0.087 91 56 

Tubic-Grozdanis 2008 1.1 0.005 16 84 57 

Tuteja 2014 0.2 0 3.2 44 58 

Ucar 2004 0.45 0 4.8 40 59 

Vree 2001 2.4 0.058 15 34 60 

Winsemius 2014 0.21 0 6.4 204 61 

Xu 2014 1 0 9.3 92 62 

Yu 2009 1.6 0.002 22 46 63 

Zhao 2015 1.6 0 19 92 64 

Zhi 2003 2.2 0 25 35 65 
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Ziviani 2001 0.0092 0 0.044 47 66 

a: Number of values extracted from the study for which ζ was calculated 
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Table S4: Study records identified in “CPT: Pharmacometrics & Systems Pharmacology” in 2018 as original PBPK research articles  

Year Title 
PBPK original research 

article  
Data digitized 

Data digitization 

mentioned 

Digitizing tool 

cited 
Reference 

2018 

Applied Concepts in PBPK Modeling: How to Extend an 

Open Systems Pharmacology Model to the Special 

Population of Pregnant Women 

Yes Most likely No No 1 

2018 

Quantitative Systems Pharmacology Modeling of Acid 

Sphingomyelinase Deficiency and the Enzyme Replacement 

Therapy Olipudase Alfa Is an Innovative Tool for Linking 

Pathophysiology and Pharmacology 

Yes 
Unlikely (access to clinical study 

data) 
No No 2 

2018 

Drug Dosing in Pregnant Women: Challenges and 

Opportunities in Using Physiologically Based 

Pharmacokinetic Modeling and Simulations 

Yes 
Unlikely (no concentration-time or 

other PK data used) 
No No 3 

2018 

A Strategy to Refine the Phenotyping Approach and Its 

Implementation to Predict Drug Clearance: A 

Physiologically Based Pharmacokinetic Simulation Study 

Yes Most likely No No 4 

2018 

Physiologically Based Pharmacokinetic Approach to 

Determine Dosing on Extracorporeal Life Support: 

Fluconazole in Children on ECMO 

Yes Most likely No No 5 

2018 

PBPK Models for CYP3A4 and P‐gp DDI Prediction: A 

Modeling Network of Rifampicin, Itraconazole, 

Clarithromycin, Midazolam, Alfentanil, and Digoxin 

Yes Yes No No 6 

2018 
Using a Vancomycin PBPK Model in Special Populations to 

Elucidate Case‐Based Clinical PK Observations 
Yes Most likely Yes 

GetData Graph 

Digitizer 
7 

2018 
A Partial Differential Equation Approach to Inhalation 

Physiologically Based Pharmacokinetic Modeling 
Yes 

Unlikely (no concentration-time or 

other PK data used) 
No No 8 

2018 

Quantitative Prediction of OATP‐Mediated Drug‐Drug 

Interactions With Model‐Based Analysis of Endogenous 

Biomarker Kinetics 

Yes Most likely No No 9 

2018 
Drugs Being Eliminated via the Same Pathway Will Not 

Always Require Similar Pediatric Dose Adjustments 
Yes 

Unlikely (no concentration-time or 

other PK data used) 
No No 10 

2018 

Comprehensive PBPK Model of Rifampicin for Quantitative 

Prediction of Complex Drug‐Drug Interactions: CYP3A/2C9 

Induction and OATP Inhibition Effects 

Yes Most likely No No 11 

2018 

PBPK Modeling of Coproporphyrin I as an Endogenous 

Biomarker for Drug Interactions Involving Inhibition of 

Hepatic OATP1B1 and OATP1B3 

Yes Most likely No No 12 

2018 

PBPK Model of Morphine Incorporating Developmental 

Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain 

the Variability in Clearances in Neonates and Small Infants 

Yes Most likely Yes 
GetData Graph 

Digitizer 
13 

2018 

A Quantitative Systems Pharmacology Kidney Model of 

Diabetes Associated Renal Hyperfiltration and the Effects of 

SGLT Inhibitors 

Yes Yes No No 14 
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2018 

Application of PBPK Modeling and Virtual Clinical Study 

Approaches to Predict the Outcomes of CYP2D6 Genotype‐

Guided Dosing of Tamoxifen 

Yes Most likely No No 15 

2018 

Prediction of the Pharmacokinetics of Pravastatin as an 

OATP Substrate Using Plateable Human Hepatocytes With 

Human Plasma Data and PBPK Modeling 

Yes Most likely No No 16 

2018 

Development, Verification, and Prediction of Osimertinib 

Drug–Drug Interactions Using PBPK Modeling Approach to 

Inform Drug Label 

Yes 
Unlikely (access to clinical study 

data) 
No No 17 

2018 

Pediatric Dosing of Ganciclovir and Valganciclovir: How 

Model‐Based Simulations Can Prevent Underexposure and 

Potential Treatment Failure 

Yes Unlikely (access to database) No No 18 

2018 

A Novel PBPK Modeling Approach to Assess Cytochrome 

P450 Mediated Drug‐Drug Interaction Potential of the 

Cytotoxic Prodrug Evofosfamide 

Yes 
Unlikely (access to clinical study 

data) 
No No 19 

2018 Modulation of Cell State to Improve Drug Therapy Yes 
Unlikely (no concentration-time or 

other PK data used) 
No No 20 
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PBPK model of metformin 
 
1. Introduction 
 
The biguanide metformin is the first-line therapeutic agent for the treatment of type 2 diabetes mellitus. 
Metformin reduces hepatic gluconeogenesis, reduces intestinal absorption of glucose and increases 
insulin sensitivity and glucose uptake into peripheral tissues [1].  
Because of its hydrophilic structure, metformin shows an exceptionally low lipophilicity (logP = -1.43) 
and is not bound to plasma proteins [2]. Following oral administration, 50 - 60% of a dose are absorbed 
and peak plasma concentrations are reached within 2 h. The plasma half-life of metformin is 2.5 - 7 h 
after intravenous infusion and 4 - 8 h following oral administration [3]. Metformin is not subject to 
hepatic metabolism and mainly renally excreted. After intravenous administration 80 - 100% of the dose 
are recovered unchanged in the urine; following oral administration the fraction excreted unchanged 
alternates between 50 and 75%. The observed renal clearance of metformin is much higher than the 
glomerular filtration rate (GFR), suggesting active renal secretion [2–4]. Metformin is reported to be a 
substrate of the organic cation transporter (OCT) 1, the kidney specific OCT2 and of OCT3 [5, 6]. These 
transporters are localized at the basolateral membranes of renal cells, hepatocytes, enterocytes and 
cells of many other organs. Metformin is also transported by the H+ organic cation antiporters 
"multidrug and toxin extrusion protein" (MATE) 1 and MATE2-K [7]. These efflux transporters are 
primarily expressed in the liver (MATE1) and in the kidney (MATE1, MATE2-K) at the apical (luminal) 
membranes. In vivo, OCT and MATE transporters form a functional unit to transport organic cations 
from the blood through hepatocytes and renal tubule cells into the bile and urine, resulting in effective 
biliary and renal secretion. 
 
 
2. Materials and Methods 
 
Software 
PBPK modeling was performed with PK-Sim 7.0.0. Parameter optimization was accomplished using the 
Monte Carlo algorithm implemented in PK-Sim. Digitization of published plasma concentration-time 
curves was performed with GetData Graph Digitizer (V 2.26). Graphics and further statistical analyses 
were generated with R (V 3.3.2) using the graphical interface RStudio (V 1.0.136). 
 
Model development 
For model development, physicochemical parameters as well as individual and mean plasma 
concentration-time profiles of metformin after intravenous single dose (250 - 1000 mg), oral single dose 
(250 - 2550 mg) and oral multiple dose (250 - 1000 mg) administration were obtained from literature. 
Data was separated into training and test datasets for model development and evaluation, respectively 
(for a detailed study summary see Suppl. Tab. 1). The training dataset contained a study describing the 
extent of metformin distribution into erythrocytes [8]. Furthermore, fraction excreted to urine data 
following intravenous (250 and 500 mg) and oral administration (500 mg) of metformin was used in the 
training dataset to inform the renal secretion process. 
For population simulations, a virtual Caucasian population was generated containing 50 male and 50 
female individuals, 20 - 50 years of age, with body weights of 40 - 120 kg. The ICRP (International 
Commission on Radiological Protection) database in PK-Sim was used for generation of this population 
[9]. For model evaluation, the medians and 90% prediction intervals of population simulation plasma 
concentration-time profiles were calculated and used to generate visual predictive checks (predicted 
versus observed plasma concentrations) for the training and test datasets. 
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3. Results 
 
Metformin modeling 
To limit the number of parameters to be optimized, only the most important processes were 
implemented into the final metformin model. These are (1) passive distribution into blood cells and the 
cells of all organs except renal cells, (2) active uptake from blood into renal cells by OCT2 and (3) renal 
secretion into urine by MATE2-K. Glomerular filtration and enterohepatic cycling were enabled, as these 
processes are active under physiological conditions.  
 
Drug-dependent parameters 
All drug-dependent parameters taken from literature with their references as well as all optimized 
parameter values are given in Suppl. Tab. 2.  
 
System-dependent parameters 
Expression of the implemented transporters and the geometric standard deviation of their log-normal 
distribution in virtual populations are given in Suppl. Tab. 3. No other system-dependent parameters 
were changed or adjusted. 
 
Model performance 
Training dataset: The training dataset performance of the final metformin model, predicting plasma 
concentrations following intravenous (250 mg and 500 mg) and oral (500 - 1500 mg) administration of 
metformin, is presented in Suppl. Fig. 1, 3 and 5 - 8. 
Predicted compared to observed fraction exreted to urine following intravenous (250 mg and 500 mg) 
and oral (500 mg) administration is presented in Suppl. Fig. 2 and 4. 
Suppl. Fig. 6 shows predicted and observed plasma and erythrocyte concentrations following oral 
administration of 850 mg metformin. 
Test dataset: The test dataset performance of the final metformin model, predicting plasma 
concentrations following intravenous (1000 mg) and oral (250 - 2550 mg) administration of metformin, 
is presented in Suppl. Fig. 9 - 20. 
 
 
4. Discussion 
 
Model performance 
Metformin pharmacokinetics show high inter-individual variability in absorption, apparent volume of 
distribution (654 +/- 358 L) and renal clearance (335 - 615 mL/min) [1, 10]. The slow absorption of 
metformin rate-limits its disposition [2, 3] so that variability in absorption causes additional variation 
during the elimination phase of metformin plasma concentration-time profiles. Evaluation of predicted 
compared to observed clinical data following intravenous application suggests that the current model 
overpredicts the velocity of distribution into tissues and underpredicts the rate of excretion of 
metformin (Suppl. Fig. 1, 2, 9). The model accurately describes the plasma and urine concentrations 
after single oral administration of 500 mg (Suppl. Fig. 3, 4). The 500 mg multiple dose simulations show a 
good prediction of the trough concentrations with too rapid absorption and an overprediction of Cmax 
(Suppl. Fig. 5, 12, 13). The same phenomenon can be observed for some of the other studies, especially 
with administration of higher doses of metformin in the fasted state (Suppl. Fig. 14, 16 – 18), but there 
are also simulations that underpredict Cmax (Suppl. Fig. 8, 10, 15), due to the documented inter-
individual variability. The model simulations of metformin administration together with food nicely 
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predict the plateau-like shape of the measured plasma concentration-time curves around Cmax (Suppl. 
Fig. 6, 11). Plasma and erythrocyte concentrations of the study of Robert et al. [8] are also very well 
described (Suppl. Fig. 6). 
 
Model limitations 
Metformin is recommended by the FDA as OCT2/MATE transport victim drug for the use in clinical DDI 
studies [11]. The purpose of the presented metformin PBPK model is to accurately incorporate these 
processes so that this model is fit to be coupled to models of OCT2 and MATE2-K perpetrator drugs and 
applied for DDI prediction. 
Metformin is positively charged at physiological pH (pKa = 11.5 (base)) and highly hydrophilic (logP =  
-1.43). Therefore, passive diffusion of metformin through lipid bilayers is very slow. Nevertheless, 
distribution and accumulation into red blood cells has been described, with a much longer elimination 
half-life from erythrocytes (23 h), than from plasma (3 h) [8]. Furthermore, the apparent volume of 
distribution of metformin is high, in spite of its exceptionally low lipophilicity. The mechanism of this 
partitioning into red blood cells is currently not understood. Transport in combination with target-
binding, binding to other intracellular components, some kind of trapping within organelles or sticking 
to the cellular membranes of red blood cells are possible explanations. As the mechanism of this 
accumulation is unclear, an asymmetric permeability from plasma into red blood cells was incorporated. 
The wide distribution into body tissues is most probably mediated by active transport processes and was 
modeled by an overall asymmetric permeability from the interstitial space into the cells of all organs 
except kidney, as so far, only the kidney specific isoforms of OCT and MATE transporters have been 
incorporated into this model.  
To define the contribution of the two implemented transport processes by OCT2 and MATE2-K, fraction 
excreted to urine data after intravenous and oral administration of metformin have been included into 
the training dataset. In addition to an accurate description of unchanged drug recovered in urine, 
evaluation of this model with measured metformin concentrations in the kidney and by prediction of 
OCT2 and MATE2-K mediated DDIs is needed. 
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Suppl. Fig. 1 Training dataset: Population simulations compared to observed data of metformin plasma 
concentrations following intravenous administration of 250 mg (left panel) and 500 mg (right panel). 
Clinical data are shown as dots (Pentikainen KL, PP and SR are individual data) [2, 3]. Population 
simulation medians are shown as lines; the shaded areas depict the 5th - 95th percentile population 
prediction intervals 
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Suppl. Fig. 2 Training dataset: Population simulations compared to observed data of metformin fraction 
excreted to urine following intravenous administration of 250 mg (left panel) and 500 mg (right panel). 
Clinical data are shown as dots (+/- standard deviation) [2, 3]. Population simulation medians are shown 
as lines; the shaded areas depict the 5th - 95th percentile population prediction intervals 
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Suppl. Fig. 3 Training dataset: Population simulations compared to observed data of metformin plasma 
concentrations following single oral administration of 500 mg. Clinical data are shown as dots 
(Pentikainen KL, PP, RL, SR and TK are individual data) [2, 12]. Population simulation medians are shown 
as lines; the shaded areas depict the 5th - 95th percentile population prediction intervals 
 

118 supporting information



1 
 

A physiologically-based pharmacokinetic (PBPK) parent-metabolite model of the 

chemotherapeutic zoptarelin doxorubicin - integration of in vitro results, Phase I and Phase II 

data and model application for drug-drug interaction potential analysis  

 
 

Simvastatin Supplementary  

 
 
Nina Hanke 1, Michael Teifel 2, Daniel Moj 1, Jan-Georg Wojtyniak 1, Hannah Britz 1, Babette Aicher 2, 
Herbert Sindermann 2, Nicola Ammer 2, Thorsten Lehr 1  
 
1 Clinical Pharmacy, Saarland University, Saarbruecken, Germany  
2 Aeterna Zentaris GmbH, Weismuellerstr. 50, Frankfurt, Germany  
 
Corresponding Author: Thorsten Lehr, Clinical Pharmacy, Saarland University, Campus C2 2, 66123 
Saarbruecken, +49 681 302 70255, thorsten.lehr@mx.uni-saarland.de  
 
 
  

A.2 publication ii - zoptarelin doxorubicin 119



2 
 

PBPK model of simvastatin lactone and simvastatin acid 

 
1. Introduction 

 
Simvastatin is a 3-hydroxy-3-methylglutaryl (HMG) coenzyme A reductase inhibitor. It is widely used in 
the treatment of hypercholesterolemia and belongs to the ten most prescribed drugs in industrial 
nations [1]. Simvastatin is administered orally as a prodrug in its lactone form (dosing range 5 - 80 
mg/day [2]) and is converted to the active acid by a combination of enzyme-mediated hydrolysis and 
spontaneous chemical conversion [3]. The enzyme predominantly responsible for the hydrolysis of 
simvastatin lactone to simvastatin acid is paraoxonase 3 (PON3) [4, 5]. Simvastatin lactone is highly 
lipophilic, resulting in good absorption of approximately 60% of an administered dose, but shows 
extensive first pass metabolism reducing its oral bioavailability to 5% [3]. Simvastatin lactone is mainly 
metabolized by CYP3A4 [6], while simvastatin acid is metabolized by CYP3A4 (>80%) and CYP2C8 (<20%) 
as well as transported by organic anion-transporting polypeptide 1B (OATP1B) [7]. A further process 
discussed for the pharmacokinetics of simvastatin acid is recyclization to the lactone form, either 
spontaneously, or via enzymatic formation of an intermediate glucuronide. Suppl. Fig. 1 depicts the 
metabolization pathways of statins in general.  
 
Objectives 

The purpose of this work was to establish a whole body parent-metabolite PBPK model of simvastatin 
lactone (prodrug) and acid (pharmacologically active metabolite) as a CYP3A and OATP1B victim drug 
model for drug-drug interaction studies 

 that accurately predicts plasma concentrations of simvastatin lactone and acid over a broad 
dosing range 

 that has been evaluated by showing good prediction of simvastatin lactone and acid plasma 
concentrations in drug-drug interaction (DDI) studies with rifampicin and clarithromycin as 
CYP3A4 perpetrator drugs 

 that has been evaluated by showing good prediction of simvastatin lactone and acid plasma 
concentrations in individuals with different OATP1B1 genotypes 

 
 
2. Materials and Methods 

 
Software 

PBPK modeling was performed with PK-Sim 7.0.0. Parameter optimization was  accomplished using the 
Monte Carlo algorithm implemented in PK-Sim. Digitization of published plasma concentration-time 
curves was performed with GetData Graph Digitizer (V 2.26). Graphics and further statistical analyses 
were generated with R (V 3.3.2) and the graphical user interface RStudio (V 1.0.136). 
 
Model development 

For model development, physicochemical parameters as well as plasma concentration-time profiles of 
simvastatin lactone and simvastatin acid after oral single dose (SD) and multiple dose (MD) 
administration (range 20 - 80 mg) were obtained from the literature. Data was separated into training 
and test datasets for model development and evaluation, respectively (for a detailed study summary see 
Suppl. Tab. 1). The training dataset contained a study showing the impact of different OATP1B1 
genotypes on the plasma concentrations of simvastatin acid [8]. This study was included to define the 
contribution of this transporter to simvastatin acid pharmacokinetics. For studies that did not specify 
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the OATP1B1 genotype, the wild type variant was assumed. Due to the lack of clinical trials of direct 
administration of simvastatin acid, simvastatin lactone and simvastatin acid model development was 
performed in parallel.  
For population simulations, a virtual Caucasian population was generated containing 50 male and 50 
female individuals, 20 - 50 years of age, with body weights of 40 - 120 kg. The ICRP (International 
Commission on Radiological Protection) database in PK-Sim was used for generation of this population 
[13]. For model evaluation, the arithmetic means and 90% prediction intervals of population simulation 
plasma concentration-time profiles were calculated and used to generate visual predictive checks 
(predicted versus observed plasma concentrations) for the training and test datasets. 
To test the contribution of the implemented CYP3A4 metabolism, the final simvastatin model was 
coupled to PBPK models of the CYP3A4 perpetrators rifampicin (CYP3A4 inducer, [9]) and clarithromycin 
(CYP3A4 inhibitor, [10]). Plasma concentrations of simvastatin lactone and simvastatin acid during co-
administration with these perpetrator drugs were predicted and compared to observed data. 

 
 
3. Results 

 
Simvastatin modeling 

To limit the number of parameters to be optimized, only the most important processes were 
implemented into the final simvastatin parent-metabolite model. For simvastatin lactone these are (1) 
PON3 mediated hydrolysis to generate simvastatin acid and (2) CYP3A4 mediated clearance. For 
simvastatin acid these are (3) hepatic uptake by OATP1B1 and (4) CYP3A4 mediated clearance. The 
OATP1B1 transport was implemented with two different KM values and two different transport rates, to 
describe the impact of the investigated OATP1B1 polymorphism on simvastatin acid plasma 
concentrations. For both, parent and metabolite, glomerular filtration and enterohepatic cycling were 
enabled.  

 
Drug-dependent parameters 

All drug-dependent parameters taken from the literature with their references as well as all optimized 
parameter values are given in Suppl. Tab. 2.  

 
System-dependent parameters 

Expression of the implemented enzymes and transporters as well as the geometric standard deviation of 
their log-normal distribution in virtual populations are given in Suppl. Tab. 3. No other system-
dependent parameters were changed or adjusted. 

 
Model performance 

Training dataset: The training dataset performance of the final model, predicting simvastatin lactone 
and simvastatin acid plasma concentrations following oral administration of 20, 40, 60 or 80 mg 
simvastatin lactone, is presented in Suppl. Fig. 2 - 6. 
Suppl. Fig. 7 shows the predicted compared to observed plasma concentrations following oral 
administration of 40 mg simvastatin lactone to individuals with different OATP1B1 genotypes [8]. The 
transport rates of the two homozygous OATP1B1 isoforms (c.521TT wild type and c.521CC) were 
optimized, the transport rate of the heterozygous isoform (c.521TC) has been predicted. 
Test dataset: The test dataset performance of the final model, predicting simvastatin lactone and 
simvastatin acid plasma concentrations following oral administration of 20, 40 or 80 mg simvastatin 
lactone, is presented in Suppl. Fig. 8 - 10.  
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Model application 

As a further means of model evaluation, the final simvastatin model was applied to predict clinical DDI 
studies. Simvastatin plasma concentrations during two different trials studying co-administration of 
simvastatin lactone and the CYP3A4 perpetrator drugs rifampicin [11] and clarithromycin [12] were 
predicted and compared to observed data.  
In the rifampicin DDI study, a single dose of 40 mg simvastatin lactone was administered 17 h after the 
last dose of a 600 mg QD, 5 day rifampicin regimen. Thus, no inhibitory effects of rifampicin on CYP3A4 
or OATP1B1 are expected, solely pure CYP3A4 induction. In the clarithromycin DDI study, once daily 
doses of 40 mg simvastatin lactone were administered together with the morning doses of a 500 mg 
BID, 7 day clarithromycin regimen. Unfortunately, only simvastatin lactone plasma concentrations have 
been reported from this study, allowing no interpretation of the effect of clarithromycin on OATP1B1 
and simvastatin acid. Predicted and observed plasma concentrations are shown in shown in Suppl. Fig. 
11 and 12. Predicted and observed AUC ratios (AUC during perpetrator treatment / AUC without co-
administration of DDI perpetrator) of these DDIs are compared in Suppl. Tab. 4 and 5. 
 
 
4. Discussion 

 
Model performance 

The final parent-metabolite PBPK model accurately describes the plasma concentration-time profiles of 
simvastatin lactone and simvastatin acid after oral administration of 20 - 80 mg simvastatin lactone. 
There is a slight terminal overprediction of the lactone, but not of the acid concentrations, following 
single dose administration of 40 mg simvastatin lactone. Nevertheless, the studies of multiple dose 
administration of 40 mg simvastatin lactone are well predicted. This phenomenon might be caused by 
variability in body weight or genetic polymorphisms of involved metabolizing enzymes or transporters of 
these relatively small study populations that have not been taken into account for the model 
predictions.  
To define the contribution of OATP1B1 to the disposition of simvastatin acid, information of a clinical 
trial studying the impact of the OATP1B1 c.521 polymorphism on simvastatin acid pharmacokinetics has 
been included into the training dataset. The final simvastatin model accurately predicts the simvastatin 
acid plasma concentrations of individuals of the three possible OATP1B1 genotypes.  
To evaluate the contribution of CYP3A4 to the metabolism of simvastatin lactone and simvastatin acid, 
clinical DDI studies with the CYP3A4 perpetrators rifampicin and clarithromycin have been predicted and 
compared to observed data. During the DDI with rifampicin, simvastatin lactone and simvastatin acid 
plasma concentrations are adequately predicted. In the DDI study with clarithromycin only simvastatin 
lactone concentrations have been reported and the effect of clarithromycin on simvastatin lactone peak 
plasma concentrations is underpredicted. Nevertheless, the predicted AUC ratios of simvastatin lactone 
and simvastatin acid are within twofold of the observed AUC ratios for both of the tested DDIs (see 
Suppl. Tab. 4 and 5).  
 
Model limitations 

Simvastatin is listed by the FDA as a sensitive CYP3A substrate for the use in clinical DDI studies, and 
simvastatin acid is an approved OATP1B victim drug [13]. The purpose of the presented simvastatin 
PBPK model is to accurately incorporate these processes so that this model is fit to be coupled to models 
of CYP3A and OATP1B perpetrator drugs and applied for DDI prediction. 
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Mechanisms not implemented into the final simvastatin model include transport by breast cancer 

resistance protein (BCRP) or p-glycoprotein (P-gp). Genetic polymorphism in the ABCG2 gene encoding 

for BCRP has been described to influence the plasma concentrations of simvastatin lactone [14], while 

genetic polymorphisms in ABCB1 (P-gp) have been described to affect the plasma concentrations of 

simvastatin acid [15]. Implementation of these transport processes would further diminish the 

contribution of CYP3A4 and was therefore not retained in the final model. Another possible mechanism 

involved in simvastatin pharmacokinetics is reabsorption (enterohepatic cycling) following BCRP-

mediated transport of simvastatin lactone into the bile, or following P-gp-mediated transport of 

simvastatin acid into bile with subsequent recyclization to the lactone. Information on the 

pharmacokinetics of simvastatin lactone and acid after intravenous administration, on bioavailability 

and on enterohepatic cycling would greatly help to improve our current understanding of the 

mechanisms affecting the plasma concentrations and DDI behaviour of this widely used lipid-lowering 

drug.  
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Suppl. Fig. 1 General scheme for statin metabolization. Original proposed by [16]  
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Suppl. Fig. 2 Training dataset: Population simulations compared to observed data of simvastatin lactone 
(upper panel) and simvastatin acid (lower panel) plasma concentrations following single oral 
administration of 20 mg simvastatin lactone. Clinical data [15] are shown as triangles. Population 
simulation means are shown as lines; the shaded areas depict the 5th - 95th percentile population 
prediction intervals  
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Suppl. Fig. 1 Zoptarelin doxorubicin parent-metabolite PBPK model structure. CLbiliary: biliary plasma 
clearance, CLhepatic: hepatic metabolic plasma clearance, iv: intravenous administration, LHRHR: 
luteinizing hormone-releasing hormone receptor  
  

Blood

iv

ZD D

Binding

Internalization
Permeability

Permeability

Permeability

ZD = Zoptarelin doxorubicin D = Doxorubicin

Gonads, lung

ZD Hydrolysis

= LHRHR = DNA

ZD

Hydrolysis

D

Other organs

D

Blood cells

D

CLhepatic

Liver

CLbiliary

D

Permeability

A.2 publication ii - zoptarelin doxorubicin 127



3 
 

 
 
Suppl. Fig. 2 Training dataset: Population simulations compared to observed data of doxorubicin 
plasma concentrations (red, semilog scale) and fractions excreted to urine and feces (yellow and 
brown, linear scale) following intravenous administration of 60 mg/m2 doxorubicin. Clinical data 
(Study 3, doxorubicin arm, n = 9 and [1]) are shown as dots and squares. Population simulation 
medians are shown as lines or dashed lines; the shaded areas depict the 5th - 95th percentile 
population prediction intervals  
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Suppl. Fig. 3 Training dataset: Population simulations (semilog scale) compared to observed data of 
doxorubicin concentrations in blood plasma (red) and in nucleated blood cells (black) following 
intravenous administration of 1x 36 mg/m2 doxorubicin as 96 h long-term infusion (left) or 3x 30 
mg/m2 doxorubicin as daily bolus infusions (right). Simulated blood cell concentrations represent free 
plus DNA-bound doxorubicin in the blood cell compartment. Clinical data ([2], n = 7 and [3], n = 7) are 
shown as dots and triangles (± SD values). Population simulation medians are shown as lines or 
dashed lines; the shaded areas depict the 5th - 95th percentile population prediction intervals  
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Suppl. Fig. 4 Training dataset: Population simulations (semilog scale) compared to observed data of 
zoptarelin doxorubicin (blue) and doxorubicin plasma concentrations (red) following intravenous 
administration of 10, 20, 40 or 80 mg/m2 (a, b, c, d) zoptarelin doxorubicin. Clinical data (Study 1, n = 
1 for each dose, 2 cycles per patient, one dose every 3 weeks) are shown as dots. Population 
simulation medians are shown as lines; the shaded areas depict the 5th - 95th percentile population 
prediction intervals  
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Suppl. Fig. 5 Test dataset: Population simulations (semilog scale) compared to observed data of 
zoptarelin doxorubicin (blue) and doxorubicin plasma concentrations (red) following intravenous 
administration of 160 or 267 mg/m2 (a, b) zoptarelin doxorubicin. Clinical data (Study 1, n = 6 and n = 
5, multiple cycles per patient, one dose every 3 weeks) are shown as dots. Population simulation 
medians are shown as lines; the shaded areas depict the 5th - 95th percentile population prediction 
intervals  
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b   ZEN-008-Z023: 267 mg/m2 zoptarelin doxorubicin
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Suppl. Fig. 6 Model performance: Mean AUClast (a, b) and Cmax (c, d) values of population predictions 
compared to observed data (log scale) of zoptarelin doxorubicin (blue) and doxorubicin (red) plasma 
concentrations following intravenous administration of 10 to 267 mg/m2 zoptarelin doxorubicin or of 
60 mg/m2 doxorubicin. Each dot represents a dosing group of one clinical study. Number of patients 
per dosing group and further details are listed in Zoptarelin Doxorubicin Supplementary Tables 1 and 
2. The solid line marks the line of identity, the dashed lines show the 0.5 to 2.0-fold prediction 
success limits. AUClast: area under the plasma concentration-time curve from time 0 to the last 
measurement, Cmax: peak plasma concentration, D: intravenous administration of doxorubicin  
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1 General information

This chapter provides short introduction about all processes and mechanisms relevant for
the simvastatin physiologically based pharmacokinetic (PBPK) drug-drug-gene interaction
(DDGI) network model. In addition, it provides general information regarding the system-
dependent parameters, which were the same for all model simulations to ensure a com-
parable model environment. Moreover, this chapter describes the methods used for model
development as well as for model evaluation.

1.1 Mathematical implementation of DDIs and DGIs

1.1.1 DDIs

Required equations for the mathematical implementation of drug-drug interactions (DDIs)
are predefined in the Open Systems Pharmacology Suite (OSPS) [1]. For a detailed descrip-
tion the reader is kindly referred to the OSP OSPS documentation [1].

1.1.2 DGIs

Genetic polymorphisms in drug relevant target structures, metabolic enzymes or trans-
porters can affect the pharmacokinetic (PK) or pharmacodynamic (PD) of an active com-
pound [2]. For example, a different genotype might lead to changed metabolic activity of
the phenotype and hence, result in poor, intermediate, extensive or ultra rapid metabolic
activity states [2]. The main cause for genetic polymorphisms are single nucleotide polymor-
phisms (SNPs) [3].

For all drug-gene interactions (DGIs) implemented a change in the transporter or enzyme
kcat was assumed compared to wildtype. Although, also a change in KM would be conceiv-
able for the polymorphisms included in this network, no evidence for this mechanism could
be found in literature. Besides, DGIs were implemented in a stepwise procedure. First, the
homozygous wildtype kcat as well as kcat for homozygous polymorphic individuals were esti-
mated. Afterwards, the implementation was evaluated using heterozygous individuals. For
this purpose the kcat for individuals with heterozygous genotypes were estimated according

1
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1 General information

to Eq. (S1.1) assuming an additive relationship between the wildtype and the deficient phar-
macogene. Besides, for all studies where no information about the genotype was provided,
homozygous wildtype genotypes were assumed.

Equation : Drug-gene interaction enzyme / transporter activity for heterozygous in-
dividuals

𝑘𝑐𝑎𝑡,ℎ𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑢𝑠 = 0.5 ∗ 𝑘𝑐𝑎𝑡,𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒 + 0.5 ∗ 𝑘𝑐𝑎𝑡,𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (S1.1)

kcat,heterozygous = heterozygous catalytic rate constant number
kcat,wildtype = wildtype catalytic rate constant number
kcat,deficient = homozygous deficient catalytic rate constant number

1.2 Network relevant metabolic enzymes and transporters

This chapter introduces network relevant metabolic enzymes and transporters. Table S1.1
lists the compounds included in the model network and their relationship as substrates,
inhibitors or inducers with regard to the metabolic enzymes and transporters. Figures S1.1,
S1.2, S1.3 visualize the relationships.

Table S1.1: Substrates, inhibitors and inducers used in the presented model network
Enzyme Substrate Inhibitor Inducer

Process
Chemical
hydrolysis
(simvastatin
lactone)

Simvastatin Lactone - -

Metabolic enzyme
AADAC Rifampicin - Rifampicin

CYP2C8 Simvastatin Acid Simvastatin Acid -

- Gemfibrozil -

- Gemfibrozil
glucuronide

-

- Rifampicin Rifampicin

CYP3A4 Simvastatin Lactone Simvastatin Lactone -

Simvastatin Acid Simvastatin Acid -

N-desalkyl-
itraconazole

N-desalkyl-
itraconazole

-

Midazolam - -

Keto-itraconazole Keto-itraconazole -

Itraconazole Itraconazole -

2
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Table S1.1: Substrates, inhibitors and inducers used in the presented model network (continued)
Type Enzyme Substrate Inhibitor Inducer

Hydroxy-itraconazole Hydroxy-itraconazole -

Clarithromycin Clarithromycin -

- Rifampicin Rifampicin

CYP3A5 Simvastatin Lactone - -

PON3 Simvastatin Lactone - -

- - Rifampicin

- - Gemfibrozil

- - Gemfibrozil
glucuronide

UGT1A1 Simvastatin Acid - -

- Gemfibrozil -

- Rifampicin Rifampicin

- Gemfibrozil
glucuronide

-

UGT1A3 Simvastatin Acid - -

- Gemfibrozil -

- Rifampicin Rifampicin

UGT2B7 Gemfibrozil - -

Unspecific liver
lactonization
(simvastatin acid)

Simvastatin Acid - -

Unspecific plasma
hydrolysis
(simvastatin
lactone)

Simvastatin Lactone - -

Influx transporter
OATP1B1
(SLCO1B1)

Simvastatin Acid Simvastatin Acid -

- Clarithromycin -

- Rifampicin Rifampicin

- Gemfibrozil -

- Gemfibrozil
glucuronide

-

- Hydroxy-itraconazole -

- Keto-itraconazole -

- Simvastatin Lactone -

OATP1B3
(SLCO1B3)

- Clarithromycin -

- Rifampicin Rifampicin

3
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Table S1.1: Substrates, inhibitors and inducers used in the presented model network (continued)
Type Enzyme Substrate Inhibitor Inducer

- Gemfibrozil -

- Gemfibrozil
glucuronide

-

- Hydroxy-itraconazole -

- Keto-itraconazole -

Unspecific liver
influx (gemfibrozil)

Gemfibrozil - -

Efflux transporter
BCRP (ABCG2) Simvastatin Lactone - -

- Rifampicin Rifampicin

- Itraconazole -

- Keto-itraconazole -

- Simvastatin Acid -

MRP2 (ABCC2) Gemfibrozil
glucuronide

- -

- Gemfibrozil -

- Rifampicin -

P-gp (ABCB1) Simvastatin Acid - -

- Clarithromycin -

- Rifampicin Rifampicin

- Itraconazole -

- N-desalkyl-
itraconazole

-

- Hydroxy-itraconazole -

- Keto-itraconazole -

- Simvastatin Lactone -

4
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Figure S1.1: Network included compounds and their roles as substrates, inhibitors or inducers: Substrates
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1.3 Model development and system-dependent specifications

1.3.1 General modeling workflow

For model development, concentration-time profiles of published clinical studies covering the
full reported dosing range were used. If available this included data of intravenous and oral
administration after single or multiple doses. If information about the amount of unchanged
drug excreted to urine or feces was available, they were also utilized to inform the model
optimization. If parameters had to be identified the Monte-Carlo algorithm implemented in
PK-Sim© was used, utilizing the root mean square error (RMSE) as described in Eq. (S1.2)
for parameter optimization.

Equation : Root-mean-square error

𝑅𝑀𝑆𝐸 = √∑ (𝑐𝑜𝑏𝑠 − 𝑐𝑝𝑟𝑒𝑑)2 (S1.2)

RMSE = root mean square error
Cobs = observed Concentration
Cpred = predicted concentration

Parameter identifications were performed if either no literature values were on hand or
multiple values with a broad range were available. Besides, model relevant information
regarding all clinical studies available are listed in the corresponding Chapters 2.2.1 and 3.1
of the electronic supplementary material (ESM) including information about the assignment
of each study to the training (model building) or test data set (model evaluation). For model
development a mean prediction was used based on the mean demographic properties (gender,
age, weight, height, race) of the respective study for each study in the training dataset. If
values were missing, a mean value for age (30 years), weight (73 kg) and height (176 cm)
was used. Quality of each parameter optimization was evaluated based on the graphical
and statistical evaluation techniques as described in Chapter 1.4 of the ESM. Parameters of
the final simvastatin model are given in Tables S2.3 and S2.5. Previously developed PBPK
models used for the DDI network development were extended as described in the Chapter
3.1 of the ESM.

1.3.2 System-dependent parameters

All system-dependent parameters like reference concentrations, protein half-lives as well as
tissue expression profiles of transporters and relevant metabolizing enzymes are listed in
Table S1.2.
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Table S1.2: System-dependent parameters and expression of relevant enzymes, transporters and other ADME processes
Enzyme / Transporter /
Process (Gene)

Mean reference
concentrationa

Geometric standard
deviation of the
reference
concentrationb

Relative expression in the
different organs

Half-life
liver
[hours]

Half-life
intestine
[hours]

Enzymes
AADAC 1 [4] 1.4 RT-PCR [5] 36 23

CYP2C8 2.56 [6] 2.05 [1] RT-PCR [7] 23 23

CYP3A4 4.32 [6] 1.18 liver [1], 1.46
intestine [1]

RT-PCR [7] 36 [8] 23 [9]

CYP3A5 0.04 [6] 1.4 RT-PCR [7] 36 23

PON3 1 1.4 Array [10] 36 23

UGT1A1 1 1.4 RT-PCR [5] 36 23

UGT1A3 1 1.4 RT-PCR [5] 36 23

UGT2B7 1 [4] 1.6 [1] EST [1] 36 23

Unspecific liver lactonizatino
(simvastatin acid)

1 1.4 Liver only 36 23

Unspecific plasma hydrolysis
(simvastatin lactone)

1 1.4 Plasma only 36 23

Processes
Chemical hydrolysis
(simvastatin lactone)

1 - Ubiquitous 36 23

Transporters
BCRP (ABCG2) 1 1.35 [11] RT-PCR [12], with relative

expression in blood cells set to
0.3046 [13]

36 23

MRP2 (ABCC2) 1 1.49 [14] Array [10] 36 23

OATP1B1 (SLCO1B1) 1 [4] 1.54 (assumed) [15] RT-PCR [12] 36 23

OATP1B3 (SLCO1B3) 1 [4] 1.54 [15] Array [10] 36 23
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Table S1.2: System-dependent parameters and expression of relevant enzymes, transporters and other ADME processes (continued)

Enzyme / Transporter /
Process (Gene)

Mean reference
concentrationa

Geometric standard
deviation of the
reference
concentrationb

Relative expression in the
different organs

Half-life
liver
[hours]

Half-life
intestine
[hours]

P-gp (ABCB1) 1.41 [16] 1.6 [15] RT-PCR [12], with the
relative expression in
intestinal mucosa increased by
factor 3.57 [16]

36 23

Unspecific liver influx
(gemfibrozil)

1 1.4 Liver only 36 23

Unspecific liver influx
(simastatin acid)

1 1.4 Liver only 36 23

a µmol protein l−1 in the tissue of the highest expression. If no information on reference concentration was available it was set to 1 µmol protein l−1

and the catalytic rate constant (𝑘𝑐𝑎𝑡) was optimized
b PK-Sim expression database profile
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1 General information

In all individuals and populations, the enterohepatic circulation (EHC) was enabled (EHC
continuous fraction set to one) by assuming a continuous flow from bile to duodenum. Fur-
thermore, if no information about the renal state was specified a glomerular filtration rate
of one was assumed which is aequivalent to passive filtration without active secretion or
reabsorption.

1.4 Model evaluation

For all observed concentration-time profiles population simulations using the virtual popu-
lations as described in Chapter 1.5 of the ESM for model evaluation were generated. The
predicted profiles were subsequently used for the statistical as well as the graphical model
evaluation. For this purpose, simulated median and 90 % confidence interval (CI) were cal-
culated. Following, non-compartmental analysis (NCA) parameters like the area under the
curve from first to last observation (AUC) and Cmax were calculated and used for further
model evaluation.

1.4.1 Statistical model evaluation

For statistical model evaluation the following accuracy measures were calculated. For all
concentration-time values available the mean relative deviation (MRD) as well as the median
symmetric accuracy (MSA) according to Eq. (S1.3) and (S1.4) were calculated.

Equation : Mean relative deviation

𝑥 = √∑𝑁
𝑖=1(log10 𝑐𝑜𝑏𝑠 − log10 𝑐𝑝𝑟𝑒𝑑)2

𝑁
𝑀𝑅𝐷 = 10𝑥 (S1.3)

Cobs = observed Concentration
Cpred = predicted concentration
N = number of observations
MRD = mean relative deviation

11
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1 General information

Equation : Median symmetric accuracy

𝑄𝑖 = 𝑐𝑝𝑟𝑒𝑑
𝑐𝑜𝑏𝑠

𝜁 = 100 ∗ (exp(Mdn(|𝑙𝑛(𝑄𝑖|)) − 1) (S1.4)

Cobs = observed Concentration
Cpred = predicted concentration
Qi = accuracy ratio
𝜁 = median symmetric accuracy

Hereby a MRD value ≤ 2 characterizes an adequate prediction whereas the MSA gives a
easy interpretable impression of the relative deviation of the model predictions compared to
the observed values. Additionally, NCA ratios (Eq. (S1.5)) were calculated and compared.

Equation : Non-compartmental analysis ratios

𝑁𝐶𝐴𝑟𝑎𝑡𝑖𝑜 = 𝑁𝐶𝐴𝑝𝑟𝑒𝑑
𝑁𝐶𝐴𝑜𝑏𝑠

(S1.5)

NCAratio = predicted versus observed NCA estimate ratio
NCApred = predicted NCA estimate
NCAobs = observed NCA estimate

Values ≤ 2 or ≥ 0.5 are considered as sufficient. Furthermore, for each DDI and DGI observed
and predicted NCA effect ratios were estimated as shown in Eq. (S1.6)).

Equation : Drug-drug interaction and drug-gene interaction effect ratios

𝐸𝑓𝑓𝑒𝑐𝑡𝑟𝑎𝑡𝑖𝑜 =
𝑁𝐶𝐴𝑝𝑟𝑒𝑑,𝐷𝐷𝐼/𝐷𝐺𝐼

𝑁𝐶𝐴𝑝𝑟𝑒𝑑,𝑝𝑙𝑎𝑐𝑒𝑏𝑜
/

𝑁𝐶𝐴𝑜𝑏𝑠,𝐷𝐷𝐼/𝐷𝐺𝐼
𝑁𝐶𝐴𝑜𝑏𝑠,𝑝𝑙𝑎𝑐𝑒𝑏𝑜

(S1.6)

Effectratio = predicted versus observed NCA estimate effect ratio
NCApred,DDI/DGI = predicted NCA estimate under DDI and / or DGI conditions
NCApred,placebo = predicted NCA estimate under placebo condition
NCAobs,DDI/DGI = observed NCA estimate under DDI and / or DGI conditions
NCAobs,placebo = observed NCA Estimate Under Placebo Condition

Finally, as a quantitative measure of the prediction accuracy for each DDI and DGI inter-
action as well as for all placebo concentration-time profiles the geometric mean fold error
(GMFE) was calculated according to Eq. (S1.7):
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1 General information

Equation : Geometric mean fold error

𝑥 =
∑ | log10(𝑁𝐶𝐴,𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑

𝑁𝐶𝐴,𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠
)|

𝑁
𝐺𝑀𝐹𝐸 = 10𝑥 (S1.7)

N = number of observations
NCApred = predicted NCA estimate
NCAobs = observed NCA estimate

1.4.2 Graphical model evaluation

For graphical model evaluation a set of different figures were generated. For all concentration-
time profiles visual predictive checks (VPCs) were created using the virtual populations for
model evaluation as described in Chapter 1.5 of the ESM and the subsequently calculated
median and 90 % CI profiles. Furthermore, goodness of fit (GOF) plots like observed values
versus predicted values were generated. Moreover, predicted versus observed NCA ratios as
well as DDI and DGI effect ratios, as calculated in Chapter 1.4.1 of the ESM, were evaluated
using the twofold limits, halffold limits and / or the limits proposed by Guest et al [17].

1.4.3 Local sensitivity analysis

NCA parameter sensitivities of the final PBPK models were calculated as relative changes
of the AUC of one dosing interval in steady-state conditions for simulations of the highest
recommended doses. For this purpose, a mean individual as described in Chapter 1.3 of the
ESM was used. Parameters were included into the analysis if they had to be optimized, if
they might have a strong influence due to calculation methods used in the model (fraction
unbound) or if they had significant impact in former models (solubility).

The sensitivity for the NCA parameter on the input parameter of interest was then calcu-
lated as the ratio of the relative change of the NCA parameter and the relative variation
of the input parameter (see Eq. (S1.8)). For reasons of numerical stability, sensitivities
were calculated as the average of several sensitivities based on different variations (see Eq.
(S1.8)). The relative variations are defined by multiplication of the value in the simulation
with variation factors (k). For each sensitivity analysis 9 ks were taken. The average of the
sensitivities were following visualized as a tornado plot [18].
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Equation : Parameter sensitivity

𝑆𝑖,𝑗 = Δ𝑃𝐾𝑗
Δ𝑝𝑖

∗ 𝑝𝑖
𝑃𝐾𝑗

(S1.8)

𝑆𝑖,𝑗 =
∑𝑛

𝑘=1
Δ𝑘𝑃𝐾𝑗

Δ𝑘𝑝𝑖
∗ 𝑝𝑖

𝑃𝐾𝑗

𝑛 (S1.8)

PKj = pharmacokinetic parameter of a certain output
pi = input parameter
Si,j = sensitivity of a pharmacokinetic parameter of a certain output to an input parameter
k = variation factors

1.5 Virtual populations

For each profile with individual demographics available a virtual population containing
100 individuals with demographic properties (gender, age, weight, height, race) adapted to
the mean of each respective study was created based on the International Commission on
Radiological Protection (ICRP) database. If data were missing mean values as described
in Chapter 1.3 of the ESM were used. Enzyme variablity was removed except for protein
ontogeny information if available. Subsequently, profiles were simulated and population
mean and 90 % CI were calculated.
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2 PBPK modeling of simvastatin

2.1 Introduction

Simvastatin is an oral HMG-CoA reductase inhibitor and is among the ten most prescribed
drugs in industrial nations [19]. Although statins and especially simvastatin have an excel-
lent cost effectiveness and benefit risk ratio [20, 21] over-dosage can lead to rhabdomyolysis
which is a feared and a potentially deadly adverse-drug event [22]. DDIs and DGIs are
well known triggers leading to changed simvastatin PK and subsequently raise the risk
of over-dosages [23, 24, 25, 26]. This is because simvastatin has a complex PK with high
inter-individual variability, which involves many different drug transporters and metabolic
enzymes. Hence, if DDIs or DGIs alter transporter or enzyme activity, simvastatin’s PK can
change dramatically. Simvastatin is given in its oral prodrug form simvastatin lactone (SL).
SL is a highly lipophilic class II biopharmaceutical classification system drug with a high
permeability but low solubility [27]. After disintegration, it is hydrolyzed partly chemical in
a pH dependent manner [28] and mostly enzymatically by paraoxonase 3 (PON3) to its ac-
tive form simvastatin acid (SA) [29]. Apart from organic anion transporting polypeptide 1B1
(OATP1B1) for all metabolic enzymes and transporters involved in simvastatin’s PK poly-
morphisms with altered activity are reported [26]. Moreover, several inhibitors or inducer,
so called perpetrator drugs, for either one or multiple of the above mentioned transporters
and enzymes are known [30], changing the PK of simvastatin as a victim drug. Additionally,
on top of this SL as well as SA itself show in vitro perpetrator drug effects for a broad range
of enzymes and transporters [31, 32, 33, 34, 35, 36, 37, 38].

2.1.1 Included processes

An overview of the processes included in the final whole-body PBPK model is given in Fig.
S2.1.

In the final model metabolism of SL (Fig. S2.1 process [1]) and SA (Fig. S2.1 process [2])
by cytochrome P450 3A4 (CYP3A4) as well as SA metabolism by cytochrome P450 2C8
(CYP2C8) (Fig. S2.1 process [14]) and SL metabolism by cytochrome P450 3A5 (CYP3A5)
(Fig. S2.1 process [13]) were included. In addition, the transformation of SL to SA was re-
alized by inclusion of SL PON3 metabolism (Fig. S2.1 process [5]) as well as SL chemical
hydrolysis (Fig. S2.1 process [3]) and plasma hydrolysis (Fig. S2.1 process [4]). Moreover, the
back reaction (SA lactonisation) mediated by acyl glucuronide intermediates (enzymatically
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2 PBPK modeling of simvastatin

(Fig. S2.1 process [7])) or spontaneously (chemically (Fig. S2.1 process [6])) was included.
Furthermore, SL transportation by breast cancer resistance protein (BCRP) (Fig. S2.1 pro-
cess [12]) was incorporated. For this, the predefined reverse transcription polymerase chain
reaction (RT-PCR) BCRP expression profile was adapted to express BCRP also in red blood
cells which reduced the blood to plasma ratio SL from values >3 without BCRP expression
to values <1 with BCRP expression. Literature values for BPSL are around 0.57[39]. For de-
scription of SA distribution, the relevant transport processes of SA by OATP1B1 (Fig. S2.1
process [8]), organic anion transporting polypeptide 1B3 (OATP1B3) (Fig. S2.1 process [9])
and P-glycoprotein (P-gp) (Fig. S2.1 process [11]) were implemented. To cover the PK for
different oral formulations SL dissolution was described using a Weibull function whereas
dissolution time of 50 % dissolution and dissolution shape were optimized. Genotypes which
were included and covered by the model were solute carrier organic anion transporter fam-
ily member 1B1 (SLCO1B1) (rs4149056) c.521T/T, c.521C/C, and c.521T/C ATP-binding
vassette sub-family B member 1 (ABCB1) (rs1128503, rs2032582 and rs1045642) c.1236T-
c.2677T-c.3435T and c.1236C-c.2677G-c.3435C, ATP-binding cassette sub-family G mem-
ber 2 (ABCG2) (rs2231142) c.421C/C, c.421C/A and c.421A/A and CYP3A5 (rs776746)
𝐶𝑌 𝑃3𝐴5∗3/∗3, 𝐶𝑌 𝑃 3𝐴5∗3/∗1 and 𝐶𝑌 𝑃3𝐴5∗3/∗1.
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UGT1A1 [7] mediated lactonization

BCRP (ABCG2) [11] mediated e�ux
Chemical [3] / 

Plasma [4] / 
PON3 [5] mediated hydrolysis

Chemical lactonization [6]

CYP3A4 [1] mediated 
oxidative metabolism 

CYP3A4  [2] mediated 
oxidative metabolism

OATP1B1 (SLCO1B1) [8] /
OATP1B3 (SLCO1B3) [9] 

P-gp (ABCB1) [10] mediated e�ux

CYP3A5 [12] mediated 
oxidative metabolism 

CYP2C8 [13] mediated 
oxidative metabolism

Figure S2.1: Included processes in the final whole-body PBPK model

2.1.2 Excluded processes

Few processes were excluded due to either lack of training data or ambiguous literature find-
ings. Namely, no SL or SA multidrug resistance-associated protein 2 (MRP2) transportation
was included. Although, there is some evidence that MRP2 and especially polymorphisms
in the ATP-binding cassette sub-family C member 2 (ABCC2) gene are of relevance for sim-
vastatin information available were too sparse to distinguish between other efflux processes
[40, 36]. For the same reason and again because of ambiguous study information no P-gp
efflux of SL was included [41, 42, 43]. The same applies to potential relevance of further
influx transporters.
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2 PBPK modeling of simvastatin

2.2 Simvastatin model development

2.2.1 Clinical studies

For placebo and DGI model development and evaluation mean profiles from 57 studies were
extracted including 59 SL and 57 SA pharmacokinetic profiles which represent information
from in total 1271 study participants. An overview of all mean study demographics available
can be found in Table S2.1. Doses available ranged from 10 mg to 80 mg after single and
multiple doses. Dose linearity was found for SA and likely also for SL as shown in Fig.
S2.2, S2.3 based on analysis of variance (ANOVA) analysis and pairwise comparison of dose
normalized AUC and Cmax values from placebo single dose profiles.
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2 PBPK modeling of simvastatin
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Figure S2.2: Dose normalized AUC and 𝐶𝑚𝑎𝑥 values: AUC Simvastatin Lactone, AUC Simvastatin Acid
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Figure S2.3: Dose normalized AUC and 𝐶𝑚𝑎𝑥 values: 𝐶𝑚𝑎𝑥 Simvastatin Lactone, 𝐶𝑚𝑎𝑥 Simvastatin Acid
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Table S2.1: Mean study data used for simvastatin lactone and simvastatin acid placebo model development
Route N Females

[%]
Age [years] Weight [kg] Height [cm] Dataset Profile Ids References

10 mg SL p.o. (Lipovas,
fasted) s.d.

16 0 33 (26–44) 64 (56–75) - Test 77, 78 [44]

20 mg SL p.o. (Unknown,
fasted) s.d.

12 25 31 (21–40) - - Test 182, 183 [45]

20 mg SL p.o. (Unknown,
fasted) s.d.

11 36 33 - - Test 196 [46]

20 mg SL p.o. (Unknown,
fasted) s.d.

40 0 25 64 - Training 318, 319 [47]

20 mg SL p.o. (Unknown,
fasted) s.d.

40 0 32 66 - Test 320, 321 [47]

20 mg SL p.o. (Unknown,
fasted) s.d.

40 0 24 68 - Test 322, 323 [47]

20 mg SL p.o. (Unknown,
fasted) s.d.

40 0 26 78 - Training 324, 325 [47]

20 mg SL p.o. (Zocor, fed)
daily

31 19 38 72 - Test 12 [48]

20 mg SL p.o. (Unknown,
fasted) s.d.

10 50 - - - Test 234 [49]

20 mg SL p.o. (Zocor, fasted)
b.i.d.

11 0 (20–35) - - Test 250, 251 [50]

20 mg SL p.o. (Zocor, fasted)
s.d.

7 14 30 (26–42) 77 (70–84) - Training 91, 92 [51]

20 mg SL p.o. (Unknown,
fasted) s.d.

15 - - - - Test 139, 144 [52]

40 mg SL p.o. (Unknown,
fasted) s.d.

9 0 31 (22–49) 68 168 Test 1 [53]

40 mg SL p.o. (Unknown,
fasted) s.d.

25 8 34 (22–45) 74 - Test 180, 181 [54]

40 mg SL p.o. (Zocor,
Unknown) daily

14 0 23 66 172 Test 192, 193 [55]

40 mg SL p.o. (Unknown,
Unknown) daily

24 0 42 83 - Test 190 [56]

40 mg SL p.o. (Zocor, fasted)
s.d.

22 23 32 83 - Training 197, 198 [57]

40 mg SL p.o. (Zocor, fasted)
s.d.

5 60 (22–26) - - Test 6, 9 [58]

20

156
supporting

in
form

ation



2
PBPK

m
odeling

ofsim
vastatin

Table S2.1: Mean study data used for simvastatin lactone and simvastatin acid placebo model development (continued)
Route N Females

[%]
Age [years] Weight [kg] Height [cm] Dataset Profile Ids References

40 mg SL p.o. (Zocor, fasted)
s.d.

22 0 35 (21–60) - - Test 223, 224 [59]

40 mg SL p.o. (Zocor,
Unknown) s.d.

14 0 36 (23–43) - - Test 209, 210 [60]

40 mg SL p.o. (Zocor, fasted)
s.d.

14 0 37 (21–45) - - Test 219, 220 [61]

40 mg SL p.o. (Zocor, fasted)
s.d.

12 33 (19–) - - Test 236, 237 [62]

40 mg SL p.o. (Zocor, fasted)
s.d.

10 40 24 68 - Test 30, 31 [63]

40 mg SL p.o. (Unknown,
fasted) s.d.

23 4 32 (21–43) - - Test 277, 278 [64]

40 mg SL p.o. (Zocor, fed)
daily

12 - - - - Test 289, 290 [65]

40 mg SL p.o. (Unknown,
fasted) s.d.

35 34 (18–55) - - Test 101, 102 [66]

40 mg SL p.o. (Zocor,
Unknown) s.d.

10 10 (20–24) (58–79) - Test 53, 52 [67]

40 mg SL p.o. (Zocor, fasted)
s.d.

10 0 (20–34) (63–80) - Test 54, 55 [68]

40 mg SL p.o. (Unknown,
Unknown) s.d.

21 0 33 81 - Test 272 [69]

40 mg SL p.o. (Denan, fed)
s.d.

20 50 50 (53–111) (158–192) Test 135, 137 [70]

40 mg SL p.o. (Unknown,
fasted) daily

52 23 38 (19–55) 75 (55–100) 169 (149–190) Test 316, 317 [71]

40 mg SL p.o. (Zocor,
Unknown) daily

24 0 30 (19–44) 84 (59–114) 178 (164–190) Test 270 [72]

40 mg SL p.o. (Zocor, fasted)
s.d.

28 29 39 (21–63) 73 (55–97) 170 (146–184) Training 76, 75 [73]

40 mg SL p.o. (Zocor, fasted)
s.d.

12 67 56 (28–72) 88 (63–111) - Test 264, 265 [74]

40 mg SL p.o. (Zocor, fasted)
daily

18 28 29 (21–43) 75 (52–93) 175 (152–193) Training 260, 261 [75]

40 mg SL p.o. (Unknown,
Unknown) s.d.

16 19 36 75 - Test 205, 206 [76]

21

A
.3

publication
iii-sim

vastatin
157



2
PBPK

m
odeling

ofsim
vastatin

Table S2.1: Mean study data used for simvastatin lactone and simvastatin acid placebo model development (continued)
Route N Females

[%]
Age [years] Weight [kg] Height [cm] Dataset Profile Ids References

40 mg SL p.o. (Unknown,
fasted) daily

85 40 39 (21–55) 72 (51–102) 174 (154–196) Training 174, 177 [77]

40 mg SL p.o. (Unknown,
fasted) s.d.

85 40 39 (21–55) 72 (51–102) 174 (154–196) Training 168, 171 [77]

40 mg SL p.o. (Unknown,
fasted) s.d.

20 - - - - Test 100 [78]

40 mg SL p.o. (Unknown,
fasted) s.d.

10 0 39 (18–63) - - Test 246, 247 [79]

40 mg SL p.o. (Unknown,
fasted) daily

18 39 29 (19–40) 67 (54–80) - Test 281 [80]

60 mg SL p.o. (Zocor, fasted)
s.d.

10 50 (18–30) (55–101) - Test 43, 42 [81]

80 mg SL p.o. (Unknown,
fasted) daily

24 25 31 (20–45) 74 (49–88) 175 (153–190) Training 127, 128 [82]

80 mg SL p.o. (Zocor, fed)
daily

12 25 - - - Test 186, 187 [83]

80 mg SL p.o. (Zocor, fasted)
s.d.

24 67 31 (20–45) - 170 (152–189) Training 201, 202 [84]

80 mg SL p.o. (Unknown,
fasted) s.d.

30 57 56 (26–74) 86 (56–120) 164 (151–187) Test 227 [85]

80 mg SL p.o. (Unknown,
fasted) daily

24 17 30 (19–47) 68 (49–84) - Test 166 [86]

80 mg SL p.o. (Zocor, fasted)
s.d.

24 25 32 (18–45) (50–) - Training 131, 132 [87]

80 mg SL p.o. (Zocor, fasted)
s.d.

58 7 41 (20–60) 74 (51–92) 173 (156–194) Training 230, 231 [88]

80 mg SL p.o. (Zocor, fasted)
s.d.

12 0 (17–31) 76 (66–93) - Training 81, 82 [89]

80 mg SL p.o. (Unknown,
fasted) s.d.

36 50 24 69 176 Test 85, 85, 86, 86 [90]

80 mg SL p.o. (Unknown, fed)
s.d.

29 52 32 (20–59) 68 (48–101) 170 (153–185) Test 274, 275 [91]

Note:
Values for age, weight and height are given as mean (range); Wild-type genotype was assumed; -, not given; b.i.d., twice daily; n, number of
individuals studied; po, oral; s.d., single dose
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Table S2.2: Mean study data used for simvastatin lactone and simvastatin acid DGI model development
Route Genotype N Females

[%]
Age [years] Weight [kg] Height [cm] Dataset Profile Ids References

10 mg SL p.o.
(Unknown, fasted) s.d.

c.521C/C 2 50 14 61 157 Test 338 [92]

10 mg SL p.o.
(Unknown, fasted) s.d.

c.521T/C 15 53 14 78 160 Test 337 [92]

10 mg SL p.o.
(Unknown, fasted) s.d.

c.521T/T 15 53 14 83 160 Test 336 [92]

20 mg SL p.o. (Zocor,
fasted) s.d.

c.1236C-
c.2677G-
c.3435C

12 42 22 68 178 Training 21, 20 [41]

20 mg SL p.o. (Zocor,
fasted) s.d.

c.1236T-
c.2677T-
c.3435T

12 42 24 66 174 Training 23, 22 [41]

20 mg SL p.o. (Zocor,
fasted) s.d.

*3/*1 8 - 25 68 172 Test 98 [93]

20 mg SL p.o. (Zocor,
fasted) s.d.

*3/*3 10 - 25 71 173 Test 99 [93]

20 mg SL p.o. (Zocor,
fasted) s.d.

*1/*1 4 - 25 69 172 Training 97 [93]

40 mg SL p.o. (Zocor,
fasted) s.d.

c.421C/A 4 25 27 73 176 Test 28, 25 [94]

40 mg SL p.o. (Zocor,
fasted) s.d.

c.421C/C 23 52 22 68 174 Test 29, 26 [94]

40 mg SL p.o. (Zocor,
fasted) s.d.

c.421A/A 5 80 22 56 164 Training 27, 24 [94]

40 mg SL p.o. (Zocor,
fasted) s.d.

c.521T/C 12 42 24 69 174 Test 72, 71 [95]

40 mg SL p.o. (Zocor,
fasted) s.d.

c.521T/T 16 50 23 68 174 Test 74, 73 [95]

40 mg SL p.o. (Zocor,
fasted) s.d.

c.521C/C 4 25 23 84 180 Training 70, 69 [95]

60 mg SL p.o.
(Zocor,unknown) s.d.

c.521C/C 1 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

c.521T/C 42 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

c.521T/T 88 - 24.9 70.1 174.6 Test -a [96]
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Table S2.2: Mean study data used for simvastatin lactone and simvastatin acid DGI model development (continued)
Route Genotype N Females

[%]
Age [years] Weight [kg] Height [cm] Dataset Profile Ids References

60 mg SL p.o.
(Zocor,unknown) s.d.

*3/*1 52 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

*3/*3 71 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

*1/*1 9 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

c.421C/A 56 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

c.421C/C 64 - 24.9 70.1 174.6 Test -a [96]

60 mg SL p.o.
(Zocor,unknown) s.d.

c.421A/A 12 - 24.9 70.1 174.6 Test -a [96]

Note:
Values for age, weight and height are given as mean; -, not given; n, number of individuals studied; po, oral; s.d., single dose

a Only SL / SA AUC and Cmax values were available.24
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2 PBPK modeling of simvastatin

2.2.2 Drug-dependent parameters

Table S2.3 and S2.5 compare the drug-dependent model parameter used in the final model
with median literature values and shows the relative deviation from them. Moreover, they
mark parameters that were optimized. Table S2.4 and S2.6 lists all parameters that were
extracted from literature with the corresponding references.
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Table S2.3: Drug-dependent parameters of the final simvastatin lactone model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
BP - 0.5445 0.57 Calculated Blood to plasma ratio after

administration of 40 mg
simvastatin lactone at
steady-state

fu % 1.34 2.37 (1.09–6) Literature Fraction unbound plasma

Lipophilicity - 4.68 4.595 (2.06–5.19) Literature Lipophilicity

MW - 418.6 418.6 Literature Molecular weight

Solubility mg l−1 16.4 16.4 (1.4–61.94) Literature Solubility in FaSSIF (pH=5)

Enzymes
CYP3A4 kcat min−1 5194 - Optimized CYP3A4 catalytic rate

constant

CYP3A4 KM µmol l−1 21 2.55 (0.46–30) Literature CYP3A4 Michaelis-Menten
constant

CYP3A5 kcat
*1/*1

min−1 162300 - Optimized CYP3A5 catalytic rate
constant for *1/*1 genotype

CYP3A5 kcat
*1/*3

min−1 81140 - Calculated CYP3A5 catalytic rate
constant for *1/*3 genotype

CYP3A5 kcat
*3/*3

min−1 0 - Literature CYP3A5 catalytic rate
constant for *3/*3 genotype

CYP3A5 KM µmol l−1 39.08 88 (62–91) Optimized CYP3A5 Michaelis-Menten
constant

PON3 KM µmol l−1 840 840 Literature PON3 Michaelis-Menten
constant

PON3 kcat min−1 4952 - Optimized PON3 catalytic rate constant

Transporters
BCRP (ABCG2)
kcat c.421AA

min−1 7.501 - Optimized BCRP catalytic rate constant
for c.421AA genotype
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Table S2.3: Drug-dependent parameters of the final simvastatin lactone model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

BCRP (ABCG2)
kcat c.421CA

min−1 20.06 - Calculated BCRP catalytic rate constant
for c.421CA genotype

BCRP (ABCG2)
kcat c.421CC

min−1 32.61 - Optimized BCRP catalytic rate constant
for c.421CC genotype

BCRP (ABCG2)
KM

µmol l−1 5 - Assumed BCRP Michaelis-Menten
constant (assumed from other
statins)

Inhibition
Ki CYP2C8 µmol l−1 1.1 5.7 (1.1–12.3) Literature Concentration for

half-maximal CYP2C8
competitive inhibition

Ki CYP3A4 µmol l−1 0.16 2.1 (0.16–35) Literature Concentration for
half-maximal CYP3A4
competitive inhibition

Ki MRP2
(ABCC2)

µmol l−1 5 32.1 (5–132) Literature Concentration for
half-maximal MRP2
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 5 7.85 (5–12.5) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 4.6 37.7 (4.6–209) Literature Concentration for
half-maximal P-gp
competitive inhibition

Formulation
Density g cm−1 1.2 1.2 Literature Drug density

Dissoluation shape - 1.297 - Optimized Weibull function dissolution
shape

Dissolution time
(50% dissolved)

min 86.38 - Optimized Weibull function dissolution
time (50% dissolved)

System
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Table S2.3: Drug-dependent parameters of the final simvastatin lactone model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

BCRP blood cells % 30.46 - Optimized BCRP relative expression in
blood cells (normalized)

Chemical
hydrolysis rate

l µmol−1 min−1 0.00098 0.0008217
(1.667e-06–0.0196)

Literature Chemical hydrolysis rate

EHC - 1 - Assumed Fraction of bile continually
released from the gallbladder

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Plasma hydrolysis
rate

l µmol−1 min−1 0.0603 0.0603 Literature Plasma hydrolysis rate

Specific intest.
perm.

cmmin−1 0.001082 0.258 Optimized Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.2561 - Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim Standard; organ-plasma partition coefficient calculation method: Berezhkovskiy; formu-
lation parameter values were used for solid oral dosage forms only
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Table S2.4: Extracted drug-dependent parameter literature values for simvastatin lactone
Parameter Unit Literature

value
Standard
deviation

Note Reference

BP - 0.57 - Blood to plasma ratio [39]
fu % 6 - - [97]
fu % 4 - - [98]
fu % 1.09 0.04 Human plasma - ligand concentration:

0.5 µg/ml
[99]

fu % 1.25 0.07 Human plasma - ligand concentration:
1 µg/ml

[99]

fu % 1.34 0.03 Human plasma - ligand concentration:
2 µg/ml

[99]

fu % 1.59 0.15 Human plasma - ligand concentration:
4 µg/ml

[99]

fu % 1.77 0.16 Human plasma - ligand concentration:
6 µg/ml

[99]

fu % 2.3 0.28 Dog plasma - ligand concentration:
0.5 µg/ml

[99]

fu % 2.49 0.34 Dog plasma - ligand concentration: 1
µg/ml

[99]

fu % 2.44 0.12 Dog plasma - ligand concentration: 2
µg/ml

[99]

fu % 3.13 0.33 Dog plasma - ligand concentration: 4
µg/ml

[99]

fu % 3.38 0.51 Dog plasma - ligand concentration: 6
µg/ml

[99]

Lipophilicity - 4.7 - log D pH=7.0 [98]
Lipophilicity - 4.69 - clogP [100]

Lipophilicity - 4.48 - clogP [100]
Lipophilicity - 4.42 - clogP [100]
Lipophilicity - 4.91 - clogP [100]
Lipophilicity - 4.51 - clogP [100]
Lipophilicity - 4.46 - clogP [100]

Lipophilicity - 4.74 - clogP [100]
Lipophilicity - 4.68 - clogP [100]
Lipophilicity - 4.79 - clogP [100]
Lipophilicity - 4.38 - clogP [100]
Lipophilicity - 5.19 - clogP [100]
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Table S2.4: Extracted drug-dependent parameter literature values for simvastatin lactone (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Lipophilicity - 2.06 - logP at pH 7 [100]
Lipophilicity - 4.47 - logP at pH 2 [100]
Lipophilicity - 4.4 - log D pH=7.0 [101]
Lipophilicity - 4.68 - logP [39]
MW - 418.6 - Calculated [102]

Solubility mg l−1 8.43 - Intrinsic solubility calculated [102]
Solubility mg l−1 61.94 - FaHIF [58]
Solubility mg l−1 1.4 - pH=5 [98]
Solubility mg l−1 30 - Water [103]
Solubility mg l−1 1.45 - Distilled water [27]

Solubility mg l−1 14.5 - pH=1.2 [27]
Solubility mg l−1 24.4 - pH=7 [27]
Solubility mg l−1 29.9 - FeSSIF [27]
Solubility mg l−1 16.4 - FaSSIF [27]
Solubility mg l−1 16.4 - Intestine [39]

Solubility mg l−1 14.5 - Stomach [39]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 5472 - - [104]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 3899 - L1 [97]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 5141 - L2 [97]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 5800 - L3 [97]

CLint CYP3A4 µlmin−1 mg−1 mic.protein 889.9 - Total clearance males [105]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 1330 - Total clearance females [105]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 2870 - - [106]
CLint CYP3A4 µlmin−1 mg−1 mic.protein 1697 - - [107]
CYP3A4 KM µmol l−1 1.101 - human liver microsomes corrected for

fumic (0.218)
[105]

CYP3A4 KM µmol l−1 1.144 - human liver microsomes corrected for
fumic (0.218)

[105]

CYP3A4 KM µmol l−1 0.46 - human liver microsomes corrected for
fumic (0.218)

[105]

CYP3A4 KM µmol l−1 1.485 - human liver microsomes corrected for
fumic (0.218)

[105]

CYP3A4 KM µmol l−1 2.3 - human liver microsomes corrected for
fumic (0.1)

[106]
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Table S2.4: Extracted drug-dependent parameter literature values for simvastatin lactone (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

CYP3A4 KM µmol l−1 4.27 - human liver microsomes -
3’,5’-dihydrodiol SV corrected for
fumic (0.122)

[107]

CYP3A4 KM µmol l−1 2.55 - human liver microsomes - 3’-hydroxy
SV corrected for fumic (0.122)

[107]

CYP3A4 KM µmol l−1 4.416 - human liver microsomes -
6’-exomethylene SV corrected for
fumic (0.122)

[107]

CYP3A4 KM µmol l−1 30 6.4 Recombinant enzyme -
3’,5’-dihydrodiol SV

[107]

CYP3A4 KM µmol l−1 7 2.9 Recombinant enzyme - 3’-hydroxy SV [107]
CYP3A4 KM µmol l−1 25 0.1 Recombinant enzyme -

6’-exomethylene SV
[107]

CYP3A5 KM µmol l−1 91 - Recombinant enzyme -
3’,5’-dihydrodiol SV

[107]

CYP3A5 KM µmol l−1 62 - Recombinant enzyme - 3’-hydroxy SV [107]
CYP3A5 KM µmol l−1 88 - Recombinant enzyme -

6’-exomethylene SV
[107]

PON3 KM µmol l−1 840 - - [108]
BCRP (ABCG2) KM µmol l−1 2.8 - Pravastatin (acid) [109]

BCRP (ABCG2) KM µmol l−1 10.1 - Rosuvastatin (acid) [110]
BCRP (ABCG2) KM µmol l−1 5.73 - Pitavastatin (acid) [38]
BCRP (ABCG2) KM µmol l−1 10.8 - Rosuvastatin (acid) [111]
BCRP (ABCG2) KM µmol l−1 2.02 - Rosuvastatin (acid) [112]
BCRP (ABCG2) KM µmol l−1 1.2 - Pitavastatin (acid) [113]

Ki CYP2C8 µmol l−1 1.1 - Ki [114]
Ki CYP2C8 µmol l−1 7.5 - Ki [114]
Ki CYP2C8 µmol l−1 5.7 - Ki [114]
Ki CYP2C8 µmol l−1 12.3 - Ki [114]
Ki CYP2C8 µmol l−1 3.3 - Ki [114]

Ki CYP3A4 µmol l−1 6.23 - Ki [115]
Ki CYP3A4 µmol l−1 0.31 - Ki [116]
Ki CYP3A4 µmol l−1 0.54 - Ki [116]
Ki CYP3A4 µmol l−1 16.5 - Ki [116]
Ki CYP3A4 µmol l−1 0.38 - Ki [116]
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Table S2.4: Extracted drug-dependent parameter literature values for simvastatin lactone (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki CYP3A4 µmol l−1 0.16 - Ki [116]
Ki CYP3A4 µmol l−1 0.81 - Ki [116]
Ki CYP3A4 µmol l−1 0.37 - Ki [116]
Ki CYP3A4 µmol l−1 35 - Ki [116]
Ki CYP3A4 µmol l−1 30 - Ki [117]

Ki CYP3A4 µmol l−1 2.13 0.14 Ki [31]
Ki CYP3A4 µmol l−1 2.1 0.56 Ki [118]
Ki CYP3A4 µmol l−1 10 - Ki [107]
Ki MRP2 (ABCC2) µmol l−1 56 - IC50 [119]
Ki MRP2 (ABCC2) µmol l−1 8.2 - IC50 [36]

Ki MRP2 (ABCC2) µmol l−1 5 - Ki [36]
Ki MRP2 (ABCC2) µmol l−1 132 - IC50 [120]
Ki OATP1B1 (SLCO1B1) µmol l−1 9.7 - IC50 [35]
Ki OATP1B1 (SLCO1B1) µmol l−1 5 - IC50 [121]
Ki OATP1B1 (SLCO1B1) µmol l−1 12.5 - IC50 [121]

Ki OATP1B1 (SLCO1B1) µmol l−1 6 - IC50 [121]
Ki P-gp (ABCB1) µmol l−1 16.2 - IC50 [122]
Ki P-gp (ABCB1) µmol l−1 209 - IC50 [123]
Ki P-gp (ABCB1) µmol l−1 59.6 - IC50 [37]
Ki P-gp (ABCB1) µmol l−1 4.9 - IC50 [124]

Ki P-gp (ABCB1) µmol l−1 59 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 9 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 56 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 8.9 - IC50 [125]
Ki P-gp (ABCB1) µmol l−1 26.1 - IC50 [125]

Ki P-gp (ABCB1) µmol l−1 56.8 - IC50 [125]
Ki P-gp (ABCB1) µmol l−1 4.6 - IC50 [126]
Ki P-gp (ABCB1) µmol l−1 49.3 - IC50 [126]
Density g cm−1 1.2 - - [39]
Chemical hydrolysis rate min−1 2.16e-05 - pH=5; T=60°C phosphate buffer [127]

Chemical hydrolysis rate min−1 0.000112 - pH=6; T=60°C phosphate buffer [127]
Chemical hydrolysis rate min−1 0.00178 - pH=7; T=60°C phosphate buffer [127]
Chemical hydrolysis rate min−1 0.0196 - pH=8; T=60°C phosphate buffer [127]
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Table S2.4: Extracted drug-dependent parameter literature values for simvastatin lactone (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Chemical hydrolysis rate min−1 1.667e-06 - pH=3; T=40°C phosphate puffer
estimated from graph

[127]

Chemical hydrolysis rate min−1 6.667e-06 - pH=5; T=40°C phosphate puffer
estimated from graph

[127]

Chemical hydrolysis rate min−1 2.667e-05 - pH=6; T=40°C phosphate puffer
estimated from graph

[127]

Chemical hydrolysis rate min−1 0.0003433 - pH=7; T=40°C phosphate puffer
estimated from graph

[127]

Chemical hydrolysis rate min−1 0.00159 - pH=8; T=40°C phosphate puffer
estimated from graph

[127]

Chemical hydrolysis rate min−1 0.000433 0.01191 pH=6.8; T=37°C phosphate buffer
saline

[28]

Chemical hydrolysis rate min−1 0.0006828 0.01343 pH=7; T=37°C phosphate buffer
saline

[28]

Chemical hydrolysis rate min−1 0.0008445 0.01627 pH=7.2; T=37°C phosphate buffer
saline

[28]

Chemical hydrolysis rate min−1 0.0008983 0.03727 pH=7.4; T=37°C phosphate buffer
saline

[28]

Chemical hydrolysis rate min−1 0.001206 0.006918 pH=7.6; T=37°C phosphate buffer
saline

[28]

Chemical hydrolysis rate min−1 0.001129 0.00979 pH=7.8; T=37°C phosphate buffer
saline

[28]

Chemical hydrolysis rate min−1 0.0003164 0.002644 pH=6.8; T=37°C Human plasma [28]

Chemical hydrolysis rate min−1 0.0005424 0.004621 pH=7; T=37°C Human plasma [28]
Chemical hydrolysis rate min−1 0.0007989 0.003254 pH=7.2; T=37°C Human plasma [28]
Chemical hydrolysis rate min−1 0.001105 0.0304 pH=7.4; T=37°C Human plasma [28]
Chemical hydrolysis rate min−1 0.001261 0.006527 pH=7.6; T=37°C Human plasma [28]
Chemical hydrolysis rate min−1 0.001342 0.003418 pH=7.8; T=37°C Human plasma [28]

Chemical hydrolysis rate min−1 0.001067 - pH=7.4 [39]
Plasma hydrolysis rate l µmol−1 min−1 0.0603 - - [128]
Specific intest. perm. cmmin−1 0.258 - Effective permeability calculated from

apparent permeability
[39]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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Table S2.5: Drug-dependent parameters of the final simvastatin acid model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
BP - 0.56 0.5741 (0.56–0.5882) Calculated Blood to plasma ratio after

administration of 40 mg
simvastatin lactone at
steady-state (range 0.54-0.58)

fu % 5.68 6.255 (5.48–9.61) Literature Fraction unbound plasma

Lipophilicity - 1.45 3.82 (1.45–4.7) Literature Lipophilicity

MW - 436.6 436.6 Literature Molecular weight

pKa - 4.2 4.205 (4.18–5.5) Literature Acid dissociation constant
(acidic)

Solubility mg l−1 13.09 45.1 (0.1263–51.5) Literature Solubility at pH=6.84

Enzymes
CYP2C8 kcat 1/min 52.3 - Literature CYP2C8 catalytic rate

constant (calculated from
Vmax)

CYP2C8 KM µmol l−1 38.55 38.55 (16–88) Literature CYP2C8 Michaelis-Menten
constant

CYP3A4 kcat 1/min 31 - Literature CYP3A4 catalytic rate
constant (calculated from
Vmax)

CYP3A4 KM µmol l−1 26 26 (21–29) Literature CYP3A4 Michaelis-Menten
constant

UGT1A1 kcat 1/min 6.5 - Literature UGT1A1 catalytic rate
constant (calculated from
Vmax)

UGT1A1 KM µmol l−1 349 349 Literature UGT1A1 Michaelis-Menten
constant

UGT1A3 kcat 1/min 6.5 - Literature UGT1A3 catalytic rate
constant (calculated from
Vmax)
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Table S2.5: Drug-dependent parameters of the final simvastatin acid model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

UGT1A3 KM µmol l−1 349 349 Literature UGT1A3 Michaelis-Menten
constant

Transporters
OATP1B1
(SLCO1B1) kcat
c.521CC

1/min 1.025 - Optimized OATP1B1 catalytic rate
constant for c.521CC genotype

OATP1B1
(SLCO1B1) kcat
c.521TC

1/min 5.637 - Calculated OATP1B1 catalytic rate
constant for c.521TC genotype

OATP1B1
(SLCO1B1) kcat
c.521TT

1/min 10.25 - Optimized OATP1B1 catalytic rate
constant for c.521TT genotype

OATP1B1
(SLCO1B1) KM

µmol l−1 2 1.99 (1.17–2.53) Literature OATP1B1 Michaelis-Menten
constant

OATP1B3
(SLCO1B3) kcat

1/min 2.145 - Optimized OATP1B3 catalytic rate
constant for c.521TT genotype

OATP1B3
(SLCO1B3) KM

µmol l−1 2 - Assumed OATP1B3 Michaelis-Menten
constant

P-gp (ABCB1)
kcat

1/min 50 - Optimized P-gp catalytic rate constant
for unknown genotype

P-gp (ABCB1)
kcat c.1236Cc.-
2677G-c.3435C

1/min 4.64 - Optimized P-gp catalytic rate constant
for c.1236Cc.-2677G-c.3435C
genotype

P-gp (ABCB1)
kcat c.1236Tc.-
2677T-c.3435T

1/min 50 - Optimized P-gp catalytic rate constant
for c.1236Tc.-2677T-c.3435T
genotype

P-gp (ABCB1)
KM

µmol l−1 10 - Assumed P-gp Michaelis-Menten
constant

Inhibition
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Table S2.5: Drug-dependent parameters of the final simvastatin acid model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Ki BCRP
(ABCG2)

µmol l−1 18 18 Literature Concentration for
half-maximal BCRP
competitive inhibition

Ki CYP2C8 µmol l−1 41.1 41.1 Literature Concentration for
half-maximal CYP2C8
competitive inhibition

Ki CYP3A4 µmol l−1 69.6 56.1 (42.6–69.6) Literature Concentration for
half-maximal CYP3A4
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 3.6 3.6 Literature Concentration for
half-maximal OATP1B1
competitive inhibition

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Liver lactonization
rate

l µmol−1 min−1 0.002433 - Literature Liver lactonization rate
(calculated from liver S9
\\cite{Tsamandouras2015)

Specific intest.
perm.

cmmin−1 5.925e-07 - Calculated Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.0001171 - Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: Schmitt; organ-plasma partition coefficient calculation method: Charge-dependent Schmitt nor-
malized to PK-Sim
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Table S2.6: Extracted drug-dependent parameter literature values for simvastatin acid
Parameter Unit Literature

value
Standard
deviation

Note Reference

BP - 0.5882 - Blood to plasma ratio [98]
BP - 0.56 - Blood to plasma ratio [39]
fu % 5.66 0.56 Human plasma - ligand concentration:

0.5 µg/ml
[99]

fu % 5.92 0.22 Human plasma - ligand concentration:
1 µg/ml

[99]

fu % 5.48 0.12 Human plasma - ligand concentration:
2 µg/ml

[99]

fu % 5.68 0.17 Human plasma - ligand concentration:
4 µg/ml

[99]

fu % 5.79 0.03 Human plasma - ligand concentration:
6 µg/ml

[99]

fu % 9.61 0.7 Dog plasma - ligand concentration:
0.5 µg/ml

[99]

fu % 8.35 0.22 Dog plasma - ligand concentration: 1
µg/ml

[99]

fu % 6.96 0.2 Dog plasma - ligand concentration: 2
µg/ml

[99]

fu % 6.59 0.1 Dog plasma - ligand concentration: 4
µg/ml

[99]

fu % 7.32 0.007 Dog plasma - ligand concentration: 6
µg/ml

[99]

Lipophilicity - 3.85 - Calculated [102]
Lipophilicity - 4.22 - Calculated [129]
Lipophilicity - 3.79 - Calculated [129]

Lipophilicity - 1.8 - logD pH=7 [130]
Lipophilicity - 4.7 - LogP [98]
Lipophilicity - 2.1 - logD pH=7.0 [98]
Lipophilicity - 1.45 - logD pH=7.4 [39]
Lipophilicity - 4.54 - LogP [39]

MW - 436.6 - Calculated [129]
pKa - 4.21 - - [129]
pKa - 4.2 - - [130]
pKa - 5.5 - - [98]
pKa - 4.18 - - [131]
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Table S2.6: Extracted drug-dependent parameter literature values for simvastatin acid (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Solubility mg l−1 51.5 - Intrinsic solubility [102]
Solubility mg l−1 50 - pH=1.7 [102]
Solubility mg l−1 40.2 - Calculated [129]
Solubility mg l−1 0.1263 0.000842 pH=6.84 [58]
CLint CYP2C8 µlmin−1 mg−1 mic.protein 9.4 - Human liver microsomes [132]

CLint CYP3A4 µlmin−1 mg−1 mic.protein 57 - Human liver microsomes [132]
CLint µlmin−1 mg−1 mic.protein 55 - Human liver microsomes [132]
CYP2C8 KM µmol l−1 88 - CYP2C8 - 3’,5’-dihydrodiol SV [132]
CYP2C8 KM µmol l−1 36 - CYP2C8 - 3’-hydroxy SV [132]
CYP2C8 KM µmol l−1 16 - CYP2C8 - 6’-exomethylene SV [132]

CYP3A4 KM µmol l−1 21 - CYP3A4 - 6’-exomethylene SA [133]
CYP3A4 KM µmol l−1 26 - CYP3A4 - 3’,5’-dihydrodiol SA [132]
CYP3A4 KM µmol l−1 29 - CYP3A4 - 3’-hydroxy SA [132]
Ki CYP2C8 pmolmg−1 mic.protein 41.1 - Ki [32]
KM µmol l−1 76 35 human liver microsomes - 3’ ,5’

-dihydrodiol SA
[132]

KM µmol l−1 47 12 human liver microsomes - 3’ - hydroxy
SA

[132]

KM µmol l−1 47 21 human liver microsomes -
6’-exomethylene SA

[132]

UGT1A1 KM µmol l−1 349 - Human liver microsomes corrected for
fumic (0.8341)

[133]

UGT1A1 protein expression pmolmg−1 mic.protein 33.2 - - [134]
UGT1A1 protein expression pmolmg−1 mic.protein 18.3 - - [134]

UGT1A1 protein expression pmolmg−1 mic.protein 124 - - [134]
UGT1A1 protein expression pmolmg−1 mic.protein 21.7 - - [134]
UGT1A1 protein expression pmolmg−1 mic.protein 20.2 - - [134]
UGT1A1 protein expression pmolmg−1 mic.protein 33.6 - - [134]
UGT1A1 protein expression pmolmg−1 mic.protein 31.7 - - [134]

UGT1A1 protein expression pmolmg−1 mic.protein 34.3 - - [134]
UGT1A3 KM µmol l−1 349 - Human liver microsomes corrected for

fumic (0.8341)
[133]

UGT1A3 protein expression pmolmg−1 mic.protein 17.3 - - [134]
UGT1A3 protein expression pmolmg−1 mic.protein 9.9 - - [134]
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Table S2.6: Extracted drug-dependent parameter literature values for simvastatin acid (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

UGT1A3 protein expression pmolmg−1 mic.protein 20.6 - - [134]

UGT1A3 protein expression pmolmg−1 mic.protein 0.4 - - [134]
UGT1A3 protein expression pmolmg−1 mic.protein 123.1 - - [134]
UGT1A3 protein expression pmolmg−1 mic.protein 8.2 - - [134]
UGT1A3 protein expression pmolmg−1 mic.protein 6.3 - - [134]
OATP1B1 (SLCO1B1) KM µmol l−1 2.09 1 1a [135]

OATP1B1 (SLCO1B1) KM µmol l−1 1.99 1.02 2b [135]
OATP1B1 (SLCO1B1) KM µmol l−1 1.69 2.58 5 [135]
OATP1B1 (SLCO1B1) KM µmol l−1 1.17 1.67 15 [135]
OATP1B1 (SLCO1B1) KM µmol l−1 2.53 1.38 18 [135]
OATP3A1 (SLCO3A1) KM µmol l−1 0.017 0.002 - [136]

CYP2C8 KM µmol l−1 41.1 - - [32]
Ki BCRP (ABCG2) µmol l−1 18 - Ki [38]
Ki CYP3A4 µmol l−1 69.6 5.2 Ki [31]
Ki CYP3A4 µmol l−1 42.6 4.3 IC50 [137]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.6 - IC50 [35]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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2 PBPK modeling of simvastatin

2.3 Simvastatin model evaluation

For simvastatin model evaluation various graphical and statistical evaluation techniques
were used. Figures S2.4–S2.26 display the VPCs for the training and test dataset used for
model development and evaluation. Figure S2.27 and S2.28 show the predicted versus ob-
served plasma-concentration time values for the training and test dataset, respectively. Fig-
ures S2.29–S2.32 compare the calculated predicted versus observed NCA values the training
and test data. In addition, Tables S2.7 and S2.8 summarize statistical quality measures like
MRD, MSA and GMFE. Finally, Fig. S2.33 shows the results of the performed sensitivity
analysis.

2.3.1 Profiles
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(1) Study: Ayalasomayajula 2007 [82]
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(2) Study: Devineni 2015 [57]

Figure S2.4: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the training dataset. Solid line and shaded area are
predicted median and 90 % CI: Ayalasomayajula 2007 [82], Devineni 2015 [57]
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(1) Study: Falcao 2013 [84]
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(2) Study: Hasunuma 2016 [47]

Figure S2.5: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the training dataset. Solid line and shaded area are
predicted median and 90 % CI: Falcao 2013 [84], Hasunuma 2016 [47]
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(1) Study: Hasunuma 2016c [47]
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(2) Study: Polli 2013 [73]

Figure S2.6: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the training dataset. Solid line and shaded area are
predicted median and 90 % CI: Hasunuma 2016c [47], Polli 2013 [73]
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(1) Study: Sunkara 2007 [75]
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(2) Study: Teng 2013 [87]

Figure S2.7: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the training dataset. Solid line and shaded area are
predicted median and 90 % CI: Sunkara 2007 [75], Teng 2013 [87]
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(1) Study: Tubic-Grozdanis 2008 [51]
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(2) Study: Ucar 2004 [89]

Figure S2.8: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the training dataset. Solid line and shaded area are
predicted median and 90 % CI: Tubic-Grozdanis 2008 [51], Ucar 2004 [89]
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Figure S2.9: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the training dataset. Solid line and shaded area are
predicted median and 90 % CI: Winsemius 2014 [77]
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(1) Study: Alakhali 2013 [53]
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(2) Study: Ayalasomayajula 2016 [54]

Figure S2.10: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Alakhali 2013 [53], Ayalasomayajula 2016 [54]
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(1) Study: Bergman 2004 [83]
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(2) Study: Bergman 2009 [45]

Figure S2.11: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Bergman 2004 [83], Bergman 2009 [45]
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(1) Study: Derks 2010 [56]
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(2) Study: Geboers 2016 [58]

Figure S2.12: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Derks 2010 [56], Geboers 2016 [58]
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(1) Study: Gehin 2015 [59]
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(2) Study: Georgy 2016 [85]

Figure S2.13: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Gehin 2015 [59], Georgy 2016 [85]
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(1) Study: Hasunuma 2016a [47]
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(2) Study: Hasunuma 2016b [47]

Figure S2.14: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Hasunuma 2016a [47], Hasunuma 2016b [47]
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(1) Study: Hoch 2013 [60]
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(2) Study: Itkonen 2015 [62]

Figure S2.15: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Hoch 2013 [60], Itkonen 2015 [62]
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(1) Study: Jacobson 2004 [138]
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(2) Study: Kantola 1998 [63]

Figure S2.16: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Jacobson 2004 [138], Kantola 1998 [63]
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(1) Study: Kasichayanula 2012 [64]

Simvastatin Lactone
Profile IDs: 101

Simvastatin Acid
Profile IDs: 102

W
ild type

Placebo

0.0 2.5 5.0 7.5 0 10 20

0.0

2.5

5.0

7.5

10.0

12.5

Time [h]

C
on

ce
nt

ra
tio

n 
[n

g/
m

l]

Test

Training

Simvastatin Lactone
Profile IDs: 101

Simvastatin Acid
Profile IDs: 102

W
ild type

Placebo

0.0 2.5 5.0 7.5 0 10 20

10-1.5

10-1

10-0.5

100

100.5

101

Time [h]

C
on

ce
nt

ra
tio

n 
[n

g/
m

l]

Test

Training

(2) Study: Krishna 2012 [66]

Figure S2.17: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Kasichayanula 2012 [64], Krishna 2012 [66]
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(1) Study: Lilja 1998 [81]
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(2) Study: Lilja 2000 [67]

Figure S2.18: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Lilja 1998 [81], Lilja 2000 [67]
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(1) Study: Lilja 2004 [68]
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(2) Study: Martin 2016 [69]

Figure S2.19: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Lilja 2004 [68], Martin 2016 [69]
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(1) Study: McKenney 2006 [86]
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(2) Study: Mousa 2000 [49]

Figure S2.20: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: McKenney 2006 [86], Mousa 2000 [49]
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(1) Study: Obrien 2003 [70]
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(2) Study: Offman 2017 [71]

Figure S2.21: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Obrien 2003 [70], Offman 2017 [71]
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(1) Study: Patel 2011 [72]
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(2) Study: Schmitt 2011 [74]

Figure S2.22: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Patel 2011 [72], Schmitt 2011 [74]
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(1) Study: Sugimoto 2001 [44]
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(2) Study: Tuteja 2014 [76]

Figure S2.23: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Sugimoto 2001 [44], Tuteja 2014 [76]
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(1) Study: Vree 2001 [90]
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(2) Study: Yang 2003 [78]

Figure S2.24: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Vree 2001 [90], Yang 2003 [78]
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(1) Study: Yu 2009 [79]
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(2) Study: Zhao 2015 [52]

Figure S2.25: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Yu 2009 [79], Zhao 2015 [52]
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(1) Study: Zhi 2003 [91]
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(2) Study: Ziviani 2001 [80]

Figure S2.26: Linear and semi-logarithmic VPCs of the plasma concentration-time values in the test dataset. Solid line and shaded area are
predicted median and 90 % CI: Zhi 2003 [91], Ziviani 2001 [80]
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2 PBPK modeling of simvastatin

2.3.2 Predicted concentrations versus observed concentrations GOF plots
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Figure S2.27: Goodness of fit plots - observed versus predicted plasma concentration-time values in the
training dataset. The solid lines mark the line of identity as well as the 2-fold deviations.
Dashed lines indicate the 1.5-fold deviations
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2 PBPK modeling of simvastatin
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Figure S2.28: Goodness of fit plots - binned observed versus predicted plasma concentration-time values
in the test dataset. The solid lines mark the line of identity as well as the 2-fold deviations.
Dashed lines indicate the 1.5-fold deviations. The color of a hexagon reflects the binned number
of observations in the respective neighborhood
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2.3.3 NCA GOF plots
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Figure S2.29: NCA ratios of the training dataset. The solid lines mark the line of identity as well as the
2-fold deviations. Dashed lines indicate the 1.5-fold deviations.: Training 𝐶𝑚𝑎𝑥
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Figure S2.30: NCA ratios of the training dataset. The solid lines mark the line of identity as well as the
2-fold deviations. Dashed lines indicate the 1.5-fold deviations.: Training AUC
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Figure S2.31: NCA ratios of the test dataset. The solid lines mark the line of identity as well as the 2-fold
deviations. Dashed lines indicate the 1.5-fold deviations. The color of a hexagon reflects the
binned number of observations in the respective neighborhood.: Test 𝐶𝑚𝑎𝑥
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Simvastatin Lactone

10-1.5 10-1 10-0.5 100 100.5 101

10-1.5

10-1

10-0.5

100

100.5

101

10-1.5

10-1

10-0.5

100

100.5

101

Observed dose normalized AUC [ng/ml*h]

Pr
ed

ic
te

d 
do

se
 n

or
m

al
iz

ed
 A

U
C

 [n
g/

m
l*h

]

1

2

3

4

Figure S2.32: NCA ratios of the test dataset. The solid lines mark the line of identity as well as the 2-fold
deviations. Dashed lines indicate the 1.5-fold deviations. The color of a hexagon reflects the
binned number of observations in the respective neighborhood.: Test AUC
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2.3.4 MRD and MSA of plasma concentration predictions

Table S2.7: Summary of the statistical placebo model evaluation (MSA and MRD)
Molecule MRD mean (sd) MSA mean (sd)

Simvastatin Lactone 1.87 (0.709) N = 42 (N MRD > 2 = 11) 57 (56.3) N = 42 (N MSA > 100 = 7)
Simvastatin Acid 1.98 (1.17) N = 40 (N MRD > 2 = 9) 60.6 (78.5) N = 40 (N MSA > 100 = 4)

2.3.5 NCA ratios and GMFE of NCA values

Table S2.8: Summary of the statistical placebo model evaluation (NCA ratio and GMFE)
Parameter NCA ratio mean (sd) GMFE

Simvastatin Lactone
AUC 0.998 (0.401) N = 63 (N ratio > 2 | ratio < 0.5 = 5) 1.3

𝐶𝑚𝑎𝑥 0.869 (0.419) N = 63 (N ratio > 2 | ratio < 0.5 = 10) 1.47

Simvastatin Acid
AUC 0.851 (0.362) N = 58 (N ratio > 2 | ratio < 0.5 = 12) 1.53

𝐶𝑚𝑎𝑥 0.832 (0.43) N = 58 (N ratio > 2 | ratio < 0.5 = 14) 1.71

2.3.6 Local sensitivity analysis
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Figure S2.33: Simvastatin PBPK model sensitivity analysis. Sensitivity to single parameter pertubation,
measured as change of the simulated AUC in steady-state of a 80 mg oral dose
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2 PBPK modeling of simvastatin

2.4 Simvastatin DGIs

2.4.1 OATP1B1 (SLCO1B1)

The SLCO1B1 polymorphism (rs4149056) is one of the best described and most important
SL pharmacogene (PGx) [139]. Available data included one mean study profile from Pasa-
nen et al. [95] for the c.521T/T, c.521T/C and c.521C/C genotypes, respectively. Detailed
descriptions are presented in Table S2.2. It has to be noted, that for the c.521C/C geno-
type from Pasanen et al. [95] an unexpected elevation in the SL plasma concentration-time
profile was observed. Interestingly, the elevation was comparable with the study from Keski-
talo et al. [94] investigating the influence of rs2231142 in the ABCG2 gene. In the study by
Keskitalo et al. [94], participants hetero- or homozygous for the ABCG2 c.421A/A genotype
(non-functional) were extremly likely also heterozygous for rs4149056 polymorphism (88 %
for c.421C/A and c.421A/A compared to 30 % in the c.421C/C group). Unfortunately, in
the study from Pasanen et al. [95], participants were not screened for polymorphisms in
the ABCG2 gene. Moreover, a large difference in mean body weight in the c.521C/C and
c.421A/A (84 kg versus 56 kg) was observed. As shown by Tsamandouras et al. [26] body
weight is a significant covariate on the volume of distribution of simvastatin and thus, this
could further obscure the covariat-adjusted difference in both groups.

A comparison of the model predicted an observed plasma concentration-time profile for each
profile is shown in Figs. S2.34 and S2.35.
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Figure S2.34: Linear VPCs of the plasma concentration-time profiles for investigated DGIs: OATP1B1
SLCO1B1. Solid line and shaded area are predicted median and 90 % CI
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Figure S2.35: Semilogarithmic VPCs of the plasma concentration-time profiles for investigated DGIs:
OATP1B1 SLCO1B1. Solid line and shaded area are predicted median and 90 % CI
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2.4.2 BCRP (ABCG2)

Although identified as significiant covariate in two studies [94, 26] the rs2231142 polymor-
phism in ABCG2 ranks only as level 3 clinical annotation on pharmgkb [140]. Nevertheless,
it was included in the PBPK model assuming solely an impact on SL PK. Furthermore,
for each study arm an individual OATP1B1 activity was calculated based on the observed
SLCO1B1 rs4149056 genotypes assuming an additive relationship. Data available included
one SL and SA study mean profile from Keskitalo et al. [94] for the c.421C/C, c.421C/A
and c.421A/A genotypes, respectively. Detailed descriptions are presented in Table S2.2.
Despite the observed and well predicted effects, further studies should be performed to con-
firm the relevance and impact of BCRP (ABCG2) on SL and SA PK. The model capability
to describe and predict the effect is shown in Figs. S2.36 and S2.37.
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Figure S2.36: Linear VPCs of the plasma concentration-time profiles for investigated DGIs: BCRP ABCG2.
Solid line and shaded area are predicted median and 90 % CI
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Figure S2.37: Semilogarithmic VPCs of the plasma concentration-time profiles for investigated DGIs: BCRP
ABCG2. Solid line and shaded area are predicted median and 90 % CI
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2.4.3 P-gp (ABCB1)

The different P-gp ABCB1 genotypes were only descriptively included, since no study arm
for evaluation was on hand. Hereby, one SL and SA study mean profile from Keskitalo et al.
[41] for the ABCB1 c.1236T-c.2677T-c.3435T and one for the c.1236C-c.2677G-c.3435C were
available. Details are shown in Table S2.2. Nevertheless, by solely adapting the P-gp kcat
the different PK profiles of SA could be described accurately as shown in Figs. S2.38 and
S2.39.
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Figure S2.38: Linear VPCs of the plasma concentration-time profiles for investigated DGIs: P-gp ABCB1.
Solid line and shaded area are predicted median and 90 % CI
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Figure S2.39: Semilogarithmic VPCs of the plasma concentration-time profiles for investigated DGIs: P-gp
ABCB1. Solid line and shaded area are predicted median and 90 % CI
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2.4.4 CYP3A5 (CYP3A5 gene)

Unfortunately, in the only available study investigating the effects of the CYP3A5 polymor-
phism on simvastatin, no SA PK were measured [93]. Following, SA meabolism by CYP3A5
could not be estimated and hence, was not included in the model [132]. Nevertheless, for
SL the model showed good accuarcy in describing the homozygous 𝐶𝑌 𝑃3𝐴5∗1/∗1 and pre-
dicting the heterozygous 𝐶𝑌 𝑃3𝐴5∗1/∗3 genotype as presented in Fig. S2.40.
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Figure S2.40: Linear (left) and semilogarithmic (right) VPCs of the plasma concentration-time profiles for
investigated DGIs: CYP3A5. Solid line and shaded area are predicted median and 90 % CI
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2 PBPK modeling of simvastatin

2.4.5 MRD and MSA of plasma concentration predictions

Table S2.9 summarizes the statistical quality measures MRD and MSA exclusively for the
DGIs data.

Table S2.9: Summary of the statistical DGI model evaluation (MSA and MRD)
Molecule MRD mean (sd) MSA mean (sd)

Simvastatin Lactone 1.45 (0.121) N = 11 (N MRD > 2 = 0) 33.3 (16.1) N = 11 (N MSA > 100 = 0)
Simvastatin Acid 1.36 (0.134) N = 8 (N MRD > 2 = 0) 24.3 (11.6) N = 8 (N MSA > 100 = 0)

2.4.6 NCA ratios and GMFE of NCA values

Table S2.10 summarizes the NCA ratios and GMFE values exclusively for the DGIs data.

Table S2.10: Summary of the statistical DGI model evaluation (NCA ratio and GMFE)
Parameter NCA ratio mean (sd) GMFE

Simvastatin Lactone
AUC 0.958 (0.265) N = 20 (N ratio > 2 | ratio < 0.5 = 1) 1.25

𝐶𝑚𝑎𝑥 0.754 (0.214) N = 20 (N ratio > 2 | ratio < 0.5 = 2) 1.43

Simvastatin Acid
AUC 0.703 (0.363) N = 17 (N ratio > 2 | ratio < 0.5 = 7) 1.81

𝐶𝑚𝑎𝑥 0.583 (0.365) N = 17 (N ratio > 2 | ratio < 0.5 = 9) 2.23

79

A.3 publication iii - simvastatin 215



3 Simvastatin DDIs

3.1 Clinical studies

For DDI network evaluation mean profiles from 6 studies were extracted including 9 SL and
7 SA pharmacokinetic profiles which represent information from 75 study participants in
total. An overview of all mean study demographics available can be found in Table S3.1.
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Table S3.1: Mean study simvastatin pharmacokinetic profiles used for drug-drug interaction model evaluation
Route Route

co-medication
N Females

[%]
Age [years] Weight [kg] Height [cm] Dataset Profile Ids References

2 mg SL p.o.
(Solution, NA) s.d.

Placebo 12 - - - - Test 306,
307

[141]

40 mg SL p.o. (Zocor,
fasted) s.d.

600 mg
gemfibrozil
p.o. b.i.d.

10 50 22 (20–31) 62 (41–81) - Test 4, 5 [142]

40 mg SL p.o. (Zocor,
fasted) s.d.

Placebo 10 50 22 (20–31) 62 (41–81) - Test 2, 3 [142]

40 mg SL p.o. (Zocor,
fasted) s.d.

600 mg
rifampicin p.o.
daily

18 56 39 73 - Test 295 [143]

40 mg SL p.o. (Zocor,
fasted) s.d.

Placebo 18 56 39 73 - Test 293 [143]

40 mg SL p.o.
(Unknown, Unknown)
daily

500 mg
clarithromycin
p.o. daily

15 300 (18–60) - - Test 15 [138]

40 mg SL p.o.
(Unknown, Unknown)
daily

Placebo 15 300 (18–60) - - Test 14 [138]

40 mg SL p.o.
(Unknown, Unknown)
s.d.

Placebo 15 300 (18–60) - - Test 18 [138]

40 mg SL p.o. (Zocor,
fasted) s.d.

600 mg
rifampicin p.o.
daily

10 50 (21–29) (59–81) - Test 38, 39 [144]

40 mg SL p.o. (Zocor,
fasted) s.d.

Placebo 10 50 (21–29) (59–81) - Test 36, 37 [144]

40 mg SL p.o. (Zocor,
fasted) s.d.

Placebo 10 30 22 (19–29) 69 (52–86) - Test 59, 60,
58

[145]

Note:
Values for age, weight and height are given as mean (range); -, not given; b.i.d., twice daily; n, number of individuals studied; po, oral; s.d., single dose

81

A
.3

publication
iii-sim

vastatin
217



3 Simvastatin DDIs

3.2 Clarithromycin

The antibiotic clarithromycin is a strong inhibitor of CYP3A4 and P-gp as well as an
inhibitor of OATP1B1 and OATP1B3 [146]. A previously developed clarithromycin PBPK
model was extended by Ki values to model the competitive inhibition of OATP1B1 and
OATP1B3 [16]. The parameters of the extended clarithromycin model are given in the
Tables S3.2 and S3.3. For DDI evaluation one SL plasma concentration-time profile and one
SA AUC under clarithromycin co-treatment were available [138]. Linear and semilogarithmic
VPCs are shown in Figs. S3.1 and S3.2.

3.2.1 Drug-dependent parameters
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Table S3.2: Drug-dependent parameters of the final clarithromycin model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 29.9 30 (28–40) Literature Fraction unbound plasma

Lipophilicity - 2.3 2.3 Literature Lipophilicity

MW - 748 748 Literature Molecular weight

pKa - 8.99 6.845 (4.7–8.99) Literature Acid dissociation constant
(basic)

Solubility mg l−1 12170 12170 Literature Solubility at pH=2.4

Enzymes
CYP3A4 kcat min−1 76.5 76.5 Literature CYP3A4 catalytic rate

constant

CYP3A4 KM µmol l−1 48.7 48.7 Literature CYP3A4 Michaelis-Menten
constant

Inhibition
Ki CYP3A4 µmol l−1 6.04 5.765 (2.25–39.2) Literature Concentration for

half-maximal inactivation
(MBI)

Ki OATP1B1
(SLCO1B1)

µmol l−1 10 12.58 (3.44–96) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 9.8 9.8 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 4.1 31 (3.8–434) Literature Concentration for
half-maximal P-gp
competitive inhibition

Kinact CYP3A4 min−1 0.04 0.06 (0.04–0.23) Literature Maximum inactivation rate
constant (MBI)

Formulation
Dissoluation shape - 2.9 2.9 Literature Weibull function dissolution

shape
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Table S3.2: Drug-dependent parameters of the final clarithromycin model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Dissolution time
(50% dissolved)

min 5 5 Literature Weibull function dissolution
time (50% dissolved)

System
CLRen ml/min 100 100 Literature Renal plasma clearance

EHC - 1 1 Assumed Fraction of bile continually
released from the gallbladder

GFR - 1 1 Assumed Fraction of filtered drug
reaching the urine

Perm. Into blood
cells

cmmin−1 0.000362 3.62e-06 Literature Plasma to blood cells
permeability

Perm. Out of
blood cells

cmmin−1 1.04e-05 1.04e-07 Literature Blood cells to plasma
permeability

Specific intest.
perm.

cmmin−1 1.23e-05 1.23e-07 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 3.28e-05 3.28e-07 Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim Standard; organ-plasma partition coefficient calculation method: Rodgers and Rowland;
formulation parameter values were used for solid oral dosage forms only
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Table S3.3: Extracted drug-dependent parameter literature values for clarithromycin
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 28 - - [2]
fu % 30 - - [2]
fu % 40 - - [2]
Lipophilicity - 2.3 - - [2]
MW - 748 - - [2]

Perm. Into blood cells cmmin−1 3.62e-06 - - [2]
Perm. Out of blood cells cmmin−1 1.04e-07 - - [2]
pKa - 4.7 - - [2]
pKa - 8.99 - - [2]
Solubility mg l−1 12170 - - [2]

CYP3A4 kcat min−1 76.5 - - [2]
CYP3A4 KM µmol l−1 48.7 - - [2]
Ki CYP3A4 µmol l−1 2.25 - - [2]
Ki CYP3A4 µmol l−1 4.12 - - [2]
Ki CYP3A4 µmol l−1 5.49 - - [2]

Ki CYP3A4 µmol l−1 6.04 - - [2]
Ki CYP3A4 µmol l−1 29.5 - - [2]
Ki CYP3A4 µmol l−1 39.2 - - [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 8.26 - Ki [147]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.44 - Ki [148]

Ki OATP1B1 (SLCO1B1) µmol l−1 16.9 - Ki [148]
Ki OATP1B1 (SLCO1B1) µmol l−1 5.1 - IC50 [149]
Ki OATP1B1 (SLCO1B1) µmol l−1 26.2 - IC50 [150]
Ki OATP1B1 (SLCO1B1) µmol l−1 96 - IC50 [151]
Ki OATP1B1 (SLCO1B1) µmol l−1 5.3 - IC50 [2]

Ki OATP1B1 (SLCO1B1) µmol l−1 75 - IC50 [152]
Ki OATP1B3 (SLCO1B3) µmol l−1 9.8 - IC50 [151]
Ki P-gp (ABCB1) µmol l−1 34 - IC50 [153]
Ki P-gp (ABCB1) µmol l−1 66 - IC50 [153]
Ki P-gp (ABCB1) µmol l−1 7 - IC50 [154]

Ki P-gp (ABCB1) µmol l−1 28 - IC50 [154]
Ki P-gp (ABCB1) µmol l−1 39.7 - IC50 [123]
Ki P-gp (ABCB1) µmol l−1 34 - IC50 [124]
Ki P-gp (ABCB1) µmol l−1 434 - Ki [155]
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Table S3.3: Extracted drug-dependent parameter literature values for clarithromycin (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki P-gp (ABCB1) µmol l−1 4.1 - IC50 [2]

Ki P-gp (ABCB1) µmol l−1 8.9 - IC50 [146]
Ki P-gp (ABCB1) µmol l−1 3.8 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 7.2 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 15.1 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 23.8 - IC50 [43]

Ki P-gp (ABCB1) µmol l−1 50.2 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 56.1 - IC50 [43]
Ki P-gp (ABCB1) µmol l−1 86.7 - IC50 [43]
Kinact CYP3A4 min−1 0.04 - - [2]
Kinact CYP3A4 min−1 0.05 - - [2]

Kinact CYP3A4 min−1 0.07 - - [2]
Kinact CYP3A4 min−1 0.23 - - [2]
Dissoluation shape - 2.9 - - [2]
Dissolution time (50%
dissolved)

min 5 - - [2]

CLRen m/min 100 - - [2]

EHC - 1 - - [2]
GFR - 1 - - [2]
Specific intest. perm. cmmin−1 1.23e-07 - - [2]
Specific organ perm. cmmin−1 3.28e-07 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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3.2.2 Profiles

Simvastatin Lactone
Profile IDs: 14

Simvastatin Lactone
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Figure S3.1: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Clarithromycin - Simvastatin Lactone. Solid line and
shaded area are predicted median and 90 % CI
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Simvastatin Lactone
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Simvastatin Lactone
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Figure S3.2: Semi-logarithmic VPCs of plasma concentration-time profiles for investigated DDIs: Clarithromycin - Simvastatin Lactone. Solid
line and shaded area are predicted median and 90 % CI
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3 Simvastatin DDIs

3.3 Rifampicin

The antibiotic rifampicin is a strong inducer and inhibitor of different metabolic enzymes
and transporters [156]. A previously developed rifampicin PBPK model was extended by
interaction constants [16]. Furthermore, since Hanke et al. [16] found an induction effect on
the esterase arylacetamide deacetylase (AADAC) also for the SL relevant esterase PON3 an
induction with the same parameter values was assumed. The parameters of the extended
rifampicin model are given in Tables S3.4 and S3.5. Results of the simvastatin-rifampicin
DDI interaction are shown in Figs. S3.3 - S3.8.

3.3.1 Drug-dependent parameters
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Table S3.4: Drug-dependent parameters of the final rifampicin model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
BP - 0.89 0.895 (0.89–0.9) Literature Blood to plasma ratio

fu % 17 17 (11–17.5) Literature Fraction unbound plasma

Lipophilicity - 2.5 2.5 (1.3–2.7) Literature Lipophilicity

MW gmol−1 822.9 822.9 Literature Molecular weight

pKa - 1.7 4.8 (1.7–7.9) Literature Acid dissociation constant
(acidic)

- 7.9 4.8 (1.7–7.9) Literature Acid dissociation constant
(basic)

Solubility mg l−1 2800 2670 (1100–3350) Literature Solubility at pH=7.5

Enzymes
AADAC kcat min−1 9.87 9.87 Literature AADAC catalytic rate

constant

AADAC KM µmol l−1 195.1 195.1 Literature AADAC Michaelis-Menten
constant

Transporters
OATP1B1
(SLCO1B1) kcat

min−1 7.8 7.8 Literature OATP1B1 catalytic rate
constant

OATP1B1
(SLCO1B1) KM

µmol l−1 1.5 1.5 Literature OATP1B1 Michaelis-Menten
constant

P-gp (ABCB1)
kcat

min−1 0.61 0.61 Literature P-gp catalytic rate constant

P-gp (ABCB1)
KM

µmol l−1 55 55 Literature P-gp Michaelis-Menten
constant

Inhibition
Ki BCRP
(ABCG2)

µmol l−1 36 36 (14–461) Literature Concentration for
half-maximal BCRP
competitive inhibition
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Table S3.4: Drug-dependent parameters of the final rifampicin model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Ki CYP2C8 µmol l−1 30.2 30.2 Literature Concentration for
half-maximal CYP2C8
competitive inhibition

Ki CYP3A4 µmol l−1 18.5 18.5 (–19.7) Literature Concentration for
half-maximal CYP3A4
competitive inhibition

Ki MRP2
(ABCC2)

µmol l−1 7.9 33.8 (7.9–144) Literature Concentration for
half-maximal MRP2
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 0.22 1.235 (0.22–3948) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 0.39 0.39 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 169 169 (4.3–279) Literature Concentration for
half-maximal P-gp
competitive inhibition

Ki UGT1A1 µmol l−1 33 33 Literature Concentration for
half-maximal UGT1A1
competitive inhibition

Ki UGT1A3 µmol l−1 600 600 Literature Concentration for
half-maximal UGT1A3
competitive inhibition

Induction
Emax AADAC - 0.99 0.99 Literature Maximum in vivo induction

effect

Emax CYP2C8 - 5 3.2 (1.3–5) Literature Maximum in vivo induction
effect

Emax CYP3A4 - 9 5 (2–30) Literature Maximum in vivo induction
effect
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Table S3.4: Drug-dependent parameters of the final rifampicin model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Emax CYP3A5 - 2 2 Literature Maximum in vivo induction
effect

Emax OATP1B1
(SLCO1B1)

- 0.38 0.38 Literature Maximum in vivo induction
effect

Emax OATP1B3
(SLCO1B3)

- 0.38 - Assumed Maximum in vivo induction
effect

Emax P-gp
(ABCB1)

- 2.5 2.5 Literature Maximum in vivo induction
effect

Emax PON3 - 0.99 0.99 Assumed Maximum in vivo induction
effect

Emax UGT1A1 - 1.3 1.3 Literature Maximum in vivo induction
effect

Emax UGT1A3 - 1.4 1.4 Literature Maximum in vivo induction
effect

Induction EC50 µmol l−1 0.34 - Literature Concentration for
half-maximal induction

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Specific intest.
perm.

cmmin−1 1.24e-05 1.24e-05 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 2.93e-05 2.93e-05 Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim Standard; organ-plasma partition coefficient calculation method: Rodgers and Rowland
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Table S3.5: Extracted drug-dependent parameter literature values for rifampicin
Parameter Unit Literature

value
Standard
deviation

Note Reference

BP - 0.9 - - [2]
BP - 0.89 - - [2]
fu % 17 - - [2]
fu % 11 - - [2]
fu % 16 - - [2]

fu % 17 - - [2]
fu % 17.5 - - [2]
Lipophilicity - 2.5 - - [2]
Lipophilicity - 1.3 - - [2]
Lipophilicity - 2.7 - - [2]

MW gmol−1 822.9 - - [2]
pKa - 1.7 - acidic [2]
pKa - 7.9 - basic [2]
Solubility mg l−1 2800 - pH=7.5 [2]
Solubility mg l−1 1100 - pH=6.5 [2]

Solubility mg l−1 1400 - pH=6.8 [2]
Solubility mg l−1 2540 - pH=6.8 [2]
Solubility mg l−1 2800 - pH=7.5 [2]
Solubility mg l−1 3350 - pH=7.4 [2]
AADAC kcat min−1 9.87 - - [2]

AADAC KM µmol l−1 195.1 - - [2]
OATP1B1 (SLCO1B1) kcat min−1 7.8 - - [2]
OATP1B1 (SLCO1B1) KM µmol l−1 1.5 - - [2]
P-gp (ABCB1) kcat min−1 0.61 - - [2]
P-gp (ABCB1) KM µmol l−1 55 - - [2]

Ki BCRP (ABCG2) µmol l−1 56 - IC50 [157]
Ki BCRP (ABCG2) µmol l−1 461 - IC50 [158]
Ki BCRP (ABCG2) µmol l−1 18.8 - Ki [159]
Ki BCRP (ABCG2) µmol l−1 36 - Ki [159]
Ki BCRP (ABCG2) µmol l−1 14 - IC50 [160]

Ki BCRP (ABCG2) µmol l−1 14 - - [161]
Ki BCRP (ABCG2) µmol l−1 36 - - [161]
Ki CYP2C8 - 30.2 - Ki [2]
Ki CYP3A4 µmol l−1 19.7 - IC50 [162]
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Table S3.5: Extracted drug-dependent parameter literature values for rifampicin (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki CYP3A4 µmol l−1 18.5 - Ki [163]

Ki CYP3A4 µmol l−1 18.5 - - [2]
Ki MRP2 (ABCC2) µmol l−1 27 - IC50 [157]
Ki MRP2 (ABCC2) µmol l−1 144 - IC50 [158]
Ki MRP2 (ABCC2) µmol l−1 83 - IC50 [120]
Ki MRP2 (ABCC2) µmol l−1 7.9 - Ki [159]

Ki MRP2 (ABCC2) µmol l−1 40.6 - Ki [159]
Ki MRP2 (ABCC2) µmol l−1 14.7 - IC50 [160]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.6 - IC50 [164]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.99 - IC50 [165]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.25 - IC50 [166]

Ki OATP1B1 (SLCO1B1) µmol l−1 4.61 - IC50 [166]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.29 - IC50 [167]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.77 - IC50 [168]
Ki OATP1B1 (SLCO1B1) µmol l−1 466.8 - IC50 [169]
Ki OATP1B1 (SLCO1B1) µmol l−1 3948 - IC50 [169]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.59 - IC50 [170]
Ki OATP1B1 (SLCO1B1) µmol l−1 5.16 - IC50 [171]
Ki OATP1B1 (SLCO1B1) µmol l−1 4.42 - Ki [171]
Ki OATP1B1 (SLCO1B1) µmol l−1 3 - IC50 [172]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.5 - IC50 [172]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.41 - Ki [173]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.3 - Ki [174]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.22 - Ki [158]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.5 - IC50 [175]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.3 - IC50 [176]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.477 - Ki [147]
Ki OATP1B1 (SLCO1B1) µmol l−1 2.75 - IC50 [177]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.585 - IC50 [177]
Ki OATP1B1 (SLCO1B1) µmol l−1 6.96 - IC50 [177]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.922 - Ki [178]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.694 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.423 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.05 - Ki [178]
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Table S3.5: Extracted drug-dependent parameter literature values for rifampicin (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki OATP1B1 (SLCO1B1) µmol l−1 0.442 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.358 - Ki [178]

Ki OATP1B1 (SLCO1B1) µmol l−1 1.07 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.653 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.598 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.952 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.23 - Ki [178]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.377 - Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.355 - IC50 [179]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.79 - IC50 [180]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.2 - IC50 [181]
Ki OATP1B1 (SLCO1B1) µmol l−1 10.46 - IC50 [182]

Ki OATP1B1 (SLCO1B1) µmol l−1 2.4 - IC50 [183]
Ki OATP1B1 (SLCO1B1) µmol l−1 4.9 - IC50 [183]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.56 - IC50 [183]
Ki OATP1B1 (SLCO1B1) µmol l−1 4.1 - IC50 [183]
Ki OATP1B1 (SLCO1B1) µmol l−1 12.2 - Ki [184]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.278 - Ki [148]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.391 - Ki [148]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.08 - IC50 [185]
Ki OATP1B1 (SLCO1B1) µmol l−1 11.9 - IC50 [186]
Ki OATP1B1 (SLCO1B1) µmol l−1 120 - IC50 [187]

Ki OATP1B1 (SLCO1B1) µmol l−1 32.9 - IC50 [188]
Ki OATP1B1 (SLCO1B1) µmol l−1 22.9 - IC50 [188]
Ki OATP1B1 (SLCO1B1) µmol l−1 - - Ki [188]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.91 - IC50 [189]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.3 - IC50 [149]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.74 - IC50 [190]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.24 - IC50 [190]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.9 - IC50 [191]
Ki OATP1B1 (SLCO1B1) µmol l−1 - - Ki [191]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.6 - IC50 [160]

Ki OATP1B1 (SLCO1B1) µmol l−1 1.1 - IC50 [160]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.24 - IC50 [192]
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Table S3.5: Extracted drug-dependent parameter literature values for rifampicin (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki OATP1B1 (SLCO1B1) µmol l−1 0.29 - IC50 [192]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.55 - IC50 [193]
Ki OATP1B1 (SLCO1B1) µmol l−1 1.1 - IC50 [193]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.66 - IC50 [194]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.79 - Ki [194]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.6 - IC50 [121]
Ki OATP1B1 (SLCO1B1) µmol l−1 2.65 - IC50 [121]
Ki OATP1B1 (SLCO1B1) µmol l−1 2.2 - IC50 [121]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.62 - Ki [195]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.39 - IC50 [196]
Ki OATP1B1 (SLCO1B1) µmol l−1 5.65 - IC50 [197]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.88 - IC50 [197]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.818 - IC50 [198]

Ki OATP1B1 (SLCO1B1) µmol l−1 1.2 - IC50 [198]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.94 - IC50 [199]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.2 - IC50 [200]
Ki OATP1B1 (SLCO1B1) µmol l−1 50 - IC50 [200]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.477 - - [2]

Ki OATP1B1 (SLCO1B1) µmol l−1 3.49 - IC50 [201]
Ki OATP1B1 (SLCO1B1) µmol l−1 3.2 - IC50 [202]
Ki OATP1B1 (SLCO1B1) µmol l−1 17 - Ki [203]
Ki OATP1B1 (SLCO1B1) µmol l−1 2.2 - IC50 [204]
Ki OATP1B1 (SLCO1B1) µmol l−1 6.75 - Ki [161]

Ki OATP1B1 (SLCO1B1) µmol l−1 2.4 - IC50 [205]
Ki OATP1B1 (SLCO1B1) µmol l−1 8.8 - IC50 [152]
Ki OATP1B1 (SLCO1B1) µmol l−1 55.29 - IC50 [206]
Ki OATP1B3 (SLCO1B3) µmol l−1 0.39 - - [195]
Ki P-gp (ABCB1) µmol l−1 29 - IC50 [157]

Ki P-gp (ABCB1) µmol l−1 279 - IC50 [158]
Ki P-gp (ABCB1) µmol l−1 4.3 - Ki [159]
Ki P-gp (ABCB1) µmol l−1 23 - Ki [159]
Ki P-gp (ABCB1) µmol l−1 175 - IC50 [150]
Ki P-gp (ABCB1) µmol l−1 169 - IC50 [207]

Ki P-gp (ABCB1) µmol l−1 169 - - [2]
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Table S3.5: Extracted drug-dependent parameter literature values for rifampicin (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki UGT1A1 µmol l−1 33 - - [170]
Ki UGT1A3 µmol l−1 600 - - [208]
Emax AADAC - 0.99 - - [2]
Emax CYP2C8 - 4 - - [209]

Emax CYP2C8 - 1.3 - - [210]
Emax CYP2C8 - 3 - - [211]
Emax CYP2C8 - 5 - - [128]
Emax CYP2C8 - 3.2 - - [2]
Emax CYP3A4 - 3.13 - - [212]

Emax CYP3A4 - 10.5 - - [213]
Emax CYP3A4 - 13 - - [209]
Emax CYP3A4 - 6.2 - - [214]
Emax CYP3A4 - 2.8 - - [215]
Emax CYP3A4 - 2 - - [216]

Emax CYP3A4 - 2 - - [217]
Emax CYP3A4 - 18.5 - - [218]
Emax CYP3A4 - 7.5 2.1 - [219]
Emax CYP3A4 - 4.3 - - [162]
Emax CYP3A4 - 7.9 2.9 - [220]

Emax CYP3A4 - 4.1 - - [221]
Emax CYP3A4 - 9.6 - - [222]
Emax CYP3A4 - 12 4 - [65]
Emax CYP3A4 - 5 - - [211]
Emax CYP3A4 - 2.8 0.5 - [223]

Emax CYP3A4 - 2.2 0.3 - [223]
Emax CYP3A4 - 3.2 0.2 - [223]
Emax CYP3A4 - 5.2 3.3 - [223]
Emax CYP3A4 - 10 - - [224]
Emax CYP3A4 - 3.2 2.3 - [225]

Emax CYP3A4 - 30 - - [226]
Emax CYP3A4 - 4 - - [227]
Emax CYP3A4 - 14.5 - - [228]
Emax CYP3A4 - 14.6 2 - [229]
Emax CYP3A4 - 2 - - [230]
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Table S3.5: Extracted drug-dependent parameter literature values for rifampicin (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Emax CYP3A4 - 2 - - [230]
Emax CYP3A4 - 10 - - [128]
Emax CYP3A4 - 4.12 0.09 - [231]
Emax CYP3A4 - 14 - - [232]
Emax CYP3A4 - 3.8 - - [233]

Emax CYP3A4 - 9 - - [2]
Emax CYP3A4 - 4 - - [234]
Emax CYP3A4 - 5.9 - - [235]
Emax CYP3A4 - 8.9 - - [235]
Emax CYP3A4 - 3.2 - - [235]

Emax CYP3A4 - 2.1 0.3 - [236]
Emax CYP3A5 - 2 - - [230]
Emax OATP1B1 (SLCO1B1) - 0.38 - - [2]
Emax P-gp (ABCB1) - 2.5 - - [2]
Emax PON3 - 0.99 - - [2]

Emax UGT1A1 - 1.3 - - [233]
Emax UGT1A3 - 1.4 - - [237]
Induction EC50 µmol l−1 0.37 0.1 - [238]
Induction EC50 µmol l−1 0.12 0.02 - [220]
Induction EC50 µmol l−1 0.6 - - [239]

Induction EC50 µmol l−1 0.14 0.02 - [231]
Induction EC50 µmol l−1 3.2 - - [240]
Induction EC50 µmol l−1 0.34 - - [2]
Induction EC50 µmol l−1 0.18 - - [241]
Induction EC50 µmol l−1 0.51 - - [241]

Induction EC50 µmol l−1 0.18 - - [235]
Induction EC50 µmol l−1 1.1 - - [235]
Induction EC50 µmol l−1 0.65 - - [235]
Specific intest. perm. cmmin−1 1.24e-05 - - [2]
Specific organ perm. cmmin−1 2.93e-05 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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3.3.2 Profiles
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Figure S3.3: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Rifampicin - Simvastatin Lactone. Solid line and shaded
area are predicted median and 90 % CI
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Figure S3.4: Semilogarithimc VPCs of plasma concentration-time profiles for investigated DDIs: Rifampicin - Simvastatin Lactone. Solid line and
shaded area are predicted median and 90 % CI
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Simvastatin Lactone
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Figure S3.5: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Rifampicin - Simvastatin Lactone. Solid line and shaded
area are predicted median and 90 % CI
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Simvastatin Lactone
Profile IDs: 36

Simvastatin Lactone
Profile IDs: 38
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Figure S3.6: Semilogarithimc VPCs of plasma concentration-time profiles for investigated DDIs: Rifampicin - Simvastatin Lactone. Solid line and
shaded area are predicted median and 90 % CI
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Simvastatin Acid
Profile IDs: 37

Simvastatin Acid
Profile IDs: 39
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Figure S3.7: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Rifampicin Simvastatin Acid. Solid line and shaded area
are predicted median and 90 % CI
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Simvastatin Acid
Profile IDs: 37

Simvastatin Acid
Profile IDs: 39
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Figure S3.8: Semilogarithimc VPCs of plasma concentration-time profiles for investigated DDIs: Rifampicin Simvastatin Acid. Solid line and
shaded area are predicted median and 90 % CI
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3 Simvastatin DDIs

3.4 Itraconazole

The antifungal substance itraconazole and its four metabolites hydroxy-itraconazole, keto-
itraconazole and N-desalkyl-itraconazole are inhibitors of CYP3A4, OATP1B1, OATP1B3,
P-gp and BCRP [146]. A previously developed itraconazole model was extended and sub-
sequently used to describe the interactions [16]. Unfortunately, as allready described by
Tsamandouras et al. [39], due to limitation of the assay in the interaction study performed
by Neuvonen et al. [145] SL and SA profiles could not be directly compared with model
predicted values. However, the authors reportet an at least approximate 10-fold increase in
SL AUC and Cmax. Following, this value was used for evaluating the model performance.
The parameters of the extended parent-metabolite itraconazole model are given in Tables
S3.6 - S3.13.

3.4.1 Drug-dependent parameters
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Table S3.6: Drug-dependent parameters in the itraconazole model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 0.6 1.1 (0.2–3.6) Literature Fraction unbound plasma

Lipophilicity - 4.62 5.14 (4.62–5.66) Literature Lipophilicity

MW gmol−1 705.6 705.6 Literature Molecular weight

pKa - 3.7 3.7 Literature Acid dissociation constant
(basic)

Solubility mg l−1 14.5 1.58 (0.69–14.5) Literature Solubility

Enzymes
CYP3A4 kcat min−1 0.04 - Literature CYP3A4 catalytic rate

constant

CYP3A4 Km µmol l−1 0.00207 - Literature CYP3A4 Michaelis-Menten
constant

Inhibition
Ki BCRP
(ABCG2)

µmol l−1 10 2 (1.9–10) Literature Concentration for
half-maximal BCRP
competitive inhibition

Ki CYP3A4 µmol l−1 0.0013 0.042 (0.0013–7) Literature Concentration for
half-maximal CYP3A4
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 0.008 1.7 (0.008–9.5) Literature Concentration for
half-maximal P-gp
competitive inhibition

Formulation
Dissoluation shape - 1.1 0.96 (0.82–1.1) Optimized Weibull function dissolution

shape

Dissolution time
(50% dissolved)

min 407 273 (139–407) Optimized Weibull function dissolution
time (50% dissolved)

System
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Table S3.6: Drug-dependent parameters in the itraconazole model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Specific intest.
perm.

cmmin−1 0.000533 0.000533 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.0144 0.0144 Literature Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim Standard; organ-plasma partition coefficient calculation method: Rodgers and Rowland;
formulation parameter values were used for solid oral dosage forms only
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Table S3.7: Extracted drug-dependent literature values for itraconazole
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 0.6 - - [2]
fu % 0.2 - - [2]
fu % 1.6 - - [2]
fu % 3.6 - - [2]
Lipophilicity - 4.62 - - [2]

Lipophilicity - 5.66 - - [2]
MW gmol−1 705.6 - - [2]
pKa - 3.7 - - [2]
Solubility mg l−1 8 - FaSSIF [2]
Solubility mg l−1 1.58 - capsule fasted [2]

Solubility mg l−1 14.5 - capsule fasted [2]
Solubility mg l−1 0.69 - capsule fed [2]
Solubility mg l−1 0.78 - - [2]
CYP3A4 kcat min−1 0.04 - - [2]
CYP3A4 KM - 3.09 - - [2]

CYP3A4 KM µmol l−1 0.00207 - - [2]
Ki BCRP (ABCG2) µmol l−1 2 - - [242]
Ki BCRP (ABCG2) µmol l−1 10 - - [150]
Ki BCRP (ABCG2) µmol l−1 1.9 - - [146]
Ki CYP3A4 µmol l−1 0.076 - - [243]

Ki CYP3A4 µmol l−1 0.7 0.2 - [244]
Ki CYP3A4 µmol l−1 0.044 - - [116]
Ki CYP3A4 µmol l−1 0.016 - - [116]
Ki CYP3A4 µmol l−1 0.045 - - [116]
Ki CYP3A4 µmol l−1 0.012 - - [116]

Ki CYP3A4 µmol l−1 0.013 - - [116]
Ki CYP3A4 µmol l−1 0.016 - - [116]
Ki CYP3A4 µmol l−1 0.016 - - [116]
Ki CYP3A4 µmol l−1 0.052 - - [116]
Ki CYP3A4 µmol l−1 0.013 - - [116]

Ki CYP3A4 µmol l−1 0.5 - - [245]
Ki CYP3A4 µmol l−1 3.12 - - [245]
Ki CYP3A4 µmol l−1 0.32 - - [245]
Ki CYP3A4 µmol l−1 0.23 - - [245]
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Table S3.7: Extracted drug-dependent literature values for itraconazole (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki CYP3A4 µmol l−1 0.0031 - - [105]

Ki CYP3A4 µmol l−1 0.0038 - - [105]
Ki CYP3A4 µmol l−1 0.0014 - - [105]
Ki CYP3A4 µmol l−1 0.0047 - - [105]
Ki CYP3A4 µmol l−1 0.0013 - - [246]
Ki CYP3A4 µmol l−1 0.04 - - [247]

Ki CYP3A4 µmol l−1 7 - - [248]
Ki CYP3A4 µmol l−1 2 - - [248]
Ki CYP3A4 µmol l−1 0.49 - - [249]
Ki CYP3A4 µmol l−1 1 - - [249]
Ki CYP3A4 µmol l−1 0.0013 - - [2]

Ki CYP3A4 µmol l−1 2.3 - - [250]
Ki CYP3A4 µmol l−1 0.03 - - [251]
Ki P-gp (ABCB1) µmol l−1 6 - - [153]
Ki P-gp (ABCB1) µmol l−1 2 - - [153]
Ki P-gp (ABCB1) µmol l−1 0.16 - - [252]

Ki P-gp (ABCB1) µmol l−1 1.25 - - [122]
Ki P-gp (ABCB1) µmol l−1 0.41 - - [154]
Ki P-gp (ABCB1) µmol l−1 0.46 - - [154]
Ki P-gp (ABCB1) µmol l−1 2 - - [242]
Ki P-gp (ABCB1) µmol l−1 1.8 - - [123]

Ki P-gp (ABCB1) µmol l−1 9.5 - - [150]
Ki P-gp (ABCB1) µmol l−1 6.7 - - [150]
Ki P-gp (ABCB1) µmol l−1 0.45 - - [124]
Ki P-gp (ABCB1) µmol l−1 0.008 - - [2]
Ki P-gp (ABCB1) µmol l−1 0.048 - - [146]

Ki P-gp (ABCB1) µmol l−1 1.7 - - [43]
Ki P-gp (ABCB1) µmol l−1 2.4 - - [43]
Ki P-gp (ABCB1) µmol l−1 1.7 - - [253]
Dissoluation shape - 0.82 - capsule fed [2]
Dissoluation shape - 1.1 - capsule fasted [2]

Dissolution time (50%
dissolved)

min 139 - capsule fed [2]
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Table S3.7: Extracted drug-dependent literature values for itraconazole (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Dissolution time (50%
dissolved)

min 407 - capsule fasted [2]

Specific intest. perm. cmmin−1 0.000533 - - [2]
Specific organ perm. cmmin−1 0.0144 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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Table S3.8: Drug-dependent parameters in the hydroxy-itraconazole model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 1.7 1.7 Literature Fraction unbound plasma

Lipophilicity - 3.72 4.11 (3.72–4.5) Literature Lipophilicity

MW gmol−1 721.6 721.6 Literature Molecular weight

pKa - 3.7 3.7 Literature Acid dissociation constant
(basic)

Enzymes
CYP3A4 kcat min−1 0.02 0.02 Literature CYP3A4 catalytic rate

constant

CYP3A4 KM µmol l−1 0.00417 0.01558
(0.00417–0.027)

Literature CYP3A4 Michaelis-Menten
constant

Inhibition
Ki BCRP
(ABCG2)

µmol l−1 12 5.7 (0.44–12) Literature Concentration for
half-maximal BCRP
competitive inhibition

Ki CYP3A4 µmol l−1 0.0144 0.0378 (0.0144–6.3) Literature Concentration for
half-maximal CYP3A4
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 0.23 0.23 (0.018–5.9) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 0.1 0.1 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 0.49 3.3 (0.49–7) Literature Concentration for
half-maximal P-gp
competitive inhibition

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder
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Table S3.8: Drug-dependent parameters in the hydroxy-itraconazole model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Specific intest.
perm.

cmmin−1 1.52e-05 1.52e-05 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.00155 0.00155 Literature Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim standard; organ-plasma partition coefficient calculation method: Rodgers and Rowland
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Table S3.9: Extracted drug-dependent literature values for hydroxy-itraconazole
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 1.7 - - [2]
Lipophilicity - 3.72 - - [2]
Lipophilicity - 4.5 - - [2]
MW gmol−1 721.6 - - [2]
pKa - 3.7 - (basic) [2]

CYP3A4 kcat min−1 0.02 - - [2]
CYP3A4 KM µmol l−1 0.00417 - - [2]
CYP3A4 KM µmol l−1 0.027 - - [2]
Ki BCRP (ABCG2) µmol l−1 12 - IC50 [242]
Ki BCRP (ABCG2) µmol l−1 5.7 - IC50 [150]

Ki BCRP (ABCG2) µmol l−1 0.44 - IC50 [146]
Ki CYP3A4 µmol l−1 6.3 - Ki [246]
Ki CYP3A4 µmol l−1 0.0144 - - [2]
Ki CYP3A4 µmol l−1 0.0378 - Ki [250]
Ki OATP1B1 (SLCO1B1) µmol l−1 5.9 - IC50 [150]

Ki OATP1B1 (SLCO1B1) µmol l−1 0.018 - - [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.23 - IC50 [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.23 - IC50 [146]
Ki OATP1B3 (SLCO1B3) µmol l−1 0.1 - - [146]
Ki P-gp (ABCB1) µmol l−1 5 - IC50 [242]

Ki P-gp (ABCB1) µmol l−1 7 - IC50 [150]
Ki P-gp (ABCB1) µmol l−1 1.6 - IC50 [150]
Ki P-gp (ABCB1) µmol l−1 0.49 - IC50 [146]
Specific intest. perm. cmmin−1 1.52e-05 - - [2]
Specific organ perm. cmmin−1 0.00155 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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Table S3.10: Drug-dependent parameters in the keto-itraconazole model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 1 1 Literature Fraction unbound plasma

Lipophilicity - 4.21 4.355 (4.21–4.5) Literature Lipophilicity

MW gmol−1 719.6 719.6 Literature Molecular weight

pKa - 3.7 3.7 Literature Acid dissociation constant
(basic)

Enzymes
CYP3A4 kcat min−1 0.393 0.393 Literature CYP3A4 catalytic rate

constant

CYP3A4 KM µmol l−1 0.00222 0.00222 Literature CYP3A4 Michaelis-Menten
constant

Inhibition
Ki BCRP
(ABCG2)

µmol l−1 2.1 1.1 (0.1–2.1) Literature Concentration for
half-maximal BCRP
competitive inhibition

Ki CYP3A4 µmol l−1 0.00512 0.03 (0.00512–0.098) Literature Concentration for
half-maximal CYP3A4
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 0.29 5.195 (0.29–10.1) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 0.088 0.088 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 0.49 2.2 (0.12–2.5) Literature Concentration for
half-maximal P-gp
competitive inhibition

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder

114

250
supporting

in
form

ation



3
Sim

vastatin
DDIs

Table S3.10: Drug-dependent parameters in the keto-itraconazole model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Specific intest.
perm.

cmmin−1 4.79e-05 4.79e-05 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.00492 0.00492 Literature Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim standard; organ-plasma partition coefficient calculation method: Rodgers and Rowland
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Table S3.11: Extracted drug-dependent literature values for keto-itraconazole
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 1 - - [2]
Lipophilicity - 4.21 - - [2]
Lipophilicity - 4.5 - - [2]
MW gmol−1 719.6 - - [2]
pKa - 3.7 - (basic) [2]

CYP3A4 kcat min−1 0.393 - - [2]
CYP3A4 KM µmol l−1 0.00222 - - [2]
Ki BCRP (ABCG2) µmol l−1 2.1 - IC50 [150]
Ki BCRP (ABCG2) µmol l−1 0.1 - IC50 [146]
Ki CYP3A4 µmol l−1 0.098 - IC50 [254]

Ki CYP3A4 µmol l−1 0.053 - IC50 [246]
Ki CYP3A4 µmol l−1 0.007 - IC50 [246]
Ki CYP3A4 µmol l−1 0.00512 - - [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 10.1 - IC50 [150]
Ki OATP1B1 (SLCO1B1) µmol l−1 0.29 - IC50 [146]

Ki OATP1B3 (SLCO1B3) µmol l−1 0.088 - - [146]
Ki P-gp (ABCB1) µmol l−1 2.5 - IC50 [150]
Ki P-gp (ABCB1) µmol l−1 2.2 - IC50 [150]
Ki P-gp (ABCB1) µmol l−1 0.12 - IC50 [146]
Specific intest. perm. cmmin−1 4.79e-05 - - [2]

Specific organ perm. cmmin−1 0.00492 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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Table S3.12: Drug-dependent parameters in the n-desalkyl-itraconazole model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 1.1 1.1 Literature Fraction unbound plasma

Lipophilicity - 5.18 4.69 (4.2–5.18) Literature Lipophilicity

MW gmol−1 649.5 649.5 Literature Molecular weight

pKa - 3.7 3.7 Literature Acid dissociation constant
(basic)

Enzymes
CYP3A4 kcat min−1 0.061 0.061 Literature CYP3A4 catalytic rate

constant

CYP3A4 KM µmol l−1 0.00063 0.00063 Literature CYP3A4 Michaelis-Menten
constant

Inhibition
Ki CYP3A4 µmol l−1 0.00032 0.00032 Literature Concentration for

half-maximal CYP3A4
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 7.5 7.5 Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 2.1 2.1 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Ki P-gp (ABCB1) µmol l−1 0.26 0.26 Literature Concentration for
half-maximal P-gp
competitive inhibition

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine
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Table S3.12: Drug-dependent parameters in the n-desalkyl-itraconazole model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Specific intest.
perm.

cmmin−1 0.000737 0.000737 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.0891 0.0891 Literature Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim standard; organ-plasma partition coefficient calculation method: Rodgers and Rowland
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Table S3.13: Extracted drug-dependent literature values for n-desalkyl-itraconazole
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 1.1 - - [2]
Lipophilicity - 5.18 - - [2]
Lipophilicity - 4.2 - - [2]
MW gmol−1 649.5 - - [2]
pKa - 3.7 - (basic) [2]

CYP3A4 kcat min−1 0.061 - - [2]
CYP3A4 KM µmol l−1 0.00063 - - [2]
Ki CYP3A4 µmol l−1 0.00032 - - [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 7.5 - IC50 [150]
Ki OATP1B3 (SLCO1B3) µmol l−1 2.1 - - [146]

Ki P-gp (ABCB1) µmol l−1 0.26 0.05 IC50 [146]
Specific intest. perm. cmmin−1 0.000737 - - [2]
Specific organ perm. cmmin−1 0.0891 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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3.5 Gemfibrozil

Gemfibrozil is an antihyperlipidaemic drug and together with its metabolite gemfibrozil 1-
O-𝛽-glucuronide they are strong inhibitors of CYP2C8 and OATP1B1 [255, 2]. It has to
be noted that at the beginning, the parent-metabolite gemfibrozil model was not capable
to describe the observed decrease of SL and increase of SA exposure under gemfibrozil co-
treatment. This effect is visible in humans as well as in animals [142, 128, 256]. In a study
performed by Prueksaritanont et al. [256] in dogs, SA AUC under gemfibrozil treatment is
increased by 160 % accompanied with an SL AUC decrease of 51 %. For this reason, it was
assumed that gemfibrozil additionally induces PON3. Although not investigated for PON3,
at least this has previously been shown for paraoxonase 1 (PON1) [257]. Following, for the
simvastatin co-treatment with gemfibrozil an increase of the PON3 activity by 59 % was
assumed which reflects the increase observed for PON1. The parameters of the extended
gemfibrozil model are given in Tables S3.14 - S3.17. Results of the simvastatin-gemfibrozil
DDI interaction are shown in Figs. S3.9 - S3.12.

3.5.1 Drug-dependent parameters
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Table S3.14: Drug-dependent parameters of the final gemfibrozil model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 0.648 2.1 (0.648–3) Literature Fraction unbound plasma

Lipophilicity - 2.8 4.3 (2.8–4.77) Literature Lipophilicity

MW - 250.3 250.3 Literature Molecular weight

pKa - 4.7 4.7 Literature Acid dissociation constant

Solubility mg l−1 170 170 Literature Solubility at pH=5.9

Enzymes
UGT2B7 kcat min−1 51.98 51.98 Literature UGT2B7 catalytic rate

constant

UGT2B7 KM µmol l−1 2.2 2.2 Literature UGT2B7 Michaelis-Menten
constant

Transporters
Active hepatic
uptake kcat

min−1 59.42 59.42 Literature Active hepatic uptake
catalytic rate constant

Active hepatic
uptake KM

µmol l−1 2.39 2.39 Literature Active hepatic uptake
Michaelis-Menten constant

Inhibition
Ki CYP2C8 µmol l−1 9.3 19.85 (9.3–30.4) Literature Concentration for

half-maximal CYP2C8
competitive inhibition

Ki OATP1B1
(SLCO1B1)

µmol l−1 4 35.8 (4–381) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 10 10 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Ki UGT1A1 µmol l−1 36 36 Literature Concentration for
half-maximal UGT1A1
competitive inhibition
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Table S3.14: Drug-dependent parameters of the final gemfibrozil model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

Ki UGT1A3 µmol l−1 37.6 37.6 Literature Concentration for
half-maximal UGT1A3
competitive inhibition

Induction
PON3 factor - 1.59 1.59 Literature Assumed PON3 induction

under gemfibrozil
co-treatment

Formulation
Dissoluation shape - 1.56 1.56 Literature Weibull function dissolution

shape

Dissolution time
(50% dissolved)

min 24.45 24.45 Literature Weibull function dissolution
time (50% dissolved)

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Specific intest.
perm.

cmmin−1 0.00662 0.00662 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.07 0.07 Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: Charge-dependent Schmitt; organ-plasma partition coefficient calculation method: Berezhkovskiy;
formulation parameter values were used for solid oral dosage forms only
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Table S3.15: Extracted drug-dependent literature values for gemfibrozil
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 0.648 - - [2]
fu % 2.1 - - [2]
fu % 3 - - [2]
Lipophilicity - 2.8 - - [2]
Lipophilicity - 4.3 - - [2]

Lipophilicity - 4.77 - - [2]
MW - 250.3 - - [2]
pKa - 4.7 - - [2]
Solubility mg l−1 170 - pH 5.9 [2]
UGT2B7 kcat min−1 51.98 - - [2]

UGT2B7 KM µmol l−1 2.2 - - [2]
Active hepatic uptake kcat min−1 59.42 - - [2]
Active hepatic uptake KM µmol l−1 2.39 - - [2]
Ki CYP2C8 µmol l−1 30.4 - Ki [2]
Ki CYP2C8 µmol l−1 9.3 - Ki [114]

Ki OATP1B1 (SLCO1B1) µmol l−1 7.4 - IC50 [258]
Ki OATP1B1 (SLCO1B1) µmol l−1 25.2 - Ki [147]
Ki OATP1B1 (SLCO1B1) µmol l−1 25 - IC50 [259]
Ki OATP1B1 (SLCO1B1) µmol l−1 173 - IC50 [177]
Ki OATP1B1 (SLCO1B1) µmol l−1 26.4 - IC50 [177]

Ki OATP1B1 (SLCO1B1) µmol l−1 381 - IC50 [177]
Ki OATP1B1 (SLCO1B1) µmol l−1 26.4 2.1 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 381 60 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 173 34 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 58.8 10.7 Ki Pitavastatin [178]

Ki OATP1B1 (SLCO1B1) µmol l−1 46 8.9 Ki Atorvastatin [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 72.7 8.7 Ki Fluvastatin [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 63.6 8.4 Ki Rosuvastatin [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 9.65 2.79 Ki Pravastatin [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 48.3 18.6 Ki [178]

Ki OATP1B1 (SLCO1B1) µmol l−1 252 100 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 29.6 5.2 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 36.6 5.8 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 13.4 0.3 Ki [178]
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Table S3.15: Extracted drug-dependent literature values for gemfibrozil (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Ki OATP1B1 (SLCO1B1) µmol l−1 49.5 10.8 Ki [178]

Ki OATP1B1 (SLCO1B1) µmol l−1 31.4 4.3 Ki [178]
Ki OATP1B1 (SLCO1B1) µmol l−1 18.1 - Ki [181]
Ki OATP1B1 (SLCO1B1) µmol l−1 68.05 - Ki [181]
Ki OATP1B1 (SLCO1B1) µmol l−1 31.5 - Ki [148]
Ki OATP1B1 (SLCO1B1) µmol l−1 89.5 - Ki [148]

Ki OATP1B1 (SLCO1B1) µmol l−1 35.8 - Ki [260]
Ki OATP1B1 (SLCO1B1) µmol l−1 15.5 - Ki [260]
Ki OATP1B1 (SLCO1B1) µmol l−1 75 - IC50 [149]
Ki OATP1B1 (SLCO1B1) µmol l−1 4 - IC50 [261]
Ki OATP1B1 (SLCO1B1) µmol l−1 27 - IC50 [262]

Ki OATP1B1 (SLCO1B1) µmol l−1 32 - IC50 [263]
Ki OATP1B1 (SLCO1B1) µmol l−1 42 - IC50 [263]
Ki OATP1B1 (SLCO1B1) µmol l−1 100 - IC50 [263]
Ki OATP1B1 (SLCO1B1) µmol l−1 18 - IC50 [263]
Ki OATP1B1 (SLCO1B1) µmol l−1 19 - IC50 [263]

Ki OATP1B1 (SLCO1B1) µmol l−1 41.4 - IC50 [193]
Ki OATP1B1 (SLCO1B1) µmol l−1 72.4 - IC50 [264]
Ki OATP1B1 (SLCO1B1) µmol l−1 27.5 - IC50 [121]
Ki OATP1B1 (SLCO1B1) µmol l−1 200 - IC50 [121]
Ki OATP1B1 (SLCO1B1) µmol l−1 38 - IC50 [121]

Ki OATP1B1 (SLCO1B1) µmol l−1 33.7 - IC50 [198]
Ki OATP1B1 (SLCO1B1) µmol l−1 32.9 - IC50 [198]
Ki OATP1B1 (SLCO1B1) µmol l−1 25.2 - - [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 58 - Ki [204]
Ki OATP1B1 (SLCO1B1) µmol l−1 12.5 - Ki [265]

Ki OATP1B3 (SLCO1B3) µmol l−1 10 - - [266]
Ki UGT1A1 µmol l−1 36 - - [267]
Ki UGT1A3 µmol l−1 37.6 - - [268]
PON3 factor - 1.59 - - [257]
Dissoluation shape - 1.56 - - [2]

Dissolution time (50%
dissolved)

min 24.45 - - [2]

Specific intest. perm. cmmin−1 0.00662 - - [2]
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Table S3.15: Extracted drug-dependent literature values for gemfibrozil (continued)
Parameter Unit Literature

value
Standard
deviation

Note Reference

Specific organ perm. cmmin−1 0.07 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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Table S3.16: Drug-dependent parameters of the final gemfibrozil glucuronide model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 11.5 14.3 (11.5–17.1) Literature Fraction unbound plasma

Lipophilicity - 1.41 1.83 (1.22–2.44) Literature Lipophilicity

MW - 426.5 426.5 Literature Molecular weight

pKa - 2.68 2.68 Literature Acid dissociation constant

Solubility mg l−1 789 789 Literature Solubility at pH=7

Transporters
MRP2 (ABCC2)
kcat

min−1 7.13 7.13 Literature MRP2 (ABCC2) catalytic
rate constant

MRP2 (ABCC2)
KM

µmol l−1 21.49 21.49 Literature MRP2 (ABCC2)
Michaelis-Menten constant

OATP1B1
(SLCO1B1) kcat

min−1 15.36 15.36 Literature OATP1B1 (SLCO1B1)
catalytic rate constant

OATP1B1
(SLCO1B1) KM

µmol l−1 0.43 0.43 Literature OATP1B1 (SLCO1B1)
Michaelis-Menten constant

Inhibition
Ki CYP2C8 µmol l−1 20 20 Literature Concentration for

half-maximal CYP2C8
inactivation (MBI)

Ki OATP1B1
(SLCO1B1)

µmol l−1 7.9 22.6 (7.9–24.3) Literature Concentration for
half-maximal OATP1B1
competitive inhibition

Ki OATP1B3
(SLCO1B3)

µmol l−1 74 74 Literature Concentration for
half-maximal OATP1B3
competitive inhibition

Kinact CYP2C8 min−1 0.21 0.21 Literature Maximum inactivation rate
constant (MBI)

System
EHC - 1 - Assumed Fraction of bile continually

released from the gallbladder
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Table S3.16: Drug-dependent parameters of the final gemfibrozil glucuronide model compared to literature values (continued)
Parameter Unit Model value Median (range)

literature values
Origin Description

GFR - 1 - Assumed Fraction of filtered drug
reaching the urine

Specific intest.
perm.

cmmin−1 5.98e-07 5.98e-07 Calculated Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.000122 0.000122 Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: PK-Sim Standard; organ-plasma partition coefficient calculation method: PK-Sim Standard
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Table S3.17: Extracted drug-dependent literature values for gemfibrozil glucuronide
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 11.5 - - [2]
fu % 17.1 - - [2]
Lipophilicity - 1.22 - - [2]
Lipophilicity - 2.44 - - [2]
MW - 426.5 - - [2]

pKa - 2.68 - - [2]
Solubility mg l−1 789 - pH 7 [2]
MRP2 (ABCC2) kcat min−1 7.13 - - [2]
MRP2 (ABCC2) KM µmol l−1 21.49 - - [2]
OATP1B1 (SLCO1B1) kcat min−1 15.36 - - [2]

OATP1B1 (SLCO1B1) KM µmol l−1 0.43 - - [2]
Ki CYP2C8 µmol l−1 20 - - [2]
Ki OATP1B1 (SLCO1B1) µmol l−1 22.6 - Ki [147]
Ki OATP1B1 (SLCO1B1) µmol l−1 9.3 - Ki [260]
Ki OATP1B1 (SLCO1B1) µmol l−1 7.9 2.1 Ki [260]

Ki OATP1B1 (SLCO1B1) µmol l−1 24.3 - IC50 [264]
Ki OATP1B1 (SLCO1B1) µmol l−1 22.6 - - [2]
Ki OATP1B3 (SLCO1B3) µmol l−1 74 - - [266]
Ki UGT1A1 µmol l−1 69 - - [269]
Kinact CYP2C8 min−1 0.21 - - [2]

Specific intest. perm. cmmin−1 5.98e-07 - - [2]
Specific organ perm. cmmin−1 0.000122 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed
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3.5.2 Profiles

Simvastatin Lactone
Profile IDs: 2

Simvastatin Lactone
Profile IDs: 4

Placebo
D

D
I G

em
fibrozil

D
D

I
D

D
I G

em
fibrozil

0 5 10 48 52 56 60

0

5

10

0

5

10

Time [h]

C
on

ce
nt

ra
tio

n 
[n

g/
m

l]
Test

Training

Figure S3.9: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Gemfibrozil - Simvastatin Lactone. Solid line and shaded
area are predicted median and 90 % CI
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Simvastatin Lactone
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Figure S3.10: Semilogarithimc VPCs of plasma concentration-time profiles for investigated DDIs: Gemfibrozil - Simvastatin Lactone. Solid line
and shaded area are predicted median and 90 % CI
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Simvastatin Acid
Profile IDs: 3

Simvastatin Acid
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Figure S3.11: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Gemfibrozil - Simvastatin Acid. Solid line and shaded
area are predicted median and 90 % CI
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Simvastatin Acid
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Simvastatin Acid
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Figure S3.12: Semilogarithimc VPCs of plasma concentration-time profiles for investigated DDIs: Gemfibrozil - Simvastatin Acid. Solid line and
shaded area are predicted median and 90 % CI
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3.6 Midazolam

Midazolam is a CYP3A4 probe drug. In a study performed by Prueksaritanont et al. [141]
it was investigated if simvastatin would affect the PK of midazolam. For this reason a
previously established midazolam model was used and coubled with the newly developed
simvastatin model. The parameters of the midazolam model are given in Tables S3.18 and
S3.19. Results of the midazolam-simvastatin DDI interaction are shown in Fig. S3.13.

3.6.1 Drug-dependent parameters
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Table S3.18: Drug-dependent parameters in the midazolam model compared to literature values
Parameter Unit Model value Median (range)

literature values
Origin Description

Molecule
fu % 1.6 1.6 Literature Fraction unbound plasma

Lipophilicity - 3.13 3.13 Literature Lipophilicity

MW - 325.8 325.8 Literature Molecular weight

pKa - 6.15 6.15 Literature Acid dissociation constant
(basic)

Solubility mg l−1 49 49 Literature Solubility at pH=6.5

Enzymes
CYP3A4 kcat min−1 13 13 Literature CYP3A4 catalytic rate

constant

CYP3A4 KM µmol l−1 2.73 2.73 Literature CYP3A4 Michaelis-Menten
constant

System
CLRen mlmin−1 100 - Literature Renal plasma clearance

EHC - 1 1 Assumed Fraction of bile continually
released from the gallbladder

GFR - 1 1 Assumed Fraction of filtered drug
reaching the urine

Specific intest.
perm.

cmmin−1 2e-06 2e-06 Literature Permeation across intestinal
mucosa normalized to surface
area

Specific organ
perm.

cmmin−1 0.007 0.007 Calculated Permeation across cell
membranes normalized to
surface area

Note:
Cellular permabilites calculation method: Charge-dependent Schmitt; organ-plasma partition coefficient calculation method: Rodgers and
Rowland
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Table S3.19: Extracted drug-dependent literature values for midazolam
Parameter Unit Literature

value
Standard
deviation

Note Reference

fu % 1.6 - - [2]
Lipophilicity - 3.13 - - [2]
MW - 325.8 - - [2]
pKa - 6.15 - - [2]
Solubility mg l−1 49 - - [2]

CYP3A4 kcat min−1 13 - - [2]
CYP3A4 KM µmol l−1 2.73 - - [2]
EHC - 1 - - [2]
GFR - 1 - - [2]
Specific intest. perm. cmmin−1 2e-06 - - [2]

Specific organ perm. cmmin−1 0.007 - - [2]

Note:
If IC50 values could not be used for 𝐾𝑖 value estimation utilizing Cheng Prusoff Equation (e.g. due to missing substrate affinities) 𝐾𝑖 = 𝐼𝐶50 was
assumed135
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3.6.2 Profiles
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Figure S3.13: Linear VPCs of plasma concentration-time profiles for investigated DDIs: Simvastatin - Midazolam. Solid line and shaded area are
predicted median and 90 % CI
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3.7 DDI evaluation

DDI prediction performance was assessed using the previously described graphical and sta-
tistical measures. Figures S3.14–S3.16 show the GOF plots as well as the predicted versus
observed NCA ratios for SL and SA, respectively. Tables S3.20 and S3.21 summarise the
stastical prediction performance.

3.7.1 Predicted concentrations versus observed concentrations GOF plots
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Figure S3.14: Goodness of fit plots - Observed versus predicted plasma concentration-time values of the DDI
test dataset. The solid lines mark the line of identity as well as the 2-fold deviations. Dashed
lines indicate the 1.5-fold deviations
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3.7.2 NCA GOF plots
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Figure S3.15: NCA ratios of the DDIs. The solid lines mark the line of identity as well as the 2-fold deviations.
Dashed lines indicate the 1.5-fold deviations.: Test 𝐶𝑚𝑎𝑥
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Midazolam
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Figure S3.16: NCA ratios of the DDIs. The solid lines mark the line of identity as well as the 2-fold deviations.
Dashed lines indicate the 1.5-fold deviations.: Test AUC
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3.7.3 MRD and MSA of plasma concentration predictions

Table S3.20: Summary of the statistical DDI model evaluation (MSA and MRD)
Molecule MRD mean (sd) MSA mean (sd)

Simvastatin Lactone 1.98 (0.674) N = 8 (N MRD > 2 = 2) 78.3 (67.3) N = 8 (N MSA > 100 = 2)
Simvastatin Acid 1.91 (0.815) N = 5 (N MRD > 2 = 1) 77 (67.4) N = 5 (N MSA > 100 = 1)
Midazolam 1.48 (0.019) N = 2 (N MRD > 2 = 0) 12.2 (0.38) N = 2 (N MSA > 100 = 0)

3.7.4 NCA ratios and GMFE of NCA values

Table S3.21: Summary of the statistical DDI model evaluation (NCA ratio and GMFE)
Parameter NCA ratio mean (sd) GMFE

Simvastatin Lactone
AUC 1.19 (0.334) N = 9 (N ratio > 2 | ratio < 0.5 = 0) 1.28

𝐶𝑚𝑎𝑥 0.902 (0.283) N = 9 (N ratio > 2 | ratio < 0.5 = 0) 1.32

Simvastatin Acid
AUC 1.51 (1.12) N = 6 (N ratio > 2 | ratio < 0.5 = 2) 1.73

𝐶𝑚𝑎𝑥 1.1 (0.784) N = 6 (N ratio > 2 | ratio < 0.5 = 1) 1.78

Midazolam
AUC 0.934 (0.0263) N = 2 (N ratio > 2 | ratio < 0.5 = 0) 1.07

𝐶𝑚𝑎𝑥 0.951 (0.114) N = 2 (N ratio > 2 | ratio < 0.5 = 0) 1.09
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4 Drug-drug-gene interaction network

For the final DDGI evaluation, effect ratios of all included DDIs and DGIs were calculated
and compared. Figures S4.1 and S4.2 display the Cmax and AUC effect ratios. Table S4.1
shows the effect ratio values and Table S4.2 the summary of the effect ratio values.
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4 Drug-drug-gene interaction network

4.1 Effect ratios
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Figure S4.1: NCA effect ratios (Cmax) of the DDGI network. The solid lines mark the line of identity as well
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limits proposed by Guest et al. [17]
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limits proposed by Guest et al. [17]
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4 Drug-drug-gene interaction network

Table S4.1: Predicted and observed DDGI AUC and Cmax effect ratios
Parameter DDI / DGI Observed effect

ratio
Predicted

effect ratio
Predicted /
Observed

Reference

Simvastatin Lactone
AUC DDI Clarithromycin 9.95 15.7 1.58 [138]

DDI Gemfibrozil 1.15 0.931 0.813 [142]

DDI Itraconazole 10 7.95 0.795 [145]

DDI Rifampicin 0.075 0.154 2.05 [143]

DDI Rifampicin 0.119 0.0826 0.695 [144]

DGI BCRP (ABCG2)
c.421AA

1.27 1.79 1.42 [96]

DGI BCRP (ABCG2)
c.421AA

2.28 2.04 0.894 [94]

DGI BCRP (ABCG2)
c.421CA

1.47 1.37 0.931 [96]

DGI BCRP (ABCG2)
c.421CA

1.34 1.16 0.864 [94]

DGI CYP3A5 *1/*1 0.637 0.391 0.613 [96]

DGI CYP3A5 *1/*1 0.357 0.427 1.2 [93]

DGI CYP3A5 *3/*1 0.752 0.552 0.734 [96]

DGI CYP3A5 *3/*1 0.777 0.615 0.793 [93]

DGI OATP1B1
(SLCO1B1) c.521CC

0.853 1 1.17 [96]

DGI OATP1B1
(SLCO1B1) c.521CC

1.39 0.88 0.633 [95]

DGI OATP1B1
(SLCO1B1) c.521TC

0.892 1 1.12 [96]

DGI OATP1B1
(SLCO1B1) c.521TC

1.15 0.906 0.79 [95]

DGI P-gp (ABCB1)
c.1236C-c.2677G-
c.3435C

0.893 0.936 1.05 [41]

Cmax DDI Clarithromycin 7.14 11 1.54 [138]

DDI Gemfibrozil 0.717 0.96 1.34 [142]

DDI Itraconazole 10 7.12 0.712 [145]

DDI Rifampicin 0.149 0.322 2.17 [143]

DDI Rifampicin 0.0919 0.0582 0.633 [144]

DGI BCRP (ABCG2)
c.421AA

1.25 1.51 1.21 [96]

DGI BCRP (ABCG2)
c.421AA

2.29 2.08 0.908 [94]

DGI BCRP (ABCG2)
c.421CA

1.5 1.34 0.894 [96]

DGI BCRP (ABCG2)
c.421CA

1.6 1.2 0.751 [94]
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Table S4.1: Predicted and observed DDGI AUC and Cmax effect ratios (continued)
Parameter DDI / DGI Observed effect

ratio
Predicted

effect ratio
Predicted /
Observed

Reference

DGI CYP3A5 *1/*1 0.406 0.322 0.792 [96]

DGI CYP3A5 *1/*1 0.631 0.395 0.627 [93]

DGI CYP3A5 *3/*1 0.656 0.503 0.767 [96]

DGI CYP3A5 *3/*1 0.846 0.552 0.653 [93]

DGI OATP1B1
(SLCO1B1) c.521CC

0.593 1 1.69 [96]

DGI OATP1B1
(SLCO1B1) c.521CC

1.23 0.835 0.681 [95]

DGI OATP1B1
(SLCO1B1) c.521TC

0.926 1 1.08 [96]

DGI OATP1B1
(SLCO1B1) c.521TC

1.03 0.824 0.798 [95]

DGI P-gp (ABCB1)
c.1236C-c.2677G-
c.3435C

0.782 0.945 1.21 [41]

Simvastatin Acid
AUC DDI Clarithromycin 12.2 16.5 1.36 [138]

DDI Gemfibrozil 2.49 1.76 0.706 [142]

DDI Rifampicin 0.0638 0.0984 1.54 [144]

DGI BCRP (ABCG2)
c.421AA

1.53 1.87 1.22 [96]

DGI BCRP (ABCG2)
c.421AA

1.83 2.17 1.19 [94]

DGI BCRP (ABCG2)
c.421CA

1.81 1.36 0.754 [96]

DGI BCRP (ABCG2)
c.421CA

1.03 1.48 1.45 [94]

DGI CYP3A5 *1/*1 1.06 0.368 0.349 [96]

DGI CYP3A5 *3/*1 0.803 0.538 0.669 [96]

DGI OATP1B1
(SLCO1B1) c.521CC

2.62 2.55 0.974 [96]

DGI OATP1B1
(SLCO1B1) c.521CC

3.2 2.36 0.736 [95]

DGI OATP1B1
(SLCO1B1) c.521TC

1.33 1.35 1.02 [96]

DGI OATP1B1
(SLCO1B1) c.521TC

1.27 1.18 0.928 [95]

DGI P-gp (ABCB1)
c.1236C-c.2677G-
c.3435C

0.63 0.886 1.41 [41]

Cmax DDI Clarithromycin 10 12.7 1.27 [138]

DDI Gemfibrozil 2.08 1.83 0.88 [142]
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4 Drug-drug-gene interaction network

Table S4.1: Predicted and observed DDGI AUC and Cmax effect ratios (continued)
Parameter DDI / DGI Observed effect

ratio
Predicted

effect ratio
Predicted /
Observed

Reference

DDI Rifampicin 0.0946 0.0874 0.924 [144]

DGI BCRP (ABCG2)
c.421AA

1.69 1.95 1.15 [96]

DGI BCRP (ABCG2)
c.421AA

1.61 2.36 1.46 [94]

DGI BCRP (ABCG2)
c.421CA

1.75 1.43 0.817 [96]

DGI BCRP (ABCG2)
c.421CA

1.04 1.49 1.43 [94]

DGI CYP3A5 *1/*1 0.552 0.353 0.64 [96]

DGI CYP3A5 *3/*1 0.828 0.527 0.637 [96]

DGI OATP1B1
(SLCO1B1) c.521CC

1.58 2.49 1.58 [96]

DGI OATP1B1
(SLCO1B1) c.521CC

2.79 2.12 0.76 [95]

DGI OATP1B1
(SLCO1B1) c.521TC

1 1.35 1.35 [96]

DGI OATP1B1
(SLCO1B1) c.521TC

1.18 1.1 0.934 [95]

DGI P-gp (ABCB1)
c.1236C-c.2677G-
c.3435C

0.601 0.812 1.35 [41]

Midazolam
AUC DDI Simvastatin 1.08 1.12 1.04 [141]

Cmax DDI Simvastatin 0.931 1.1 1.18 [141]

Table S4.2: Summary of the predicted and observed DDGI AUC and Cmax effect ratios
Parameter NCA effect ratio mean (sd) GMFE

Simvastatin Lactone
AUC 1.01 (0.372) N = 18 (N ratio > 2 | ratio < 0.5 = 1) 1.31

Cmax 1.03 (0.429) N = 18 (N ratio > 2 | ratio < 0.5 = 1) 1.38

Simvastatin Acid
AUC 1.02 (0.354) N = 14 (N ratio > 2 | ratio < 0.5 = 1) 1.36

Cmax 1.08 (0.322) N = 14 (N ratio > 2 | ratio < 0.5 = 0) 1.31

Midazolam
AUC 1.04 (NA) N = 1 (N ratio > 2 | ratio < 0.5 = 0) 1.04

Cmax 1.18 (NA) N = 1 (N ratio > 2 | ratio < 0.5 = 0) 1.18
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