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Abstract: Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased
lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary
column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) iden-
tified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various
polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing
circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically
ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of
oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of
the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal
were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in
breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb.
An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a
measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promis-
ing non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in
future clinical studies, particularly for detection of lung injury.

Keywords: anesthesia; breath analysis; mechanical ventilation; lipid peroxidation; biomarker; volatile
aldehydes; pentanal; MCC–IMS; ventilator-induced lung injury; volatile organic compounds

1. Introduction

Lipid peroxidation products are established markers of oxidative stress [1], and are
potential non-invasive biomarkers for detection of various diseases. For example, increased
aldehyde exhalation has been reported in patients suffering from pulmonary diseases
such as lung cancer [2–5], chronic obstructive pulmonary disease [6], and COVID-19 [7,8].
Additionally, volatile aldehydes considerably increase in the blood of patients suffering
from acute respiratory distress syndrome [9,10]. Recent animal experiments suggest that
the volatile aldehyde pentanal may be a biomarker for ventilator-induced lung injury [11].
There is thus increasing evidence that monitoring of aldehyde exhalation may help detect
diseases and acute injuries of the lung.

Analyses of liquid aliphatic aldehydes indicate that they originate from lipid peroxi-
dation [12,13]. However, gaseous concentrations also depend on vapor pressure, which
progressively decreases with longer aldehyde chain lengths. Most previous investigations
that measured gaseous concentrations of volatile aliphatic aldehydes focused on single
aldehydes to quantify lipid peroxidation in vitro [14,15]. To our knowledge, only a single
study performed comparative measurements of various volatile aldehydes deriving from
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oxidizing synthetic lipid membranes [16]. Consequently, the relative contributions of vari-
ous isolated polyunsaturated fatty acids to gaseous aldehyde generation remains unclear.

Monitoring aldehyde exhalation is particularly interesting in ventilated patients, as
they often have baseline pulmonary diseases and are susceptible to ventilator-induced lung
injury, which might be identified by aldehyde exhalation [11]. A potential complication,
though, is that most materials in breathing circuits of modern anesthesia machines and air-
way devices are made from plastic which can emit volatile aldehydes [17], thus potentially
interfering with breath analysis in ventilated patients.

Multicapillary column–ion mobility spectrometry (MCC–IMS) has been used to exam-
ine exhaled volatile organic compounds [18–20] and monitor exhaled propofol [21–23] in
ventilated patients. However, volatile aldehydes are typically exhaled at concentrations
of a few parts per billion [24,25], which raises the question of whether the MCC–IMS
technique with our corresponding sampling setup is sensitive enough to quantify exhaled
aldehydes. Moreover, cross-contaminations from ambient air or the ventilator may even
exclude in vivo quantification. A pilot study is therefore needed to assess the clinical
suitability of the MCC–IMS technique to monitor aldehyde exhalation.

Our primary aim was to assess clinical use of MCC–IMS for bedside online measure-
ments of exhaled aliphatic aldehydes as a measure of lipid peroxidation. Secondarily, we
aimed to identify the most promising aliphatic aldehydes for monitoring lipid peroxidation
in mechanically ventilated patients under in vitro and in vivo conditions. We therefore:
(1) identified the predominant volatile aliphatic aldehydes originating from in vitro peroxi-
dation of various polyunsaturated fatty acids; (2) evaluated emittance of volatile aldehydes
from parts of the breathing circuit; (3) conducted a pilot study using MCC–IMS for in vivo
quantification of exhaled aldehydes in mechanically ventilated patients.

2. Results
2.1. Calibration

All calibrations showed a good linear fit (R2: 0.97 to 0.99; Supplementary Materials,
File 1, Figure S2). Limits of detection and quantification were 0.008 and 0.011 Volt.

2.2. Volatile Aldehydes Originating from In Vitro Lipid Peroxidation

Pentanal, hexanal, heptanal, and nonanal were detected in the headspace of an animal-
sourced mixture of oxidizing polyunsaturated fatty acids (PUFA-Mix, Figure 1). Pentanal
and hexanal emerged from all polyunsaturated fatty acids, with pentanal and hexanal
predominating. Nonanal emerged from the mixture of polyunsaturated fatty acids and
heptanal from arachidonic acid (Figure 1). Unquantifiable traces of octanal were identified
in all probes. Decanal was not detected.

2.3. Volatile Aldehydes Emitted By Plastic Parts of the Breathing Circuit

Parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal with
nonanal and decanal originating from all assessed parts (Table 1). Pentanal and heptanal
were not detected.
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Figure 1. Volatile aldehydes produced by oxidation of polyunsaturated fatty acids. A total of 30 µL of isolated or mixed 
polyunsaturated fatty acids were injected into a perfluoroalkoxy alkane flask and oxidized under a constant flow of 100 
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performed once; therefore, raw data are presented. PUFA-Mix is the animal-sourced mixture of polyunsaturated fatty 
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Figure 1. Volatile aldehydes produced by oxidation of polyunsaturated fatty acids. A total of 30 µL of isolated or mixed
polyunsaturated fatty acids were injected into a perfluoroalkoxy alkane flask and oxidized under a constant flow of
100 mL/min synthetic air (21% O2). Headspace samples were analyzed by means of MCC–IMS. Measurement series were
performed once; therefore, raw data are presented. PUFA-Mix is the animal-sourced mixture of polyunsaturated fatty acids.

Table 1. Evaporation of volatile aldehydes by parts of the breathing circuit.

Material Detected Aldehydes Concentration (ppb)

Endotracheal tube
Octanal 7.0 ± 1.4
Nonanal 12.5 ± 0.7
Decanal 2.5 ± 0.4

Humidity and moisture
exchanging filter

Nonanal 0.1 ± 0.4
Decanal 1.7 ± 0.1

Breathing bag
Hexanal 0.5 ± 0.1
Nonanal 2.0 ± 0.3
Decanal 0.7 ± 0.1

Breathing tubes
Hexanal 0.2 ± 0.1
Nonanal 1.4 ± 0.2
Decanal 0.6 ± 0.2

Test lung Nonanal unquantifiable traces
Decanal 0.8 ± 0.2

Data are presented as means ± SD.

2.4. Volatile Aldehydes in the Breath of Ventilated Patients

All patients screened for eligibility underwent pancreaticoduodenectomies, as this op-
eration is scheduled to last at least 4 h at our medical center. Twelve surgical adult patients
undergoing elective pancreaticoduodenectomy were assessed. No patient was excluded.
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Two third of the patients had a malignant tumor and/or arterial hypertension, and
half of the patients suffered from diabetes mellitus. Patients were ventilated on average for
about six hours (Table 2).

Table 2. Patient characteristics and ventilation parameters.

Patient Characteristics

Patients included/screened for eligibility 12/12
Age (years) 67 ± 11

Sex (male/female) 8 (67)/4 (33)
Height (cm) 170 ± 8
Weight (kg) 69 ± 13

ASA physical status (I/II/III) 0/6 (50)/6 (50)
Malignant tumor 8 (67)

Arterial hypertension 8 (67)
Diabetes mellitus 6 (50)

Mechanical ventilation time (min) 344 ± 102

Ventilation Parameters

Tidal volume (mL) 452 ± 82
Respiratory rate (breaths·min−1) 12 ± 1

Minute volume (L·min−1) 5.4 ± 1.1
Inspiratory pressure (mbar) 15.3 ± 2.1

Positive end expiratory pressure (mbar) 5.1 ± 0.5
Mechanical power (J·min−1) 8.3 ± 2.6

Data are presented either as means ± SD, or as frequencies (%). Ventilation parameters repeatedly measured over
time were summarized with single means.

Only exhaled pentanal was quantifiable in breath. Unquantifiable traces of nonanal
were detected and other aldehydes were not detected at all. Ventilators were contaminated
with a mean pentanal concentration of 1.2 ± 1.1 ppb. Exhaled pentanal concentrations over
time are presented in Figure 2. In three patients, the exhaled pentanal concentration did not
substantially exceed ventilator contaminations who were therefore excluded from further
statistical analyses. None of the patients with limited pentanal exhalation had malignant
tumors. In contrast, all but one of the remaining nine patients had malignancy. Excluding
the three patients with limited pentanal exhalation, the overall mean exhaled pentanal
concentration was 13 ± 5 ppb.
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Figure 2. Pentanal in the breath of surgical patients during mechanical ventilation. Twelve surgical
patients undergoing prolonged mechanical ventilation (≥4 h) were assessed. In three patients, the
exhaled pentanal concentration did not substantially exceed ventilator contaminations who were
therefore excluded from graphical presentation. The presented concentrations are corrected for
baseline ventilator contaminations.
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An exploratory analysis revealed a significant association of exhaled pentanal with
tidal volume, minute volume, and mechanical power, but not with inspiratory pressure
(Figure 3, Table 3).
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Figure 3. Exhaled pentanal versus mechanical power. A linear generalized estimating equations regression model and the
marginal R2 were calculated to assess the relationship of exhaled pentanal with mechanical power. Subjects included/total:
n = 9/12, data pairs: n = 547. Data from three patients with limited pentanal exhalation were excluded.

Table 3. Association of exhaled pentanal with ventilation parameters.

Parameter Regression
Coefficient

95% Confidence
Interval R2 p

Tidal volume (mL) 0.01 0.003–0.018 0.02 0.004
Minute volume (L·min−1) 2.0 0.6–3.3 0.05 0.004

Inspiratory pressure (mbar) 0.2 −0.3–0.6 0.04 0.463
Mechanical power (J·min−1) 0.7 0.3–1.1 0.11 0.001

Univariable linear generalized estimating equations regression models were calculated to assess the association of
exhaled pentanal (dependent variable) with ventilation parameters and mechanical power (independent variable).
Subjects: n = 9, data pairs: n = 547. Data from 3 patients with limited pentanal exhalation were excluded.

3. Discussion

This study presents the preparatory analytical work and a clinical pilot study for
online monitoring of aldehyde exhalation to quantify lipid peroxidation in ventilated
surgical patients by means of MCC–IMS. As an overall finding, pentanal represents the
most promising exhaled volatile aliphatic aldehyde. Pentanal is predominantly a product
of lipid peroxidation rather than evaporating from parts of the breathing circuit and was
the only quantifiable volatile aldehyde in the breath of ventilated surgical patients with
our measurement setup.

Oxidation of mixed polyunsaturated fatty acids confirmed that the aliphatic aldehydes
pentanal, hexanal, heptanal, and nonanal are gaseous products of lipid peroxidation. Only
traces of octanal were detected and no decanal was detected, probably because they were
generated in limited quantities and their vapor pressures are low [26]. In contrast, pentanal
and hexanal were ubiquitous. Pentanal dominated early phases of in vitro lipid peroxi-
dation, whereas hexanal increased over time and approached or even exceeded pentanal
concentrations. Our findings are consistent with a previous study that assessed volatile
aldehydes emerging from oxidizing phospholipid membranes and similarly showed that
pentanal dominated early in the process of lipid peroxidation, whereas hexanal dominated
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later [16]. Results from an analysis of fluid aliphatic aldehydes, originating from several
polyunsaturated fatty acids oxidized by air, confirm that pentanal and hexanal are the
predominant products of lipid peroxidation, with hexanal concentrations being twice those
of pentanal after 48 h of peroxidation [12].

Pentanal thus dominates early and hexanal dominates later phases of lipid peroxida-
tion, which can be explained by their chemical properties. Specifically, pentanal has twice
the vapor pressure than hexanal (pentanal: 26 mmHg at 20 ◦C and hexanal: 11.3 mmHg at
25 ◦C), and therefore evaporates more quickly [27,28]. However, pentanal is more reactive
then hexanal. Consequently, autoxidation of pentanal may, over time, exceed its generation
rate. Hexanal may therefore be the primary and more stable product of lipid peroxidation,
but pentanal may be a better biomarker by virtue of responding quickly to oxidative stress.

Plastic components of the breathing circuit emitted hexanal, octanal, nonanal, and de-
canal, which is consistent with previous analyses showing that all are emitted by polypropy-
lene and polyethylene [17,29]—the two most commonly used materials for plastic com-
ponents. The largest source of volatile aldehydes was the endotracheal tube, which is
made from polyvinylchloride. In addition to octanal and decanal, the endotracheal tube
emitted considerable amounts of nonanal, which is consistent with a previous analysis of
volatile organic compound profiles emitted by polyvinylchloride materials [30]. Under the
influence of heat and moisture from the body and breathing gases, release of these volatile
organic compounds from plastic components may be unpredictable. Thus, even when
corrected for baseline contamination, measurements of hexanal, octanal, nonanal, and
decanal in the breath of ventilated patients might be compromised by non-organic sources.
In contrast, pentanal and heptanal were not emitted by plastic breathing circuit components
and are thus presumably better biomarkers for lipid peroxidation in ventilated patients.

We finally evaluated aldehyde exhalation in twelve surgical patients during prolonged
mechanical ventilation. Aside from traces of nonanal, pentanal was the only volatile
aldehyde we detected. Ventilators were contaminated with low amounts of pentanal,
possibly representing residuals from previously ventilated patients since the breathing
circuit was apparently not the source. The overall exhaled pentanal concentrations in
ventilated patients were in the low parts-per-billion range, consistent with previous reports
from spontaneously breathing healthy volunteers [24,25]. However, we measured slightly
higher exhaled pentanal concentrations in ventilated patients, possibly consequent to
intubation, which increases the sampled proportion of alveolar air. Another reason could
be that mechanical ventilation induces pulmonary lipid peroxidation and therefore increase
pentanal exhalation, as previously shown in animals [11,31].

In three patients, the exhaled pentanal concentrations were roughly at the concentra-
tion of ventilator contamination, whereas exhaled concentrations in the others averaged
13 ppb. Interestingly, none of the patients with low concentrations had cancer, whereas
eight of the nine others did. While possibly spurious, the results are consistent with
previous reports that cancer promotes exhalation of pentanal [2–4,32,33].

Although we did not actively vary ventilation parameters, our explorative analysis
revealed a significant linear relationship between exhaled pentanal and mechanical power—
a clinical measure for the invasiveness of mechanical ventilation [34,35]. The higher the
mechanical power dissipated to the lungs, the higher was the exhaled pentanal concentra-
tion, which is consistent with our previous findings in 150 ventilated rats [11]. We therefore
previously proposed that exhaled pentanal results from stretched lung tissue, which ex-
poses lipids in cell membranes to oxidation. Intuitively, higher minute volumes may
dilute exhaled pentanal. Instead, higher minute volumes were associated with increased
pentanal exhalation, further supporting the hypothesis that mechanical ventilation induces
pulmonary lipid peroxidation measurable by exhaled pentanal—a potential biomarker
for ventilator-induced lung injury. More experimental and clinical studies are needed
to identify various causes of pentanal exhalation, which is critical to its potential use as
a biomarker.
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A limitation of our study is that a mixture of exhaled and inspired gases can lead to
cross-contaminations or diluted concentrations. An integration of carbon dioxide or flow
triggered sampling could help sample isolated exhaled gas and thus increase the proportion
of alveolar gas in breath samples [36]. Furthermore, activated charcoal filters, originally
designed to eliminate residual volatile anesthetics emitted from anesthesia workstations,
are now available [37]. Using an activated charcoal filter between the anesthesia machine
and the inspiratory limb of the rebreathing circuit would presumably eliminate contami-
nation from within the machine. We also note that our study population is small. While
sufficient to confirm applicability of our measurement setup to patients, larger studies will
be necessary to confirm the association of pentanal exhalation and mechanical power.

In summary, pentanal and hexanal are the predominant volatile aldehydes deriving
from lipid peroxidation under in vitro conditions, and therefore represent promising breath
biomarkers for oxidative stress. Emission of volatile aldehydes from plastic parts of the
breathing circuit may bias breath analysis for hexanal, octanal, nonanal, and decanal
but not for pentanal. Future studies should quantify exhaled pentanal in mechanically
ventilated patients with various pathologies and assess its potential as a biomarker for
ventilator-induced lung injury.

4. Materials and Methods
4.1. Calibration

The detailed experimental setup and procedure of the calibration is presented in
the supplement (Supplementary Materials, File 1). In short, hexane-diluted aldehyde
standards were pipetted into a closed flask made from inert perfluoroalkoxy alkane. Evap-
oration was accelerated by an electrically driven fan inside the flask and the resulting
gaseous mixture was sampled by the MCC–IMS (B&S Analytik, Dortmund, Germany). The
composition of the liquid hexane-diluted aldehyde standards needed to generate specific
gaseous concentrations inside the flask were calculated according to the ideal gas law
(Supplementary Materials, File 2).

4.2. Volatile Aldehydes Originating from In Vitro Lipid Peroxidation

We used the same technical setup as for calibration (Supplementary Materials, File 1).
A total of 30 µL of an animal-sourced mixture of polyunsaturated fatty acids and three
isolated polyunsaturated fatty acids—linoleic, linolenic, and arachidonic acid (analyt-
ical standard, Merck, Darmstadt, Germany)—were oxidized in a cleaned flask under
100 mL/min flow of highly purified synthetic air (oxygen content: 21%; Alphagaz 1, Air
Liquide, Paris, France) and constant fanning. Headspace gas was sampled at 10-min inter-
vals by the MCC–IMS. Signal intensities between the limit of detection and quantification
were considered as unquantifiable traces.

4.3. Volatile Aldehydes Emitted by Plastic Parts of the Breathing Circuit

An endotracheal tube (Ruesch®, Teleflex, Kernen, Germany) and a humidity and
moisture exchanging filter (Gibeck Humid-Vent®; Teleflex, Kernen, Germany) were placed
in the cleaned flask used for calibration and lipid peroxidation. The flask was sealed
and flushed with purified nitrogen for 5 min and subsequently with highly purified
synthetic air for 1 min. Breathing tubes and bag (Anesthesia set VentStar®, disposable,
basic, 2 L, 1.8 m/1.5 m, latex-free, Draeger, Lübeck, Germany) and a test lung (Draeger
SelfTestLungTM) were flushed from the inside using a similar procedure. Headspace gas
was sampled from materials placed in the flask and from the inside of the breathing tube,
breathing bag, and test lung by the MCC–IMS at 5-min intervals for at least 20 min. All
measurements were performed in a room maintained at 20 ◦C with an air purification
system (CamCleaner City M, Camfil, Reinfeld, Germany).



Molecules 2021, 26, 3089 8 of 11

4.4. Volatile Aldehydes in the Breath of Ventilated Patients
4.4.1. Ethics

Clinical investigations were approved by the local ethics commission (No. 81/19,
Ärztekammer des Saarlandes, Saarbücken, Germany), and written informed consent
was obtained.

4.4.2. Inclusion and Exclusion Criteria

We included patients aged >18 years, American Society of Anesthesiologists (ASA)
physical status <4, body mass index (BMI) ≤35 kg/m2 and scheduled for general surgery
expected to last about 4 h. Patients with mental disorders, drug abuse, human immunodefi-
ciency virus or hepatitis infection, isolation requirement, pregnancy, or any contraindication
for total intravenous anesthesia were excluded.

4.4.3. Measurements

Twelve patients were anesthetized with propofol and remifentanil, and pressure-
controlled ventilation was maintained at lung protective settings (tidal volume: 6–8 mL/kg,
maximum inspiratory pressure: 30 mbar, ventilator: Primus, Draeger, Luebeck, Germany).
The ventilator’s fresh gas flow was set to 1 L/min throughout the case. The choice of
the inspiratory oxygen concentration was left to the attending anesthetist. A new set of
breathing tubes and bag was used for each case.

The MCC–IMS was connected to a t-piece at the tracheal tube by 1.8-m-long per-
fluoroalkoxy alkane tubing. Exhaled gas was sampled at 5-min intervals. Ventilator
contamination was assessed during ventilation of a test lung prior to patient assessment.
The mean of the three final concentrations was defined as baseline contamination, which
was subtracted from measured concentrations for the relevant patient. Ventilation variables
were electronically captured from the ventilators by specific software programmed by
Bertram Bödecker.

Mechanical power was calculated with the following formula: mechanical power
(J·min−1) = 0.098 × respiratory rate (breaths·min−1) × tidal volume (mL) × (positive
end-expiratory pressure (cmH2O) + driving pressure (cmH2O)) [38].

4.5. Statistics

VoCan 3.7 (B&S Analytik, Dortmund, Germany) was used for MCC–IMS device
control and Visual Now 3.7 for spectrum analysis (B&S Analytik). Statistical analyses
were carried out with R 4.0.2 (R Core Team, 2020) using the packages geepack (Højsgaard,
Halekoh, and Yan, 2006) and broom (v0.7.5; Robinson, Hayes, and Couch, 2021). Figures
were created with SPSS 26 (IBM, Armonk, NY, USA). Total intensities for a compound in
volts were calculated by summing the intensity of the monomer and twice the intensity of
the dimer. Calibration formulas were estimated by linear regression. If the relative standard
deviation of measurements of any standard exceeded 20%, Dixon’s test was used to exclude
outliers [39]. Limits of detection (LOD) and quantification (LOQ) were calculated from
background noise intensities as follows: LOD = mean + 3 × SD; LOQ = mean + 10 × SD.

Normality of data distribution was confirmed by visual assessment of histograms and
quantile–quantile plots. Aldehyde generation by oxidizing polyunsaturated fatty acids was
assessed once; therefore, raw data is presented. Repeatedly measured volatile aldehyde
concentrations evaporated by parts of the breathing circuit are presented as means ± SD.
Exhaled pentanal concentrations are presented graphically as means ± SD and additionally
as a mean across all patients and time with the corresponding standard deviation. The
relationship of exhaled pentanal with ventilation parameters and mechanical power was
assessed by linear generalized estimating equations regression. The marginal R2 was
calculated according to Zheng’s method [40]. Due to the explorative character of the
clinical investigations, there was no a priori sample size estimation.
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(including Figure S1: Calibration setup and Figure S2: Calibration curves), Supplementary File 2:
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