
Parameterized Verification and
Repair of Concurrent Systems

by
Mouhammad Sakr

A dissertation submitted towards the degree Doctor of
Engineering (Dr.-Ing.) of the Faculty of Mathematics

and Computer Science of Saarland University

Saarbrücken, 2021

Dean of the faculty Prof. Dr. Thomas Schuster
Advisor PD Dr.-Ing. Swen Jacobs

Date of the colloquium May 31, 2021
Chair of the committee Prof. Dr. Sebastian Hack

Reviewers Prof. Paul Attie, Ph.D.
Prof. Bernd Finkbeiner, Ph.D.
PD Dr.-Ing. Swen Jacobs

Academic Assistant Dr. Charlie Jacomme

2

Abstract

In this thesis, we present novel approaches for model checking, repair and syn-
thesis of systems that may be parameterized in their number of components.
The parameterized model checking problem (PMCP) is in general undecidable,
and therefore the focus is on restricted classes of parameterized concurrent sys-
tems where the problem is decidable. Under certain conditions, the problem is
decidable for guarded protocols, and for systems that communicate via a token,
a pairwise, or a broadcast synchronization. In this thesis we improve existing
results for guarded protocols and we show that the PMCP of guarded protocols
and token passing systems is decidable for specifications that add a quantitative
aspect to LTL, called Prompt-LTL.

Furthermore, we present, to our knowledge, the first parameterized repair
algorithm. The parameterized repair problem is to find a refinement of a process
implementation p such that the concurrent system with an arbitrary number of
instances of p is correct. We show how this algorithm can be used on classes of
systems that can be represented as well structured transition systems (WSTS).

Additionally we present two safety synthesis algorithms that utilize a lazy
approach. Given a faulty system, the algorithms first symbolically model check
the system, then the obtained error traces are analyzed to synthesize a candidate
that has no such traces. Experimental results show that our algorithm solves
a number of benchmarks that are intractable for existing tools. Furthermore,
we introduce our tool AIGEN for generating random Boolean functions and
transition systems in a symbolic representation.

i

ii

Zusammenfassung

In dieser Arbeit stellen wir neuartige Ansätze für das Model-Checking, die
Reparatur und die Synthese von Systemen vor, die in ihrer Anzahl von Kompo-
nenten parametrisiert sein können. Das Problem des parametrisierten Model-
Checking (PMCP) ist im Allgemeinen unentscheidbar, und daher liegt der Fokus
auf eingeschränkten Klassen parametrisierter synchroner Systeme, bei denen
das Problem entscheidbar ist. Unter bestimmten Bedingungen ist das Prob-
lem für Guarded Protocols und für Systeme, die über ein Token, eine Pairwise
oder eine Broadcast-Synchronisation kommunizieren, entscheidbar. In dieser
Arbeit verbessern wir bestehende Ergebnisse für Guarded Protocols und zeigen
die Entscheidbarkeit des PMCP für Guarded Protocols und Token-Passing Sys-
teme mit Spezifikationen in der temporalen Logik Prompt-LTL, die LTL einen
quantitativen Aspekt hinzufügt.

Darüber hinaus präsentieren wir unseres Wissens den ersten parametrisierten
Reparaturalgorithmus. Das parametrisierte Reparaturproblem besteht darin,
eine Verfeinerung einer Prozessimplementierung p zu finden, so dass das syn-
chrone Systeme mit einer beliebigen Anzahl von Instanzen von p korrekt ist. Wir
zeigen, wie dieser Algorithmus auf Klassen von Systemen angewendet werden
kann, die als Well Structured Transition Systems (WSTS) dargestellt werden
können.

Außerdem präsentieren wir zwei Safety-Synthesis Algorithmen, die einen
“lazy” Ansatz verwenden. Bei einem fehlerhaften System überprüfen die Al-
gorithmen das System symbolisch, dann werden die erhaltenen “Gegenbeispiel”
analysiert, um einen Kandidaten zu synthetisieren der keine solchen Fehlerp-
fade hat. Versuchsergebnisse zeigen, dass unser Algorithmus eine Reihe von
Benchmarks löst, die für bestehende Tools nicht lösbar sind. Darüber hinaus
stellen wir unser Tool AIGEN zur Erzeugung zufälliger Boolescher Funktionen
und Transitionssysteme in einer symbolischen Darstellung vor.

iii

iv

Acknowledgments

I am extremely grateful to my supervisor Dr. Swen Jacobs for accepting me as
his student and for all of the opportunities he gave me to further my research.
Thank you Swen for your invaluable advice, endless patience, and continuous
support. I am very grateful that you were always there to listen to my ideas
and problems and for your valuable recommendations and guidance.

I would also like to express my gratitude to Prof. Bernd Finkbeiner for
giving me the opportunity to work at his group, for the fruitful discussions, for
reviewing my thesis, and for all the wonderful social gatherings.

Also, I would like to thank Prof. Paul Attie for introducing me to formal
methods, for encouraging me and supporting me to pursue my doctorate, and
for reviewing my thesis.

I want to thank my colleagues Joachim Bard, Norine Coenen, Peter Fay-
monville, Michael Gerke, Christopher Hahn, Jesko Hecking-Harbusch, Jana Hof-
mann, Felix Klein, Shyam Lal Karra, Noemi Passing, Christa Schäfer, Malte
Schledjewski, Maximilian Schwenger, Leander Tentrup, Hazem Torfah, Alexan-
der Weinert, and Martin Zimmermann for their support, interesting discussions,
coffee breaks, and delicious cakes. Special thanks to Shyam Lal Karra, Alexan-
der Weinert, Jesko Hecking-Harbusch, and my dear friend Mohamad Fawaz for
their feedback on a draft of this thesis’s introduction.

No words are enough to express my gratitude to my father, Issam, and my
mother, Hawla, for their endless love, devotion, sacrifice, and support. I want
also to thank my wife Sandra, my sisters, Hiba, Siwar, Dana, and my brother,
Ali, for being always beside me during the good and bad times.

My sons, Issam and Noah, you are my motivation, incentive, and reason to
keep going. I dedicate this thesis to you.

v

vi

Contents

1 Introduction 1
1.1 Formal Verification . 1
1.2 Concurrent Systems . 3
1.3 Parameterized Systems . 4
1.4 Contributions . 13
1.5 Research Papers . 15

2 Guarded Protocols and Parameterized Model checking 17
2.1 System Model . 17
2.2 Specifications . 21
2.3 Model Checking Problems and Cutoffs 23

3 Better Cutoffs for Guarded Protocols 25
3.1 New Cutoff Results for Conjunctive Systems 26
3.2 Verification of the Reader-Writer Example 35
3.3 New Cutoff Results for Disjunctive Systems 36
3.4 Conclusion . 41

4 Promptness and Bounded Fairness 43
4.1 Prompt-LTL\X and Bounded Stutter Equivalence 44
4.2 Cutoffs for Disjunctive Systems 48
4.3 Cutoffs for Conjunctive Systems 57
4.4 Token Passing Systems . 59
4.5 Conclusions . 63

5 Parameterized Repair of Concurrent Systems 65
5.1 Basic Idea . 65
5.2 System Model . 67
5.3 Parameterized Model Checking of Disjunctive Systems 69
5.4 Parameterized Repair . 75
5.5 Beyond Reachability . 79
5.6 Beyond Disjunctive Systems . 81
5.7 Conclusion . 87

6 A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 89
6.1 Safety Synthesis . 89
6.2 Preliminaries . 91
6.3 Existing Approaches . 92

vii

6.4 SAT-Based Lazy Safety Synthesis 94
6.5 Symbolic Lazy Synthesis Algorithms 97
6.6 Optimization . 106
6.7 Experimental Evaluation . 108
6.8 Why Not a Purely Forward Exploration? 115
6.9 Synthesis of Resilient Controllers 117
6.10 Conclusion . 119

7 Random Generation of Symbolic Transition Systems 121
7.1 Canonical Representation of Boolean Functions 122
7.2 Enumerating Boolean Functions 123
7.3 Random Generation of (Controllable) Transition Systems 125
7.4 How to effectively use the tool 129
7.5 Implementation & Evaluation . 130
7.6 Conclusion . 132

8 Conclusion and Future Work 135
8.1 Summary . 135
8.2 Future Work . 138

A Glossary of symbols 149
A.1 Chapters 2,3,4, and 5 . 149
A.2 Chapters 6, and 7 . 151

viii

Chapter 1

Introduction

1.1 Formal Verification

The outbreak of Coronavirus that started in December 2019 is a big concern
to everyone in the world. Due to the absence of a vaccine or medication, many
countries are now relying on mobile applications to track new cases and poten-
tial infections, as this is currently one of the most effective weapons to restrict
and bound the quick spread of the virus. This situation underscores the impor-
tance of technology in our lives and the extent to which the current world is
dependent on technical systems. Computers and embedded systems are nowa-
days fundamental in our world, as they play a crucial role in our society and are
embedded in every aspect of our life. A large part of these systems are critical
in the sense that they exist in crucial areas of our lives ranging from medicine,
traffic control, aircraft, chemical and nuclear plants where humans’ lives are
directly concerned to banking, currency exchange, and stock markets where the
economy is directly affected. That said, it is obvious that errors in such systems
do not just jeopardize humans lives but may also have catastrophic financial
consequences.

For instance the crash of the unmanned rocket Ariane-5 on June 4, 1996 only
36 seconds of after launch was due to an error in one of its systems (The error
was in the conversion from a 64-bit floating point into a 16-bit integer). The
project costed European Space Agency around 7 billion USD. Another dramatic
example is the bug in Intel’s Pentium II floating-point division which caused a
loss of about 475 million USD. Thus, the correctness of such safety-critical
systems is very crucial. This has led to the introduction of formal verification
which is the mechanism to formally (mathematically) prove that a hardware
or software system is correct with respect to certain formal specifications. The
two main approaches for formal verification are the deductive approach and the
model checking approach.

In Deductive Reasoning, a system is verified using formal deduction based
on a set of inference rules. Given the formal system description and a set of
axioms and inference rules, deductive reasoning consists of logically deriving the
specification. This approach is not considered in this thesis.

Model checking is a fully automatic technique to prove correctness of a sys-
tem with respect to a set of properties. It consists of a systematic exploration

1

Figure 1.1: Ariane-5, on June 4, 1996, exploded after 36 seconds of its launch.
source:http://www-users.math.umn.edu/ arnold/disasters/ariane.html

of all states of a model of the system, which may be an abstraction that omits
unimportant behavior. A model checking algorithm usually takes as input a
mathematical model and a formal specification and outputs yes if the model is
correct and a counter example otherwise. The counter example is an execution
of the model that violates the given specifications. Investigations have revealed
that if formal verification techniques had been used for the Ariane-5 rocket and
Intel’s Pentium II processor, the above-mentioned floating points errors would
have been detected. Furthermore scientists at IBM found that 40% of the design
errors detected by model checking could never have been found by testing.
Unfortunately, Alan Turing proved that program termination is undecidable in
general (there is no algorithm that takes an arbitrary program as input, and can
decide whether it terminates or not for every input). Furthermore Henry Rice
has shown that every non-trivial property of programs is undecidable and Mar-
vin Minsky has demonstrated that every non-trivial property of while-programs
with two counter variables is undecidable.
Despite these negative results scientists in the formal verification field didn’t
give up as these are general results. A thorough analysis of these findings shows
that undecidability requires some source of infinity, e.g., variables with an infi-
nite domain. However there exists many systems with a finite number of states
especially hardware systems (e.g. sequential circuits) and concurrent systems.
Moreover, in recent decades, a plethora of different abstraction techniques were
introduced in which an infinite-state system (or a very large system) can be
simulated by a finite-state model.

Clarke and Emerson introduced branching temporal logic model checking
[33] in the early 1980’s. Temporal logic is a logic for specifying properties
over time. In linear temporal logic (or short LTL) the model of time is linear
and in branching temporal logic the time is modeled in a tree-like structure.
Two important properties that can be specified using these logic are safety and
liveness. Informally, a safety property denotes that nothing bad will happen,
and a liveness property states that something good will happen. In [33], Clarke
and Emerson presented an algorithm that takes as parameters a finite graph (i.e.
a system model) and a branching temporal logic formula and decides in finite
time whether the graph models the formula. The complexity of the algorithm

2

is linear in the size of the formula and the graph.
Despite the fact that Emerson’s and Clarke’s seminal paper was a break-

through in the formal verification area, another important complication emerged
especially in model checking: The state explosion problem. This complication
can be encountered when the size of the system space grows exponentially and a
model checking algorithm might need years to check a temporal logic property.
Various approaches can be used to address this problem, including:

• Abstraction. The aim of any abstraction approach is to reduce the state
space of the system by discarding details that are unnecessary to the given
specifications.

• Symbolic model checking (BDD based). A set-based model checking tech-
nique where set of states are represented symbolically using Binary Deci-
sion Diagrams (or BDD).

• Bounded model checking (BMC). In BMC, given a number k, a symbolic
representation of a system M , and a specification formula ϕ, a SAT for-
mula is constructed (propositional statement in conjunctive normal form)
such that it is satisfiable if and only if there exists a counterexample for
ϕ of length k.

Using such techniques current model checkers can handle programs with up to
10476 states [11].

Another important technique that we see as a complementary procedure to
model checking is automatic model repair. Typically, when a model checker
returns a counter example, a system designer has to manually analyze this
undesired execution with the aim of modifying the system and eliminating this
erroneous behavior. This procedure has to be repeated until the system is error
free, or in other words until the model checker outputs the yes answer. An
intuitive solution would be to automate this tedious verify-diagnose-repair cycle
used in software and hardware design. This led to the problem of model repair
introduced by Buccafurri et al. [24], as a natural extension of model checking.

Given a mathematical model M and a specification formula ϕ such
that M does not satisfy ϕ, is there a way to modify M such that
the resulting new model M ′ satisfies ϕ?

1.2 Concurrent Systems

A huge amount of hardware and software systems are not sequential but paral-
lel. A concurrent system comprises of a set of finite sequential systems (called
processes) running concurrently. That is, at any moment in time either one
process executes an action or two or more processes execute simultaneously a
synchronous action. The study of concurrency started with Edsger W. Dijk-
stra in 1965 when he introduced the mutual exclusion problem [39]. Although
processes in a concurrent system are often of a finite size they are hard to get
correct. The main source of complexity is the remarkably large number of pos-
sible interactions between processes. Additionally, the number of states grows
exponentially with the number of processes which results in the infamous state
explosion problem. Furthermore concurrency brings in new tedious problems

3

like deadlocks. A deadlock is a undesired state of a system where one or more
processes are prevented from taking any action (informally they freeze). These
difficulties make concurrent systems a promising application area for formal
methods like model checking, repair, and synthesis.

Network Topology. The arrangement of processes in a concurrent system
is called topology. A system’s topology can be seen as a directed graph where
nodes are processes and an edge from node p1 to node p2 indicates that process
p1 can send a message to process p2. For instance in a clique topology, a process
can communicate with any other process. If for a certain system no topology
is mentioned, then one can assume it is a clique. In a ring topology a process
can only communicate with its left or right neighbor. As we will see in later
sections, concurrent system’s topologies are very important and plays a decisive
role in the decidability/undecidability of the model checking problem for the
so-called parameterized concurrent systems (or shortly parameterized systems).

1.3 Parameterized Systems

This thesis focuses on Parameterized Systems which is a subclass of concurrent
systems that consists of an arbitrary number of instances (replications) of the
same component. We call each of these replications a process, and each compo-
nent a process template. Many systems are normally modeled as parameterized
systems. Concrete examples of such systems are: mutual exclusion protocols,
leader election, cache coherence protocols, sensor networks, cryptographic pro-
tocols with unbounded principals and sessions, multi-threaded programs, robot
swarms, and vehicular networks. For a fixed number of processes the system
is finite, however the state space of the whole family is considered infinite.
Namely, a parameterized system is an infinite family of finite state systems.
Although existing general-purpose formal verification methods can give correct-
ness guarantees for fixed size concurrent systems, the state explosion problem
forbids applying these techniques on systems with a very large number of pro-
cesses, and additional arguments are needed to extend a proof of correctness to
systems of arbitrary size. Both problems can be tackled by techniques for pa-
rameterized model checking and synthesis, which grants correctness guarantees
for systems with any desired number of components without examining every
possible system instance explicitly.

The parameterized model checking problem (PMCP) [43] is to decide
whether a temporal logic property is true for every size instance of
a given system.

Note that the size of a concurrent system is the number of its processes.

Example 1 (mutual exclusion). Suppose that we want to protect the integrity
of a piece of memory MeM . A process template B that can write to MeM can
be modeled as in Figure 1.2, where idle means that the process does not want to
access the memory, trying denotes that the process wants to write, and writing
represents the state in which the process is writing to the memory. Let Bk

denotes the system that comprises k instances of B running in parallel. Then to
preserve memory integrity the desired property would be : mutual exclusion i.e.

4

idle trying writing

Figure 1.2: Mutex

only one process in the writing section at a time. In this case the parameterized
model checking is to check if for all n ∈ N : Bn satisfies mutual exclusion.

Unfortunately the PMC problem is in general undecidable, even for simple
reachability problems. Note that the reachability problem is to decide whether
a certain state of a system is reachable from an initial state. Likewise, the cov-
erability problem is a special form of the reachability where instead of checking
if a state qi is reachable from an initial state q0, we check if q0 can reach a
state qj that covers (subsumes) qi. For instance, consider the two concurrent
systems B3 and B2 where B is the process template in Figure 1.2. Then, A
global state s1 of B3 in which two process instances are in the writing state
and one instance in the trying state covers a global state s2 of B2 in which
two process instances are in the writing state. In other words the counters of
s1 are pointwise greater or equal than those of s2. Suzuki has shown in [92]
that PMCP is undecidable even if the system consists of a unidirectional ring
of identical finite-state processes. In light of this unfortunate result, to obtain
correctness guarantees for parameterized systems, researchers have been using
seven main approaches:

• Partial order reduction

• Cutoff

• Well structured transition systems

• Abstraction (and semi-decision procedures)

• Invisible Invariants

• Restricted Systems

• Regular model checking

Many of these approaches have been collected in surveys of the literature
recently [19,49] [34, Chapter 21].

1.3.1 Partial Order Reduction

Partial order reduction is used in an attempt to reduce the time and space
needed to automatically verify concurrent systems relying on equivalence of dif-
ferent interleavings of executed actions. As mentioned earlier, the main source
of complexity in concurrent systems is the huge number of possible interactions
between processes. Partial order reduction makes use of the fact that the sat-
isfiability of a temporal logic formula is often insensitive to the order in which
processes’ independent actions are interleaved. Therefore instead of exploring

5

all possible executions of a concurrent system, designers first abstract the sys-
tem into a model that contains only representatives of classes of executions that
are equivalent for a given correctness property [72].

1.3.2 Cutoffs

The cutoff technique [9,31,43,65,67] reduces the parameterized model checking
problem to the ordinary model checking problem. Formally the cutoff method
reduces model checking of systems of an arbitrary size to the model checking of
systems of fixed size. This number is denoted by cutoff for the given parame-
terized system. The cutoff is also used in parameterized synthesis [61, 73]. The
existence of a cutoff c for a specific subclass of parameterized systems can be
proved by showing that there is an execution in the system of size c that violates
a given property ϕ if and only if there exists a violation of ϕ in every system of
size larger than c. More details about this technique can be found in Chapters
3 and 4.

1.3.3 Well Structured Transition Systems

A transition system (or short TS) is a (finite or infinite) directed graph where
nodes are called states and edges are called transitions. We also denote the set
of transitions by the transition relation. A well structured transition system (or
short WSTS) is a TS equipped with a well quasi order (wqo) . on its states
where . is compatible with the set of transitions, i.e. if (q, q′) and (q1, q

′
1) are

two transitions of the system with q . q1 then q′ . q′1 (we also say that .
is monotonic with respect to the transition relation). Finkel et al have shown
in [56] that the reachability problem for well structured transition systems1 is
decidable. Thus, to prove that the reachability of a given transition system TS
is decidable, it is enough to prove the existence of a well quasi order over the
states of TS that is compatible with the transition relation. The main advantage
of the existence of a well quasi order is that it allows us to work with infinite
sets that are upward closed by making use of the fact that these sets can be
uniquely represented by a finite minimal set. This interesting property makes
WSTS appealing to use in reachability analysis. More details about WSTS and
well quasi order can be found in Chapter 5.

1.3.4 Abstraction

For parameterized model checking, using abstraction becomes fundamental and
indispensable due to the fact that parameterized systems can be viewed as in-
finite systems. In the following we summarize the six main approaches along
which researchers have been conducting their work. Note that some of these
methods are semi procedures, i.e., they are not guaranteed to terminate in gen-
eral.

1Well structured transition systems with effective predecessor basis. Check Chapter 5 for
more details.

6

q0

(−1, 0, 0)

q1

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

Figure 1.3: A VASS of dimension three with two states

Vector Addition Systems with States (Counter Abstraction)

In Counter abstraction, a state of a parameterized system of unbounded size is
abstracted into a set of counters which count, for each local state q of a process,
the number of processes which currently are in q. The counters may never hold
negative values. The resulting abstraction is called the counter representation
system (or CRS). A vector addition system with states (or VASS) [59] is a special
case of a CRS in which transitions are labeled with integer vectors, and each
abstract state is equipped with a control state. Therefore a VASS is a finite
directed graph with edges labeled by integer vectors.

A VASS can model systems that consist of a single controller process and
an arbitrary number of user processes with identical process template. Figure
1.3 depicts a simple VASS with two states. The system can be seen as a three
counters, where a transition from q0 to q1 denotes the start of incrementing
counter one, and a transition from q1 to q0 denotes a reset to counter one. Mayr
has shown in [80] that the reachability problem is decidable for VASSs. Hence,
for a given system A‖Bn (one controller process A, and n instances of user
process B running in parallel) the following two statements are equivalent:

• The reachability problem for A‖Bn is decidable.

• A‖Bn behavior can be simulated by a VASS.

A vector addition system (VAS) is a VASS with a single state.
A Petri net is another widely used classical model to simulate concurrent sys-
tems. A Petri net consists of a finite set of places, transitions, and arcs. An arc
connects places to transitions or vice versa. Places may hold token, hence, a
transition t can be fired if there are enough tokens in all its input places (places
that have an arc to t). When a transition is fired, the tokens in input places are
moved to the output places (places that have an arc from t). A configuration
of a Petri net is a vector that specifies the number of tokens in each place. Ob-
viously, the configuration space of a Petri net is a VAS. According to German
and Sistla [59], Petri nets, VAS, and VASS are equally powerful.

Monotonic Abstraction

As aforementioned, the existence of a well quasi order on the states of a given
system is advantageous and valuable. Unfortunately many systems do not have
such an order, meaning that it is not trivial to find a wqo that is monotonic with
respect to the transition relation of the system. Given a transition system TS,

7

the main idea of monotonic abstraction [4] is to compute an over-approximation
Abs(TS) of TS, called the abstract system, such that the behavior of Abs(TS)
over-approximates the behavior of TS. The abstract system should be simpler
than the original system such that there exists a wqo over the states of Abs(TS)
that is compatible with the transition relation. In abstraction in general, we
denote the original system by the concrete system. This abstraction technique
is a sound method, that is, if the abstract system satisfies a certain property,
then we can conclude that the concrete system also satisfies the same property.
On the other side, over-approximations bring in the problem of false-positives
which is a violation of a given property in the abstract system that does not
exist in the concrete system.

Environment Abstraction

Given a parameterized system, the environment abstraction approach [32] con-
structs a finite state transition system such that if the abstract model satisfies a
safety or a liveness property ϕ then the concrete parameterized system satisfies
ϕ. Therefore this approach is sound but not complete. Briefly, this technique
combines counter abstraction with predicate abstraction. In predicate abstrac-
tion, a state is a tuple of Boolean values each of which denote whether a certain
property (predicate) holds true or not. Unlike counter abstraction, and instead
of the number of processes in a given states, counters carry the number of pro-
cesses that satisfy a given predicate. Furthermore, the counters used are cutoff
at the value 1. In contrast to all techniques mentioned so far, environment
abstraction is usually used for parameterized systems that comprise processes
with local variables over unbounded domains (e.g. integers). The crucial point
of the technique is the separation between the finite control variables and the un-
bounded data variables. A state of the abstract system is a tuple (pc, e1, . . . , eT)
where pc is the control location of the reference process (the process that ap-
pears in the specification), and e1, . . . , eT denote the number of processes that
satisfy environment predicates ε1, . . . , εT . An environment predicate εi has the
form Ri ∧ pc = j which is satisfied by any process that is in control location
j and has a relationship Ri with the reference process. A relationship Ri is a
Boolean formula over the set of predicates. The set of predicates is the finite
set of all cases which denote how the data variables in the reference process can
relate to the data variables in another process. Therefore, to model check a
parameterized system, we first construct a finite abstract model and we feed it
to an ordinary model checker. Using this type of abstraction, Lamport’s bakery
algorithm [77] was verified [32] although it uses process id’s. It is known that
the use of processes’ identities in a parameterized system is one of the main
reason behind the undecidability of PMCP [49] due to the fact that these types
of systems lack symmetry.

View Abstraction

To solve the reachability problem for parameterized systems, the view abstrac-
tion technique [2] dynamically detects a halting point beyond which a forward
search algorithm need not to continue. Given a parameterized system Bn, the
forward analysis is an infinite loop that starts from the set of initial states for
a system with fixed small size k (usually from k = 1), and then it computes an

8

overapproximation AREk for the reachability set RE of Bn. If the intersection
of AREk with the set of unsafe states is not empty, k is increased by one. The
analysis terminates once AREk does not include any unsafe states, and then k
would be the dynamic halting point. A configuration of Bn is a word over states
of B. The basic idea of the overapproximation is that by combining configura-
tions of size up to k we can construct configurations that although not reachable
by the system Bk, they are subwords or configurations for systems bigger than
Bk. The method is in general sound and becomes complete for a large class of
systems with well quasi ordering. The name View Abstraction comes from the
fact that the complete parameterized system is considered from the view of only
k processes.

1.3.5 Invisible Invariants

An invariant is a property that holds in all reachable states of a system. An
inductive invariant is a property that holds in every initial state and is pre-
served with respect to the transition relation. To prove that an assertion is an
invariant, we usually synthesize an auxiliary assertion that is inductive and that
strengthens (implies) the original assertion. The goal of the Invisible Invariant
technique [87] is to generate an inductive auxiliary assertion for parameterized
systems by considering only a fixed size system. Therefore, the authors of [87]
first showed that for a specific set of assertions, called R-assertions, there is
a number n0, such that an R-assertion is inductive in every system Pn1 with
n1 ≤ n0 if and only if it is inductive for any system Pn with n ≥ 1. Then,
they generate a candidate invariant by computing symbolically the set of all
reachable states for the fixed size system Pn0 . Assuming that the system is
symmetric, the set of reachable states set is projected on one of the processes,
say B1. Then by replacing each instance of 1 with j, the candidate invariant
∀jϕ(j) is computed. Finally the invariant is checked for inductiveness in Pn0 .
The approach is denoted by invisible invariant due to the fact that the gener-
ated candidate invariants are checked for inductiveness without been inspected
by a user. This approach is in general not complete.

1.3.6 Regular Model Checking

Regular model checking [22], or short RMC, is a paradigm for verification of
parameterized systems with linear or ring-formed topology. RMC can be used
for systems in which states can be represented by words (strings) of arbitrary
finite length, where each letter in the word describes the state of one process
in the system. The term regular comes from the fact that sets of states can be
represented by regular expressions or equivalently finite state automatons, and
hence the technique is symbolic. Transitions between words are represented by
finite state transducers where a finite state transducer can be seen as a finite
state automaton that additionally produces output. The aim of RMC is to ap-
ply existing automaton theoretic algorithms for manipulating regular sets.
The technique starts by constructing a transducer that recognizes the transi-
tive closure of the regular relation2 between global states of the system. The
construction might not terminate (the transducer might not be finite) unless we

2A set of pairs of words is regular if it can be recognized by a finite state transducer.

9

pose some restrictions on the system transitions [71]. The transducer is finite if
actions of the system have a bounded local depth. An action has a local depth
d if each position in the word (global state) is changed at most d times in any
sequence of executions of that action. Then we can compute the reachability set
by applying the constructed transducer relation iteratively to the set of initial
states represented by a regular expression. Furthermore we can verify liveness
properties [5].

1.3.7 Restricted Systems

The undecidability of the parameterized model checking problem is a general
result and therefore researchers work on identifying subclasses of concurrent sys-
tems for which the problem is decidable. These subclasses are usually obtained
by imposing restrictions on the organization and synchronization of processes.
In the following we briefly explain five interesting subclasses for which there
exists decidability results. This is often achieved by using one of the techniques
mentioned above.

Broadcast Systems

In a broadcast system if a process sends a message, all other processes must
receive the message, everybody must listen. Thus, in a communication transition
of the system all processes make a step. Figure 1.4 sketches a simple process
template with broadcast communication. The transition’s label m1!! indicates
sending the message m1 and the label m1?? indicates receiving the message
m1. For instance, suppose we have process p0 in state q0, p1 in state q1, and
p2 in state q2. Then if p2 sends the message m1, it moves to q1, p0 and p1

receive m1 and move to q2 and q0, respectively. Esparza et al. [48] proved that
reachability in broadcast systems is decidable by showing that these protocols
are WSTS. According to Schmitz and Schnoebelen [88] the time complexity of
the coverability problem for broadcast protocols grows faster than any primitive
recursive function. On the other hand, Esparza et al. [48] showed that the model
checking problem for liveness properties is undecidable. Their proof was based
on a reduction from the halting problem on two counter machines which is
known to be undecidable.

Pairwise Rendezvous

In a pairwise rendezvous system if a process sends a message, exactly one other
process receives it, somebody must listen. In other words, in a communication
transition of the system exactly two processes take a step and all other processes
remain idle. Consider the process template in Figure 1.5. Suppose we have pro-
cess p0 in state q0, p1 in state q1, and p2 in state q2. Then if p2 sends the message
m1, it moves to q1, and either p0 receives m1 and moves to q2 or p1 receives
m1 and moves to q0. Pairwise rendezvous systems and asynchronous shared
memory systems with locks are equally expressive [49]. The complexity of the
coverability problem for systems with one controller and an arbitrary number
of user processes A‖Bn is EXPSPACE-complete [49, 59]. On the other hand
for systems without a controller the problem is in PTIME [59]. Furthermore

10

q0

m0!!

q2

m1??

m0??,m1??

q1

m0??

m1??

m1!!,m0??

m1!!

Figure 1.4: Process Template with Broadcast Synchronization

q0

m0!

q2

m1?

m0?,m1?

q1

m0?

m1?

m1!,m0?

m1!

Figure 1.5: Process Template with Pairwise Synchronization

German and Sistla [59] showed the model checking problem for liveness prop-
erties is decidable. Another interesting result is due to Aminof et al. [7], who
showed that systems without controller have no cutoff in general for properties
in LTL\X.

Global Guards.

Guarded protocols are asynchronous systems characterized by their guarded
transitions. Each transition is labeled with a guard g, where g is a statement
over other processes’ states. For instance, in Figure 1.6, the transition from
state q0 to state q1 is labeled with the guard ∀(q0 ∨ q2) ∧ ∃q2. That is, a
process p in q0 can move to q1 if and only if all other processes in the system
are either in q0 or in q2 and at least one other process is in q2. Unfortunately
the parameterized model checking problem for guarded protocols is undecidable
in general [44]. However for systems restricted to only disjunctive guards the

11

q0

∀q1

q2

∃(q0 ∨ q2)

q1

∀(q0 ∨ q2) ∧ ∃q2

∃q2
∀(q0 ∨ q1)

Figure 1.6: Process Template with Global Guards

problem is decidable, where a disjunctive guard is any guard of the form ∃(qi0 ∨
qi1∨. . .∨qim). A disjunctive guard is enabled (i.e. can be executed) if there exists
some process that satisfies the guard. In Figure 1.6, the transitions (q1, q0),
(q0, q2) are labeled with disjunctive guards. The guards of transitions (q0, q0),
(q0, q1), and (q2, q1) are not disjunctive.
Furthermore, Emerson and Kahlon [43] showed that disjunctive systems have
a cutoff. Additionally, Aminof et al. [7] showed that for a disjunctive system
that consists of one A process and an arbitrary number of B processes there
exists a constructible Büchi automaton of size O(|A|×2|B|) that accepts exactly
the destuttered executions. On the other hand, Emerson and Kahlon proved
that the PMCP for systems with conjunctive guards is undecidable [44], where
a conjunctive guard is any guard of the form
∀(qi0 ∨qi1 ∨ . . .∨qim). A conjunctive guard is enabled if and only if all processes
satisfy the guard. In Figure 1.6, the transitions (q2, q1), (q0, q0) are labeled
with conjunctive guards. All other guards are not conjunctive. However, the
authors later showed [43] that the problem becomes decidable if we add some
restrictions on the process templates, and they also determined a cutoff. One
of these restrictions requires that the initial state of the process template is in
every guard.

Token-passing.

In a token passing systems (or short TPS) processes communicate through a
token. Each process has three types of transitions, a synchronous transition for
the send/receive of the token, asynchronous transition that can be taken if and
only if the process possesses the token, and asynchronous transition that can be
taken at any time no matter which process has the token. For the synchronous
transition exactly two processes are involved, one to send the token and another
to receive the token. Clarke et al. [31], and Emerson et al. [45, 46] showed
that the parameterized model checking problem for token passing systems is
decidable and has a small cutoff that depends only on the property but not on
the process template.

12

1.4 Contributions

Chapter 3 We present our new cutoff results for guarded protocols (with
global guards):

• For conjunctive systems, we extend the class of process templates that
are supported by cutoff results, giving cutoff results for local deadlock
detection in new classes of templates, and include examples. Although
we do not solve the general problem, we show that a cutoff for arbitrary
conjunctive systems has to be at least quadratic in the size of the template.

• For both conjunctive and disjunctive systems, we show that by more thor-
ough analysis of process templates, specifically the number and the form
of transition guards, we can have smaller cutoffs in many cases. This cir-
cumvents the tightness results of Außerlechner et al. [10], which state that
no smaller cutoffs can exist for the class of all processes of a given size.

• For disjunctive systems, we also extend both the class of process tem-
plates and the class of specifications that are supported by cutoff results.
We show that systems with finite conjunctions of disjunctive guards are
also supported by variations of the existing proof methods, and get cutoff
results for these systems. Furthermore, we provide cutoffs that support
checking the simultaneous reachability (and repeated reachability) of a
target set by all processes in a disjunctive system.

Chapter 4 Prompt-LTL is a linear time logic that extends LTL with a prompt
eventually operator that is satisfied when the desired event happens at some
time in the future, and there exist a bound on the time that can pass before
it happens. Prompt-LTL\X is not a stutter-insensitive logic, since unbounded
stuttering could invalidate a promptness property. Therefore we define the
notion of bounded stutter equivalence, and prove that Prompt-LTL\X is bounded
stutter insensitive. Furthermore, we establish a connection between bounded
fairness, bounded stutter equivalence, and the satisfaction of Prompt-LTL\X
formulas. Relying on these findings, we investigate existing approaches that
solve parameterized model checking by the cutoff method and show that in
many cases, we can modify these approaches to obtain correctness guarantees for
specifications in Prompt-LTL\X. The types of systems for which we prove these
results include guarded protocols, as introduced by Emerson and Kahlon [43],
and token-passing systems, as introduced by Emerson and Namjoshi [46] for
uni-directional rings, and by Clarke et al. [31] for arbitrary topologies.

Chapter 5 We present our results that enable the repair of concurrent systems
with parameterized correctness guarantees:

• We show how to model disjunctive systems as well-structured transition
systems. This facilitates parameterized model checking with respect to
reachability of error configurations, and also parameterized deadlock de-
tection for these systems.

• We present a general algorithm that employs a parameterized model checker
and constraint-based search for candidate solutions to solve the parame-

13

terized repair problem. We show how correctness of the algorithm follows
from correctness of its parts.

• We show how to employ the algorithm to repair disjunctive systems with
respect to reachability (or: coverability) properties. We give a concrete
parameterized model checking algorithm and a concrete encoding of con-
straints based on the results of model checking, guiding the search for
candidate repairs.

• We show how the given concrete algorithm can be extended in two or-
thogonal directions: from reachability to arbitrary safety properties (and
even liveness, in some cases), and from disjunctive systems to other types
of systems, like pairwise rendez-vous, and broadcast protocols.

Chapter 6 In this chapter we present two lazy synthesis algorithms: a SAT
based algorithm which can be used for concurrent systems, and a BDD-based
symbolic algorithm that can be used only for monolithic systems. These lazy
synthesis algorithms combine a search for candidate solutions with backward
model checking of these candidates. The main contribution in this chapter
is the BDD-based algorithm which employs a forward/backward technique to
search for candidate solutions. This technique allows us to detect small subsets
of the winning region that are sufficient to define a winning strategy. As a result,
it produces less permissive solutions than the standard approach and can solve
certain classes of problems more efficiently. We evaluate a prototype implemen-
tation of our BDD-based algorithm on three sets of benchmarks, including the
benchmark set of the Reactive Synthesis Competition (SYNTCOMP) 2017 [62].
We show that on many benchmarks our algorithm detects remarkably small
subsets of the winning region that are sufficient to solve the synthesis problem:
on the benchmark set from SYNTCOMP 2017, the biggest measured difference
is by a factor of 1068. Moreover, it solves a number of problem instances that
have not been solved by any participant in SYNTCOMP 2017. Finally, we ob-
serve a relation between our algorithm and the approach of Dallal et al. [36]
for systems with perturbations, and provide the first implementation of their
algorithm as a variant of our algorithm. On the SYNTCOMP benchmark set,
we show that whenever a given benchmark admits controllers that give stability
guarantees under perturbations, then our lazy algorithm will terminate after
exploring a small subset of the winning region and can provide quantitative
safety guarantees similar to those of Dallal et al. without any additional cost.

Chapter 7 In this chapter, we present AIGEN, a tool for the generation of
random transition systems in a symbolic representation. Instead of generating
a monolithic transition relation for the system, the tool generates a partitioned
system, where each partition is a Boolean update function for a state variable.
To generate a Boolean update function randomly, the tool relies on the fact
that ROBDDs are canonical representations of Boolean formulas, and utilizes
a method that is inspired by data structures used to implement ROBDDs. Al-
ternatively, AIGEN includes an option to generate Boolean functions relying
on the canonical DNF (CDNF) representation. To ensure diversity, the tool
allows for a uniformly random sampling over the space of all Boolean functions
with a given number of variables, and transition systems constructed from these

14

Boolean functions. Furthermore it gives the user several parameters that can be
used to restrict the random generation to certain types of Boolean functions or
transition systems. AIGEN can be used to test and evaluate applications that
receive Boolean functions (respectively, propositional formulas) or transition
systems as input, e.g. SAT solvers, QBF solvers, finite-state model checkers,
reactive synthesis tools, or other tools that analyze qualitative or quantitative
properties of transition systems.

1.5 Research Papers

The thesis is based on the following research papers:

Peer-Reviewed Publications

• Swen Jacobs, Mouhammad Sakr. AIGEN: Random Generation of
Symbolic Transition Systems. 33rd International Conference on Com-
puter Aided Verification (CAV 2021).

• Swen Jacobs, Mouhammad Sakr, and Martin Zimmerman (2020). Prompt-
ness and Bounded Fairness in Concurrent and Parameterized
Systems. In proceedings of the 21st International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, VMCAI 2020.

• Swen Jacobs, Mouhammad Sakr (2020). A Symbolic Algorithm for
Lazy Synthesis of Eager Strategies. In Acta Informatica volume 57
(2020).

• Swen Jacobs, Mouhammad Sakr (2018). Analyzing Guarded Pro-
tocols: Better Cutoffs, More Systems, More Expressivity. In
proceedings of the 19th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI 2018.

• Swen Jacobs, Mouhammad Sakr (2018). A Symbolic Algorithm for
Lazy Synthesis of Eager Strategies. In proceedings of the 16th In-
ternational Symposium on Automated Technology for Verification and
Analysis, ATVA 2018.

Under Submission

• Swen Jacobs, Mouhammad Sakr. Parameterized Repair of Concur-
rent Systems.

15

16

Chapter 2

Guarded Protocols and
Parameterized Model
checking

In this chapter, we introduce a system model for a class of concurrent systems
called guarded protocols. Furthermore, we define formally parameterized spec-
ifications, parameterized model checking, and other notions that will be used
throughout the thesis. The results we present in this thesis are not restricted to
guarded protocols, however some of our findings are of interest for other classes
of concurrent and parameterized systems, e.g., broadcast protocols, pairwise
rendezvous systems (Chapter 5), and token-passing systems (Chapter 4).

2.1 System Model

A transition system is a standard model in computer science to describe the
behavior of a system. It is basically a directed graph where nodes model states,
and edges represent transitions, i.e., state changes. A state describes informa-
tion about a system at a specific moment, and a transition describes how a
system evolves from one state to another. For instance, in a synchronous hard-
ware circuit, a state represents the current values of the registers and the input
bits, and a transition models the change of the registers and output bits on the
current set of inputs. We say that a transition system is finite if the number
of its states is finite. On the other hand a concurrent system consists of many
processes running in parallel where each process may implement a different tran-
sition system, which we denote in this context by a process template.

Let Q be a finite set of states, and let G ⊆ {∃,∀} × 2Q be a set of guards.
Processes. A process template is a transition system U = (QU , initU , δU) with1

• QU ⊆ Q is a finite set of states including the initial state initU ,

1In contrast to Außerlechner et al. [10], for simplicity we only consider closed process
templates. However, our results extend to open process templates in the same way as explained
there.

17

• δU : QU × 2Q ×QU is a guarded transition relation.

Define the size of U as |U | = |QU |. An instance of template U will be called a
U -process.

Concurrency and interleaving. A concurrent system can be modeled as a
single sequential non-deterministic system with interleaving semantics. In such
a model, instead of perceiving the system as a set of standalone processes, it
would be modeled as a single global system, where a global state is composed
of the current individual states of the different processes. Additionally, actions
are interleaved. i.e. actions of different processes do not occur at the same time
except for rendezvous or broadcast actions. Hence, at each global step of the
system one or more processes are involved but not necessarily all of them.

Guarded Protocols. Guarded protocols are systems that comprise an arbi-
trary number of processes, where each is an instance of a finite-state process
template. The process templates can be conceived as synchronization skele-
tons [42], that is, they only need to model the characteristics of the system
components that are relevant for their synchronization. Processes use global
guards for communication, where guards are statements about other processes
that are construed either disjunctively (“there exists at least one process that
satisfies the guard”) or conjunctively (“all other processes satisfy the guard”).
Formally, a guarded protocol is a system A‖Bn, consisting of one copy of a
process template A (denoted A-process) and n copies of a process template
B (denoted B-processes) running in parallel asynchronously (interleaving se-
mantics). For this section, we assume that n is a fixed positive integer. By
similar arguments as in Emerson and Kahlon [43], our results can be extended
to systems with an arbitrary number of process templates. We use the tem-
plates as indices in order to identify items that belong to these templates. For
instance, for a process template U ∈ {A,B}, QU is the set of states of U . We
assume that Q = QA ∪̇ QB . Different copies of process template B are distin-
guished by subscript, i.e., for i ∈ [1..n], Bi is the ith instance of B, and qBi is
a state of Bi. A state of the A-process is denoted by qA. We denote the set
{A,B1, . . . , Bn} as P, and write p for a process in P. For U ∈ {A,B}, we write
GU for the set of non-trivial guards that are used in δU , i.e., guards that are not
in {∃,∀} × {Q, ∅}. We assume that G = GA ∪ GB .

The semantics of A‖Bn is given by the transition system (S, inits,∆), where

• S = QA × (QB)n is the set of (global) states,

• initS = (initA, initB , . . . , initB) is the global initial state, and

• ∆ ⊆ S × S is the global transition relation. ∆ will be defined by local
guarded transitions of the process templates A and B in the following.

For a global state s ∈ S and p ∈ P, let the local state of p in s be the
projection of s onto that process, denoted s(p). Then a local transition (q, g, q′)
of process p ∈ P is enabled in global state s if s(p) = q and either

• g = (∃, G) and ∃p′ ∈ P \ {p} : s(p′) ∈ G, or

• g = (∀, G) and ∀p′ ∈ P \ {p} : s(p′) ∈ G.

18

initr

tr

¬w

w

tw

¬w ∧ ¬r

Figure 2.1: Conjunctive Reader-Writer protocol

Finally, (s, s′) ∈ ∆ if there exists p ∈ P such that (s(p), g, s′(p)) ∈ δp is
enabled in s, and s(p′) = s′(p′) for all p′ ∈ P \ {p}. We say that the transition
(s, s′) is based on the local transition (s(p), g, s′(p)) of p. Let Set(s) = {q ∈
Q | ∃p ∈ P : s(p) = q}, and let s(p1, . . . , pk) be the projection of s onto the
processes p1, . . . , pk ∈ P. A process is enabled in s if at least one of its transitions
is enabled in s, otherwise it is disabled.

Disjunctive and Conjunctive Systems. We distinguish disjunctive and con-
junctive systems, as defined by Emerson and Kahlon [43]. In a disjunctive pro-
cess template, every guard is of the form (∃, G) for someG ∈ 2Q. In a conjunctive
process template, every guard is of the form (∀, G), and {initA, initB} ⊆ G, i.e.,
initial states act as neutral states for all transitions. A disjunctive system con-
sists of only disjunctive process templates. A conjunctive system consists of only
conjunctive process templates. Like Emerson and Kahlon [43], we assume that
in conjunctive systems initA and initB are contained in all guards, i.e., they act
as neutral states. For conjunctive systems, we call a guard k-conjunctive if it is
of the form Q \ {q1, . . . , qk} for some q1, . . . , qk ∈ Q. A state q is k-conjunctive
if all non-trivial guards of transitions from q are k′-conjunctive with k′ ≤ k. A
conjunctive system is k-conjunctive if every state is k-conjunctive. Whenever
the type (conjunctive or disjunctive) of the considered system is stated or clear
the quantification symbol will be omitted from the guard and therefore guards
will be considered as set of states, and G will be treated as the power set of Q.

Example 2. Consider the conjunctive system in Figure 2.1. It simulates a
reader-writer protocol that models access to data shared between processes. A
process that wants to read the data enters state tr (“try-read”). From tr, it can
move to the reading state r. However, this transition is guarded by a statement
¬w. Formally, guards are sets of states, ¬w stands for the set of all states
except w (equivalent to (∀, {r, tr, init, tw})), and ¬w ∧ ¬r stands for the set of
all states except w and r (equivalent to (∀, {tr, init, tw})). Furthermore, this
is a conjunctive system, which means that a guard is interpreted as “all other
processes have to be in the given set of states”. Thus, to take the transition
from tr to r, no other process should currently be in state w, i.e., writing the
data. Similarly, a process that wants to enter w has to go through tw, but the
transition into w is only enabled if no state is reading or writing.

Consider the disjunctive system W‖Rn, where W is a writer process (Fig-
ure 2.3), and R is a reader process (Figure 2.2). A process in the “non-read”
state nr can move to the “read” state r if and only if there is a process in the
“non-write” state nw. it can stay in r as long as nw is occupied otherwise it will
have to leave the “read” state. Furthermore a process can stay in the “write”
state w as long as r is occupied by another process.

19

r

∃nw

nr

∃nw

Figure 2.2: Reader

w

∃r

nw

Figure 2.3: Writer

2.1.1 Runs

A path of a system A‖Bn is a sequence of global states x = s0, s1, . . . such that
for all m < |x| there is a transition (sm, sm+1) ∈ ∆ based on a local transition
of some process p. We say that process p moves at moment m. A system run is
a path starting in the initial state initS , and cannot be extended, namely, it is
either infinite or ends in a global state where no local transition is enabled, also
called a deadlock. We say that a run is initializing if every process that moves
infinitely often also visits its initial state infinitely often.

Given a system path x = s0, s1, . . . and a process p, the local path of p in
x is the projection x(p) = s1(p), s2(p), . . . of x onto local states of p. A local
path x(p) is a local run if x is a run. Moreover, we denote by x(p1, . . . , pk) the
projection s0(p1, . . . , pk)s1(p1, . . . , pk) . . . of x onto the processes p1, . . . , pk ∈ P.

Deadlocks. A run is globally deadlocked if it ends in a global state where no
local transition is enabled, i.e. it is finite. A run is locally deadlocked if it is
infinite, and there exists a process p and a time m such that p is disabled in sm′

for all m′ ≥ m. A run is deadlocked if it is either locally or globally deadlocked.
A system has a (local/global) deadlock if it has a (locally/globally) deadlocked
run. Note that if a system has no local deadlocks then it has no global deadlocks,
however the other way around is not true.

Fairness. We consider four notions of fairness. A run is called

• strongly fair if for every process p, if p is enabled infinitely often, then p
moves infinitely often.

• unconditionally fair, denoted u-fair(x), if every process moves infinitely
often.

• globally b-bounded fair, denoted b-gfair(x), for some b ∈ N, if

∀p ∈ P ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m+ b and p moves at moment j.

• locally b-bounded fair for E ⊆ P, denoted b-lfair(x,E), if it is uncondi-
tionally fair and

∀p ∈ E ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m+ b and p moves at moment j.

20

Remark 1. We analyze these different notions of fairness for the following rea-
son: we are interested in unconditionally fair runs of the system, which requires
an assumption about scheduling. However, directly assuming unconditional
fairness is too strong, since any run with a local deadlock will violate the as-
sumption, and therefore satisfy the overall specification. Thus, we will consider
strong fairness as an assumption on the scheduler, and absence of local deadlocks
as a property of the system that has to be proved. Together, they imply un-
conditional fairness. Furthermore bounded fairness is essential when we analyze
systems against specifications that impose a bound on the on the satisfaction
of the eventuality (check Chapter 4).

Additional Definitions. Fix a run x = s0s1... of the disjunctive system A‖Bn.
Our constructions are based on the following definitions, where q ∈ QB :

• appearsBi(q) is the set of all moments in x where process Bi is in state q:
appearsBi(q) = {m ∈ N | sm(Bi) = q}.

• appears(q) is the set of all moments in x where at least one B-process is
in state q: appears(q) = {m ∈ N | ∃i ∈ {1, . . . , n} : sm(Bi) = q}.

• fq is the first moment in x where q appears: fq = min(appears(q)), and
firstq ∈ {1, . . . , n} is the index of a B-process where q appears first, i.e.,
with sfq (Bfirstq) = q.

• if appears(q) is finite, then lq = max(appears(q)) is the last moment where
q appears, and lastq ∈ {1, . . . , n} is a process index with slq (Blastq) = q

• let Visited(x) be the set of B-states that appeared in the run x. Formally,
Visited(x) = {q ∈ QB | appears(q) 6= ∅}.

• let VisitedF (x) be the set of states in F ⊆ QB that appeared in the run x.
Formally, VisitedF (x) = {q ∈ Visited(x) | q ∈ F}.

• let Visitedinf(x) be the set of B-states that appeared infinitely often in
the run x. Formally, Visitedinf(x) = {q ∈ QB | ∃Bi ∈ {B2, . . . , Bn} :
appearsBi(q) is infinite}.

• let Visitedfin(x) be the set of B-states that appeared finitely often in
the run x. Formally, Visitedfin(x) = {q ∈ QB | ∀Bi ∈ {B2, . . . , Bn} :
appearsBi(q) is finite}.

• Set(si) is the set of all states that are visited by some process at moment
i: Set(si) = {q|q ∈ (QA ∪QB) and ∃p ∈ P : si(p) = q}.

2.2 Specifications

A specification is a set of properties to be satisfied by a process or a system.
These properties are usually used as input to a theorem prover, a model checker,
or a synthesis tool. In this thesis we are concerned with temporal properties
like reachability, safety, liveness, and fairness.

21

2.2.1 Temporal logic

Temporal logic is used for specifying properties over time. Basically it extends
classical propositional logic with operators that refer to the behavior of systems
over time. It allows for the specification of a range of important system proper-
ties such as functional correctness (does the system behave as it is supposed?),
reachability (is it possible to reach a deadlock state?), safety (“something bad
never occurs”), liveness (“something good must eventually happen”).

Propositional Logic. The set of propositional logic formulas over a set of
atomic propositions AP is defined by the following grammar:

φ ::= true | a | ¬φ | φ1 ∧ φ2, where a ∈ AP

A propositional formula is a proposition that might hold or not, depending
on which of the atomic propositions are assumed to hold. The formula a states
that the proposition a holds. The symbol ∧ is conjunction, that is, φ1∧φ2 holds
if and only if both φ1 and φ2 hold. The symbol ¬ stands for negation, i.e., ¬φ
holds if and only if φ does not hold. The constant true is a proposition that
holds in any context, independent of the valuation of other atomic propositions.
Additionally, we use the constant false for ¬true.

Furthermore, we assume that time is discrete, and we differentiate between
two types of temporal logic, linear and branching. In linear temporal logic at
each moment in time there is a single successor moment, thus it has the ability
to reason about a single timeline. Whereas in branching temporal logic time
may split into alternative courses, hence it can reason about multiple timelines.

Linear Temporal Logic (or short LTL) extends propositional logic with a set
of operators for constructing linear time properties. A linear time property can
be viewed as a set of infinite words, where each word describes a valid run.
LTL formulas over a set of atomic proposition AP are defined according to the
following grammar:

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2, where a ∈ AP

An LTL formula can be satisfied by a word over 2AP. This word can be seen
as a run (infinite sequence of states) of a system. The symbol X denotes the
“next” operator, then a run x satisfies Xϕ (denoted by x |= Xϕ) if and only if
ϕ holds at the next state. Also the symbol U denotes the “until” operator, that
is, x |= ϕ1Uϕ2 if and only if ϕ1 holds in x at least until ϕ2 holds. The until
operator allows to derive the temporal operators F (“eventually”, sometimes in
the future) and G (“always”, from now until forever) as follows: Fϕ = trueUϕ,
and Gϕ = ¬F¬ϕ (or Gϕ = ϕUfalse). We use the notation LTL\X to refer to
LTL without the “next” operator X. A full formal definition for LTL is omitted
and can be found in [85].

Branching Temporal logic. In LTL, we can state properties over all possible
runs that start in a specific state, but not about a proper subset of the runs. To
overcome such problem, branching temporal logic extends LTL with path quan-
tifier operators. The existential path quantifier (denoted E) and the universal
path quantifier (denoted A). Computation Tree logic (or CTL) is a branching
time logic where its formulas are defined over a set of atomic proposition AP
according to the following grammar:

22

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | E Xϕ | E[ϕ1Uϕ2], where a ∈ AP

For instance, the property E Xϕ denotes that there exists a run along which
ϕ holds at the next state. In other words, it states that there is at least one
possible run in which ϕ holds in the next state. The formula A Xϕ is equivalent
to ¬E X¬ϕ. Branching time means that at each moment there may be several
different possible futures. Therefore the semantics of a branching temporal logic
is interpreted in terms of an infinite directed tree of states rather than an infinite
sequence. A full formal definition for CTL is omitted and can be found in [42].

Büchi automaton. For every LTL formula ϕ, there exists a Büchi automaton
that accepts exactly all words that satisfy ϕ [94]. A (non-deterministic) Büchi
automaton. is a tuple A = (Σ, QA , δ, a0, α), where:

• Σ is a finite alphabet,

• QA is a finite set of states,

• δ : QA × Σ→ 2QA is a transition function,

• a0 ∈ QA is an initial state, and

• α ⊆ QA is a Büchi acceptance condition.

A accepts all the words (runs) in which at least one of the infinitely often
occurring states is in α.

We denote by Aϕ the Büchi automaton that accepts exactly all words (runs)
that satisfy ϕ.

Parameterized Specifications. A parameterized specification is a temporal
logic formula with indexed atomic propositions and quantification over indices.
Let ϕ(A,Bi1 , . . . , Bik) be a temporal logic formula over atomic propositions
from QA and indexed propositions from QB×{i1, . . . , ik}. A k-indexed formula
is of the form ∀i1, . . . , ik.ϕ(A,Bi1 , . . . , Bik). For given n ≥ k, by symmetry of
guarded protocols (cp. Emerson and Kahlon [43]) we have

A‖Bn|=∀i1, . . ., ik.ϕ(A,Bi1 , . . ., Bik) iff A‖Bn |= ϕ(A,B1, . . . , Bk).

The latter formula is denoted by ϕ(A,B(k)), and we will use it instead of the
original ∀i1, . . . , ik.ϕ(A,Bi1 , ..., Bik).

Example. Consider again the conjunctive system in Figure 2.1, then the tem-
poral specification below states that on all paths, it is always the case that
whenever a process wants to read it will eventually read and whenever a process
wants to write it will eventually be granted the access to the write state.

∀i.A G ((tri → Fri) ∧ (twi → Fwi)) ,

2.3 Model Checking Problems and Cutoffs

For a given system A‖Bn and a temporal logic formula ϕ(A,B(k)) with n ≥ k,

• the model checking problem is to decide whether A‖Bn |= ϕ(A,B(k)),

23

• the (global/local) deadlock detection problem is to decide whether A‖Bn
has (global/local) deadlocks,

• the parameterized model checking problem (PMCP) is to decide whether
∀m ≥ n : A‖Bm |= ϕ(A,B(k)), and

• the parameterized (local/global) deadlock detection problem is to decide
whether for some m ≥ n the system A‖Bm has (global/local) deadlocks.

We will add later different notions of fairness to these definitions. According
to Remark 1 about fairness, we are interested in proving the absence of local
deadlocks under the assumption of strong fairness, which implies unconditional
fairness and therefore allows us to separately prove the satisfaction of a temporal
logic specification under the assumption of unconditional fairness.

Cutoffs. We define cutoffs with respect to a class of systems (either disjunctive
or conjunctive), a class of process templates T , and a class of properties, which
can be k-indexed formulas for some k ∈ N or the existence of (local/global)
deadlocks. A cutoff for a given class of properties and a class of systems with
processes from T is a number c ∈ N such that for all A,B ∈ T , all properties ϕ
in the given class, and all n ≥ c:

A‖Bn |= ϕ ⇔ A‖Bc |= ϕ.

Like the problem definitions above, cutoffs may additionally be flavored with
different notions of fairness.

Cutoffs and Decidability. Note that the existence of a cutoff implies that the
parameterized model checking and parameterized deadlock detection problems
are decidable iff their non-parameterized versions are decidable.

24

Chapter 3

Better Cutoffs for Guarded
Protocols

The parameterized model checking problem for systems that combine disjunctive
and conjunctive guards is in general undecidable [47]. For this reason, research
in the literature has considered systems that have a single type of guard, i.e.
conjunctive or disjunctive systems. Emerson and Kahlon [43, 44] have studied
these classes of systems and showed that they have cutoffs that depend on the
number of states in the process templates. These results are for specifications of
the form ∀p̄. A Φ(p̄), where Φ(p̄) is an LTL\X property over the local states of
one or more processes p̄. Außerlechner et al. [10] have extended and enhanced
these results, but a number of issues remain open.

For instance, consider the reader-writer protocol in Figure 3.1 and the fol-
lowing parameterized safety specifications:

∀i 6= j.A G (¬(wi ∧ wj) ∧ ¬(wi ∧ rj)) ,

As explained earlier, indices i and j refer to processes in the system. This
condition states that it is never the case that two processes are writing at the
same time and it is never the case that two processes are reading and writing
simultaneously. Emerson and Kahlon [43] proved that, for conjunctive systems,
properties from LTL\X have a cutoff of k+1 for properties with k index variables.
Furthermore, they proved that for deadlock detection, a cutoff linear in the size
of the process template is sufficient.

However, Außerlechner et al. [10] observed that for liveness properties such
as

∀i.A G ((tri → F ri) ∧ (twi → Fwi)) ,

an explicit treatment of fairness assumptions on the scheduling of processes is
required. They noticed that, in guarded protocols, local deadlock detection has
to be considered to adequately treat liveness properties although the cutoff re-
sults for LTL\X properties still holds under fairness assumptions. They showed
that for local deadlock detection a cutoff that is linear in the size of the pro-
cess template is enough, but under a major restriction where the cutoff only
supports systems with 1-conjunctive guards, i.e., where each guard can only
exclude a single state. Unfortunately, the reader-writer example in Figure 3.1
is not supported by these results, since the guard ¬w ∧ ¬r excludes 2 states.

25

Figure 3.1: Conjunctive Reader-Writer protocol

initr

tr

¬w

w

tw

¬w ∧ ¬r

Another drawback of the existing results is that they take into consideration
only minimal knowledge about the process templates, e.g., their size and the
interpretation of guards. Therefore many cutoffs rely directly on the size of
the process template. Intuitively, for the cutoff, the communication between
processes should be equally or even more important than the process templates
internal state space. This can also be noticed in the example above: only 2 out
of the 5 states can be observed by the other processes, and can hence affect
their behavior. In this chapter, we will explore the idea of cutoffs that depend
on the type and number of guards in the process templates.

In this chapter, we expand, for conjunctive systems, the class of process
templates that have cutoff results, providing cutoff results for local deadlock
detection in classes of templates that are not 1-conjunctive, and include systems
like the one in Figure 3.1. Although we do not solve the general problem, we
show that a cutoff for an arbitrary conjunctive system is at least quadratic in
the size of the process template. Additionally, for conjunctive and disjunctive
systems, we give a cutoff that is linear in the number of transition guards in the
process template which in many cases can be smaller than the cutoff obtained
by Emerson and Kahlon [43] and Außerlechner et al. [10]. This circumvents the
tightness results of Außerlechner et al. [10], which state that no smaller cutoffs
can exist for the class of all processes of a given size. Furthermore, we show
that these new cutoff results can be extended to the class of process templates
with a conjunction of disjunctive guards and to a new class of specifications.

Outline of the Chapter. This chapter is organized as follows: In Section 3.1
we present our new results for global and local deadlock detection in conjunctive
systems, and compare them to previously existing results. Using these new
results we show in Section 3.2 how we can verify the reader-writer example in
Figure 3.1. In Section 3.3 we state our new cutoff results for disjunctive systems,
and we show how these results can be extended to the class of process templates
with a conjunction of disjunctive guards and to a new class of specifications.
Finally, Section 3.4 draws some conclusion.

3.1 New Cutoff Results for Conjunctive Systems

In this section, we state our new results for conjunctive systems, and compare
them to the previously known results in Table 3.1. We give improved cutoffs
for global deadlock detection in general (Section 3.1.1), and for local deadlock
detection for the restricted case of 1-conjunctive systems (Section 3.1.2). After
that, we explain why local deadlock detection in general is hard, and identify

26

a number of cases where we can solve the problem even for systems that are
not 1-conjunctive (Sections 3.1.3 and 3.1.4). We do not improve on the cutoffs
for LTL\X properties, since they are already very small for conjunctive systems
and only depend on the number of index variables in the specification.

Additional Definitions.

To analyze deadlocks in a given conjunctive system A‖Bn, we introduce addi-
tional definitions. A deadset of a local state q is a minimal set D ⊆ Q that
block all outgoing transitions of any process that is currently in local state q.
Formally, we say that D ⊆ Q is a deadset of q ∈ Q if:

i) ∀(q, g, q′) ∈ δU : ∃q′′ ∈ D : q′′ /∈ g,

ii) D contains at most one state from QA, and

iii) there is no D′ that satisfies i) and ii) with D′ ⊂ D.

For a given local state q, dead∧q is the set of all deadsets of q:

dead∧q = {D ⊆ Q | D is a deadset of q}.

If dead∧q = ∅, then we say q is free. We say that a state q is non-blocking
if ∀q′ ∈ Q ∀D ∈ dead∧q′ : q 6∈ D. Informally, q is non-blocking if it does not
appear in dead∧q′ for any q′ ∈ Q. We say that a state q is not self-blocking if
∀D ∈ dead∧q : q 6∈ D. Informally q is not self-blocking if it does not appear in
dead∧q .

In these terms, a globally deadlocked run is a run that ends in a global state
s such that for every local state q of s, there is a process p deadlocked in q,
and there exists some D ∈ dead∧q such that D ⊆ Set(s(P \ p)) . Similarly, a
locally deadlocked run is a run such that one process p will eventually always
remain in state q, and from some point on, we always have D ⊆ Set(s(P \ p))
for some D ∈ dead∧q . Note that in this case, it can happen that there does not
exist a single deadset D that is contained in Set(s) all the time, but the run
may alternate between different deadsets of q that are contained in Set(s) at
different times. We say that a locally deadlocked run is alternation-bounded if
it does not alternate infinitely often between different deadsets. We say that a
system has alternation-bounded local deadlocks if, whenever there exists a locally
deadlocked run, there also exists an alternation-bounded locally deadlocked run.

From now on we say that a run is non-fair if it is not necessarily fair.

3.1.1 Global Deadlock Detection

For global deadlock detection, we show how to obtain improved cutoffs based on
the number of free, non-blocking, and not self-blocking states in a given process
template.

Theorem 1. For conjunctive systems and process templates A,B, let

• k1 = |D1|, where D1 ⊆ QB is the set of free states in B,

• k2 = |D2 \D1|, where D2 ⊆ QB is the set of non-blocking states in B, and

27

• k3 = |D3 \ (D1∪D2)|, where D3 ⊆ QB is the set of not self-blocking states
in B.

Then for c = 2|B| − 2k1 − 2k2 − k3 we have:
(∀n ≥ c : A||Bn has no global deadlock)⇔ A||Bc has no global deadlock.

Proof Sketch. In the following, we prove that a globally deadlocked run of a
large system A‖Bn can be simulated in the cutoff system A‖Bc for all n ≥ c.

In order to simulate a globally deadlocked run x = s0, s1, . . . , sm of a large
system by a run y in the cutoff system, by Emerson and Kahlon [43] the following
is sufficient. We analyze the set of local states q ∈ Q that are present in the
final state sm of x, and distinguish whether any such q appears once in sm, or
multiple times. If q appears once, we identify one local run of x that ends in
q, and replicate it in the cutoff system. If q appears multiple times, we do the
same for two local runs of x that end in q. This construction ensures that in the
resulting global run x′ = s′0, . . . , s

′
m of the cutoff system, for any point in time

t, we have Set(s′t) ⊆ Set(st), and for any deadlocked process at time t we have
Set(s′t(P \ p)) ⊆ Set(st(P \ p)). Therefore, all transitions in x′ will be enabled,
and x′ is deadlocked in s′m. If x′ does not contain all local runs of x then there
are stuttering steps in x′, where no process moves. By removing these stuttering
steps, we obtain the desired run y.

The construction of Emerson and Kahlon assumes that in the worst case
all local states of B appear in the deadlocked state sm. However, if D1 ⊆ QB
are free local states, then we know that no state from D1 can ever appear in
sm, and thus the cutoff is reduced by 2|D1|. Similarly, if D2 ⊆ QB are non-
blocking states, then we know that no state from D2 can be necessary for the
deadlock in sm, and therefore the construction will also work if we remove the
local runs ending in D2. This also reduces the cutoff by 2|D2|. Moreover, the
original construction assumes that all local states q may be self-blocking, which
requires the second local run that ends in q. If we know that D3 ⊆ QB are not
self-blocking, then we only need one local run for each of these states, reducing
the cutoff by |D3|. If we combine all three cases, we get the statement of the
theorem.

Note that the sets of free, non-blocking, and not self-blocking states can be
identified by a simple analysis of a single process template, and the cost of this
analysis is negligible compared to the cost of a higher cutoff in verification of
the system.

3.1.2 Local Deadlock Detection in 1-conjunctive Systems

For local deadlock detection, we first show that smaller cutoffs can be found by
taking into account the transitions and guards of the process template. For a
1-conjunctive process template U ∈ {A,B}, let GU,B be the set of guards of U
that exclude one of the states of B, i.e., that are of the form g = Q \ {q} for
some q ∈ QB (guards not in this set exclude only states of A). Furthermore,
let maxDU = max{|D ∩ QB | | D ∈ dead∧q for some q ∈ QU} be the maximal
number of states from B that appear in any deadset of a state in U .

28

Theorem 2. For conjunctive systems with process templates A,B, if process
template U ∈ {A,B} is 1-conjunctive, then the following are cutoffs for local
deadlock detection in a U -process in non-fair runs:

• maxDU + 2, and

• |GU,B |+ 2.

Proof. To show the existence of a cutoff c, we prove that a locally deadlocked
run of the cutoff system A‖Bc can be simulated in a large system A‖Bn for all
n ≥ c (i.e., monotonicity), and we prove that a locally deadlocked run of a large
system A‖Bn can be simulated in the cutoff system A‖Bc for all n ≥ c (i.e.,
bounding).
Monotonicity. A globally deadlocked run x = s0, s1, . . . , sm of A‖Bn can be
simulated by a run y of A‖Bn+1 as follows: Let y replicate the run x, and
keeps the new process stuttering in the initial state. Let m be the moment
when the deadlock happens in x, then let the new process behave arbitrarily
after the moment m. In the remaining cutoff proofs of this chapter we omit the
monotonicity part as they are all similar to this one.
Bounding. In order to simulate a locally deadlocked run x = s0, s1, . . . of a
large system by a run y in the cutoff system, the following construction has
been presented by Außerlechner et al. [9] for non-fair runs. Suppose process p is
locally deadlocked in local state q after the system has entered state sm. We first
replicate (copy) the local runs of A and p. Since the system is 1-conjunctive,
every local state has a unique deadset. For each q′ in the deadset D of q, we
copy a local run from x that is in q′ at time m, and modify it such that it stays
in q′ forever after this point in time. Thus, the process in q is locally deadlocked
because all states in D will be present at any time after m. Finally, we copy one
additional local run of a process that moves infinitely often in x (this process
should be different than those that have been copied before). As in the proof
of Theorem 1, all transitions of the resulting global run x′ will be enabled, and
we can obtain the desired run y by de-stuttering.

Note that the original proof uses one process for every state in the unique
deadset D of the deadlocked local state q, and assumes that in the worst case we
have D ⊇ QB , resulting in the cutoff of |QB |+2 for all process templates with a
given set of states QB . However, if we take into account the guards of transitions
and the individual deadsets, we can obtain smaller cutoffs: in particular, instead
of assuming that the size of some deadset is |QB |, we can compute the maximal
size of actual deadsets maxDU , and replace |QB | by maxDU to obtain a cutoff
of maxDU + 2. Further, note that (since the system is 1-conjunctive) maxDU is
bounded by |GU,B |, so |GU,B |+ 2 also is a cutoff.

Theorem 3. For conjunctive systems and process templates A,B, if process
template U ∈ {A,B} is 1-conjunctive, then 2|GU,B | is a cutoff for local deadlock
detection in a U -process in strongly fair runs.

Proof Sketch. For fair runs, the construction by Außerlechner et al. [9] is
similar as in the previous proof, but additionally we need to ensure that all
processes either move infinitely often or are locally deadlocked. We explain the
original construction in a new way that highlights our insight.

Let x = s0, s1, . . . , sm be a locally deadlocked run of a large system, then
we construct a run y in the cutoff system as follows: First, identify all states

29

q′ ∈ QB such that there exists a locally deadlocked local run in x that eventually
stays in q′. For each of these states, copy this local run, and if q′ is self-blocking
then also copy another local run from x that eventually visits the state q′ and
stays there (note that if q′ is self-blocking then there is at least 2 local runs that
are deadlocked in q′). To ensure that these local runs are locally deadlocked
also in the constructed run, add the states in their deadsets to a set of states D.
Note that only states that are excluded in one of the (1-conjunctive) guards can
be added to D. Note also that for each state, in which we have a deadlocked
process, we have copied up to two local runs from x. Thus, the size of D is
bounded by |GU,B |, and in the worst case we have added 2|GU,B | processes until
now.

Then, let D′ ⊆ D be the set of states for which no process has been added
thus far, and let m′ be the time when all local runs that have been added until
now are locally deadlocked. Copy for each of the states q′ ∈ D′ one local run
from x that is in q′ at time m′, and add a process that stays in initB until time
m′. Then after moment m′ we can let all processes that are in D′ move in the
following way: (i) choose some q′ ∈ D′ (ii) let the process that is in initB move
to q′ (iii) let the process that was waiting in q′ move to initB (iv) repeat with
fair choices of q′ ∈ D′. Since each of these states must appear in x at any time
after m′ without a process being locally deadlocked in the state, there must be
a local path from this state to itself in one of the local runs in x. Since for
fair conjunctive systems we assume that they are initializing, this path must go
through initB , and the construction is guaranteed to work.

Note that overall, for each state in D we have copied either one or two local
runs from x, so the bound for the number of these processes is still 2|GU,B |. Also
note that the additional process that waits in initU is only needed if at least one
of the other processes is not locally deadlocked, thus it does not increase the
needed number of processes. Finally, for the original locally deadlocked process
we can distinguish two cases: i) if we have added 2|GU,B | processes thus far, then
the original process is deadlocked in a state that does not block any transition,
and we can remove it since the run will exhibit a local deadlock regardless, or
ii) if this is not the case, then even with the original process we need at most
2|GU,B | processes overall.

Note that in a 1-conjunctive process template U , we have |GU,B | ≤ |QB | −
1 (the initial state can never be excluded from a guard). Thus, our new cutoffs
are always smaller or equal to the known cutoff from Außerlechner et al. [9].

3.1.3 Local Deadlock Detection: Beyond 1-conjunctive Sys-
tems

While Theorems 2 and 3 improve on the local deadlock detection cutoff for con-
junctive systems in some cases, the results are still restricted to 1-conjunctive
process templates. The reason for this restriction is that when going beyond
1-conjunctive systems, the local deadlock detection cutoff (even without con-
sidering fairness) can be shown to grow at least quadratically in the number of
states or guards, and it becomes very hard to determine a cutoff.

To analyze these cases, define the following:

• Given a process template U ∈ {A,B}, a sequence of local states q1, . . . , qn
is connected if ∀qi ∈ {q1, . . . , qn} : ∃(qi, gi, qi+1) ∈ δU .

30

Table 3.1: Cutoff Results for Conjunctive Systems

EK [43] AJK [10] our work

k-indexed LTL\X non-fair k + 1 k + 1 unchanged

k-indexed LTL\X fair - k + 1 unchanged

Local Deadlock non-fair - |B|+ 1∗ |GU,B |+ 2∗

Local Deadlock fair - 2|B| − 2∗∗ 2|GU,B |∗∗

Global Deadlock 2|B|+ 1 2|B| − 2 2|B| − 2k1 − 2k2 − k3
∗ : systems need to have alternation-bounded local deadlocks (see Sect. 3.1.4)
∗∗ : systems need to be initializing and have alternation-bounded local deadlocks

k1: number of free states
k2: number of non-blocking states that are not free

k3: number of not self-blocking states that are not free or non-blocking

• A cycle is a connected sequence of states q, q1, . . . , qn, q such that ∀qi, qj ∈
{q1, . . . , qn} : qi 6= qj . We denote such a cycle by Cq.

• We abuse the notation and use Cq for the set of states on the cycle Cq.

• A cycle Cq is called free if ∀q′ ∈ Cq \ q ∀g ∈ GCq : q′ ∈ g.

Example 3. If we consider the process template in Figure 3.2 without the
dashed parts, then it exhibits a local deadlock in state ql for 9 processes (in a
strongly fair run), but not for 8 processes: one process has to move to ql, which
has four deadsets: {a, c}, {a, d}, {b, c}, and {b, d}. To preserve a deadlock in ql,
the processes need to alternate between different deadsets while always at least
covering one of them. To achieve this, for each cycle that starts and ends in
states a, b, c, d, we need 2 processes that move along the cycle to keep all guards
of ql covered at all times. Intuitively, one process per cycle has to be in the
state of interest, or ready to enter it, and the other process is traveling on the
cycle, waiting until the guards are satisfied.

Now, consider the modified template (including the dashed parts) where we
i) add two states e, f in a similar way as a, b, c, d, ii) add a new state connected
to ql with guard ¬e∧¬f , and iii) change the guards in the sequence from u1 to
init to ¬a∧¬c∧¬e and ¬b∧¬d∧¬f , respectively. Then we have 6 cycles that
need 2 processes each, and we need 13 processes to reach a local deadlock in ql.

Moreover, consider the modified template where we increase the length of the
path from u1 to init by adding states u3 and u4, such that we obtain a sequence
(u1, u2, u3, u4, init), where transitions alternate between the two guards from
the original sequence. Then, for every cycle we need 3 processes instead of
2, as otherwise they cannot traverse the cycle fast enough to ensure that the
local deadlock is preserved infinitely long. That is, the template with both
modifications now needs 19 processes to reach a local deadlock.

Observe that by increasing the height of the template, we increase the nec-
essary number of processes without increasing the number of different guards.
Moreover, when increasing both the width and height of the template, the num-
ber of processes that are necessary for a local deadlock increases quadratically
with the size of the template.

This example leads us to the following result.

31

init

u2

¬b ∧ ¬d ∧¬e

u1

¬a ∧ ¬c∧¬f

ql

¬a ∧ ¬b

q1

¬c ∧ ¬d

q2
¬e ∧ ¬f

abe c d f

Figure 3.2: Process Template with Quadratic Cutoff for Local Deadlocks

Theorem 4. A cutoff for local deadlock detection for the class of all conjunctive
systems must grow at least quadratically in the number of states. Furthermore,
it cannot be bounded by the number of guards at all.

Proof Sketch. For a system that does exhibit a local deadlock for some size n,
but not for n−1, the cutoff cannot be smaller than n. Thus, the example shows
that a cutoff for local deadlock detection in general is independent of the number
of guards, and must grow at least quadratic in the size of the template.

Cutoffs that can in the best case be bounded by |B|2 will not be very useful
in practice. Therefore, instead of solving the general problem, we identify in
the following a number of cases where the cutoff remains linear in the number
of states or guards.

3.1.4 Systems with Alternation-bounded Local Deadlocks

When comparing the proof of Theorem 2 to Example 3, we note that the rea-
son that the cutoff in Theorem 2 does not apply is the following: while in
1-conjunctive systems every state has a unique deadset, in the general case a
state may have many deadsets, and the structure of the process template may
require infinitely many alternations between different deadsets to preserve the
local deadlock. Moreover, as shown in the example, the number of processes
needed to alternate between deadsets may increase with the size of the template,
even if the set of guards (and thus, the number of different deadsets) remains
the same.

However, we can still obtain small cutoffs in some cases, based on the fol-
lowing observation: even if states have multiple deadsets, an infinite alternation
between them may not be necessary to obtain a local deadlock. In the following,
we will first show that for systems where infinite alternation between different
deadsets is not necessary, the cutoff for 1-conjunctive systems applies, and then
give a number of sufficient conditions to identify such systems.

32

Alternation-bounded Local Deadlocks. We say that a run x = s0, s1, . . .
where process p is locally deadlocked in state q is alternation-bounded if there
is a moment m and a single set D ⊆ QB such that for all m′ > m: D ⊆
Set(sm′(P \ q)) and for some qA ∈ QA, D ∪ qA is a deadset of q. Intuitively,
this means the B-states in the deadset that preserves the deadlock only change
finitely often.

For q ∈ Q, we say that q has alternation-bounded local deadlocks for c ∈ N
if the following holds for all n ≥ c:

if A‖Bn has a local deadlock in q
then A‖Bn has an alternation-bounded local deadlock in q.

Let GU,B∗ be the set of guards of U that exclude at least one state of B, i.e.,
that are of the form g = Q \ {Q1} with Q1 ⊆ {QA ∪QB} and Q1 ∩QB 6= ∅.

Theorem 5. For conjunctive systems and process templates A,B, the cutoffs
for non-fair runs is |GU,B∗|+ 2, and the cutoff for strongly fair runs is 2|GU,B∗|
if every q ∈ Q has alternation-bounded local deadlocks for the cutoff value. In
particular, this implies that the parameterized local deadlock detection problem
is decidable.

Proof Sketch. Suppose in run x of A‖Bn, with n greater than the cutoff
value, process p is locally deadlocked in local state q ∈ Q, and q has alternation-
bounded local deadlocks. Then there exists an alternation-bounded run x′ of
A‖Bn in which p is locally deadlocked in q. That is, either the local deadlock
in x′ eventually is preserved by a sequence of deadsets with unique restriction
to B-states, or a number of processes that is bounded by the size of the largest
deadset is sufficient to preserve the local deadlock in q. In the latter case, we
are done. In the former case, based on the set D, the run x′ can be simulated
with the same constructions as in the proofs of Theorems 2 and 3.

Sufficient Conditions for Alternation-bounded Local Deadlocks. In the
following, we will identify four sufficient conditions that imply that a state q has
alternation-bounded local deadlocks, and that can easily be checked directly on
the process template.

Effectively 1-conjunctive states. We say that a state q is effectively 1-
conjunctive if it either has only 1-conjunctive guards or is free.

Lemma 1. If q ∈ Q is effectively 1-conjunctive, then it has alternation-bounded
local deadlocks for c = 1.

Proof Sketch. If q is 1-conjunctive, then it has alternation-bounded local
deadlocks since it has only a single deadset. If q is free, then a local deadlock
in q is not possible, so the condition holds vacuously.

In the reader-writer example of Figure 3.1, all states except tw are effectively
1-conjunctive.

33

Relaxing 1-conjunctiveness. For q ∈ Q, let Gq be the set of non-trivial
guards in transitions from q. We say that state q is relaxed 1-conjunctive if Gq
only contains guards of the form Q \ {q1, . . . , qk}, where either

• at most one of the qi is from QB , or

• whenever more than one qi is from QB , then Gq must also contain a guard
of the form Q\{q′1, . . . , q′k, qi} for one of these qi and where all q′j are from
QA.

Lemma 2. If q ∈ Q is relaxed 1-conjunctive, then it has alternation-bounded
local deadlocks for c = 1.

Proof Sketch. Note that the guards we allow on transitions from a relaxed
1-conjunctive state each have at most one state from QB that can block the
transition. Thus q does not necessarily have a unique deadset, but for each
deadset D the restriction to states of B is unique. Thus, every run that is
locally deadlocked in q will be alternation-bounded.

Alternation-free. We say that a state q ∈ Q is alternation-free if the follow-
ing condition holds: if D = {q′ | ∀g ∈ Gσ : q′ 6∈ g}, i.e., if D is the set of local
states that disables the k-conjunctive guards with k > 1 in transitions from q,
then there is at most one q′ ∈ D for which the following does not hold:

For all cycles Cq′ = q′, . . . , q′ ∈ U :

• q ∈ Cq′ , or

• for all g ∈ GCq′ : q′ 6∈ g, or there is a g′ ⊇ g with g′ ∈ Gq.

Intuitively, this means that there is at most one state q′ ∈ D such that you can
leave it and return to it without breaking the local deadlock — and at least two
such states would be needed to alternate between different deadsets.

In the reader-writer example of Figure 3.1 state tw is alternation-free: i)
{w, r} is the set of states that disables the only guard that is not 1-conjunctive,
and ii) all cycles that start and end in w contain also tw.

The following lemma directly follows from the explanation above.

Lemma 3. If q ∈ Q is alternation-free, then it has alternation-bounded local
deadlocks for c = 1.

Process templates with freely traversable lassos. While the three con-
ditions above guarantee the existence of a fair alternation-bounded run if the
original run was fair, the following condition in general returns a run that is not
strongly fair. A lasso lo is a connected sequence of local states q0, . . . , qi, . . . , qk
such that q0 = init and qi, . . . , qk is a cycle. We denote by Glo the set of guards of
the transitions on lo. We say that a lasso lo is freely traversable with respect to
a state q ∈ Q if it does not contain q and for every deadset D of q, every g ∈ Glo
contains D ∪ {q}. Intuitively, these conditions ensure that lo can be executed
after the system has reached any of the (minimal) deadlock configurations for
q.

Lemma 4. If there exists a freely traversable lasso in B with respect to q ∈ Q,
then q has alternation-bounded local deadlocks in non-fair runs for c = maxDU+
2.

34

Proof Sketch. Suppose there exists a freely traversable lasso with respect to
q, and x is a run where process p is locally deadlocked in q, where p is not
enabled anymore after time m. Then we obtain an alternation-bounded locally
deadlocked run x′ by picking a deadset D of q with D ⊆ Set(sm(P \ p)) and for
every q′ ∈ D a local run from x that is in q′ at time m. Since n ≥ c = maxDU+2,
there is at least one other process in A‖Bn. We replace the local run of this
process with a local run that stays in initB until m, and after m is the only
process that moves, along the freely traversable lasso we assumed to exist. Any
further local runs stay in initU forever.

Theorem 5 and Lemmas 1 to 4 allow us to analyze the process templates,
state by state, and to conclude the existence of a small cutoff for local deadlock
detection in certain cases. The lemmas provide sufficient but not necessary
conditions for the existence of alternation-bounded cutoffs. They provide a
template for obtaining small cutoffs in certain cases, and for a given application
they may be refined depending on domain-specific knowledge.

3.1.5 Local Deadlock Detection under Infinite Alternation

For systems that do not have alternation-bounded local deadlocks, it is very dif-
ficult to obtain cutoff results. For example, for systems that have no restrictions
on the guards, one can show that a cutoff based on the number of guards in
general cannot exist (Example 3). Moreover, the cutoff grows at least linearly in
the number of states, or, more precisely, in the number of alternations between
different deadsets that are necessary to traverse a cycle Cq for a state q from a
deadset.

3.2 Verification of the Reader-Writer Example

We consider the reader-writer in Figure 3.1, and show how our new results allow
us to check correctness, find a bug, and check a fixed version.

With our results, we can for the first time check the given liveness property in
a meaningful way, i.e., under the assumption of fair scheduling. Since all states
in the process template have alternation-bounded local deadlocks for c = 1, by
Theorems 5 the local deadlock detection cutoff for the system is 2|GB,B | = 4.
No cutoff for this problem was known before. Moreover, compared to previous
results we reduce the cutoff for global deadlock detection by recognizing that
k1 = 3 states can never be deadlocked, and k2 = 2 additional states never appear
in any guard. This reduces the cutoff to 2|B| − 2k1 − 2k2 = 10− 6− 4 = 0, i.e.,
we detect that there are no global deadlocks without further analysis.

However, checking the system for local deadlocks shows that a local deadlock
is possible: a process may forever be stuck in tw if the other processes move in
a loop (init, tr, r)ω (and always at least one process is in r). To fix this, we can
add an additional guard ¬tw to the transition from init to tr, as shown in the
process template in Figure 3.3. For the resulting system, our results give a local
deadlock detection cutoff of 2|GB,B | = 6, and a global deadlock detection cutoff
of 2|B| − 2k1 − 2k2 − k3 = 10− 6− 2− 1 = 1 (where k3 is the number of states
that do appear in guards and could be deadlocked themselves, but do not have
a transition that is blocked by another process in the same state).

35

initr

tr

¬tw¬w

w

tw

¬w ∧ ¬r

Figure 3.3: Error-Free Reader Writer Protocol

3.3 New Cutoff Results for Disjunctive Systems

In this section, we state our new cutoff results for disjunctive systems, and
compare them to the previously known results in Table 3.2. Moreover, we show
two extensions of the class of problems for which cutoffs are available:

1. systems where transitions are guarded with a conjunction of disjunctive
guards (Section 3.3.4), and

2. two important classes of specifications that cannot be expressed in prenex
indexed temporal logic (Section 3.3.5).

To state our results, we need the following additional definitions. Fix process
templates A,B. Let BG = {q ∈ QB | ∃g ∈ G : q ∈ g}, i.e., the set of B-states
that appear on a guard. For a state q ∈ QB in a disjunctive system, define
Enableq = {q′ ∈ Q | ∃(q, g, q′′) ∈ δB : q′ ∈ g}, i.e., the set of states of A and B
that enable a transition from q.

3.3.1 Linear-Time Properties

In this section we consider k-indexed properties Φk of the form

∀i1, . . ., ik.Ah(A,Bi1 , . . . , Bik)

or

∀i1, . . ., ik.Eh(A,Bi1 , . . . , Bik)

where h(A,Bi1 , . . . , Bik) is an LTL\X formula over atomic propositions from
QA and indexed propositions from QB ×{i1, . . . , ik}. As mentioned in Chapter
2 by symmetry of guarded protocols we have:

A‖Bn|=∀i1, . . ., ik.Ah(A,Bi1 , . . ., Bik) iff A‖Bn |= Ah(A,B1, . . . , Bk).

Theorem 6. For disjunctive systems, process templates A,B, and k-indexed
properties Φk:

• |G|+ k + 1 and |BG |+ k + 1 are cutoffs in non-fair runs,

• |BG |+ |G|+ k and 2|BG |+ k are cutoffs in unconditionally fair runs.

We prove the theorem by proving two lemmas. We will use some of the
notations that are defined in Section 2.1.1.

36

Lemma 5 (Monotonicity Lemma). Let A, B be disjunctive process templates,
n ≥ k, and Φk a k-indexed property. Then:

(A‖Bn 6|= Φk)⇒
(
A‖Bn+1 6|= Φk

)
Proof. Let x be a run of A‖Bn that violates Φk, then we construct a run y of
A‖Bn+1 that also violates Φk as follows: Let y(A) = x(A) and y(Bj) = x(Bj)
for all Bj ∈ {B1, . . . , Bn} and let the new process Bn+1 copy one of the B-
processes of A‖Bn, i.e., y(Bn+1) = x(Bi) for some i ∈ {1, . . . , n}. Copying a
local run violates the interleaving semantics as two processes will be moving at
the same time. To solve this problem, we split every transition (s′l, s

′
l+1) where

the interleaving semantics is violated by Bi and Bn+1 executing local transitions
(qi, g, q

′
i) and (qn+1, g, q

′
n+1), respectively. To do this, replace (s′l, s

′
l+1) with

two consecutive transitions (s′l, u)(u, s′l+1), where (s′l, u) is based on the local
transition (qi, g, q

′
i) and (u, s′l+1) is based on the local transition (qn+1, g, q

′
n+1).

Note that both of these local transitions are enabled in the constructed run y
since the transition (qi, g, q

′
i) is enabled in the original run x. Hence, we have

y ∈ A‖Bn+1 and A‖Bn+1 6|= Φk Moreover, we have run y is unconditional fair
if and only if the run x is unconditional fair.

Lemma 6 (Bounding Lemma). Let A, B be disjunctive process templates, n ≥
c, and Φk a k-indexed property. Then:

(A‖Bn 6|= Φk)⇒ (A‖Bc 6|= Φk)

Proof. Let x be a run of A‖Bn that violates Φk. Emerson and Kahlon [43]
showed how to construct a non-fair run y in the cutoff system (A‖Bc) that does
not satisfy Φk. The run y includes the local runs x(A), x(B1), . . . , x(Bk), and
additional runs that ensure that all the transitions are enabled: for every state
q ∈ QB that appears in x and the local run that first visits q, we add the prefix
of that local run up to q, and then let it stay in q forever. One additional local
run may have to be copied from x to ensure that the resulting run is infinite.
Thus, the produced cutoff is c = |B|+ k + 1 in non-fair runs.

Based on the above and an analysis of the process template B, we can find
better cutoffs for non-fair runs:
Let x be a run of A‖Bn. We show first how to construct a non-fair run y of A‖Bc
such that x(A,B1, . . . , Bk) and y(A,B1, . . . , Bk) are equivalent up to stuttering.

Construction 1:

1. y(A) = x(A), and ∀l ∈ {1, . . . , k} y(Bl) = x(Bl).

2. (Flooding): To every q ∈ VisitedBG (x), devote one process Biq that
copies Bfirstq until the time fq, then stutters in q forever. Formally:

y(Biq) = x(Bfirstq)[0 :∞]

3. Establish interleaving semantics.

After copying the runs needed to reproduce the counter example in step 1,
step 2 statically checks which states of the run do appear in a guard (VisitedBG (x))),

37

and conclude that only those need to be copied. This reduces the cutoff to
c = |BG | + k + 1. Furthermore, as a second option and since our goal is to
enable all transitions, it is also sufficient to only copy a local run for one rep-
resentative state of each guard (the one that is visited first in x). In this way,
we need at most one additional process per guard in B, i.e., c = |G| + k + 1
also is a cutoff for non-fair runs. Note that the last step (Establish interleaving
semantics) is required due to the fact that we might copy a local run of a process
multiple times.

The following construction, introduced by Außerlechner et al. [10], builds on
the steps explained above, and additionally preserves unconditional fairness in
a given run.

Construction 2:

1. y(A) = x(A), and ∀l ∈ {1, . . . , k} y(Bl) = x(Bl).

2. (Flooding with evacuation): To every q ∈ Visitedfin(x), devote one
process Biq that copies Bfirstq until the time fq, then stutters in q until
time lq where it starts copying Blastq forever. Formally:

y(Biq) = x(Bfirstq)[0 : fq].(q)
lq−fq .x(Blastq)[lq + 1 :∞]

3. (Flooding with fair extension): For every q ∈ Visitedinf(x), let Binfq be
a process that visits q infinitely often in x. We devote to q two processes
Biq1 and Biq2 that both copy Bfirstq until the time fq, and then stutter in

q until Binfq reaches q for the first time. After that, let Biq1 and Biq2 copy

Binfq in turns as follows: Biq1 copies Binfq until it reaches q while Biq2
stutters in q, then Biq2 copies Binfq until it reaches q while Biq1 stutters
in q and so on.

4. Establish interleaving semantics as in the proof of Lemma 7.

This construction gives a cutoff of c = 2|B|+ k − 1, since in the worst case
all states appear infinitely often and we need two copies for each, but at least
one of them must also appear infinitely often in the k processes that have to
satisfy the specification.

However, similarly to the non-fair case, an analysis of the template gives us
better cutoffs. As a first approximation, we can again limit the construction
to states in BG , and obtain the cutoff c = 2|BG | + k (now we can not assume
that one of the infinite states in the constructed run also appears in the k
processes). Moreover, from the states in BG that appear infinitely often we
can again choose one representative for each guard, and only add two local
runs for each representative. This does not work for the processes that are
visited finitely often, since we need to move them into an infinitely visited state
to ensure fairness, and then need a different representative. To compute the
cutoff, suppose f states from BG are visited finitely often, and i states infinitely
often. From the latter, there are r states for which we added two local runs,
with r ≤ |G| and r ≤ i. Then we need at most f + 2r + k local runs (including
the k processes that satisfy the specification). However, we have f ≤ |BG | − i,
and therefore f + 2r + k ≤ |BG | − i+ 2r + k ≤ |BG |+ r + k ≤ |BG |+ |G|+ k.

38

3.3.2 Global Deadlock Detection

Let N = {q ∈ QB | q ∈ Enableq}, and let N ∗ be the maximal subset (wrt.
number of elements) of N such that ∀qi, qj ∈ N ∗ : qi /∈ Enableqj ∧ qj /∈ Enableqi .

Theorem 7. For disjunctive systems and process templates A,B, |BG |+ |N ∗|
is a cutoff for global deadlock detection.

Proof Sketch. To construct a globally deadlocked run in the cutoff system,
for each state from N that appears in the deadlock, we copy the according local
run. To simulate the remaining part of x, we use the same construction as for
fair runs in the proof of Theorem 6, except that local states that appear in the
deadlock are considered to be visited infinitely often (and we don’t need the
fair extension of runs after reaching the state). Thus, the resulting run will be
globally deadlocked, and all transitions up to the deadlock will be enabled. The
number of local runs is bounded by |N |+ f + i, where i is the number of states
from |BG | that appear in the deadlock and are not in N , and f is the number
of states from |BG | that appear in the run, but not in the deadlock. Since
f + i ≤ |BG | and N ∗ is the maximal subset of N that can appear together in a
global deadlock, the number of needed local runs is bounded by |N ∗|+ |BG |.

Remark. To compute N ∗ exactly, we need to find the smallest set of states
in N that do not satisfy the additional condition. This amounts to finding the
minimum vertex cover (MVC) for the graph with vertices from N and edges
from qi to qj if qi ∈ Enableqj .

3.3.3 Local Deadlock Detection

Theorem 8. For disjunctive systems and process templates A,B:

• m+ |G|+ 1 is a cutoff for local deadlock detection in non-fair runs, where
m = maxq∈Q∗B{|Enableq|} for Q∗B = {q ∈ QB | |Enableq| < |B|},

• |BG | + |G| + 1 and 2|BG | + 1 are cutoffs for local deadlock detection in
unconditionally fair runs.

Proof Sketch. Based on what we have already shown, the fair case is simpler:
we copy the local runs of A and the deadlocked process, and for the other
processes use the same construction as in the fair case of Theorem 6. The local
deadlock is preserved since states that appear finitely often in the original run
also appear finitely often in the constructed run, and the cutoffs are 2|BG | + 1
and |BG |+ |G|+ 1.

For the non-fair case, we use a combination of the constructions for the fair
and non-fair case from Theorem 6: if in run x a process is locally deadlocked in
local state q, then for states in Enableq that appear in x we use the construction
for finitely appearing states in fair runs. For the remaining states, we use the
non-fair construction, i.e., we find one representative per guard and stay there
forever, except that representatives now can never be from Enableq. The con-
struction ensures that all transitions that are taken are enabled, and eventually
all transitions from q are disabled. Since m gives a bound on the number of
states that can be in Enableq, the cutoff we get is m+ |G|+ 1.

39

Table 3.2: Cutoff Results for Disjunctive Systems with m < |B|, |N ∗| < |B|,
and min = min(|G|, |BG |)

EK [43] AJK [10] our work

k-indexed LTL \X non-fair |B|+ k + 1 |B|+ k + 1 min+ k + 1
k-indexed LTL \X fair - 2|B|+ k − 1 |BG |+min+ k
Local Deadlock non-fair - |B|+ 2 m+ |G|+ 1
Local Deadlock fair - 2|B| − 1 |BG |+min+ 1
Global Deadlock - 2|B| − 1 |B|+ |N ∗|

3.3.4 Systems with Conjunctions of Disjunctive Guards

We consider systems where a transition can be guarded by a set of sets of states,
interpreted as a conjunction of disjunctive guards. I.e., a guard {D1, . . . , Dn}
is satisfied in a given global state if for all i = 1, . . . , n, there exists another
process in a state from Di.

We observe that for this class of systems, most of the original proof ideas
still work. For results that depend on the number of guards, we have to count
the number of different conjuncts in guards.

Theorem 9. For systems with conjunctions of disjunctive guards, cutoff results
for disjunctive systems that do not depend on the number of guards still hold
(first and second column of results in Table 3.2, and cutoffs in the third column
that only refer to |B|G and constants).

Cutoff results that depend on the number of guards (last column of Table 3.2)
hold if we consider the number of conjuncts in guards instead. For results that
additionally refer to some measure of the sets of enabling states (m and |N ∗|, re-
spectively), we obtain a valid cutoff for systems with conjunctions of disjunctive
guards if we replace this measure by |B| − 1.

In particular, the existence of a cutoff implies that the respective PMCP and
parameterized deadlock detection problems are decidable.

Proof Ideas. The cutoff results that are independent of the number of guards
still hold since all of the original proof constructions still work. To simulate a
run x of a large system in a run y the cutoff system, one task is to make sure that
all necessary transitions are enabled in the cutoff system. The construction that
is used to do this works for conjunctions of disjunctive guards just as well. By
a similar argument, deadlocks are preserved in the same way as for disjunctive
systems.

For cutoffs that depend on the number of guards, transitions with conjunc-
tions of disjunctive guards require us to use one representative for each conjunct
in a guard, in the construction explained in the proof of Theorem 6.

Finally, the reductions of the cutoff based on the analysis of states that can
or cannot appear together in a deadlock do not work in these extended systems,
and we have to replace m and |N ∗| by |B| − 1 in the cutoffs. The reason is
that Enableq is now not a set of states anymore, but a set of sets of states. A
more detailed analysis based on this observation may be possible, but is still
open.

40

3.3.5 Simultaneous Reachability of Target States

An important class of properties for parameterized systems asks for the reach-
ability of a global state where all processes of type B are in a given local state
q (compare Delzanno et al. [37]). This can be written in indexed LTL\X as
F ∀i.qi, but is not expressible in the fragment where index quantifiers have to
be in prenex form. We denote this class of specifications as Target. Similarly,
repeated reachability of q by all states simultaneously can be written GF∀i.qi,
and is also not expressible in prenex form. We denote this class of specifications
as Repeat-Target.

Theorem 10 (Disjunctive Target and Repeat-Target). For disjunctive
systems: |B| is a cutoff for checking Target and Repeat-Target.

In particular, the PMCP with respect to Target and Repeat-Target in
disjunctive systems is decidable.

Proof Ideas. We can simulate a run x in a large system where all processes
are in q at time m in the cutoff system by first moving one process into each
state that appears in x before m, in the same order as in x. To make all
processes reach q, we move them out of their respective states in the same order
as they have moved out of them in x. For this construction, we need at most
|B| processes.

If in x the processes are repeatedly in q at the same time, then we can
simulate this also in the cutoff system: if m′ > m is a point in time where this
happens again, then we use the same construction as above, except that we
consider all states that are visited between m and m′, and we move to these
states from q instead from init. The correctness argument is the same, however.

Finally, if the run with Repeat-Target should be fair, then we do not
select any m′ with the property above, but we choose it such that all processes
move between m and m′. If the original run x is fair, then such an m′ must
exist.

3.4 Conclusion

We have shown that better cutoffs for guarded protocols can be obtained by an-
alyzing properties of the process templates, in particular the number and form
of transition guards. We have further shown that cutoff results for disjunctive
systems can be extended to a new class of systems with conjunctions of disjunc-
tive guards, and to specifications Target and Repeat-Target, that have not
been considered for guarded protocols before.

For conjunctive systems, previous works have treated local deadlock detec-
tion only for the restricted case of systems with 1-conjunctive guards. We have
considered the general case, and have shown that it is very difficult — the cutoffs
grow independently of the number of guards, and at least quadratically in the
size of the process template. To circumvent this worst-case behavior, we have
identified a number of conditions under which a small cutoff can be obtained
even for systems that are not 1-conjunctive.

By providing cutoffs for several problems that were previously not known to
be decidable, we have in particular proved their decidability.

41

Our work is inspired by applications in parameterized synthesis [18, 61],
where the goal is to automatically construct process templates such that a given
specification is satisfied in systems with an arbitrary number of components. In
this setting, deadlock detection and expressive specifications are particularly
important, since all relevant properties of the system have to be specified.

42

Chapter 4

Promptness and Bounded
Fairness

The majority of the existing approaches for parameterized model checking only
handle safety properties, or their support for liveness properties is restricted.
One of the main reasons is that global fairness properties are either not con-
sidered or can’t be expressed within the supported logic (cp. Außerlechner et
al. [10]). In this chapter we consider liveness properties, including a quantita-
tive version of liveness called promptness and we investigate cases in which we
can guarantee that a parameterized system satisfies such properties. The idea
of promptness is that a desired event shouldn’t just occur at some time in the
future, but there need to exist a bound on the time that may pass before it
happens.

We consider specifications in Prompt-LTL [76], which is a logic that extends
LTL with the prompt eventuality operator that puts a symbolic bound on the
satisfaction of the eventuality. Additionally, the model checking problem with
respect to Prompt-LTL specifications checks if there exists a value for the sym-
bolic bound such that the property is guaranteed to be satisfied with respect to
this value.

In several settings, adding promptness comes totally free in terms of asymp-
totic complexity [76], for instance, model checking and synthesis of fixed-size
systems [68]. It should be noted that Prompt-LTL can be viewed as a fragment
of parametric LTL, a logic introduced by Alur et al. [6]. However, given that
many decision problems for parametric LTL, including model checking, can be
reduced to those for Prompt-LTL, we can limit our focus to the simpler logic.
Hence, in this chapter we study parameterized model checking for Prompt-LTL
and demonstrate that in several cases adding promptness is totally free for this
problem.

Particularly, since it is common in the analysis of concurrent systems, we
abstract concurrency by an interleaving semantics. For this reason, we restrict
our specifications to Prompt-LTL\X, an extension of the stutter-insensitive logic
LTL\X that doesn’t include the next-time operator (similarly, in Chapter 3, we
considered LTL\X instead of LTL). The behavior of parameterized concurrent
systems with respect to Prompt-LTL\X specifications has not been investigated
in detail before and brings new challenges.

43

Figure 4.1: Conjunctive Reader-Writer protocol

initr

tr

∀¬w

w

tw

∀¬{w, r}

Example. For instance, consider the reader-writer conjunctive system in Fig-
ure 4.1 which simulates access to shared data between processes.

For such systems, as explained in Chapter 3, there are cutoff results for
parameterized verification of properties from LTL\X, e.g.,

∀i.G ((tri → Fri) ∧ (twi → Fwi)) ,

In this chapter we investigate whether the same cutoffs still hold if we replace
the LTL eventually operator F above with the prompt-eventually operator Fp,
while imposing a bounded fairness assumption on the scheduler.

Outline of the Chapter. This chapter is organized as follows: In Section
4.1, we introduce Prompt-LTL\X and show that it is stutter sensitive. Then we
propose the notion Bounded Stutter Equivalence and show that Prompt-LTL\X
is bounded stutter insensitive. In Section 4.2, we present our cutoff results
for disjunctive systems with respect to specifications in Prompt-LTL\X and in
LTL\X. In Section 4.3, we investigate cutoff results for conjunctive systems
under bounded fairness and stutter-insensitive specifications with promptness.
In Section 4.4, we introduce a system model for token passing systems and then
show how to obtain cutoff results under Prompt-LTL\X. Finally, Section 4.5
draws some conclusions.

4.1 Prompt-LTL\X and Bounded Stutter Equiv-
alence

We consider concurrent systems that are represented as an interleaving compo-
sition of finite-state transition systems, possibly with synchronizing transitions
where multiple processes take a step at the same time. In such systems, a pro-
cess may stay in the same state for many global transitions while other processes
are moving. From the perspective of that process, these are stuttering steps.

Stuttering is a well-known phenomenon, and temporal languages that include
the next-time operator X are stutter sensitive: they can require some atomic
proposition to hold at the next moment in time, and the insertion of a stuttering
step may change whether the formula is satisfied or not. On the other hand,
LTL\X, which does not have the X operator, is stutter-insensitive: two words
that only differ in stuttering steps cannot be distinguished by the logic [11].

In the following, we introduce Prompt-LTL\X, an extension of LTL\X, and
investigate its properties with respect to stuttering.

44

4.1.1 Prompt-LTL\X
Let AP be the set of atomic propositions. The syntax of Prompt-LTL\X for-
mulas over AP is given by the following grammar:

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | Fpϕ | ϕUϕ | ϕRϕ, where a ∈ AP

The semantics of Prompt-LTL\X formulas is defined over infinite words w =
w0w1 . . . ∈ (2AP)ω, positions i ∈ N, and bounds k ∈ N. The semantics of the
prompt-eventually operator Fp is defined as follows:

(w, i, k) |= Fpϕ iff there exists j such that i ≤ j ≤ i+ k and (w, j, k) |= ϕ.

All other operators ignore the bound k and have the same semantics as in LTL,
moreover we define F and G in terms of U and R as usual.

Example Let’s examine meticulously the reader-writer protocol in Figure 4.1 (in
this example we are considering the fixed size system that consists of a sin-
gle reader and a single writer), it is easy to see that the system satisfies the
Prompt-LTL\X formula G(tw → Fpw). However the system doesn’t satisfy the
formula Fpw due to the fact that, no matter what bound k we choose, a run of
the protocol can keep traversing the sequence of states (init→ tr → r → init)
for at least k + 1 steps and then move to tw and w.

4.1.2 Prompt-LTL and Stuttering

Our first observation is that Prompt-LTL\X is stutter sensitive: to satisfy the
formula ϕ = GFpq with respect to a bound k, q has to appear at least once in ev-
ery k steps. Given a word w that satisfies ϕ for some bound k, we can construct
a word that does not satisfy ϕ for any bound k by introducing an increasing
(and unbounded) number of stuttering steps between every two appearances of
q. In the following, we show that Prompt-LTL\X is stutter insensitive if and
only if there is a bound on the number of consecutive stuttering steps.

Bounded Stutter Equivalence. A finite word w ∈ (2AP)+ is a block if
∃α ⊆ AP such that w = α|w|. Two blocks w,w′ ∈ (2AP)+ are d-compatible if
∃α ⊆ AP such that w = α|w|, w′ = α|w

′|, |w| ≤ d · |w′| and |w′| ≤ d · |w|. Two
infinite sequences of blocks w0w1w2 . . ., w

′
0w
′
1w
′
2 . . . are d-compatible if wi, w

′
i

are d-compatible for all i.
Two words w,w′ ∈ (2AP)ω are d-stutter equivalent, denoted w ≡d w′, if

they can be written as d-compatible sequences of blocks. They are bounded
stutter equivalent if they are d-stutter equivalent for some d. We denote by ŵ a
sequence of blocks that corresponds to a word w.

Example. Consider the two infinite local runs w and w′ of the reader-writer
protocol depicted in Figure 4.1:

w = init, tr, r, r, (init, tw,w)ω

w′ == init, init, tr, tr, r, r, r, r, (init, init, tw, tw,w,w)ω

Then w and w′ are 2-stutter equivalent.

45

Given an infinite sequence of blocks ŵ = w0, w1, w2 . . ., let N ŵ
i = {

∑i−1
l=0 |wl|,

. . . ,
∑i−1
l=0 |wl|+|wi|−1} be the set of positions of the ith block. Given a position

n ∈ N, there is a unique i such that n ∈ N ŵ
i .

To prove that Prompt-LTL\X is bounded stutter insensitive, i.e., it cannot
distinguish two words that are bounded stutter equivalent, we define a function
that maps between positions in two d-compatible sequences of blocks: given two
infinite d-stutter equivalent words w,w′ such that ŵ, ŵ′ are d-compatible, define
the function f : N → 2N where: f(j) = N ŵ′

i ⇔ j ∈ N ŵ
i . Note that ∀j′ ∈ f(j)

we have w(j) = w′(j′), where w(i) denotes the ith symbol in w. For an infinite
word w, let w[i,∞) denote its suffix starting at position i, and w[i : j] its infix
starting at i and ending at j. Then we can state the following.

Remark 2. Given two words w and w′, if w ≡d w′, then ∀j ∈ N ∀j′ ∈ f(j) :
w[j,∞) ≡d w′[j′,∞).

Now, we can state our first theorem.

Theorem 11 (Prompt-LTL\X is Bounded Stutter Insensitive). Let w,w′ be
d-stutter equivalent words, ϕ a Prompt-LTL\X formula, and f as defined above.
Then ∀i, k ∈ N:

(w, i, k) |= ϕ ⇒ ∀j ∈ f(i) : (w′, j, d · k) |= ϕ

Proof. The proof works inductively over the structure of ϕ. Let ŵ = w0, w1, . . .
and ŵ′ = w′0, w

′
1, . . . be two d-compatible sequences of w and w′. We denote by

ni,mi the number of elements inside Nw
i , N

w′

i respectively.

Case 1: ϕ = a. (w, i, k) |= ϕ ⇔ a ∈ w(i). By definition of f we have
∀j ∈ f(i) : w(i) = w′(j), and thus ∀j ∈ f(i) : (w′, j, d · k) |= ϕ.

Case 2: ϕ = ¬a. (w, i, k) |= ϕ ⇔ a 6∈ w(i). By definition of f we have
∀j ∈ f(i) : w(i) = w′(j), and thus ∀j ∈ f(i) : (w′, j, d · k) |= ϕ.

Case 3: ϕ = ϕ1 ∗ ϕ2 with ∗ ∈ {∧,∨}. (w, i, k) |= ϕ ⇔ (w, i, k) |= ϕ1 ∗
(w, i, k) |= ϕ2. By induction hypothesis we have: ∀j ∈ f(i) (w′, j, d · k) |= ϕ1 ∗
∀j ∈ f(0) (w′, j, d · k) |= ϕ2 ⇔ (w′, j, d · k) |= ϕ.

Case 4: ϕ = Fpϕ. (w, i, k) |= Fpϕ ⇔ ∃e, x : i ≤ e ≤ i + k, e ∈ Nw
x , and

(w, e, k) |= ϕ where (
∑x−1
l=0 nl) ≤ e < (

∑x
l=0 nl). Then by induction hypothesis

we have: ∀j ∈ f(e) (w′, j, d ·k) |= ϕ. Let s be the smallest position in f(e), then

s =
∑x−1
l=0 ml. There exists y ∈ N s.t. i ∈ Nw

y then s =
∑y−1
l=0 ml +

∑x−1
l=y ml

≤
∑y−1
l=0 ml+

∑x−1
l=y nl.d ≤

∑y−1
l=0 ml+d.(

∑x−1
l=y nl) ≤

∑y−1
l=0 ml+k ·d (note that

i ∈ Nw
y and (w, i, k) |= Fpϕ). As

∑y−1
l=0 ml is the smallest position in f(i), then

∀j ∈ f(i) : (w′, j, d · k) |= Fpϕ.

Case 5: ϕ = ϕ1Uϕ2. (w, i, k) |= ϕ1Uϕ2 ⇔ ∃j ≥ i : (w, j, k) |= ϕ2 and
∀e < j : (w, e, k) |= ϕ1. Then, by induction hypothesis we have: ∀e < j
∀l ∈ f(e) : (w′, l, d · k) |= ϕ1 and ∀l ∈ f(j) : (w′, l, d · k) |= ϕ2, therefore
∀j ∈ f(i) : (w′, j, d · k) |= ϕ1Uϕ2

Case 6: ϕ = ϕ1Rϕ2. (w, i, k) |= ϕ then either ∀e ≥ i (w, e, k) |= ϕ2 or
∃e ≥ i : (w, e, k) |= ϕ1 ∧ ∀j ≤ e (w, j, k) |= ϕ2

46

• Subcase: ∀e ≥ i (w, e, k) |= ϕ2. By induction hypothesis we have ∀e ≥ i
∀j ∈ f(e) : (w′, j, d · k) |= ϕ2 then ∀j ∈ f(i) : (w′, j, d · k) |= ϕ

• Subcase: ∃e ≥ i : (w, e, k) |= ϕ1 ∧ ∀j ≤ e (w, j, k) |= ϕ2. Then, by
induction hypothesis , we have: ∀l ∈ f(e) : (w′, l, d · k) |= ϕ1 and ∀j ≤ e
∀l ∈ f(e) : (w′, l, d · k) |= ϕ2, therefore ∀j ∈ f(0) : (w′, j, d · k) |= ϕ

Our later proofs will be based on the existence of counterexamples to a given
property, and will use the following consequence of Theorem 11.

Corollary 1. Let w,w′ be d-stutter equivalent words, ϕ a Prompt-LTL\X for-
mula, and f as defined above. Then ∀k ∈ N:

(w, i, k) 6|= ϕ ⇒ ∀j ∈ f(i) : (w′, j, k/d) 6|= ϕ

4.1.3 Bounded-Fair Systems with Prompt-LTL Specifica-
tions

We consider systems that keep track of bounded fairness explicitly by running
in parallel to A‖Bn one counter for each process. In a step of the system where
process p moves, the counter of p is reset, and all other counters are incremented.
If one of the counters exceeds the bound b, the counter goes into a failure state
from which no transition is enabled. We call such a system a bounded-fair
system, and denote it A‖bBn.

A path of a bounded-fair system A‖bBn is given as x = (s0, b0)(s1, b1) . . .,
and extends a path of A‖Bn by valuations bi ∈ {0, . . . , b}n+1 of the counters.
Note that a run (i.e., a maximal path) of A‖bBn is finite iff either it is deadlocked
(in which case also its projection to a run of A‖Bn is deadlocked) or a failure
state is reached. Thus, the projection of all infinite runs of A‖bBn to A‖Bn are
exactly the globally b-bounded fair runs of A‖Bn.

From now on, we write x ∈ A‖Bn to denote that x is a run of A‖Bn.

Prompt-LTL\X Specifications. Given a system A‖Bn, we consider specifi-
cations over AP = QA ∪ (QB × {1, . . . , n}), i.e., states of processes are used as
atomic propositions. For i1, . . . , ic ∈ {1, . . . , n}, we write ϕ(A,Bi1 , . . . , Bic) for
a formula that contains only atomic propositions from QA∪ (QB×{i1, . . . , ic}).

In the absence of fairness considerations, we say that A‖Bn satisfies ϕ if

∃k ∈ N ∀x ∈ A‖Bn : (x, 0, k) |= ϕ.

We say that A‖Bn satisfies ϕ(A,B1, . . . , Bc) under global bounded fairness,
written A‖Bn |=gb ϕ(A,B1, . . . , Bc), if

∀b ∈ N ∃k ∈ N ∀x ∈ A‖Bn : b-gfair(x)⇒ (x, 0, k) |= ϕ(A,B1, . . . , Bc).

Finally, for local bounded fairness we usually require bounded fairness for
all processes that appear in the formula ϕ(A,B1, . . . , Bc). Thus, we say that
A‖Bn satisfies ϕ(A,B1, . . . , Bc) under local bounded fairness, written A‖Bn |=lb

ϕ(A,B1, . . . , Bc), if

∀b ∈ N ∃k ∈ N ∀x ∈ A‖Bn : b-lfair(x, {1, . . . , c})⇒ (x, 0, k) |= ϕ(A,B1, . . . , Bc).

47

Parameterized Specifications. A parameterized specification is a Prompt-
LTL\X formula with quantification over the indices of atomic propositions. A h-
indexed formula is of the form ∀i1, . . . ,∀ih.ϕ(A,Bi1 , . . . , Bih). Let f ∈ {gb, lb},
then for given n ≥ h,

A‖Bn |=f ∀i1, . . .,∀ih.ϕ(A,Bi1 , . . ., Bih)

⇔

∀j1 6= . . . 6= jh ∈ {1, . . . , n} : A‖Bn |=f ϕ(A,Bj1 , . . ., Bjh).

By symmetry of guarded protocols, this is equivalent (cp. [43]) to A‖Bn |=f

ϕ(A,B1, . . . , Bh). The latter formula is denoted by ϕ(A,B(h)), and we often
use it instead of the original ∀i1, . . . ,∀ih.ϕ(A,Bi1 , ..., Bih).

Cutoffs. A cutoff for a given class of systems with processes from T , a fairness
notion f ∈ {lb, gb} and a set of Prompt-LTL\X formulas Φ is a number c ∈ N
such that

∀A,B ∈ T ∀ϕ ∈ Φ ∀n ≥ c : A‖Bn |=f ϕ ⇔ A‖Bc |=f ϕ.

Decidability. As mentioned before, the existence of a cutoff implies that the
PMCP is decidable if the model checking problem for the cutoff system A‖Bc
is decidable. Decidability of model checking for finite transition systems with
specifications in Prompt-LTL\X and bounded fairness follows from the fact that
bounded fairness can be expressed in Prompt-LTL\X, and from results on de-
cidability of assume-guarantee model checking for Prompt-LTL (cf. Kupferman
et al. [76] and Faymonville and Zimmermann [51][Lemmas 8, 9]).

4.2 Cutoffs for Disjunctive Systems

In this section, we prove cutoff results for disjunctive systems under bounded
fairness and stutter-insensitive specifications with or without promptness. To
this end, in Section 4.2.1 we prove two lemmas that show how to simulate, up
to bounded stuttering, local runs from a system of given size n in a smaller or
larger disjunctive system. We then use these two lemmas in Subsections 4.2.2
and 4.2.3 to obtain cutoffs for specifications in LTL\X and Prompt-LTL\X,
respectively.

Moreover for the proofs of these two lemmas we utilize the same construction
techniques that were used in Chapter 3 and in [9,10,43,65], but in addition we
analyze their effects on bounded fairness and bounded stutter equivalence. Note
that we will only consider formulas of the form ϕ(A,B(1)), however, similarly to
the results in Chapter 3, our results extend to specifications over an arbitrary
number h of B-processes.

Table 4.1 summarizes the results of this section: for specifications in LTL\X
and Prompt-LTL\X we obtain a cutoff that depends on the size of process
template B, as well as on the number h of quantified index variables. The table
states generalizations of Theorems 12 and 13 from the 2-indexed case to the
h-indexed case for arbitrary h ∈ N. For one of the cases we were not able to
obtain a cutoff result (as explained in Section 4.2.3).

48

r

∃nw

nr

∃nw

Figure 4.2: Reader

w

∃r

nw

Figure 4.3: Writer

Simple Reader-Writer Example. Consider the disjunctive system W‖Rn,
where W is a writer process (Figure 4.3), and R is a reader process (Figure 4.2).
Let the specification ϕ be ∀iG(w→ Fp[(w∧nri)]), i.e., if process W is in state
w, then eventually all the R processes will be in state nr, while W is in w.
According to Table 4.1, the cutoff for checking whether W‖Rn |=lb ϕ is 5.

Table 4.1: Cutoffs for Disjunctive Systems

Local Bounded Fairness Global Bounded Fairness

h-indexed LTL\X |B|+min(|G|, |B|) + h |B|+min(|G|, |B|) + h
h-indexed Prompt-LTL\X |B|+min(|G|, |B|) + h -

4.2.1 Simulation up to Bounded Stutter Equivalence

Our first lemma states that any behavior of processes A and B1 in a system
A‖Bn can be simulated up to bounded stuttering in a system A‖Bn+1.

Lemma 7 (Monotonicity Lemma for Bounded Stutter Equivalence). Let A,B
be disjunctive process templates, n ≥ 2, b ∈ N and x ∈ A‖Bn with b-lfair(x, {A,B1}).
Then there exists y ∈ A‖Bn+1 with y = s′0, s

′
1, . . ., 2b-lfair(y, {A,B1}) and

x(A,B1) ≡2 y(A,B1).

Proof. Let x be a run of A‖Bn where b-lfair(x, {A,B1}). Let y(A) = x(A) and
y(Bj) = x(Bj) for all Bj ∈ {B1, . . . , Bn} and let the new process Bn+1 copy
one of the B-processes of A‖Bn, i.e., y(Bn+1) = x(Bi) for some i ∈ {1, . . . , n}.
Copying a local run violates the interleaving semantics as two processes will
be moving at the same time. To solve this problem, we split every transition
(s′l, s

′
l+1) where the interleaving semantics is violated by Bi and Bn+1 executing

local transitions (qi, g, q
′
i) and (qn+1, g, q

′
n+1), respectively. To do this, replace

(s′l, s
′
l+1) with two consecutive transitions (s′l, u)(u, s′l+1), where (s′l, u) is based

on the local transition (qi, g, q
′
i) and (u, s′l+1) is based on the local transition

(qn+1, g, q
′
n+1). Note that both of these local transitions are enabled in the

constructed run y since the transition (qi, g, q
′
i) is enabled in the original run

x. Moreover, run y inherits unconditional fairness from x. Finally, it is easy
to see that for every local transition of process Bi in x, establishing interleav-
ing semantics has added one additional stuttering step to every local run in y

49

t

0
1
2
3
4
5
6

W

nw
nw
nw
w
nw
nw
nw

R1

nr
r
r
r
r
r
r

R2

nr
nr
r
r
r
r
r

Figure 4.4: Run: W ||R2

t

0
1
2
3
4
5
6
7
8

W

nw
nw
nw
nw
w
nw
nw
nw
nw

R1

nr
r
r
r
r
r
r
r
r

R2

nr
nr
r
r
r
r
r
r
r

R3

nr
nr
nr
r
r
r
r
r
r

Figure 4.5: Run: W ||R3

including processes A and B1. Therefore we have that 2b-lfair(y, {A,B1}) and
x(A,B1) ≡2 y(A,B1).

Reader-Writer Example. Consider the run x of the system W ||R2 in Figure
4.4 where W and R are as defined in Figures 4.2 and 4.3. We construct a run y
of the system W ||R3 (see Figure 4.5) such that x(W,R1) ≡2 y(W,R1). The local
run of process R3 is obtained by (i) copying the run of R2, and (ii) establishing
the interleaving semantics as in the proof of Lemma 7.

As mentioned in the above construction, if a local run of x is d-bounded
fair for some d ∈ N, then the constructed run y will be 2d-bounded fair. This
observation leads to the following corollary.

Corollary 2. Let A, B be disjunctive process templates, n ≥ 2, b ∈ N and
x ∈ A‖Bn with b-gfair(x). Then there exists y ∈ A‖Bn+1 with 2b-gfair(y) and
x(A,B1) ≡2 y(A,B1).

Our second lemma is a bounding lemma which states that any behavior
of processes A and B1 in a disjunctive system A‖Bn can be simulated up to
bounded stuttering in a system A‖Bc, if c is chosen to be sufficiently large and
n ≥ c.

Lemma 8 (Bounding Lemma for Bounded Stutter Equivalence). Let A,B
be disjunctive process templates, c = |B| + min(|G|, |B|) + 1, n ≥ c, b ∈ N
and x ∈ A‖Bn with b-lfair(x, {A,B1}). Then there exists y ∈ A‖Bc with
(b · c)-lfair(y, {A,B1}) and x(A,B1) ≡c y(A,B1).

Proof. Let x be a run of A‖Bn where b-lfair(x, {A,B1}). We show how to con-
struct a run y of A‖Bc where (b · c)-lfair(y, {A,B1}) and x(A,B1) ≡c y(A,B1).

The basic idea is that, in order to ensure that all transitions in y are enabled
at the time they are taken, we “flood” every state q that is visited in x with one
or more processes that enter q and stay there. Additionally, we need to take
care of fairness, which requires a more complicated construction that allows
every such process to move infinitely often. Therefore, some processes have to
leave the state they have flooded (if that state only appears finitely often in the
original run), and every process needs to eventually enter a loop that allows it
to move infinitely often. In the following, we construct such runs formally.

Construction:

0 y(A) = x(A), and y(B1) = x(B1).

50

1. (Flooding with evacuation): To every q ∈ Visitedfin(x), devote one
process Biq that copies Bfirstq until the time fq, then stutters in q until
time lq where it starts copying Blastq forever. Formally:

y(Biq) = x(Bfirstq)[0 : fq].(q)
lq−fq .x(Blastq)[lq + 1 :∞]

2. (Flooding with fair extension): For every q ∈ Visitedinf(x), let Binfq be
a process that visits q infinitely often in x. We devote to q two processes
Biq1 and Biq2 that both copy Bfirstq until the time fq, and then stutter in

q until Binfq reaches q for the first time. After that, let Biq1 and Biq2 copy

Binfq in turns as follows: Biq1 copies Binfq until it reaches q while Biq2
stutters in q, then Biq2 copies Binfq until it reaches q while Biq1 stutters
in q and so on.

3. Establish interleaving semantics as in the proof of Lemma 7.

After steps 1 and 2, the following property holds: at any time t we have that
Set(st(P \B1)) ⊆ Set(s′t(P \B1)), which guarantees that every transition along
the run is enabled. Note that establishing the interleaving semantics preserves
this property.

This construction, introduced by Außerlechner et al. [10], gives a cutoff of
2|B|+ 1, since in the worst case all states appear infinitely often which requires
two copies for each. In Chapter 3, we gave a construction that results in a better
cutoff based on an analysis of a given template. The construction mainly changes
step 2 where from the states in Visitedinf(x) we can choose one representative
state for each guard (the one that is visited first in x), and only add two local
runs for each representative. This does not work for the local runs constructed
for states in Visitedfin(x) since we need to move them into an infinitely visited
state to guarantee fairness, and then we would need a different representative.
This construction gives a cutoff of |B|+ |G|+ 1.

Finally, establishing interleaving semantics could introduce additional stut-
tering steps to the local runs of processes A and B1 whenever steps 1 or 2 of the
construction use the same local run from x more than once (e.g. if ∃qi, qj ∈ QB
with firstqi = firstqj). A local run of x can be used in the above construction
at most c − 1 times, therefore we have x(A,B1) ≡c y(A,B1). Moreover, since
the upper bound of consecutive stuttering steps in A or B1 is c · b, we get
(b · c)-lfair(y, {A,B1}).

4.2.2 Cutoffs for Specifications in LTL\X under Bounded
Fairness

The PMCP for disjunctive systems with specifications from LTL\X has been
considered in several previous works [10, 43, 65]. In the following we extend
these results by proving cutoff results under bounded fairness.

Theorem 12 (Cutoff for LTL\X with Global Bounded Fairness). Let A, B be
disjunctive process templates, c = |B|+min(|G|, |B|) + 1, n ≥ c, and ϕ(A,B(1))
a specification with ϕ ∈ LTL\X. Then:(

∀b ∈ N : A‖bBn |= ϕ(A,B(1))
)
⇔
(
∀b′ ∈ N : A‖b′Bc |= ϕ(A,B(1))

)
51

We prove the theorem by proving two lemmas, one for each direction of the
equivalence.

Lemma 9 (Monotonicity Lemma for LTL\X). Let A, B be disjunctive process
templates, n ≥ 1, and ϕ(A,B(1)) a specification with ϕ ∈ LTL\X. Then:(

∃b ∈ N : A‖bBn 6|= ϕ(A,B(1))
)
⇒
(
∃b′ ∈ N : A‖b′Bn+1 6|= ϕ(A,B(1))

)
Proof. Assume ∃b ∈ N : A‖bBn 6|= ϕ(A,B(1)). Then there exists a run x
of A‖Bn where x is b-gfair(x) and x 6|= ϕ(A,B(1)). According to Corollary 2
there exists y of A‖Bn+1 where 2b-gfair(y) and x(A,B1) ≡2 y(A,B1), which
guarantees that y 6|= ϕ(A,B(1)).

For the corresponding bounding lemma, our construction is based on that
of Lemma 8. However, the local runs resulting from that construction might
stutter in some local states for an unbounded time (e.g. local runs devoted
for states in Visitedfin(x)). To bound stuttering in such constructions, given
an arbitrary run of a system A‖Bn, we first show that whenever there exists a
bounded-fair run that violates a specification in LTL\X, then there also exists
an ultimately periodic run with the same property. Such a run can be extracted
from the product of the automaton that represents the property and the system.

Run Graph. A run graph of a Büchi automaton Aϕ = (QA×QnB , QAϕ , δ, a0, α)
on a system A‖bBn is a directed graph Gnb (ϕ) = (V,E) where:

• V ⊆ (QA ×QnB)× {0, . . . , b}n+1 ×QAϕ
• (s0, b0, a0) ∈ V , where b0 denotes that all counters are set to 0.

• ((s, b, a), (s′, b′, a′)) ∈ E iff (s, s′) ∈ ∆, a′ ∈ δ(a, s), and b′ results from b
according to the rules for the counters.

An infinite path of the run graph π = (s0, b0, a0)(s1, b1, a1) . . . is an accepting
path if it starts with (s0, b0, a0), and visits a state aα ∈ α infinitely often.

Lemma 10 (Ultimately Periodic Counter-Example). Let ϕ ∈ LTL and b ∈ N.
If A‖bBn 6|= ϕ then there exists a run x = uvω of A‖Bn with b-gfair(x), and
x 6|= ϕ, where u, v are finite paths, and |u|, |v| ≤ 2 · |A| · |B|n · bn+1 · |QA¬ϕ |.

Proof. Assume that A‖bBn 6|= ϕ. Then there exists an accepting path π′ in
the run graph Gnb (¬ϕ). We first construct out of π′ a fair path π = uπv

ω
π , by

detecting and extracting a lasso-shaped accepting path from π′. In π′ there
exists an infix π′i . . . π

′
j where π′i = π′j , and there exists π′l ∈ {π′i+1, . . . , π

′
j−1}

with π′l(QA¬ϕ) ∈ α (accepting state in the automaton). Therefore, we have
π′0 . . . π

′
i−1(π′i . . . π

′
j−1)ω is an accepting path of Gnb (¬ϕ).

Let u′ = π′0 . . . π
′
i−1 and v′ = π′i . . . π

′
j−1, then we can construct uπ and

vπ by detection and removal of cycles under some conditions: (i) let uπ be a
finite path obtained form u′ where we iteratively replace every infix π′s . . . π

′
t

with π′s if π′s = π′t. Then, since uπ does not contain repetitions, we have uπ ≤
|A| · |B|n ·bn+1 · |QA¬ϕ |. (ii) let π′a ∈ {π′i . . . π′j−1} where π′a(A¬ϕ) ∈ α and let vπ
be a finite path obtained form v′ after we iteratively replace every infix π′s . . . π

′
t

with π′s if π′s = π′t and s ≥ a or t < a. Thus, we get vπ ≤ 2·|A|·|B|n·bn+1·|QA¬ϕ |.
Finally, let x = uπ(QA ×QnB) (vπ(QA ×QnB))

ω
. By construction, x is a run

of A‖Bn with b-gfair(x) and x 6|= ϕ.

52

Now, we have all the ingredients to prove the bounding lemma for the case
of LTL\X specifications and (global) bounded fairness.

Lemma 11 (Bounding Lemma for LTL\X). Let A, B be disjunctive process
templates, c = |B|+min(|G|, |B|)+1, n ≥ c, and ϕ(A,B(1)) a specification with
ϕ ∈ LTL\X. Then:(

∃b ∈ N : A‖bBn 6|= ϕ(A,B(1))
)
⇒
(
∃b′ ∈ N : A‖b′Bc 6|= ϕ(A,B(1))

)
Proof. Assume ∃b ∈ N : A‖bBn 6|= ϕ(A,B(1)). Then by Lemma 10 there is
a run x = uvω of A‖Bn, where b-gfair(x) and |u|, |v| ≤ 2 · |A| · |B|n · bn+1 ·
|QA¬ϕ |. According to Lemma 8, we can construct out of x a run y of A‖Bc
where b′′-lfair(y, {A,B1}), and x(A,B1) ≡c y(A,B1) with b′′ = c · b. The latter
guarantees that y 6|= ϕ(A,B(1)). We still need to show that b′-gfair(y) for some
b′ ∈ N. As x = uvω, we observe that the construction of Lemma 8 ensures the
following:

• The number of consecutive stuttering steps per process introduced in step
1 is bounded by |u|.

• The number of consecutive stuttering steps introduced in step 2 for a given
process is bounded by |u| + 2|v| because Binfq needs up to |u| + |v| steps
to reach q, and one of the processes has to wait for up to |v| additional
global steps before it can move.

In addition to the stuttering steps introduced in step 1 and 2, if more than
one of the constructed runs simulate the same local run of x then establishing the
interleaving semantics would be required, which in turn introduces additional
stuttering steps. Therefore the upper bound of consecutive stuttering steps
introduced in step 3 of the construction is c · b. Therefore b′-gfair(y) where
b′ = c · b+ 6 · |A| · |B|n · bn+1 · |QA¬ϕ |.

Remark 3. With a more complex construction that uses a stutter-insensitive
automaton A [50] to represent the specification and considers runs of the com-
position of system and automaton, we can obtain a much smaller b′ that is also
independent of n. This is based on the observation that if in y some process is
consecutively stuttering for more than |A‖Bc ×A| steps, then there must be a
repetition of states from the product in this time, and we can simply cut the
infix between the repeating states from the constructed run y.

4.2.3 Cutoffs for Specifications in Prompt-LTL\X
LTL specifications cannot enforce boundedness of the time that elapses before a
liveness property is satisfied. Prompt-LTL solves this problem by introducing
the prompt-eventually operator explained in Section 4.1.1. Since we consider
concurrent asynchronous systems, the satisfaction of a Prompt-LTL formula
can also depend on the scheduling of processes. If scheduling can introduce un-
bounded delays for a process, then promptness can in general not be guaranteed.
Hence, non-trivial Prompt-LTL specifications can only be satisfied under the as-
sumption of bounded fairness, and therefore this is the only case we consider
here.

53

Theorem 13 (Cutoff for Prompt-LTL\X with Local Bounded Fairness). Let
A, B be disjunctive process templates, c = |B| + min(|G|, |B|) + 1 n ≥ c, and
ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bc |=lb ϕ(A,B(1)) ⇔ A‖Bn |=lb ϕ(A,B(1)).

Again, we prove the theorem by proving a monotonicity and a bounding lemma.
Note that A‖Bn 6|=lb ϕ(A,B(1)) iff

∃b ∈ N ∀k ∈ N ∃x ∈ A‖Bn: b-lfair(x, {A,B(1)}) ∧ (x, 0, k) 6|= ϕ(A,B(1)).

Lemma 12 (Monotonicity Lemma for Prompt-LTL\X). Let A, B be disjunctive
process templates, n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X.
Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that
∀k ∈ N there is a run x of A‖Bn where b-lfair(x, {A,B(1)}), and (x, 0, 2 · k) 6|=
ϕ(A,B(1)). Then according to Lemma 7 there exists y of A‖Bn+1 where
2b-lfair(y, {A,B(1)}) and x(A,B1) ≡2 y(A,B1), which guarantees, according
to Corollary 1, that (y, 0, k) 6|= ϕ(A,B(1)). As a consequence there exists b ∈ N
such that ∀k ∈ N there is a run y of A‖Bc where 2b-lfair(y, {A,B(1)}) and
(y, 0, k) 6|= ϕ(A,B(1)), thus A‖Bc 6|=lb ϕ(A,B(1)).

Using the same argument of the above proof but by using Corollary 2 instead
of Lemma 7 to construct the globally bounded fair counter example, we obtain
the following:

Corollary 3. Let A, B be disjunctive process templates, n ≥ 2, and ϕ(A,B(1))
a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=gb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=gb ϕ(A,B(1)).

Lemma 13 (Bounding Lemma for Prompt-LTL\X). Let A, B be disjunctive
process templates, c = |B| + min(|G|, |B|) + 1, n ≥ c, and ϕ(A,B(1)) a specifi-
cation with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖Bc 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-lfair(x, {A,B(1)}) and (x, 0, c ·k) 6|= ϕ(A,B(1)).
According to Lemma 8 we can construct for every such x a run y of A‖Bc
where (c · b)-lfair(y, {A,B(1)}), and x(A,B1) ≡c y(A,B1), which guarantees
that (y, 0, k) 6|= ϕ(A,B(1)) (see Corollary 1). Thus, there exists b ∈ N such that
∀k ∈ N there is a run y of A‖Bc where (c · b)-lfair(y, {A,B(1)}) and (y, 0, k) 6|=
ϕ(A,B(1)), thus A‖Bc 6|=lb ϕ(A,B(1)).

The Absence of a Bounding Lemma under Global Bounded Fairness.

The reader will notice that we have no bounding lemma, and therefore no cutoff
result for Prompt-LTL\X under global bounded fairness. The main reason is
that the constructions we adopt do not allow us to determine a bound on the

54

number of stuttering steps they generate. For instance, the proof of Lemma 11
depends on a bound on the time after which only infinitely visited states occur.
Based on the existence of an ultimately periodic counterexample uvω, we can
conclude that |u| is sufficient as a bound. In case of Prompt-LTL\X however,
this technique is not sufficient: a Prompt-LTL counterexample consists of a
fairness bound b such that for all k there is a non-satisfying run. Since the
previously mentioned technique only produces a bound b that will depend on
the run for a given k, it cannot solve our problem.

We show below how we can extract, from a run x that does not satisfy a
Prompt-LTL\X formula ϕ, a lasso that does not satisfy ϕ either. Such extraction
is not as simple as in the LTL\X case and therefore we first summarize the
alternating color technique introduced by Kupferman et al. [76].

Alternating-Color Technique

A standard approach for model checking a system S against an LTL formula ϕ
is to translate the negation of ϕ to a non-deterministic Büchi automaton Aϕ,
and then construct the Büchi graph G = S×Aϕ, the synchronous product of S
and Aϕ. An accepting initial path π in G witnesses a run of S that violates ϕ.
For model checking a Prompt-LTL specification ϕ, Kupferman et al. [76] have
shown an approach that encodes ϕ into a relativization c(ϕ) in LTL with an
additional atomic proposition (called a color), and uses a colored Büchi graph
to decide the model checking problem.

Given a word w = w0w1 . . . ∈ (2AP)ω and a proposition r 6∈ AP, an r-coloring
of w is a word wc = wc0w

c
1 . . . ∈ (2AP∪{r})ω where ∀i ≥ 0 wci ∩ AP = wi. We

refer to the assignment to r as the color of location i and we call i a color
change point if wci−1 and wci have different colors. A subword wci . . . w

c
j of wc

is an r-block if all the locations in the subword agree on r, and i and j + 1
are color-change points. For k ≥ 0, we say that wc is k-spaced, k-bounded, and
k-tight if wc has infinitely many r-blocks, and all the blocks are of size at least
k, at most k, and exactly k, respectively. Moreover let altr = GFr∧GF¬r, and
let relr(ϕ) be the formula obtained from ϕ by replacing every instance of Fpψ
by (r → (rU(¬rUψ))) ∧ (¬r → (¬rU(rUψ))). We define c(ϕ) = altr ∧ relr(ϕ)
and c̄(ϕ) = altr ∧¬relr(ϕ) which are LTL formulas. Hence, a run of the system
satisfies c(ϕ) if it is partitioned into infinitely many blocks, and each prompt
eventuality is satisfied within two blocks.

Lemma 14 (Promptness lemma [76]). Given a Prompt-LTL formula ϕ, a word
w, and a bound k ≥ 0.

1. if (w, 0, k) |= ϕ then for every k-spaced r-coloring wc of w, we have
(wc, 0) |= c(ϕ)

2. if wc is a k-bounded r-coloring of w such that (wc, 0) |= c(ϕ), then (w, 0, 2k) |=
ϕ

Colored Büchi Graph. A colored Büchi graph is a tuple G = (r, V,E, v0, L, φ),
where r is a proposition, V is a set of vertices, E is a set of edges, v0 ∈ V is
an initial vertex, L : V → {r, ∅} is the coloring function, and φ ⊆ V is a Büchi
acceptance condition. A path of G is a sequence π = (v0, L(v0))(v1, L(v1)) . . .,

55

where (vi, vi+1) ∈ E for all i. We say that a path π of G is fair if it visits φ
infinitely often.

Given a Prompt-LTL\X formula ϕ, we define the product A‖bBn ×Ac̄(ϕ) as
the colored Büchi graph

Pnb (ϕ) =
(
r, (QA ×QnB)× [b]n+1 × {{r}, ∅} ×QAc̄(ϕ)

,M, (s0, b0, r, a0), L,F
)
,

where

• b0 denotes that all counters are set to 0,

• ((s, bi, ri, a), (s′, bj , rj , a
′)) ∈ M iff (s, s′) ∈ ∆, a′ ∈ δ(a, s ∪ ri), and bj

results from bi according to the rules for the counters,

• L((s, b, ri, a)) = ri, and

• F = (QA ×QnB)× [b]n+1 × {r, ∅} × α.

Given a path π of Pnb (ϕ) and a process p we denote by π(p) the local run of
process p in π. If ϕ is a formula over a fixed number of processes (as is always
the case in our specifications), say A and B1, then δ(ai, (si, ri)) = δ(ai, (sj , ri))
whenever si(A,B1) = sj(A,B1), i.e., δ depends only on the local states of
processes that appear in ϕ.

Unlike the LTL case, a path π in the product Pnb (ϕ) is not a witness that
A‖Bn does not satisfy ϕ, however π entails that only for some bound k ∈ N the
formula ϕ is not satisfied in A‖bBn with bound k. However from Theorem 4.2
in [76] and its proof, we obtain the following corollary:

Corollary 4. Given a Prompt-LTL formula ϕ, and a system A‖Bn we have:

A‖Bn 6|=gb ϕ⇔ ∃b ∈ N ∃x ∈ A‖Bn s.t. b-gfair(x) ∧ (x, 0, k) 6|= ϕ

with k ≥ |Pnb (ϕ)|

Lemma 15 (Ultimately Periodic Counter-Example). Given a Prompt-LTL for-
mula ϕ, a run x of A‖Bn with b-gfair(x) , and a bound k ∈ N. if (x, 0, 2k) 6|= ϕ
then there exists a run x′ of A‖Bn where b-gfair(x′), x′ = uvω, (x′, 0, k) 6|= ϕ,
|u| ≤ k · |Pnb (ϕ)|, and |v| ≤ k · |Pnb (ϕ)|.

Proof. Assume (x, 0, 2k) 6|= ϕ then according to Lemma 14 every k-bounded r-
coloring xc of x we have (xc, 0) 6|= c(ϕ). Let xc1 be a k-tight (therefore k-spaced)
r-coloring of x, and let π1 be the fair path of Pnb (ϕ) that corresponds to xc1. We
can construct out of π1 a k-spaced fair path π2 of the product Pnb (ϕ) where π2 =
u′v′ω, |u′| ≤ k · |Pnb (ϕ)|, and |v′| ≤ |Pnb (ϕ)| by detecting and extracting a lasso
shape fair path from π1. In π1 there exists an infix vi . . . vj where i and j are color
change points, vi = vj , and there exists vl ∈ {vi+1, . . . , vj−1} with vl(Ac̄(ϕ)) ∈ α
(accepting state in the automaton). Therefore v0 . . . vi−1(vi . . . vj−1)ω is a fair
path of the product Pnb (ϕ). Let uπ = v0 . . . vi−1 and vπ = vi . . . vj−1, then we
can construct u′ and v′ by detecting and removing cycles under some conditions:
let u′ be a prefix obtained form uπ after replacing every infix vs . . . vt with vs
iff vs = vt and s and t are color change points. Let va ∈ {vi . . . vj−1} where
va(Ac̄(ϕ)) ∈ α and ∀g ∈ N s.t. i ≤ g < a we have vg(Ac̄(ϕ)) 6∈ α. Let v′ be
the suffix obtained form vπ after replacing every infix vs . . . vt with vs iff s ≥ g,

56

vs = vt, s and t are color change points, and for all vl ∈ {vs+1, . . . , vt−1} we
have vl(Ac̄(ϕ)) 6∈ α. Let uc = u′(A‖Bn × {r, ∅}) and let vc = v′(A‖Bn × {r, ∅})
then x′c = uc(vc)ω is k-spaced and x′c 6|= c(ϕ). Let x′ = x′c(A‖Bn), then x′ is a
run of A‖Bn and according to Lemma 14 we have (x′, 0, k) 6|= ϕ. Moreover we
have b-gfair(x′) as it was obtained from a product fair path.

As an alternative approach to the ultimately periodic counterexample, we
tried a technique based on the algorithm for solving the model checking prob-
lem for Prompt-LTL by Kupferman et al. [76]. Their method is based on the
detection of a pumpable path in the product of a system S and a specification
automaton Aϕ. However, when constructing a pumpable path for A‖Bc out
of a pumpable path of A‖Bn, we run into the problem that in certain cases
the value of c depends on n, and therefore no cutoff can be detected with this
technique.

4.3 Cutoffs for Conjunctive Systems

In this section we investigate cutoff results for conjunctive systems under bounded
fairness and specifications in Prompt-LTL\X. Table 4.2 summarizes the results
of this section, as generalizations of Theorems 14 and 15 to h-indexed specifica-
tions. Note that for results marked with a ∗ we require processes to be bounded
initializing, i.e., that every cycle in the process template contains the initial
state.1

Table 4.2: Cutoffs for Conjunctive Systems

Local Bounded Fairness Global Bounded Fairness

h-indexed LTL\X h+ 1 h+ 1∗

h-indexed Prompt-LTL\X h+ 1 h+ 1∗

4.3.1 Cutoffs under Local Bounded Fairness

Theorem 14 (Cutoff for Prompt-LTL\X with Local Bounded Fairness). Let
A,B be conjunctive process templates, n ≥ 2, and ϕ(A,B(1)) a specification with
ϕ ∈ Prompt-LTL\X. Then:

A‖B2 |=lb ϕ(A,B(1)) ⇔ A‖Bn |=lb ϕ(A,B(1)).

We prove the theorem by proving two lemmas, one for each direction of
the equivalence. Note that A‖Bn 6|=lb ϕ(A,B(1)) iff ∃b ∈ N ∀k ∈ N ∃x ∈
A‖Bn : b-gfair(x) ∧ (x, 0, k) 6|= ϕ(A,B(1)).

Lemma 16 (Monotonicity Lemma, Prompt-LTL\X with Local Bounded Fair-
ness). Let A,B be conjunctive process templates, n ≥ 2, and ϕ(A,B(1)) a spec-
ification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=lb ϕ(A,B(1)).

1This is only slightly more restrictive than the assumption that they are initializing, as
stated in the definition of conjunctive systems in Section 2.1.

57

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-gfair(x) and (x, 0, k) 6|= ϕ(A,B(1)). For every
such x, we construct a run y of A‖Bn+1 with b-lfair(y) and (y, 0, k) 6|= ϕ(A,B(1)).
Let y(A) = x(A) and y(Bj) = x(Bj) for all Bj ∈ {B1, . . . , Bn} and let the
new process Bn+1 “share” a local run x(Bi) with an existing process Bi of
A‖Bn+1 in the following way: one process stutters in initB while the other
makes transitions from x(Bi), and whenever x(Bi) enters initB the roles are
reversed. Since this changes the behavior of Bi, Bi cannot be a process that is
mentioned in the formula, i.e. we need n ≥ 2 for a formula ϕ(A,B(1)). Then we
have b-lfair(y, {A,B1}) as the run of Bn+1 inherits the unconditional fairness
behavior from the local run of the process Bi in x. Note that it is not guaranteed
that the local runs y(Bi) and y(Bn+1) are bounded fair as the time between two
occurrences of initB in x(Bi) is not bounded. Moreover we have x(A,B1) ≡1

y(A,B1), which according to Corollary 1 implies (y(A,B1), k) 6|= ϕ(A,B(1)).

Lemma 17 (Bounding Lemma, Prompt-LTL\X, Local Bounded Fairness). Let
A,B be conjunctive process templates, n ≥ 1, and ϕ(A,B(1)) a specification with
ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖B1 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-gfair(x), and (x, 0, b · k) 6|= ϕ(A,B(1)) . For
every such x, we construct a run y in the cutoff system A‖B1 by copying the
local runs of processes A and B1 in x and deleting stuttering steps. It is easy
to see that b-gfair(y) then we have x(A,B1) ≡b y(A,B1), and by Corollary 1
(y(A,B1), k) 6|= ϕ(A,B(1)).

Note that this is the same proof construction as in Außerlechner et al. [10],
and we simply observe that this construction preserves bounded fairness.

4.3.2 Cutoffs under Global Bounded Fairness

As mentioned before, to obtain a result that preserves global bounded fairness,
we need to restrict process template B to be bounded initializing.

Theorem 15 (Cutoff for Prompt-LTL\X with Global Bounded Fairness). Let
A,B be conjunctive process templates, where B is bounded initializing, n ≥ 2,
and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖B2 |=gb ϕ(A,B(1)) ⇔ A‖Bn |=gb ϕ(A,B(1)).

Again, the theorem can be separated into two lemmas.

Lemma 18 (Monotonicity Lemma, Prompt-LTL\X, Global Bounded Fairness).
Let A,B be conjunctive process templates, where B is bounded initializing, n ≥
2, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=gb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=gb ϕ(A,B(1)).

58

Proof. Assume A‖Bn 6|=gb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-gfair(x), and (x, 0, (b+ |B|) · k) 6|= ϕ(A,B(1)).
For every such x, we construct a run y of A‖Bn+1 in the same way we did in
the proof of Lemma 16. Then we have b′-gfair(y) with b′ = b+ |B| as initB is on
every cycle of the process template B. Moreover we have x(A,B1) ≡1 y(A,B1)
which according to Corollary 1 implies that (y(A,B1), k) 6|= ϕ(A,B(1)).

Lemma 19 (Bounding Lemma, Prompt-LTL\X, Global Bounded Fairness). Let
A,B be conjunctive process templates, where B is bounded initializing, n ≥ 1,
and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=gb ϕ(A,B(1)) ⇒ A‖B1 6|=gb ϕ(A,B(1)).

Proof. Under the given assumptions, we can observe that the construction from
Lemma 17 also preserves global bounded fairness.

4.4 Token Passing Systems

In this section, we first introduce a system model for token passing systems and
then show how to obtain cutoff results for this class of systems.

4.4.1 System Model

Processes. A token passing process is a transition system T = (QT , IT ,ΣT , δ)
where

• QT = QT ×{0, 1} is a finite set of states. QT is a finite non-empty set. The
Boolean component {0, 1} indicates the possession of the token.

• IT is the set of initial states with IT∩(QT×{0}) 6= ∅ and IT∩(QT×{1}) 6= ∅.

• ΣT = {ε, rcv, snd} is the set of actions, where ε is an asynchronous action,
and {rcv, snd} are the actions to receive and send the token.

• δT = QT×ΣT ×QT is a transition relation, such that ((q, b), a, (q′, b′)) ∈ δT
if all of the following hold:

– a = ε ⇒ b = b′.

– a = snd ⇒ b = 1 and b′ = 0

– a = rcv ⇒ b = 0 and b′ = 1

Token Passing System. Let G = (V,E) be a finite directed graph without
self loops where V = {1, . . . , n} is the set of vertices, and E ⊆ V × V is the set
of edges. Given a token passing process T , the token passing system TnG is a
concurrent system containing n instances of process T where the only synchro-
nization between the processes is the sending/receiving of a token according to
the graph G. Formally, TnG = (S, initS ,∆) with:

• S = (QT)
n.

• initS = {s ∈ (IT)
n such that exactly one process holds the token },

59

• ∆ ⊆ S × S such that ((q1, . . . , qn), (q′1, . . . , q
′
n)) ∈ ∆ iff:

– Asynchronous Transition. ∃i ∈ V such that (qi, ε, q
′
i) ∈ δT , and

∀j 6= i we have qj = q′j .

– Synchronous Transition. ∃(i, j) ∈ E such that (qi, snd, q
′
i) ∈ δT ,

(qj , rcv, q
′
j) ∈ δT , and ∀z ∈ V \ {i, j} we have qz = q′z.

Runs. A configuration of a system TnG is a tuple (s, ac) where s ∈ S, and either
ac = ai with a ∈ ΣT , and i ∈ V is a process index, or ac = (sndi, rcvj) where
i, j ∈ V are two process indices with i 6= j. A run is an infinite sequence of
configurations x = (s0, ac0)(s1, ac1) . . . where s0 ∈ initS and si+1 results from
executing action aci in si. Additionally we denote by x(Ti, . . . , Tj) the pro-
jection (s0(Ti, . . . , Tj), ac0(Ti, . . . , Tj))(s1(Ti, . . . , Tj), ac1(Ti, . . . , Tj)) . . . where
se(Ti, . . . , Tj) is the projection of se on the local states of (Ti, . . . , Tj) and

ac(Ti, . . . , Tj) =

 ⊥ if ac = am and m 6∈ {i, . . . , j}
⊥ if ac = (sndm, rcvn) and m,n 6∈ {i, . . . , j}
ac otherwise

Bounded Fairness. A run x of a token passing system TnG is b-bounded glob-

ally fair, denoted b-gfair(x) if for every moment m and every process Ti, Ti
receives the token at least once between moments m and m+ b.

Cutoffs for Complex Networks. In the presence of different network topolo-
gies, represented by the graph G, we define a cutoff to be a bound on the size of
G that is sufficient to decide the PMCP. Note that, in order to obtain a decision
procedure for the PMCP, we not only need to know the size of the graphs, but
also which graphs of this size we need to investigate. This is straightforward if
the graph always falls into a simple class, such as rings, cliques, or stars, but is
more challenging if the graph can become more complex with increasing size.

4.4.2 Cutoff Results for Token Passing Systems

Table 4.3 summarizes the results of this section, generalizing Theorem 16 to the
case of h-indexed specifications. Similar to previous sections, the specifications
are over states of processes. The results for local bounded fairness follow from
the results for global bounded fairness.

To prove the results of this section, we need some additional definitions.

Table 4.3: Cutoff Results for Token Passing Systems

Local Bounded Fairness Global Bounded Fairness

h-indexed LTL\X 2h 2h
h-indexed Prompt-LTL\X 2h 2h

Connectivity vector [31]. Given two indices i, j ∈ V in a finite directed
graph G, we define the connectivity vector v(G, i, j) = (u1, u2, u3, u4, u5, u6) as
follows:

• u1 = 1 if there is a non-empty path from i to i that does not contain j.
u1 = 0 otherwise.

60

• u2 = 1 if there is a path from i to j via vertices different from i and j.
u2 = 0 otherwise.

• u3 = 1 if there is a direct edge from i to j. u3 = 0 otherwise.

• u4, u5, u6 are defined like u1, u2, u3, respectively where i is replaced by j
and vice versa.

Immediately Sends. Given a token passing process T , we fix two local states
qsnd and qrcv, such that there is (i) a local path qinit, . . . , qrcv where qinit ∈
IT ∩ (QT ×{0}), (ii) a local path qrcv, . . . , qsnd that starts with a receive action,
and (iii) a local path qsnd, . . . , qrcv that starts with a send action. We assumed
here that such a path exists as otherwise all the runs of the system will be finite.

When constructing a local run for a process Ti that is currently in local state
qrcv, we say that Ti immediately sends the token if and only if:

1. Ti executes consecutively all the actions on a simple path qrcv, . . . , qsnd,
then sends the token, and then executes consecutively all the actions on a
simple path qsnd, . . . , qrcv.

2. All other processes remain idle until Ti reaches qrcv (obviously, except
those processes that need to synchronize with qsnd and qrcv).

Note that, when Ti immediately sends the token, it executes at most |T | actions,
since the two paths cannot share any states except qrcv and qsnd.

Theorem 16 (Cutoff for Prompt-LTL\X). Let TnG be a token-passing system,
g, h ∈ V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there
exists a system T 4

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) =
v(G′, i, j), |V ′| = 4, and

TnG |=gb ϕ(Tg, Th)⇔ T 4
G′ |=gb ϕ(Ti, Tj).

We prove the theorem by proving two lemmas, one for each direction of the
equivalence. Note that TnG 6|=gb ϕ(Tg, Th) iff ∃b ∈ N ∀k ∈ N ∃x ∈ TnG : b-gfair(x)∧
(x, 0, k) 6|= ϕ(Tg, Th).

Lemma 20 (Monotonicity Lemma). Let TnG be a token-passing system with
n ≥ 3 and g, h ∈ V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X.
Then there exists a system Tn+1

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that
v(G, g, h) = v(G′, i, j) and

TnG 6|=gb ϕ(Tg, Th) ⇒ Tn+1
G′ 6|=gb ϕ(Ti, Tj).

Proof. Let a be a vertex of G with a 6∈ {g, h}. Then we construct G′ from G as
follows: Let V ′ = V ∪ {n+ 1}, and E′ = (E ∪ {(n+ 1,m)|(a,m) ∈ E for some
m ∈ V } ∪ {(a, n + 1)}) \ {(a,m)|(a,m) ∈ E for some m ∈ V }, i.e. we copy all
the outgoing edges of a to the vertex n+ 1, and replace all the outgoing edges
of a by one outgoing edge to n+ 1.

Assume TnG 6|=gb ϕ(Tg, Th). Then there exists b ∈ N such that ∀k′ ∈ N
there is a run x of TnG where b-gfair(x), and (x, 0, |T | · k′) 6|= ϕ(Tg, Th). Let
b′ = b+ (b−n+ 2) · |T |, and d = |T |+ 1. We will construct for every such run x

61

a run y of Tn+1
G′ where b′-gfair(y), and x(Tg, Th) ≡d y(Ti, Tj) which guarantees

that (y, 0, k′) 6|= ϕ(Ti, Tj) (see Corollary 1).

Construction. The construction is such that we keep the local paths of the
n existing processes up to bounded stuttering, and we add a process Tn+1 that
always immediately sends the token after receiving it, with qrcv, qsnd and the
corresponding paths as defined above. In the following, as a short-hand nota-
tion, if s = (q1, . . . , qn) is a global state of TnG and q ∈ QT , we write (s, q) for
(q1, . . . , qn, q).

Let x = (s0, ac0)(s1, ac1) . . . and y′ = ((s0, q
rcv), ac0)((s1, q

rcv), ac1)
Note that y′ is a sequence of configurations of Tn+1

G′ , but not a run. To ob-
tain a run, first let

y′′ = ((s0, q
init), ε) . . . ((s0, q

rcv), ac0)((s1, q
rcv), ac1) . . .

Finally, replace every occurrence of a pair of consecutive configurations
((s, qrcv), (snda, rcvz)), ((s′, qrcv), ac′), where s, s′ ∈ Qn

T
, z ∈ V, ac′ ∈ Σ, with

the sequence

((s, qrcv), (snda, rcvn+1)) . . . ((s, qsnd), (sndn+1, rcvz)) . . . ((s
′, qrcv), ac′).

In other words, instead of sending the token to Tz, Ta sends the token to
Tn+1, and Tn+1 sends the token immediately to Tz. Furthermore, in x between
moments t and t+b, Ta can send the token at most b−n+1 times, and whenever
Tn+1 receives the token, it takes at most |T | steps before reaching qrcv again.
Finally, note that the number of steps Tn+1 takes to reach qrcv for the first time
is also bounded by |T |. Therefore we have b′-gfair(y) and x(Tg, Th) ≡d y(Ti, Tj)
(as b′ ≤ b · d) which by Corollary 1 implies that (y, 0, k′) 6|= ϕ(Ti, Tj).

Lemma 21 (Bounding Lemma). Let TnG be a system with n ≥ 4 and g, h ∈ V ,
and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there exists a
system T 4

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) = v(G′, i, j)
and

TnG 6|=gb ϕ(Tg, Th) ⇒ T 4
G′ 6|=gb ϕ(Ti, Tj).

Proof. Let i, j, k, and l be the processes indices in T 4
G′ . G′ = (V ′, E′) is

any graph where V ′ = {i, j, k, l}, v(G, g, h) = v(G′, i, j), and (k, j), (l, i) ∈ E′.
According to [31] such a graph always exists.

Assume TnG 6|=gb ϕ(Tg, Th). Then there exists b ∈ N such that ∀k′ ∈ N there
is a run x of TnG where b-gfair(x), and (x, 0, k′ · (|T | + 1)) 6|= ϕ(Tg, Th). Let
d = |T |+ 1, and b′ = 2|T |+ b+ (b− n+ 2) · |T |. We show how to construct for
every such x a run y of T 4

G′ where b′-gfair(y), x(Tg, Th) ≡d y(Ti, Tj).

Construction. Let x = (s0, ac0)(s1, ac1) . . . and

y′ = ((s0(Tg, Th), qrcv, qrcv), ac0(Tg, Th))((s1(Tg, Th), qrcv, qrcv), ac1(Tg, Th)) . . .

The word y′ is a sequence of configurations of T 4
G′ , where we assign the local

runs of Tg, Th into the local runs of Ti and Tj . Note that y′ is not a run, hence
to obtain a run, first let

y′′ = ((s0(Tg, Th), qinit, qinit), ε) . . . ((s0(Tg, Th), qrcv, qrcv), ac0(Tg, Th))

((s1(Tg, Th), qrcv, qrcv), ac1(Tg, Th)) . . .

62

If neither Tg nor Th has the token in the initial state of x, then, if Tg has
the token first in x before Th, we replace the pair of consecutive configurations

((s(Tg, Th), qrcv, qrcv), (sndz, rcvi))((s
′(Tg, Th), qrcv, qrcv), ac′(Tg, Th))

with

((s(Tg, Th), qrcv, qrcv), ε) . . . ((s(Tg, Th), qsnd, qrcv), (sndi, rcvi))

. . . ((s′(Tg, Th), qrcv, qrcv), ac′(Tg, Th))

where z ∈ V . Similarly we deal with the case where Th has the token before Tg.
Furthermore, for every occurrence of a pair of consecutive configurations

pairi = ((s(Tg, Th), qrcv, qrcv), (sndi, rcvz))((s
′(Tg, Th), qrcv, qrcv), ac′(Tg, Th))

where s, s′ ∈ Qn
T
, z ∈ V \ {j}, ac′ ∈ Σ, then:

• If after pairi in y′′ Ti executes the receive action without a receive action
from Tj in between, then (i, l), (l, i) ∈ E′, and we replace pairi with the
sequence:

((s(Tg, Th), qrcv, qrcv), (sndi, rcvl)) . . . ((s(Tg, Th), qsnd, qrcv), (sndl, rcvi))

. . . ((s′(Tg, Th), qrcv, qrcv), ac′(Tg, Th))

Informally we let the process Tl receive the token from Ti and send it
immediately back to Ti.

• If after pairi in y′′ Tj receives the token through some other process(es)
(different than Ti and Tj), then (i, k), (k, j) ∈ E′, and we replace pairi
with the sequence:

((s(Tg, Th), qrcv, qrcv), (sndi, rcvk)) . . . ((s(Tg, Th), qrcv, qsnd), (sndk, rcvj))

. . . ((s′(Tg, Th), qrcv, qrcv), ac′(Tg, Th))

Informally we let the process Tk receive the token from Ti and sends
immediately back to Tj .

Next, we do the same for every occurrence of a pair of consecutive configurations

pairj = ((s(Tg, Th), qrcv, qrcv), (sndj , rcvz))((s
′(Tg, Th), qrcv, qrcv), ac′(Tg, Th))

where s, s′ ∈ Qn
T
, z ∈ V \ {i}, ac′ ∈ Σ.

Furthermore, in x between moments t and t + b, Tg and Th can send the
token at most b−n+2 times, and whenever Tl or Tk receives the token, it takes
at most |T | steps before reaching qrcv again. Finally, note that the number
of steps Tl or Tk takes to reach qrcv for the first time is also bounded by |T |.
Therefore we have b′-gfair(y) and x(Tg, Th) ≡d y(Ti, Tj) (b′ ≤ b · d) which by
Corollary 1 implies that (y, 0, k′) 6|= ϕ(Ti, Tj).

4.5 Conclusions

We have investigated the behavior of concurrent systems with respect to prompt-
ness properties specified in Prompt-LTL\X. Our first important observation is

63

that Prompt-LTL\X is not stutter insensitive, so the standard notion of stut-
ter equivalence is insufficient to compare traces of concurrent systems if we
are interested in promptness. Based on this, we have defined bounded stutter
equivalence, and have shown that Prompt-LTL\X is bounded stutter insensitive.

We have shown how this allows us to obtain cutoff results for guarded pro-
tocols and token-passing systems, and have obtained cutoffs for Prompt-LTL\X
(with locally or globally bounded fairness) that are the same as those that were
previously shown for LTL\X (with unbounded fairness). This implies that, for
the cases where we do obtain cutoffs, the PMCP for Prompt-LTL\X has the
same asymptotic complexity as the PMCP for LTL\X.

Finally, we note that together with methods for distributed synthesis from
Prompt-LTL\X specifications [68], our cutoff results enable the synthesis of
parameterized systems based on the parameterized synthesis approach [61] that
has been used to solve challenging synthesis benchmarks by reducing them to
systems with a small number of components [18,74].

64

Chapter 5

Parameterized Repair of
Concurrent Systems

When considering systems that are composed of an arbitrary number of pro-
cesses, methods such as parameterized model checking can provide correctness
guarantees that hold regardless of the number of processes. Nonetheless, if pa-
rameterized model checking reveals an error in a system, it does not say how
the system can be repaired such that it satisfies the specifications. To repair
the system, a user has to analyze thoroughly a counter example returned by a
model checker in order to identify which behavior led to the error, and how to
avoid such unwanted behavior. Both tasks may be nontrivial in a parameterized
concurrent system, due to the fact that an error can be either an internal issue
of one of the process templates or a problem in the synchronization between
process templates’ instances. In this chapter, given non-deterministic process
descriptions, we present an approach that automatically detects errors in any
system based on these processes, and automatically repairs errors by restrict-
ing the given non-determinism, such that any system based on the repaired
processes is correct.

5.1 Basic Idea

Similarly to existing repair approaches [8, 69], we begin with a given non-
deterministic implementation, in this case an implementation A of the controller
process and an implementation B of the uniform user processes of our concurrent
system. The non-determinism may have been added by a designer to “propose”
possible repairs for a system that is known or suspected to be faulty. The goal
is to automatically detect errors in any system based on these components, and
automatically repair them by restricting the given non-determinism, such that
any system based on the fixed components is correct. In contrast to similar ap-
proaches, we not only aim to find the right restrictions on the internal behavior
of processes, but also on their communication. That is, the non-determinism
may also include different options for synchronization between processes, and
the algorithm will find an option that works. For instance, for a disjunctive
system, a designer can start with a template that contains all possible synchro-
nizations, i.e. all possible transitions and guards.

65

To automatically repair a parameterized system, we propose a method that
interleaves the generation of candidate solutions (repairs) with parameterized
model checking and parameterized deadlock detection approaches. For this
sake we check thoroughly which information parameterized model checker and
parameterized deadlock detector need to provide in order to direct the search for
candidate repairs, and how this information can be encoded into propositional
constraints in order to employ SAT solving to automatically find convenient
repairs on the process implementations (templates). Figure 6.4 sketches the
basic idea.

M

Model Check M

is M correct?M
Yes

Refine constraints

No: error sequence E

is SAT?Unrealizable
No

Restrict M with γ
Yes: γ

deadlock?
Yes

No, M ′

Figure 5.1: Control flow of the algorithm

As a concrete instantiation of the approach, we present an algorithm that
is based on model checking of well-structured transition systems [3, 56]. This
algorithm supports many classes of systems from the parameterized verification
literature, including guarded protocols with disjunctive guards [43], pairwise
rendezvous systems [59] and broadcast protocols [48].

Related Work

Despite the many automatic repair approaches that have been studied in the lit-
erature [8,38,57,60,69,83], to the best of our knowledge none of these approaches
can give correctness guarantees for parameterized concurrent systems.

The repair problem has a close link with the synthesis problem [84,86], and
hence the approach we present in this chapter to parameterized repair builds on
existing approaches for the synthesis of concurrent systems, e.g. lazy synthe-
sis [53].

Many of the existing repair approaches [17,58,81,90,95] that have been pro-
posed for synchronization synthesis and repair of concurrent systems are based
on the counter example guided synthesis/repair principle or learning-based al-
gorithms [58]. However none of the above handles parameterized systems, i.e.,
they are restricted to fixed size systems. In [17, 95] the authors present algo-
rithms that restrict processes’ execution interleaving by adding atomic sections.
An atomic section defines program statements that need to be executed without
intermediate context switch (interruption from another process). In Assume-

66

Guarantee-Repair [58], the authors also combine verification and repair where
they use a learning-based assume-guarantee algorithm to find counter examples,
and then restrict transitions guards to avoid these unwanted behaviors of the
system. In contrast to our results, this approach cannot guarantee the termina-
tion of the repair process. However, the processes considered in [58], as well as
in [17,95], are more general than ours, and may include constraints or variables
over infinite domains under some restrictions. In [81] the authors introduce an
algorithm for the synthesis of synchronizations among controller processes in
a software-defined network. As a system model, they use event net (a special
form of a Petri net) in which a place corresponds to a static network configu-
ration. Their approach requires that a marking (distribution of tokens over the
net’s places) assigns at most one token to each place. Hence, the approach is
restricted to fixed size systems.

Outline of the Chapter. In Section 5.2 we introduce our system model that
can simulate infinite systems including parameterized systems. In Section 5.3 we
show how to model disjunctive systems as well-structured transition systems in
order to show that reachability analysis for such systems is decidable. Then we
present a parameterized model checking algorithm and a parameterized dead-
lock detection algorithm and we prove their correctness. We present our repair
algorithm in Section 5.4 and we prove its correctness. Finally we show how the
repair algorithm can be extended in two orthogonal directions: from reachability
to arbitrary safety properties (Sect. 5.5), and from disjunctive systems to other
types of systems, like pairwise rendezvous and broadcast protocols (Sect. 5.6).

5.2 System Model

In this section we introduce a model that can simulate a system with an arbitrary
number of processes. This model is restricted to disjunctive systems, however in
later sections we present similar models that can simulate other type of systems.

Given a process template U = (QU , initU , δU), we denote by tU a transition
of U , i.e. tU = (qU , g, q

′
U) ∈ δU , and by δU (qU) the set of all outgoing transitions

of qU ∈ QU . We assume that δU is total, i.e., for every qU ∈ QU there exists
some transition (qU , g, q

′
U) ∈ δU .

Counter System. A configuration of a system A‖Bn is a tuple (qA,~c), where
qA ∈ QA, and ~c : QB → N0. For QB = {q0, . . . , q|B|−1}, we identify ~c with the

vector (~c(q0), . . . ,~c(q|B|−1)) ∈ N|B|0 , and also use ~c(i) to refer to ~c(qi). Intuitively,
~c(i) indicates how many processes are in state qi. We denote by ~ui the vector
given by ~ui(i) = 1 and ~ui(j) = 0 for i 6= j.

Given a configuration σ = (qA,~c), we say that the guard g of a local transi-
tion (qU , g, q

′
U) ∈ δU is satisfied in σ, denoted σ |=qU g, if one of the following

conditions hold:

(a) qU = qA, and ∃qi ∈ QB with qi ∈ g and ~c(i) ≥ 1
(A takes the transition, a B-process is in g)

(b) qU 6= qA, ~c(qU) ≥ 1, and qA ∈ g
(B-process takes the transition, A is in g)

67

(c) qU 6= qA, ~c(qU) ≥ 1, and ∃qi ∈ QB with qi ∈ g, qi 6= qU and ~c(i) ≥ 1
(B-process takes the transition, another B-process is in different state in
g)

(d) qU 6= qA, qU ∈ g, and ~c(qU) ≥ 2
(B-process takes the transition, another B-process is in same state in g)

We also say that the local transition (qU , g, q
′
U) is enabled in σ.

Informally, the guard g of a local transition (qU , g, q
′
U) is satisfied if and only

if there is a process in qU and there is another process (i.e., not the one taking
the transition) in one of the local states of the guard g.

Then the configuration space of all systems A‖Bn, for fixed A,B but arbi-
trary n ∈ N, is the transition system M = (Ω,Ω0,∆) where:

• Ω ⊆ QA × N|B|0 is the set of states,

• Ω0 = {(initA,~c) | ∀q ∈ QB : ~c(q) = 0 if q 6= initB)} is the set of initial
states,

• ∆ is the set of transitions ((qA,~c), (q
′
A, ~c

′)) such that one of the following
holds:

1. ~c = ~c′ ∧ ∃(qA, g, q′A) ∈ δA : (qA,~c) |=qA g (transition of A)

2. ∃(qi, g, qj) ∈ δB : ~c(qi) ≥ 1 ∧ ~c′ = ~c− ~ui + ~uj ∧ (qA,~c) |=qi g
(transition of some B)

We will also call M the counter system (of A and B), and will call configurations
states of M , or global states.

A process is enabled in a global state σ if at least one of its transitions is
enabled in σ, otherwise it is disabled.

Let σ, σ′ ∈ Ω be states of M , and U ∈ {A∪B}. For a transition (σ, σ′) ∈ ∆
we also write σ −→ σ′. If the transition is based on the local transition tU =

(qU , g, q
′
U) ∈ δU , we also write σ

tU−→ σ′ or σ
g−→ σ′. Let ∆local(σ) = {tU |

σ
tU−→ σ′}, i.e., the set of all enabled outgoing local transitions from σ, and let

∆(σ, tU) = σ′ if σ
tU−→ σ′. If σ′ can be reached from σ by executing one or more

local transition, we write σ −→∗ σ′.
The above system model is similar to the configuration space of a vector

addition systems with states (VASS). That is, guarded protocols and pairwise
rendezvous systems can directly be modeled as VASS, whereas broadcast syn-
chronization requires an extension of the framework, e.g. to affine VASS [21].

Runs. A path of a counter system is a sequence of global states x = σ1, σ2, . . .
such that for all m < |x| there is a transition σm −→ σm+1 based on some local
transition. A path can be finite or infinite, and a maximal path is a path that
cannot be extended. A system run is a maximal path starting in the initial
configuration. Runs are either infinite, or they end in a configuration where no
transition is enabled. We say that a run is deadlocked if it is finite. Note that
every run σ1, σ2, . . . of the counter system corresponds to a run of a fixed system
A‖Bn, i.e., the number of processes does not change during a run. Given a set
of error states E ⊆ Ω, an error path is a finite path that starts in an initial state
and ends in E.

68

From now on we assume that each guard g ∈ G is a singleton. This is not
a restriction as any local transition (qU , g, q

′
U) with |g| > 1 can be split into

|g| transitions (qU , g1, q
′
U), . . . , (qU , g|g|, q

′
U) where for all i ≤ |g| : gi ∈ g is a

singleton guard. Note that this does not affect the runs of the system: let
M = (Ω,Ω0,∆) be a counter system, and let M ′ = (Ω,Ω0,∆

′) be obtained
by splitting transitions as described above, then if x = (qA1

,~c1), (qA2
,~c2), . . . is

a run of M , then x is also a run of M ′. To see that let (qA,~ci), (q
′
A,~ci+1) be

two consecutive configurations in x, then there exists a local transition tU =

(qU , g, q
′
U) with g = {qg1

, . . . , qg|g|} where (qA,~ci)
tU−→ (q′A,~ci+1) ∈ ∆. We have

(qA,~ci) |=qU g then there exists gj = {qgj} with (qA,~c) |=qU gj (check the
definition above of |=qU). Thus, if the transition tU is enabled at moment i in
M , then there exists a local transition tUj = (qU , gj , q

′
U) that is also enabled at

moment i in M ′. Similarly if x = (qA1
,~c1), (qA2

,~c2), . . . is a run of M ′, then x
is also a run of M .

5.3 Parameterized Model Checking of Disjunc-
tive Systems

As a subprocedure of our parameterized repair algorithm, we will use a parame-
terized model checker. In the following, we provide a model checking algorithm
for counter systems, based on the backward reachability algorithm by Abdulla
et al. [3] for well-structured transition systems (WSTSs). That is, we first prove
that a counter system is a WSTS (Sect. 5.3.1), then we introduce a concrete pa-
rameterized model checking algorithm for disjunctive systems (Sect. 5.3.2), and
finally show how the algorithm can be modified to also check for the reachability
of deadlocked states (Sect. 5.3.3).

5.3.1 Counter Systems as WSTS

Well-quasi-order. Given a set of states Ω, a binary relation � ⊆ Ω × Ω is a
well-quasi-order (wqo) if � is reflexive, transitive, and if any infinite sequence
σ0, σ1, . . . ∈ Ωω contains a pair σi � σj with i < j. A subset R ⊆ Ω is an
antichain if any two distinct elements of R are incomparable wrt. �. Therefore,
� is a wqo on Ω if and only if it is well-founded and has no infinite antichains.

Upward-closed Sets. Let � be a wqo on Ω. The upward closure of a set
R ⊆ Ω, denoted ↑R, is the set {σ ∈ Ω | ∃σ′ ∈ R : σ′ � σ}. We say that a
set R is upward-closed if ↑R = R. Let R be an upward-closed set, then we call
B ⊆ S a basis of R if ↑B = R. From the definition of wqo it follows directly
that any basis of R has a unique subset of minimal elements. We call this set
the minimal basis of R, denoted by minBasis(R).

Compatibility. Given a counter system M = (Ω,Ω0,∆), we say that a wqo
� ⊆ Ω× Ω is compatible with ∆ if the following holds:

∀σ, σ′, r ∈ S : if σ −→ σ′ and σ � r then ∃r′ with σ′ � r′ and r −→∗ r′

We say � is strongly compatible with ∆ if the above holds with r −→ r′ instead
of r −→∗ r′.

69

WSTS [3]. We say that (M,�) with M = (Ω,Ω0,∆) is a well-structured
transition system if � is a wqo on Ω that is compatible with ∆.

Lemma 22. Let M = (Ω,Ω0,∆) be a counter system for guarded process tem-
plates A,B, and let / ⊆ Ω× Ω be the binary relation defined by:

(qA,~c) / (q′A,
~d) ⇔

(
qA = q′A ∧ ~c . ~d

)
,

where . is the component-wise ordering of vectors. Then (M,/) is a WSTS.

Proof. The partial order / is a wqo due to the fact that . is a wqo. Moreover,
we show that / is strongly compatible with ∆. Let σ = (qA,~c), σ

′ = (q′A,~c
′), r =

(qA, ~d) ∈ Ω such that σ
tU−→ σ′ ∈ ∆ and σ / r. Since the transition tU is enabled

in σ, it is also enabled in r and ∃r′ = (q′A,
~d′) ∈ Ω with r

tU−→ r′ ∈ ∆. Then it
is easy to see that σ′ / r′: either tU is a transition of A, then we have ~c = ~c′

and ~d = ~d′, or tU is a transition of B with tU = (qi, g, qj), then qA = q′A and

~c′ = ~c− ~ci + ~cj . ~d− ~ci + ~cj = ~d′.

Predecessor, Effective pred-basis [56]. Let M = (Ω,Ω0,∆) be a counter
system and let R ⊆ Ω. Then the set of immediate predecessors of R is

pred(R) = {σ ∈ Ω | ∃r ∈ R : σ −→ r}.

We say that a WSTS (M,/) has effective pred-basis if there exists an al-
gorithm that takes as input any finite set R ⊆ Ω and returns a finite basis of
↑pred(↑R).

One can easily show the following connection between strong compatibility
and the immediate predecessor of an upward-closed set:

Corollary 5. Let R ⊆ Ω be upward-closed with respect to /. Then pred(R) is
upward-closed iff � is strongly compatible with ∆.

For backward reachability analysis, we want to compute pred∗(R) as the
limit of the sequence R0 ⊆ R1 ⊆ . . . where R0 = R and Ri+1 = Ri ∪ pred(Ri).
Note that if we have strong compatibility and effective pred-basis, we can com-
pute pred∗(R) for any upward-closed set R. If we can furthermore check in-
tersection of upward-closed sets with initial states (which is easy for counter
systems), then reachability of arbitrary upward-closed sets is decidable.

Lemma 23. Let M = (Ω,Ω0,∆) be a counter system for guarded process tem-
plates A,B. Then (M,/) has effective pred-basis.

Proof. Let R ⊆ Ω be finite. By Corollary 5, it is sufficient to prove that a basis
of pred(↑R) can be computed from R. Let g = {qt}, f = ((t = j ∧ ~c′(j) =

70

1) ∨ (~c′(t) ≥ 1 ∧ ~c′(j) = 0)). Consider the following set of states:

CBasis = {(qA,~c) ∈ Ω | ∃(q′A, ~c′) ∈ R :

[∃(qA, g, q′A) ∈ δA ∧ (qA,~c) |=qA g

∧ ((~c = ~c′) ∨ (~c′(t) = 0 ∧ ~c = ~c′ + ~ut))]

∨ [∃(qi, g, qj) ∈ δB ∧ (qA,~c) |=qi g ∧ qA = q′A

∧ (~c′ = ~c− ~ui + ~uj

∨ (~c′(t) = 0 ∧ ~c′(j) ≥ 1 ∧ ~c′ + ~ut = ~c− ~ui + ~uj)

∨ (f ∧ ~c′ + ~uj = ~c− ~ui + ~uj)

∨ (~c′(t) = 0 ∧ ~c′(j) = 0 ∧ ~c′ + ~ut + ~uj = ~c− ~ui + ~uj))] }

Clearly, CBasis ⊆ pred(↑R), and CBasis is finite. We claim that also
CBasis ⊇ minBasis(pred(↑R)). For the purpose of reaching a contradic-
tion, assume CBasis 6⊇ minBasis(pred(↑R)), which implies that there exists a
(qA,~c) ∈ (minBasis(pred(↑R)) ∩ ¬CBasis). Since (qA,~c) 6∈ CBasis, there ex-
ists (q′A, ~c

′) 6∈ R with (qA,~c) −→ (q′A, ~c
′) and since (qA,~c) ∈ minBasis(pred(↑R)),

there is a (q′A,
~d′) ∈ R with (q′A,

~d′) / (q′A, ~c
′). We differentiate between two

cases:

• Case 1: Suppose (qA,~c)
tA−→ (q′A, ~c

′) with tA = (qA, g, q
′
A) ∈ δA and

(qA,~c) |=qA g. Then ~c = ~c′, and by definition of CBasis there exists

(qA, ~d) ∈ CBasis with [(qA, ~d) −→ (q′A,
~d′) ∧ ~d = ~d′ ∧ ~d′(t) ≥ 1] or

[(qA, ~d) −→ (q′A,
~d′ + ut) ∧ ~d = ~d′ + ut ∧ ~d′(t) = 0]. Furthermore, we have

~d′ . ~c′, which implies (qA, ~d) / (qA,~c) with (q′A,
~d′) ∈ R. Contradiction.

• Case 2: Suppose (qA,~c)
tB−→ (q′A, ~c

′) with tB = (qi, g, qj) ∈ δB and
(qA,~c) |=qi g. Then qA = q′A ∧ ~c = ~c′ + ~ui − ~uj . By definition of CBasis

there exists (qA, ~d) ∈ CBasis such that one of the following holds:

– (qA, ~d) −→ (q′A,
~d′) ∧ ~d′ = ~d− ~ui + ~uj

– ~d′(t) = 0∧ ~d′(j) ≥ 1∧ (qA, ~d) −→ (q′A,
~d′ + ~ut) ∧ ~d′ + ~ut = ~d− ~ui + ~uj

– f ∧ (qA, ~d) −→ (q′A,
~d′ + ~uj) ∧ ~d′ + ~uj = ~d− ~ui + ~uj

– ~d′(t) = 0 ∧ ~d′(j) = 0 ∧ (qA, ~d) −→ (q′A,
~d′ + ~ut + ~uj) ∧ ~d′ + ~ut + ~uj =

~d− ~ui + ~uj

Furthermore, we have ~d′ . ~c′, which implies that (qA, ~d) / (qA,~c) with

(qA, ~d) ∈ minBasis(pred(↑R)). Contradiction.

5.3.2 Model Checking Algorithm

The model checking algorithm we present here is a variant of the known back-
wards reachability algorithm for WSTS [3]. We present it in detail to show how
it stores intermediate results and returns not only a yes/no answer, but an error
sequence. This is necessary for a model checker that is to be used in our repair

71

algorithm, and understanding how error sequences are computed makes it easier
to understand the correctness of that algorithm.

Detailed Description of Algorithm 1. Algorithm 1 takes as argument a
counter system M and a finite basis ERR of the set of error states. In a loop,
it computes the set of predecessors and checks whether it has reached a set that
contains initial states, or a fixed point. If either of these is true, it terminates,
otherwise it repeats the loop. The procedure returns either True, i.e. the
system is safe, or an error sequence E0, . . . , Ek, where E0 = ERR, ∀0 < i < k :
Ei = minBasis(pred(↑Ei−1)), and Ek = minBasis(pred(↑Ek−1)) ∩ Ω0. That
is, every Ei is the minimal basis of the set of states that can reach ERR in i
steps. The steps of the algorithm are explained in more detail in the following.

ModelCheck: Line 2 initializes tempSet and E0 with ERR, i to 1, and
visitedSet (the set of visited states) with ∅. In Line 3 we enter a while loop
that is left when a fixed point is reached, and Line 4 updates the set of visited
states to include what we have computed in the last iteration of the loop, stored
in tempSet. Line 5 computes the next error set Ei, based on the construction
used in the proof of Lemma 23. Line 6 checks if the intersection with the initial
states is non-empty, and the computed error sequence is returned if this is true.
Line 8 adds the Ei that has been computed in this iteration to visitedSet and
updates tempSet with the minimal basis of the result. If visitedSet = tempSet
at this point, we have reached a fixed point and Line 7 returns True.

Algorithm 1 Parameterized Model Checking

1: procedure ModelCheck(Counter System M ,ERR)
2: tempSet← ERR, E0 ← ERR, i← 1, visitedSet← ∅
3: while tempSet 6= visitedSet do
4: visitedSet← tempSet
5: Ei ← minBasis(pred(↑Ei−1))
6: if Ei ∩ Ω0 6= ∅ then
7: return False, {E0, . . . , Ei ∩ Ω0}
8: tempSet← minBasis(visitedSet ∪ Ei)
9: i← i+ 1

10: return True, ∅

Example. Consider again the reader-writer system in Figures 4.2 and 4.3.
Suppose the error states are all states where the writer is in w while a reader
is in r. In other words, the error set of the corresponding counter system M
is ↑{(w, (0, 1))} where (0, 1) means zero reader-processes are in nr and one in
r. Then if we run Algorithm 1 with the parameters M, {(w, (0, 1))}, we get
the following error sequence: E0 = {(w, (0, 1))}, E1 = {(nw, (0, 1))}, E2 =
{(nw, (1, 0))}, with E2 ∩ Ω0 6= ∅, i.e., the error is reachable.

Properties of Algorithm 1. Correctness of the algorithm follows from the
correctness of the algorithm by Abdulla et al. [3], and from Lemma 23. Ter-
mination follows from the fact that a non-terminating run would produce an
infinite minimal basis, which is impossible since a minimal basis is an antichain.

Moreover, note that due to the cutoff results for disjunctive systems [43,65]
and the fact that our algorithm finds shortest error paths, any state on the

72

error paths will have a number of processes smaller than the cutoff. Let c
be the cutoff for disjunctive systems of the form A‖Bn. Then if an error is
reached in the cutoff system, A‖Bc, it will be reached in any system A‖Bn
with n ≥ c (the other direction holds too). In other words, we need at most
c processes to reach the error, if the error is reachable. On the other hand,
the backward model checking algorithm presented in this section guarantees to
find errors with the least possible number of processes, due to the fact that it
starts from the minimal basis ERR of the error set. That is, for a given state
σ ∈ ERR, if a state σ0 ∈ Ω0 could reach the upwards closure of σ, i.e. ↑σ, then
σ0 must include at least the same number of processes in σ. Furthermore, in
each computation of the predecessor, at most one process is added to a state
in the current set (check the proof of Lemma 23). That means, during the
backward computation, if an initial state has not been reached yet, and if nb is
the least number of processes in a state in the last computed predecessor set,
then with nb− 1 processes, the set ↑ERR is not reachable.

5.3.3 Deadlock Detection in Disjunctive Systems

The repair of concurrent systems is much harder than fixing monolithic systems.
One of the sources of complexity is that a fix for a faulty concurrent system
might introduce a deadlock, which is usually an unwanted behavior. In this
section we show how to extend our parameterized model checking algorithm to
the detection of deadlocks.

To this end, we need to refine the wqo / that is used in Section 5.3.1,
since a set of deadlocked states is in general not upward-closed under /: let

σ = (qA,~c), r = (qA, ~d) be two global states with σ / r. If σ is deadlocked,
then ~c(i) = 0 for every qi that appears in a guard of an outgoing local transion

from σ. Now if ~d(i) > 0 for one of these qi, then the corresponding transition is
enabled in r, which is therefore not deadlocked.

Refined wqo for Deadlock Detection. Consider .0⊆ N|B|0 × N|B|0 where

~c .0
~d ⇔

(
~c . ~d ∧ ∀i ≤ |B| :

(
~c(i) = 0⇔ ~d(i) = 0

))
,

and /0 ⊆ Ω× Ω where

(qA,~c) /0 (q′A,
~d) ⇔

(
qA = q′A ∧ ~c .0

~d
)
.

Lemma 24. Let M = (Ω,Ω0,∆) be a counter system for guarded process tem-
plates A,B. Then (M,/0) is a WSTS.

Proof. The partial order /0 is obviously reflexive and transitive. Additionally
/0 has no infinite antichains due to the fact that / is a wqo and the comparison
of vector positions against zero only introduces a finite case distinction. Thus,
/0 is a wqo. Moreover we show that /0 is compatible with ∆. Let σ =

(qA,~c), σ
′ = (q′A, ~c

′), r = (qA, ~d) ∈ Ω such that σ
tU−→ σ′ and σ /0 r. We show

that there exists r′ = (q′A,
~d′) ∈ Ω and a sequence of transitions r

tU−→
∗
r′ such

that σ′ / r′. First, note that since transition tU is enabled in σ, it is also enabled

in r. If tU is a transition of A then we have ~c = ~d and ~c′ = ~d′, and we are done.
If tU is a transition of B with tU = (qi, g, qj) and (~c(i) > 1 ∨ ~c(i) = ~d(i)) then

73

qA = q′A and ~c′ = ~c− ~ui + ~uj .0
~d− ~ui + ~uj = ~d′. However if ~c(i) = 1 ∧ ~d(i) =

b > 1, then r′ is reachable from r by executing tU b times. In this case, we get
~c′ = ~c− ~ui + ~uj .0

~d− b · ~ui + b · ~uj = ~d′.

As shown in the proof above, /0 is compatible with ∆, but not strongly
compatible. By Corollary 5, this implies that for a set of states R that is
upward-closed (wrt. /0), pred(R) is not upward-closed, and we can therefore
not use upward-closed sets to compute pred∗(R) when checking reachability
of R. Therefore, we now introduce an overapproximation of pred(R) that is
upward-closed wrt. /0 and is safe in the sense that every state in the overap-
proximation is backwards reachable (in a number of steps) from R.

O-Predecessor. Let M = (Ω,Ω0,∆) be a counter system and let R ⊆ Ω.
Then the set of O-predecessors of R is

opred(R) = {σ ∈ S | ∃r ∈ R : σ
tU−→+ r},

where σ
tU−→+ r denotes that r is reachable from σ by executing the local tran-

sition tU one or more times. We write σ
tU−→c r if r is reachable from σ by

executing the local transition tU exactly c times.

Lemma 25. Let R ⊆ Ω be upward-closed with respect to /0. Then opred(R)
is upward-closed with respect to /0.

Proof. Assume opred(R) is not upward-closed. Let (qA,~c) /0 (qA, ~d) such that

(qA,~c) ∈ opred(R) and (qA, ~d) 6∈ opred(R). Since (qA,~c) ∈ opred(R), there

exist (q′A, ~c
′) ∈ R, c ∈ N0, tU = (qi, g, qj) such that (qA,~c)

tU−→c (q′A, ~c
′) and

~c(i) ≥ c. Since (qA,~c) /0 (qA, ~d) and c ≤ ~c(i) ≤ ~d(i), tU is also enabled in

(qA, ~d) and can be executed c times. Let (q′A,
~d′) such that (qA, ~d)

tU−→c (q′A,
~d′).

If c < ~c(i)∨~c(i) = ~d(i), we have (q′A, ~c
′) /0 (q′A,

~d′). Otherwise, for c′ = ~d(i), we

have (qA, ~d)
tU−→c′ (q′A,

~d′′) and (q′A,
~d′′) ∈ R (since (q′A, ~c

′) /0 (q′A,
~d′′)). Hence

(qA, ~d) ∈ opred(R), which contradicts our assumption.

Effective opred-basis. Similar to what we had before, we need to have effec-
tive opred-basis, i.e., to be able to compute a basis of opred(R) from a basis of
R.

Lemma 26. Let M = (Ω,Ω0,∆) be a counter system for guarded process tem-
plates A,B. Then (M,/0) is a WSTS with effective opred-basis.

Proof. Let R ⊆ Ω be finite. Then it suffices to prove that a finite basis of
opred(↑R) can be computed from R (where the upward-closure is wrt. /0).
Consider the following set of states:

DB-Pred(R) = {(qA,~c) ∈ S | ∃(q′A, ~c′) ∈ R :

[(qA, g, q
′
A) ∈ δA ∧ (qA,~c) |=qA g ∧ (~c = ~c′)]

∨ [(qA = q′A ∧ (qi, g, qj) ∈ δB)

∧ ((~c′ = ~c− ~ui + ~uj) ∨ (~c′(j) = 1 ∧ ~c′ + ~uj = ~c− ~ui + ~uj))] }

74

That is, DB-Pred contains all states that map with a single transition into
R, as well as states (qA,~c) with (qA,~c) −→ (qA, ~c′ + ~uj) for (qA, ~c′) ∈ R with
~c′(j) = 1.

Obviously, DB-Pred(R) ⊆ opred(↑R). We claim that also DB-Pred(R) ⊇
minBasis(opred(↑R)). For the purpose of reaching a contradiction, assume
DB-Pred(R) 6⊇ minBasis(opred(↑R)), and let (qA,~c) ∈ (minBasis(opred(↑R))∩
¬DB-Pred(R)). Since (qA,~c) 6∈ DB-Pred(R), there exist (q′A, ~c

′) 6∈ R with

(qA,~c) −→ (q′A, ~c
′) and (q′A,

~d′) ∈ R with (q′A,
~d′) /0 (q′A, ~c

′). We differentiate
between two cases:

• Case 1: ~c = ~c′, and ∃g with (qA, g, q
′
A) ∈ δA and (qA,~c) |=qA g. By

definition of /0 we have (qA, ~d
′) |=qA g, and therefore (qA, ~d

′) −→ (q′A,
~d′)

with (qA, ~d
′) /0 (qA,~c). Contradiction.

• Case 2: qA = q′A and ∃g with (qi, g, qj) ∈ δB , (qA,~c) |=qi g, and (~c′ =

~c−~ui+~uj). Then (qA,~c) |=qi g implies (q′A, (~c
′+~ui)) |=qi g, and (q′A, (

~d′+

~ui)) |=qi g since (q′A,
~d′) /0 (q′A, ~c

′). We differentiate between two cases:

– If ~c(j) = 0 or ~d′(j) > 1 then for (~d = ~d′+~ui−~uj) we have (qA, ~d) |=qi

g, (qA, ~d) −→ (q′A,
~d′), and (qA, ~d) /0 (qA,~c). Contradiction.

– If ~c(j) > 0 ∧ ~d′(j) ≤ 1 then ~c′(j) > 1. Note that ~d′(j) 6= 0, as

(q′A,
~d′) /0 (q′A, ~c

′), so ~d′(j) = 1. Then for ~d = ~d′ + ~ui − ~uj we have

(qA, ~d) and (qA,~c) are incomparable with respect to /0. However,

in this case there is also a transition (q′A,
~d′ + ~ui) −→ (q′A,

~d′ + ~uj),

and by definition of DB-Pred, then (q′A,
~d′ + ~ui) ∈ DB-Pred(R), with

(~d′ + ~ui)(j) = 1 ≤ ~c(j), ~d′ + ~ui .0 ~c, and (qA, ~d
′ + ~ui) /0 (qA,~c).

Contradiction.

Let opred∗ and DB-Pred∗ be defined similarly to pred∗. Then, note that
pred(R) ⊆ opred(R) ⊆ pred∗(R) for any R ⊆ S, and therefore opred∗(R) =
pred∗(R). This leads to the following.

Corollary 6. Let M = (Ω,Ω0,∆) be a counter system for guarded process tem-
plates A,B, and ERR a finite set of deadlocked states. Then ↑(DB-Pred∗(ERR)) =
opred∗(↑ERR) = pred∗(↑ERR).

An Algorithm for Deadlock Detection. Based on this result, we can now
modify Algorithm 1 to detect a deadlock in a counter system M : instead of
passing a basis of the set of errors in the parameter ERR, we pass a basis of
the deadlocked states. Furthermore, in Line 5 we now compute opred instead
of pred, which can be done with DB-Pred from the previous proof. Finally, the
computation of a minimal basis in Lines 5 and 8 needs to be done wrt. the
refined wqo /0.

5.4 Parameterized Repair

In the following, we present an algorithm to solve the parameterized repair
problem. This algorithm is inspired by the lazy synthesis approach of Finkbeiner

75

and Jacobs [53], but it works on a system with infinite state space, making use
of the well-quasi-order on the states to perform precise computations.

The Parameterized Repair Problem. Let M = (Ω,Ω0,∆) the counter
system for guarded process templates A = (QA, initA,GA, δA),

B = (QB , initB ,GB , δB), and Err ⊆ QA × N|B|0 a set of error states. The
parameterized repair problem is to decide if there exist A′ = (QA, initA,GA, δ′A)
with δ′A ⊆ δA and B′ = (QB , initB ,GB , δ′B) with δ′B ⊆ δB such that the counter
system M ′ for A′ and B′ does not reach any state in ↑ERR.

If they exist, we call δ′A ∪ δ′B a repair for A and B. We also call M ′ the
restriction of M to δ′A ∪ δ′B , denoted Restrict(M, δ′A ∪ δ′B).

Note that by our assumption that the local transition relations are total,
a trivial repair that disables all transitions from the initial state (or any other
state) is not allowed.

5.4.1 Parameterized Repair Algorithm

We introduce a parameterized repair algorithm that interleaves the backwards
model checking algorithm (Algorithm 1) with a forward reachability analysis
and the computation of candidate repairs.

Forward Reachability Analysis. In the following, for a set R ⊆ Ω, let
Succ(R) = {σ′ ∈ Ω | ∃σ ∈ R : σ −→ σ′}. Furthermore, for σ ∈ Ω, let
∆local(σ,R) = {tU ∈ δ | tU ∈ ∆local(σ) ∧∆(σ, tU) ∈ R}.

Given an error sequence E0, . . . , Ek, let the reachable error sequence RE =
RE0, . . . , REk be defined by REk = Ek (which by definition only contains
initial states), and REi−1 = Succ(REi) ∩ ↑Ei−1 for 1 ≤ i ≤ k. That is, each
REi contains a set of states that can reach ↑ERR in i steps, and are reachable
from Ω0 in k− i steps. Thus, it represents a set of concrete error paths of length
k.

Constraint Solving for Candidate Repairs. The generation of candidate
solutions is guided by a constraint solving approach: a SAT solver receives
constraints over the local transitions δ as atomic propositions, and a satisfying
assignment of the constraints corresponds to the candidate repair, where only
transitions that are assigned true remain in δ′A∪ δ′B . During an execution of the
algorithm, these constraints ensure that all concrete error paths discovered so
far will be avoided, and additionally include a set of fixed constraints that can
express additional desired properties of the system, as explained in the following.

Initial Constraints. To avoid the construction of repairs that violate the
totality assumption on the transition relations of the process templates, every
repair for disjunctive systems has to satisfy the following constraint:

TRConstrDisj =
∧

qA∈QA

∨
tA∈δA(qA)

tA ∧
∧

qB∈QB

∨
tB∈δB(qB)

tB

Informally, TRConstrDisj guarantees that a candidate repair returned by
the SAT solver never removes all local transitions of a local state in QA ∪
QB . Furthermore a designer can add any constraints that are needed to obtain
a repair that conforms with their requirements (see Sect. 5.6.1 and 5.6.3 for
examples of additional constraints).

76

Detailed description of Algorithm 2. Given a counter system M , a basis
ERR of the error states, and initial Boolean constraints initConstr on the
transition relation (including at least TRConstrDisj), the algorithm returns
either a repair or the string Unrealizable to denote that no repair exists.

ParamRepair: In Line 2 we initialize the candidate solution M ′, the con-
straint system accConstr which accumulates all constraints that have been com-
puted so far, and the flag isCorrect before we enter the loop in Line 3. Line 4
uses a model checker (see Algorithm 1) to check if M ′ is correct, and returns an
error sequence E0, . . . , Ek if it is not.

If the system is not correct, Line 7 computes the reachable error sequence
RE0, . . . , REk. Then, in Line 8 we use REk, . . . , RE0 to construct the Boolean
constraint newConstr that ensures that all error paths represented by the reach-
able error sequence will be avoided in future iterations (see BuildConstr be-
low). In Line 9 this newConstr is added to accConstr.

Line 10 calls a SAT solver to check if there exists a solution for initConstr
and accConstr, which now includes constraints that exclude any error paths
found so far. If the constraints are not satisfiable, Line 12 returns the string
“Unrealizable” and the algorithm terminates. Otherwise, in Line 14 we use the
satisfying assignment γ to compute our new candidate solution Restrict(M,γ),
and another iteration of the loop starts. Finally, if model checking in Line 4
showed that the current candidate M ′ is already correct, then Line 14 returns
the repair γ and the algorithm terminates.

BuildConstr: This is a recursive procedure that receives the sequence
REk−1, . . . , RE0 and a state σ ∈ REk as input and returns a propositional
formula over the set of local transitions that encodes all possible ways for σ to
avoid reaching an error: Line 3 asserts that if a state σ is in RE [1] then all its
transitions to RE [0] are to be deleted. Line 6 asserts that ∀tU ∈ ∆local(σ) if tU
leads to a state σ′ ∈ RE [0] then tU should be deleted, or we need to delete all
transitions t′U ∈ ∆local(σ′) if ∆(σ′, t′U) ∈ RE [1].

5.4.2 Properties of Algorithm 2

Theorem 17 (Soundness). For every repair γ returned by Algorithm 2:

• Restrict(M,γ) is safe, i.e., ↑ERR is not reachable, and

• the transition relation of Restrict(M,γ) is total in the first two arguments.

Proof. The parameterized model checker guarantees that the transition relation
is safe, i.e., ↑ERR is not reachable. Moreover, the transition relation constraint
TRConstr is part of initConstr and guarantees that, for any candidate repair
returned by the SAT solver, the transition relation is total.

Theorem 18 (Completeness). If Algorithm 2 returns “Unrealizable”, then the
parameterized system has no repair.

Proof. Algorithm 2 returns ”Unrealizable” if accConstr ∧ initConstr has be-
come unsatisfiable.

We consider an arbitrary γ ⊆ δ and show that it can not be a repair. First,
note that for the given run of the algorithm, there is an iteration i of the loop
such that γ, seen as an assignment of truth values to atomic propositions δ, was

77

Algorithm 2 Parameterized Repair

1: procedure ParamRepair(M , ERR, InitConstr)
2: M ′ ←M , accConstr ← True, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [E0, . . . , Ek]←ModelCheck(M ′, ERR)
5: if isCorrect = False then
6: REk ← Ek //Ek contains only initial states
7: REk−1 ← Succ(REk)∩ ↑Ek−1, . . . , RE0 ← Succ(RE1)∩ ↑E0

8: newConstr ←
∧
σ∈REk BuildConstr(σ, [REk−1, . . . , RE0]})

9: accConstr ← newConstr ∧ accConstr
10: γ, isSAT ← SAT (accConstr ∧ initConstr)
11: if isSAT = False then
12: return Unrealizable
13: M ′ = Restrict(M,γ)

14: else return γ

1: procedure BuildConstr(State σ, RE)
2: //RE [1 :] is a list obtained by removing the first element from RE
3: if RE [1 :] is empty then
4: return

∧
tU∈∆local(σ,RE[0]) ¬tU

5: else
6: return

∧
tU∈∆local(σ,RE[0])(¬tU∨ BuildConstr(∆(σ, tU),RE [1 :]))

a satisfying assignment of accConstr ∧ initConstr up to this point, and is not
anymore after this iteration.

If i = 0, i.e., γ was never a satisfying assignment, then γ does not satisfy
initConstr and can clearly not be a repair. If i > 0, then γ is a satisfying
assignment for initConstr and all constraints added before round i, but not
for the constraints

∧
σ∈REk BuildConstr(σ, [REk−1, . . . , RE0]}) added in this

iteration of the loop, based on a reachable error sequence RE = REk, . . . , RE0.
By construction of BuildConstr, this means we can construct out of γ and
RE a concrete error path in Restrict(M,γ), and γ can also not be a repair.

Theorem 19 (Termination). Algorithm 2 always terminates.

Proof. For a counter system based on A and B, the number of possible repairs
is bounded by 2|δ|. In every iteration of the algorithm, either the algorithm
terminates and returns a solution, or it adds constraints that exclude at least
the repair that is currently under consideration. Therefore, the algorithm will
always terminate.

Local Witnesses are Upward-closed. We show another property of our
algorithm: even though for the reachable error sequence RE we do not consider
the upward closure, the error paths we discover are in a sense upward-closed.
This implies that an RE of length k represents all possible error paths of length
k. We formalize this in the following.

Given a reachable error sequence RE = REk, . . . , RE0, we denote by UE the
sequence ↑REk, . . . , ↑RE0. Furthermore, let a local witness of RE be a sequence

78

TRE = tUk . . . tU1
where for all i ∈ {1, . . . , k} there exists σ ∈ REi, σ′ ∈ REi−1

with σ
tUi−−→ σ′. We define similarly the local witness TUE of UE .

Lemma 27. Let RE be a reachable error sequence. Then every local witness
TUE of UE is also a local witness of RE.

Proof. Let TUE = tUk . . . tU1
. Then there exist σk ∈ ↑Ek = ↑REk, σk−1 ∈

↑REk−1,. . . , σ0 ∈ ↑RE0 such that σk
tUk−−→ σk−1

tUk−1−−−−→
tU2−−→ σ1

tU1−−→ σ0.

Let σ0 = (q0
A,
~d0), and let tU1

= (qUi1 , {qt1}, qUj1). Then, by construction of E ,

there exists (q0
A,~c

0) ∈ E0, (q
1
A,~c

1) ∈ E1 with (q0
A,~c

0) / (q0
A,
~d0) and (q1

A,~c
1)

tU1−−→
(q0
A,~c

0) or (q1
A,~c

1)
tU1−−→ (q0

A,~c
0 +~ut1), hence tU1

is enabled in (q1
A,~c

1). Using the
same argument we can compute (q2

A,~c
2) ∈ E2, (q

3
A,~c

3) ∈ E3,. . . until we reach
the state (qkA,~c

k) ∈ Ek where tUk is enabled. Therefore we have the sequence

σRk
tUk−−→ σRk−1

tUk−1−−−−→
tU2−−→ σR1

tU1−−→ σR0 with σRk = (qkA,~c
k) ∈ REk = Ek

and for all i < k we have σRi ∈ REi, as they are reachable from σRk ∈ REk and
(qiA,~c

i) / σRi which guarantees that tUi is enabled in σRi .

5.4.3 Parameterized Repair with Deadlock Detection

Note that Algorithm 1 does not include any measures that prevent it from
producing a repair that has deadlocked runs. In the repair of concurrent systems,
exclusion of deadlocks is particularly important: since letting the system run
into a deadlock may be the easiest solution for an automatic repair algorithm
to avoid error paths, we can expect the algorithm to produce many deadlocked
solutions unless we specifically exclude such cases.

As already sketched in Fig. 6.4, in principle a parameterized deadlock detec-
tion mechanism can be added into the loop of refinement and model checking.
The difficulty is to provide deadlock detection that decides the problem for
parameterized systems, and that can produce meaningful constraints for refine-
ment of our accConstraint.

We have already solved both problems in Sect. 5.3.3, where we have shown
that deadlock detection for disjunctive systems can be based on the same princi-
ples as checking reachability of other errors. Using this approach, it is straight-
forward to extend Algorithm 1 with a subprocedure for deadlock detection that
is called in some interleaving way with the model checker, for example as de-
picted in Fig. 6.4.

5.5 Beyond Reachability

Algorithm 2 can also be used for repair with respect to general safety properties,
based on the automata-theoretic approach to model checking. A safety property
asserts that the set of error states must be unreachable. The set of runs that
do not violate a safety property can be encoded in a finite-state automaton.

A finite-state automaton is a tuple A = (QA, qA0 ,Σ, δ,F) where:

• QA is a finite set of states,

• qA0 is the initial state,

79

• Σ is an input alphabet,

• δ ⊆ QA × Σ×QA is a transition relation, and

• F ⊆ QA is a set of accepting states.

A run of the automaton is a finite sequence qA0 a0q
A
1 a1q

A
2 a2 . . . q

A
n+1 where

∀i : (qAi , ai, q
A
i+1) ∈ δ. A run of the automaton is accepting if it visits a state in

F .

5.5.1 Checking Safety Properties

Let M = (QA × Nn0 ,Ω0,∆) be a counter system of process templates A and
B that violates ϕ(A), a safety property over the states of A, and let A =
(QA, qA0 , QA, δ,F) be the automaton that accepts all words over QA that violate
ϕ. To repair M , the composition M × A and the set of error states ERR =
{((qA, c), qAF) | (qA, c) ∈ Ω ∧ qAF ∈ F} can be given as inputs to the procedure
ParamRepair. This technique is correct due to the following property that
holds on the composition M ×A.

Corollary 7. Let .A⊆ (M ×A)× (M ×A) be a binary relation defined by:

((qA,~c), q
A) .A ((q′A,~c

′), q′A)⇔ ~c . ~c′ ∧ qA = q′A ∧ qA = q′A

then ((M ×A),.A) is a WSTS with effective pred-basis.

Similarly, the algorithm can be used for any safety property ϕ(A,B(k))
over the states of A, and of k B-processes B1, . . . , Bk. To this end, we con-
sider the composition M × Bk × A with M = (QA × Nn0 ,Ω0,G,∆), B =
(QB , initB ,GB , δB), and A = (QA, qA0 , QA × QBk , δ,F) is the automaton that
reads states of A×Bk as actions and accepts all words that violate the property.
By symmetry, property ϕ(A,B(k)) can be violated by these k explicitly modeled
processes iff it can be violated by any combination of k processes in the system.

5.5.2 Example

Consider again the simple reader-writer system in Figures 4.2 and 4.3, and
assume that instead of local transition (nr, {nw}, r) we have an unguarded
transition (nr,Q, r). We want to repair the system with respect to the safety
property ϕ = G[(w ∧ nr1) =⇒ (nr1Wnw)] where G,W are the tempo-
ral operators always and weak until, respectively. Figure 5.2 depicts the au-
tomaton equivalent to ¬ϕ. To repair the system we first need to split the
guards as mentioned in Section 5.2, i.e., the transition (nr,Q, r) will become
{(nr, {nr}, r), (nr, {r}, r), (nr, ∃nw, r), (nr, {w}, r)}. Then we consider the com-
position C = M × B × A and we run Algorithm 2 on the parameters C,
((−,−, (∗, ∗), qA2)) where (−,−) means any writer state and any reader state,
and ∗ means 0 or 1. The model checker in Line 4 may return the following error
sequences where we only consider states that didn’t occur before:
E0 = {((−,−, (∗, ∗)), qA2)},
E1 = {((w, r1, (0, 0)), qA1)},
E2 = {((w, nr1, (0, 0)), qA0), ((w, nr1, (0, 1)), qA0), ((w, nr1, (1, 0)), qA0)},
E3 = {((nw, nr1, (0, 0)), qA0), ((nw, nr1, (0, 1)), qA0), ((w, r1, (0, 0)), qA0),
((w, r1, (0, 1)), qA0), ((w, r1, (1, 0)), qA0)}.

80

qA0 qA1
nw

w ∧ nr1

w ∧ nr1

qA2
r

Figure 5.2: Automaton for ¬ϕ

In Line 10 we will find out that the error sequence can be avoided if we
remove the transitions {(nr, {nr}, r), (nr, {r}, r), (nr, {w}, r)}. Another call to
the model checker in Line 4 finally assures that the new system the new system
M ′′ of A′ = (QA, initA, δA) and B′′ = (QB , initB , δB \{(nr, {w}, r), (nr, {nr}, r),
(nr, {r}, r)}) is safe. Note that some states were omitted from error sequences
in order to make presentation simple.

5.6 Beyond Disjunctive Systems

Algorithm 2 is not restricted to disjunctive systems. In principle, it can be
used for any system that can be modeled as a WSTS with effective pred-basis,
as long as we can construct the transition relation constraint (TRConstr) for
the corresponding system. In this section we show two other classes of sys-
tems that can be modeled in this framework: pairwise rendezvous (PR) and
broadcast (BC) systems. We introduce transition relation constraints for these
systems, as well as a procedure BuildSyncConstr that must be used instead
of BuildConstr when a transition relation comprises synchronous actions.

Since these two classes of systems require processes to synchronize on certain
actions, we first introduce a different notion of process templates.

Synchronous Processes. A synchronizing process template is a transition
system U = (QU , initU ,Σ, δU) with

• QU ⊆ Q is a finite set of states including the initial state initU ,

• Σ = Σsync ×{?, !, ??, !!} ∪ τ where Σsync is a set of synchronizing actions,
and τ is an internal action,

• δU : QU × Σ×QU is a transition relation.

Synchronizing actions like (a, ?) or (b, !) are shortened to a? and b!. Intu-
itively actions of the form a? and a! are PR send and receive actions, respectively,
and a??, a!! are BC send and receive actions, respectively.

All processes mentioned in the following are based on a synchronizing process
template. We will define global systems based on either PR or BC synchroniza-
tion in the following subsections.

5.6.1 Pairwise Rendezvous Systems

A PR system [59] consists of a finite number of processes running concurrently.
As before, we consider systems of the form A‖Bn. The semantics is interleaving,

81

except for actions where two processes synchronize. That is, at every time
step, either exactly one process makes an internal transition τ , or exactly two
processes synchronize on a single action a ∈ Σsync. For a synchronizing action
a ∈ Σsync, the initiator process locally executes the a! action and the recipient
process executes the a? action.

Similar to what we defined for disjunctive systems, the configuration space
of all systems A‖Bn, for fixed A,B but arbitrary n ∈ N, is the counter system
MPR = (Ω,Ω0,∆), where:

• Ω ⊆ QA × N|B|0 is the set of states,
• Ω0 = {(initA,~c) | ∀qB ∈ QB : ~c(qB) = 0 if qB 6= initB)} is the set of

initial states,
• ∆ is the set of transitions ((qA,~c), (q

′
A,~c
′)) such that one of the following

holds:

1. (qA, τ, q
′
A) ∈ δA ∧ ~c = ~c′ (internal transition A)

2. ∃qi, qj : (qi, τ, qj) ∈ δB ∧c(i) ≥ 1∧~c′ = ~c−~ui+~uj ∧qA = q′A (internal
transition B)

3. a ∈ Σsync∧ (qA, a!, q′A) ∈ δA∧∃qi, qj : (qi, a?, qj) ∈ δB ∧ c(i) ≥ 1,~c′ =
~c− ~ui + ~uj (synchronizing transition A,B)

4. a ∈ Σsync∧ (qA, a?, q′A) ∈ δA∧∃qi, qj : (qi, a!, qj) ∈ δB ∧ c(i) ≥ 1,~c′ =
~c− ~ui + ~uj (synchronizing transition B,A)

5. ∃qi, qj : (qi, a!, qj) ∈ δB ∧∃ql, qm : (ql, a?, qm) ∈ δB ∧ c(i) ≥ 1∧ c(l) ≥
1 ∧ ~c′ = ~c− ~ui + ~uj − ~ul + ~um (synchronizing transition B,B)

The following result can be considered folklore, a proof can be found in the
survey by Bloem et al. [19].

Lemma 28. Let MPR = (Ω,Ω0,∆) be a counter system for process templates
A,B with PR synchronization. Then (MPR,/) is a WSTS with effective pred-
basis.

Initial Constraints. The transition relation constraint for pairwise rendezvous
systems, TRConstrPR, is defined as follows:

TRConstrPR =
∧

qA∈QA

∨
tA∈δA(qA)

tA ∨
∧

qB∈QB

∨
tB∈δB(qB)

tB

We denote by ta?, ta! synchronous local transitions based on an action a, and
let δAB = δA ∪ δB . Then the user can add a constraint that guarantees that for
all a ∈ Σsync, ta! is deleted if and only if all ta? are deleted.

UserConstrPR =
∧

a∈Σsync

[(ta! ∧ (
∨

ta?∈δAB

ta?)) ∨ (¬ta! ∧ (
∧

ta?∈δAB

¬ta?))]

Furthermore, the user may want to ensure that in the returned repair, either
(a) for all a ∈ Σsync, ta! is deleted if and only if all ta? are deleted, or (b)
that synchronized actions are deterministic, i.e., for every state qU and every
synchronized action a, there is exactly one transition on a? from qU . We give
user constraints that ensure such behavior.

82

Denote by ta?, ta! synchronous local transitions based on an action a. Then,
the constraint ensuring property (a) is∧

a∈Σsync

[(ta! ∧ (
∨
ta?∈δ

ta?)) ∨ (¬ta! ∧ (
∧
ta?∈δ

¬ta?))]

To encode property (b), for U ∈ {A,B} and a ∈ Σsync, let {ta
1
?
qU , . . . , t

am?
qU } be

the set of all a? transitions from state qU ∈ QU . Additionally, let one(ta?
qU) =∨

j∈{1,...,m}[t
aj?
qU

∧
l 6=j ¬t

al?
qU]. Then, (b) is ensured by∧

a∈Σsync

∧
qU∈Q

one(ta?
qU)

5.6.2 Deadlock Detection for PR Systems.

German and Sistla [59] have shown that deadlock detection in PR systems is
decidable by checking a reachability property of the controller process in a mod-
ified system. Thus, at least a rudimentary version of repair including deadlock
detection is possible, where the deadlock detection only excludes the current
candidate repair, but may not be able to provide constraints on candidates that
may be considered in the future.

We leave open the question whether an approach like in Sect. 5.3.3, which
could return more meaningful constraints based on deadlock detection, is also
possible for PR systems. We note however that deadlocked states in PR systems
are also not upward-closed wrt. /, so a solution would again need a refined wqo.

5.6.3 Broadcast Systems

In broadcast systems, the semantics is interleaving, except for actions where
all processes synchronize, with one process “broadcasting” a message to all
other processes. Via such a broadcast synchronization, a special process can be
selected while the system is running, so we can restrict our model to systems
that only contain an arbitrary number of user processes with identical template
B.

Formally, at every time step either exactly one process makes an internal
transition τ , or all processes synchronize on a single action a ∈ Σsync. For
a synchronized action a ∈ Σsync, we say that the initiator process executes
the a!! action and all recipient processes execute the a?? action. For every
action a ∈ Σsync and every state qB ∈ QB , there exists a state q′B ∈ QB such
that (qB , a??, q′B) ∈ δB . Like Esparza et al. [48], we assume w.l.o.g. that the
transitions of recipients are deterministic for any given action, which implies
that the effect of a broadcast message on the recipients can be modeled by
multiplication of a broadcast matrix. We denote by Ma the broadcast matrix
for action a.

Then, the configuration space of all broadcast systems Bn, for fixed B but
arbitrary n ∈ N, is the counter system MBC = (Ω,Ω0,∆) where:

• Ω ⊆ N|B|0 is the set of states,

• Ω0 = {~c | ∀qB ∈ QB : ~c(qB) = 0 iff qB 6= initB)} is the set of initial states,

83

• ∆ is the set of transitions (~c,~c′) such that one of the following holds:

1. ∃qi, qj ∈ QB : (qi, τ, qj) ∈ δB ∧ ~c′ = ~c− ~ui + ~uj (internal transition)

2. ∃a ∈ Σsync : ~c′ = Ma · (~c− ~ui) + ~uj (broadcast)

Lemma 29. [48] Let MBC = (Ω,Ω0,∆) be a counter system for process tem-
plate B with BC synchronization. Then (MBC ,.) is a WSTS with effective
pred-basis.

Initial Constraints. The transition relation constraint for broadcast systems
is defined as follows:

TRConstrBC =
∧

qB∈QB

∨
tB∈δB(qB)

tB

We denote by ta??, ta!! synchronous transitions based on an action a. To
ensure that for all a ∈ Σsync , ta!! is deleted if and only if all ta?? are deleted,
the designer can use the following:

UserConstrBC =
∧

a∈Σsync

[(ta!! ∧ (
∨

ta??∈δB

ta??)) ∨ (¬ta!! ∧ (
∧

ta??∈δB

¬ta??))]

Below we show another possible user constraint formula for BC systems that
guarantees that for all a ∈ Σsync , ta!! is deleted if and only if all ta?? are deleted:∧

a∈Σsync

[(ta!! ∧ (
∧

ta??∈δB

ta??)) ∨ (¬ta!! ∧ (
∧

ta??∈δB

¬ta??))]

Note that the deletion of a transition (qB , a??, q′B) is interpreted as if we
replace it by the transition (qB , a??, qB).

Furthermore, let {ta
1
??
qB , . . . , t

am??
qB } be the set of all a?? transitions of the state

qB with a ∈ Σsync, and let one(ta??
qB) =

∨
j∈{1,...,m}[t

aj??
qB

∧
l 6=j ¬t

al??
qB]. Then the

below formula ensures determinism of synchronized actions:∧
a∈Σsync

∧
qB∈QB

one(ta??
qB)

Additionally if our aim is to only fix synchronizations then the following
formula states that all non-synchronous actions must be untouchable:∧

tB∈δτB

tB

where δτB ⊆ δB represents the set of local transitions based on action τ .

5.6.4 Synchronous Systems Constraints

The procedure BuildConstr in Algorithm 2 does not take into consideration
synchronous actions. Hence, we need a new procedure that offers special treat-
ment for synchronization. To simplify presentation we assume w.l.o.g. that
each a+, with + ∈ {!, !!}, appears on exactly one local transition. We denote by
∆sync(σ, a) the state obtained by executing action a in state σ. Additionally, let

84

Algorithm 3 Synchronous Constraint Computation

1: procedure BSC(State σ, RE)
2: if RE [1 :] is empty then
3: return

∧
tU∈∆local(σ,RE[0]) ¬tU

∧
a∈Σsync∧∆(σ,a)∈RE[0] T (σ, a)

4: else
5: return
6:

∧
tU∈∆local(σ,RE[0])(¬tU ∨BSC(∆(σ, tU),RE [1 :]))

7:
∧
a∈Σsync∧∆(σ,a)∈RE[0][T (σ, a) ∨BSC(∆(σ, ta),RE [1 :])]}

qA,0

qA,1

read?

doner?

write?

donew?

read?

doner?

write?

donew?

Figure 5.3: Scheduler

q0
τ

q1

write! donew!

q2

doner!read!

reading

writing

Figure 5.4: Reader-Writer

∆local
sync(σ, a) = {(qU , a∗, q′U) ∈ δ | ∗ ∈ {?, !, ??, !!}, and a is enabled in σ}, and let

T (σ, a) =
∨
ta∈∆local

sync (σ,a) ¬ta. In a Broadcast system we say that an action a is

enabled in a global state ~c if ∃i, j < |B| s.t. ~c(i) > 0 and (qBi , a!!, qBj) ∈ δB . In
a Pairwise rendezvous system we say that an action a is enabled in a global state
(~c) if ∃i, j, k, l < |B| s.t. ~c(i) > 0,~c(j) > 0) and (qBi , a!, qBk), (qBj , a?, qBl),∈ δB .

Given a synchronous system MX = (Ω,Ω0,Σ,∆) with X ∈ {BR,PR}, a
state σ, and a reachable error sequence RE , Algorithm 3 computes a proposi-
tional formula over the set of local transitions that encodes all possible ways for
a state σ to avoid reaching an error.

5.6.5 Example: Reader-Writer

Consider the parameterized pairwise system that consists of one scheduler (Fig-
ure 5.3) and a parameterized number of instances of the reader-writer process
template (Figure 5.4). Every state in the scheduler process template has a
receive action for every send action. In such a system, the scheduler can not
guarantee that, at any moment, there is at most one process in the writing state
q1 (Figure 5.4).
Let tU1

= [q0, (write!), q1],
tU2 = [qA,0, (write?), qA,1],

85

tU3
= [qA,1, (write?), qA,0],

tU4
= [q0, (read!), q2],

tU5
= [qA,0, (read?), qA,1],

tU6 = [qA,1, (read?), qA,0],
tU7 = [q1, (donew!), q0],
tU8

= [qA,1, (donew?), qA,0],
tU9

= [qA,0, (donew?), qA,1],
tU10

= [q2, (doner!), q0],
tU11 = [qA,1, (doner?), qA,0],
tU12 = [qA,0, (doner?), qA,1].
Let ERR = ↑{(qA,0, (0, 2, 0))(qA,1, (0, 2, 0))}.
Let UserConstrPR = (tU1

∧ (tU2
∨ tU3

))∧ (tU4
∧ (tU5

∨ tU6
))∧ (tU7

∧ (tU8
∨ tU9

))∧
(tU10

∧ (tU11
∨ tU12

)).
Then running our repair algorithm will produce the following results:
First call to model checker returns:
RE0 = {(qA,0, (0, 2, 0))},
RE1 = {(qA,1, (1, 1, 0))},
RE2 = {(qA,0, (2, 0, 0))}.
Constraints for SAT:
accConstr1 = TRConstrPR ∧ UserConstrPR ∧ (¬tU1 ∨ ¬tU2 ∨ ¬tU3).
SAT solver solution 1:
tU2

= false, tU6
= false, tU9

= false, and tU12
= false.

Second call to model checker returns:
RE0 = {(qA,0, (0, 2, 0))},
RE1 = {(qA,1, (1, 1, 0))},
RE2 = {(qA,0, (2, 1, 0))},
RE3 = {(qA,1, (3, 0, 0))},
RE4 = {(qA,0, (4, 0, 0))}.
Constraints for SAT:
accConstr2 = accConstr1 ∧ (¬tU1

∨ ¬tU3
∨ ¬tU4

∨ ¬tU5
).

SAT solver solution 2:
tU3 = false, tU5 = false, tU9 = false, and tU12 = false.
Third call to model checker returns:
RE0 = {(qA,0, (0, 2, 0))},
RE1 = {(qA,1, (1, 1, 0))},
RE2 = {(qA,0, (2, 1, 0))},
RE3 = {(qA,1, (3, 0, 0))},
RE4 = {(qA,0, (3, 0, 0))}.
Constraints for SAT:
accConstr3 = accConstr2 ∧ (¬tU1

∨ ¬tU2
∨ ¬tU4

∨ ¬tU6
).

SAT solver solution 3:
tU3 = false, tU6 = false, tU9 = false, and tU12 = false.
The fourth call of the model checker returns true and we obtain the correct
scheduler in Figure 5.5.

5.6.6 Example: MESI Protocol

Consider the cache coherence broadcast protocol MESI in Figure 5.6 where:

• M stands for modified and indicates that the cache has been changed.

86

qA,0

qA,1

donew?, doner? write?, read?

Figure 5.5: Safe Scheduler

• E stands for exclusive and indicates that no other process seizes this cache
line.

• S stands for shared and indicates that more than one process hold this
cache line.

• I stands for invalid and indicates that the cache’s content is not guaranteed
to be valid as it might have been changed by some process.

Initially all processes are in I and let a state vector be as follows: (M,E, S, I).
An important property for MESI protocol is that a cache line should not be
modified by one process (in state M) and in shared state for another process (in
state S). In such case the set of error states is: ↑{(1, 0, 1, 0)}. We can run Algo-
rithm 2 on M , ↑{(1, 0, 1, 0)}, TRConstrBC ∧

∧
a∈Σsync

∧
qB∈QB one(t

a??
qB). The

model checker will return the following error sequence (non-essential states,e.g.
unreachable states, are omitted):
E0 = {(1, 0, 1, 0)},
E1 = {(0, 1, 1, 0)},
E2 = {(0, 1, 0, 1)},
E3 = {(0, 0, 1, 1)},
E4 = {(0, 0, 0, 2)}.
Running the procedure BuildSyncConstr (Algorithm 3) in Line 8 will return
the following Boolean formula newConstr =

¬(I, read!!, S) ∨ ¬(I, read??, I) ∨ ¬(S,write-inv!!, E) ∨ ¬(I, write-inv??, I)

∨¬(E, read??, E) ∨ ¬(I, read!!, S) ∨ ¬(E,write, S)

Running the SAT solve in Line 10 on

newConstr ∧ TRConstr′BC ∧
∧

a∈Σsync

∧
qB∈QB

one(ta??
qB)

∧
tU∈{δτB}

tU

will return the only solution (E, read??, E) = false which clearly fixes the
system.

5.7 Conclusion

We have investigated the parameterized repair problem for systems of the form
A‖Bn with an arbitrary n ∈ N. We have introduced a general parameterized

87

I

read??, write-inv??

S

read??, local-read

read!!

write-inv??

M

write, local-read

write-inv??

read??

E

local-read

write

write-inv!! read??

read??

write-inv??

Figure 5.6: MESI protocol

repair algorithm, based on an interleaving of the generation of candidate repairs
and parameterized model checking. We have instantiated this general approach
to different classes of systems: disjunctive systems, pairwise rendezvous systems,
and broadcast systems, and to reachability properties as well as general safety
properties, specified by a finite automaton that reads the run of a fixed subset
of the processes.

88

Chapter 6

A Symbolic Algorithm for
Lazy Synthesis of Eager
Strategies

Previous chapters dealt with the verification and repair of parameterized con-
current systems. In this chapter we study safety synthesis of monolithic systems.
As aforementioned, such systems can simulate faithfully the behavior of multiple
components or processes running in parallel, however in this case the number of
components is fixed. Furthermore, we believe that the approaches for synthesis
we present here can be adopted for parameterized systems.

6.1 Safety Synthesis

Automatic synthesis of digital circuits from logical specifications is one of the
most challenging and ambitious problems in circuit design. Church [30] was first
to identify the problem:

Given a requirement ϕ on the input-output behavior of a Boolean
circuit, compute a circuit C that satisfies ϕ.

The problem is usually seen as a game between two players where the “system”
player tries to satisfy the specification and the “environment” player tries to
violate it. If the system player can win the game we say that he has a winning
strategy, and hence this strategy represents a circuit that is guaranteed to satisfy
the specification. Many approaches have already been proposed to solve the
problem [25,86] and lately there has been much interest in approaches that use
efficient data structures and automated reasoning methods to solve the problem
in practice [20,41,52,54,78,89].

We consider here only safety specifications. For safety synthesis, most of the
efficient symbolic implementations use characteristic functions to manipulate
sets of states where these functions are represented as Binary Decision Diagrams
(BDDs) [63]. The “standard” approach (algorithm) for safety synthesis uses a
backward state space traversal. It starts from the set of unsafe states and
computes the set of states from which the environment can obligate the system

89

to reach these undesired states. The negation of this computed set represents
the winning region of the system player, and it defines the most permissive
winning strategy, i.e., the strategy that allows only the moves (transitions) that
do not leave the winning region. Therefore, to solve a safety game we can, as a
first step, compute the winning region, as any winning strategy has to operate
within this region and can never leave it. Furthermore the winning region can
be used to compute a more specific strategy that fulfills desirable properties in a
second computation step. Although in some cases this is a desirable approach,
it is a very general one and may be sub-optimal. For instance the generality of
the most permissive strategy might not be necessary because we know how to
find directly and more efficiently a strategy with the desired properties.

In this chapter we present two lazy algorithms for solving two-player safety
games that interleave symbolic model checking with the synthesis of candidate
solutions. The first algorithm adopts a SAT-based synthesis approach and makes
use of a constraint argument which guarantees that any synthesized strategy
must respect these constraints. For instance, in case the monolithic system
represents a set of processes running in parallel, the constraint can be used
to ensure that the synthesized strategy respects the totality of all the system
components. Our second algorithm for solving two-player safety games combines
a mixed forward/backward search strategy with the symbolic model checker.
The forward/backward state space exploration approach provides the algorithm
with the capability to synthesize strategies that are eager in the sense that
they seek to deny progress towards the unsafe states as soon as possible, in
contrast to the most permissive strategy. These strategies are desirable in many
applications, for instance, in systems that need to be tolerant to hardware faults
or perturbations in the environment [36]. The standard backward algorithm may
be used to find eager strategies, however it needs first to compute the winning
region, and therefore it may spend a lot of time on the exploration of states
that could easily be avoided by the system player. Then, in a second step, it
can compute an eager strategy and discover that a lot of the explored states
are not necessary for the eager solution. To avoid such issues and keep the
explored state space small, some sort of forward search from the initial states
is required. Unfortunately there is no efficient symbolic algorithm that employs
a pure forward search, and most existing techniques that integrate forward
search into backwards algorithms do so in a limited manner [63]. Particularly,
Brenguier et al. [23] have integrated forward search into an abstraction-based
synthesis algorithm, however their experiments revealed that their technique
was faster than the standard backwards approach only in few benchmarks.

The two approaches we present here are for monolithic systems, however
we have presented in Chapter 5 the parameterized version of the SAT-based
approach. Furthermore, we believe that also the forward/backward algorithm
we present here can be used for parameterized systems. For this sake, as we have
seen in Chapter 5, we can use the backward computation of a parameterized
model checker on the counter abstraction of our system. A forward state space
exploration for counter systems was also used in Section 2 for computing the
so-called successor function.

Outline of the Chapter. We introduce the synthesis problem in Section 6.2
and recapitulate a number of existing approaches to solve it in Section 6.3. In

90

Section 6.4 we present our SAT-based synthesis algorithm then in Section 6.5 we
introduce our lazy synthesis algorithm, followed by a number of optimizations
in Section 6.6. The experimental evaluation is presented in Section 6.7, and
we discuss further experiences with implementing forward exploration in Sec-
tion 6.8. In Section 6.9 we discuss connections of our approach to approaches
for the synthesis of controllers that are resilient against certain faults, before we
conclude in Section 6.10.

6.2 Preliminaries

Given a specification φ, the reactive synthesis problem consists in finding a
system that satisfies φ in an adversarial environment. The problem can be
viewed as a game between two players, Player 0 (the system) and Player 1 (the
environment), where Player 0 chooses controllable inputs and Player 1 chooses
uncontrollable inputs to a given transition function. In this chapter we consider
synthesis problems for safety specifications: given a transition system that may
raise a BAD flag when entering certain states, we check the existence of a
function that reads the current state and the values of uncontrollable inputs,
and provides valuations of the controllable inputs such that the BAD flag is not
raised on any possible execution. We consider systems where the state space is
defined by a set L of Boolean state variables, also called latches. We write B for
the set {0, 1}. A state of the system is a valuation q ∈ BL of the latches. We
will represent sets of states by their characteristic functions of type BL → B,
and similarly for sets of transitions etc.

A controllable transition system (or short: controllable system) TS is a
6-tuple (L,Xu, Xc, R, BAD, q0), where:

• L is a set of state variables for the latches

• Xu is a set of uncontrollable input variables

• Xc is a set of controllable input variables

• R : BL × BXu × BXc × BL′ → B is the transition relation, where L′ =
{l′ | l ∈ L} stands for the state variables after the transition

• BAD : BL → B is the set of unsafe states

• q0 is the initial state where all latches are initialized to 0.

We assume that the transition relation R of a controllable system is de-
terministic and total in its first three arguments, i.e., for every state q ∈ BL,
uncontrollable input u ∈ BXu and controllable input c ∈ BXc there exists exactly
one state q′ ∈ BL′ such that (q, u, c, q′) ∈ R.

In our setting, characteristic functions are usually applied to a fixed vector
of variables. Therefore, if C : BL → B is a characteristic function, we write C
as a short-hand for C(L). Characteristic functions of sets of states can also be
applied to next-state variables L′, in that case we write C ′ for C(L′).

Let X = {x1, . . . , xn} be a set of Boolean variables, and Y ⊆ X \ {xi} for
some xi. For Boolean functions F : BX → B and fxi : BY → B, we denote by
F [xi ← fxi] the Boolean function that substitutes xi by fxi in F .

91

Given a controllable system TS = (L,Xu, Xc,R, BAD, q0), the synthesis
problem consists in finding for every x ∈ Xc a solution function fx : BL×BXu →
B such that if we replace R by R[x← fx]x∈Xc , we obtain a safe system, i.e., no
state in BAD is reachable.

If such a solution does not exist, we say the system is unrealizable.
A set of solution functions for all x ∈ Xc is also called a strategy (for Player

0). We call the states that are reachable under a given strategy the care-set
of the strategy. Note that the behavior of the system does not change if the
strategy is modified on states outside of the care-set. If BAD is unreachable
under a given strategy, we call it a winning strategy.

To determine the possible behaviors of a controllable system, two forms of
image computation can be used: i) the image of a set of states C is the set of
states that are reachable from C in one step, and the preimage are those states
from which C is reachable in one step—in both cases ignoring who controls the
input variables; ii) the uncontrollable preimage of C is the set of states from
which the environment can force the next transition to go into C, regardless of
the choice of controllable variables. Formally, we define:

Given a controllable system TS = (L,Xu, Xc,R, BAD, q0) and a set of states
C, we have:

• image(C) = {q′ ∈ BL′ | ∃(q, u, c) ∈ BL×BXu×BXc : C(q)∧R(q, u, c, q′)}.
We also write this set as ∃L ∃Xu ∃Xc (C ∧R).

• preimage(C) = {q ∈ BL | ∃(u, c, q′) ∈ BXu × BXc × BL′ : C(q′) ∧
R(q, u, c, q′)}. We also write this set as ∃Xu ∃Xc ∃L′ (C ′ ∧R).

• UPRE(C) = {q ∈ BL | ∃u ∈ BXu ∀c ∈ BXc ∃q′ ∈ BL : C(q′) ∧
R(q, u, c, q′)}. We also write this set as ∃Xu ∀Xc ∃L′ (C ′ ∧R).

A direct correspondence of the uncontrollable preimage UPRE for forward
computation does not exist: if the environment can force the next transition
out of a given set of states, in general the states that we reach are not uniquely
determined and depend on the choice of Player 0.

6.2.1 Efficient symbolic computation

BDDs are a suitable data structure for the efficient representation and manipu-
lation of Boolean functions, including all operations needed for the computation
of image, preimage, and UPRE. Between these three, preimage can be com-
puted most efficiently, while image and UPRE are more expensive: there exist
a number of optimizations for the computation of preimage that cannot be
used when computing image (see Section 6.6); and UPRE contains a quantifier
alternation, which makes it much more expensive than the other two operations.

6.3 Existing Approaches

As mentioned before, the safety synthesis problem is usually seen as a game
between Player 1, who chooses the uncontrollable inputs, and Player 0, who
chooses the controllable inputs. The goal of Player 0 is to choose the inputs in a
way that he never visits an unsafe state. The classical approach to solve such a

92

game is to compute the so-called winning regions of the two players, where the
winning region of Player 1 is the set of states from which he can force Player 0
into an unsafe state and the winning region for Player 0 is any state that is not
winning for Player 1.

Before we introduce our new approach, we recapitulate three existing ap-
proaches and point out their benefits and drawbacks.

6.3.1 Backward fixed-point algorithm

Given a controllable transition system TS = (L,Xu, Xc,R, BAD, q0) with
BAD(q) 6= 0 for some q ∈ BL, the standard backward BDD-based algorithm
(see e.g. [63]) computes the winning region of Player 1, i.e., the set of states from
which the environment can force the system into unsafe states, in a fixed-point
computation that starts with the unsafe states. The winning region of Player 1
is the least fixed-point of UPRE on BAD : µC. UPRE(C ′) ∪BAD ∪ C.

Since safety games are determined, the complement of the computed set is
the winning region for Player 0, i.e., the set of all states from which the system
can win the game. Thus, this set also represents the most permissive winning
strategy for Player 0. We note two things regarding this approach:

1. To obtain the winning region, it computes the set of all states that can-
not avoid moving into an error state, using the rather expensive UPRE
operation.

2. The most permissive winning strategy will not avoid progress towards the
error states unless we reach the border of the winning region.

6.3.2 A Forward Algorithm [28,79]

A forward algorithm is presented by Cassez et al. [28] for the dual problem
of solving reachability games, based on the work of Liu and Smolka [79]. The
algorithm starts from the initial state and explores all states that are reachable in
a forward manner. Whenever a state is visited, the algorithm checks whether it
is losing; if it is, the algorithm revisits all reachable states that have a transition
to this state and checks if they can avoid moving to a losing state. Although
the algorithm is optimal in that it has linear time complexity in the state space,
two issues should be taken into account:

1. The algorithm explicitly enumerates states and transitions, which is im-
practical even for moderate-size systems.

2. A fully symbolic implementation of the algorithm does not exist, and it
would have to rely heavily on the expensive forward image computation.

We will discuss the difficulties of implementing a symbolic forward algorithm
in more detail in Section 6.8.1.

6.3.3 Lazy Synthesis [55]

Lazy Synthesis interleaves a backwards model checking algorithm that identi-
fies possible error paths with the synthesis of candidate solutions. To this end,

93

Model check

Refine

error
paths

SMT-solver

ca
nd
id
at
e

constraints

Solution

correct

Figure 6.1: High-level description of the lazy synthesis algorithm

the error paths are encoded into a set of constraints, and an SMT solver pro-
duces a candidate solution that avoids all known errors. If new error paths are
discovered, more constraints are added that exclude them. The procedure ter-
minates once a correct candidate is found (see Figure 6.1). The approach works
in a more general setting than ours, for systems with multiple components and
partial information. When applied to our setting and challenging benchmark
problems, the following issues arise:

1. Even though the error paths are encoded as constraints, the representation
is such that it explicitly branches over valuations of all input variables, for
each step of the error paths. This is clearly impractical for systems that
have more than a dozen input variables (which is frequently the case in
the classes of problems we target).

2. In each iteration of the main loop a single deterministic candidate is
checked. Therefore, many iterations may be needed to discover all er-
ror paths.

6.4 SAT-Based Lazy Safety Synthesis

Before introducing our symbolic lazy algorithm we will show how we can adopt
the general synthesis algorithm presented in [55] which is not restricted to safety
synthesis. However our version of the algorithm makes use of a Boolean con-
straints formula that must be provided by a user. Algorithm 4 takes as input
a controllable system sys = (L,Xu, Xc,R, BAD, q0), a transition relation con-
straint TrConstr, and it returns either Unrealizable, i.e., the system can not be
fixed, or a new transition relation that is safe and total.

Transition relation constraint. TrConstr is a Boolean formula over tran-
sitions in R. It allows to add constraints to the solution requested from the
SAT solver. An important scenario in which TrConstr is fundamental for the
correctness of the candidate solution is the synthesis of a concurrent system.
Suppose that the system we seek to synthesize is a monolithic representation of
a concurrent system, then in such a case, the candidate solution must ensure
the totality of each component of the system. For that sake, we can encode
the totality of each process inside TrConstr and pass it as a parameter to the
synthesizer.

94

sys

modelCheck

isCorrect? solution
yes

extract ErrorTree

no

BuildErrPathsConstraints

TrConstr, ErrorTree

isSAT?
AccumConstr

unrealizable

no

Restrict(sys, γ)

yes, γ

sys′

Figure 6.2: Control flow of the algorithm

Overview.

Figure 6.2 sketches the basic idea of Algorithm 4. It starts by model checking
the controllable system sys, without any restriction on the transition relation
wrt. the controllable inputs. If unsafe states are reachable, the model checker
returns an error tree that contains the error paths found so far. Out of this error
tree, the transition relation constraint TrConstr, and the constraints obtained
in previous iterations, a new constraint formula AccumConstr is constructed
and sent to a SAT solver. If there is no solution for the computed constraints
then the problem is unrealizable. Otherwise a new candidate solution sys′ is
produced by restricting sys with the SAT solver solution γ. Then the whole
loop restarts with sys′ as the input system.

6.4.1 Algorithm 4 Description

SAT-LazySynthesis. Lines 2,3 initialize the variables TR, and AccumConstr.
AccumConstr will be used to accumulate constraints obtained in each iteration
of the algorithm. In Line 5 we call the model checker ModelCheckforSAT.
We assume that the model checker returns either true, i.e., the system is safe or
an error tree errTree. The error tree is a tuple (QT , qT0

, E, Leaves) where

• QT ⊆ BL is the set of tree nodes.

95

Algorithm 4 Non-symbolic SAT Based Lazy Synthesis

1: procedure SAT-LazySynthesis(ControllableSystem sys,TrConstr)
2: TR← sys.R
3: AccumConstr ← TrConstr
4: while true do
5: isCorrect, errTree←ModelCheckforSAT(TR, sys.BAD)
6: if isCorrect then
7: return TR
8: ErrPathsConstr ← BuildErrPathsConstr(errTree, errTree.qT0

)
9: TotalConstr ←

∧
q∈errTree.QT

∨
(q,u,c,q′)∈sys.R(q, u, c, q′)

10: AccumConstr ← ErrPathsConstr ∧AccumConstr
11: isSAT, γ ← SAT (AccumConstr ∧ TotalConstr ∧ TrConstr)
12: if not isSAT then
13: return Unrealizable
14: TR← Restrict(sys.R, γ)

1: procedure BuildErrPathsConstr(errTree,q)
2: if q ∈ errTree.Leaves then
3: return True
4: return

∧
(q,u,c,q′)∈errTree.E(¬(q, u, c, q′) ∨

BuildErrPathsConstr(errTree, q′))

• qT0
∈ QT is the initial node.

• E ⊆ R is the set of edges.

• Leaves ⊆ QT is the set of leaf nodes, and ∀q ∈ Leaves : BAD(q) = 1.
Informally all leaf nodes are unsafe states of the system.

Line 7 returns true if TR is safe. Otherwise, Line 8 constructs the Boolean
constraint ErrPathsConstr that ensures that all error paths found in the error
tree will be avoided in future iterations. The Boolean constraint TotalConstr
in Line 9 ensures that the solution returned by the SAT solver has at least
one transition for every uncontrollable input. In Line 10 ErrPathsConstr is
added to AccumConstr. Line 12 calls a SAT solver to check if there exists a
solution for AccumConstr that respects TotalConstr and TrConstr. If the
constraints are not satisfiable, Line 13 returns the string Unrealizable and the
algorithm terminates. Otherwise, in Line 14 the transition relationR is updated
according to the solution returned by the SAT solver, and then another iteration
of the loop starts.
BuildErrPathsConstr. This recursive procedure, given an error tree and
an initial node, returns a propositional formula over the set of transitions that
encodes all possible ways to avoid reaching an unsafe state. Line 3 is the base
case of the recursion when a leaf node is reached. Line 4 asserts that an edge of
a node must be either deleted or we need to ensure that the path of the edge’s
target state to leaf nodes is broken.

96

Model check

Refine and Solve

n
o
n

-d
et

.
ca

n
d

id
a
te

er
ro

r
p

a
th

s

controllable

system
Solution

correct

Figure 6.3: High-level description of the symbolic lazy synthesis algorithm

6.5 Symbolic Lazy Synthesis Algorithms

In the following, we present symbolic algorithms that are inspired by the lazy
synthesis approach and overcome some of its weaknesses to make it suitable
for challenging benchmark problems like those from the library of the reactive
synthesis competition SYNTCOMP [62]. We show that in our setting, we can
avoid the explicit enumeration of error paths. Furthermore, we can use non-
deterministic candidate models that are restricted such that they avoid the
known error paths. When choosing these restrictions, we prioritize the removal
of transitions that are close to the initial state, which can help us avoid error
paths that are not known yet. The high-level control flow of the algorithm is
depicted in Figure 6.3.

6.5.1 The basic algorithm

To explain the algorithm, we need some additional definitions. Fix a controllable
system TS = (L,Xu, Xc,R, BAD, q0).

An error level Ei is a set of states that are on a path from q0 to BAD, and
all states in Ei are reachable from q0 in i steps. Formally, Ei is a subset of{

qi ∈ BL
∣∣∣∣ ∃q1, . . . , qi−1, qi+1, . . . , qn ∈ BL :
qn ∈ BAD and ∃(qj , u, c, qj+1) ∈ R for 0 ≤ j < n

}
.

We call (E0, ..., En) a sequence of error levels if i) each Ei is an error level,
ii) each state in each Ei has a transition to a state in Ei+1, and iii) En ⊆ BAD.
Note that the same state can appear in multiple error levels of a sequence, and
E0 contains only q0.

Given a sequence of error levels (E0, ..., En), an escape for a transition
(q, u, c, q′) with q ∈ Ei and q′ ∈ Ei+1 is a transition (q, u, c′, q′′) such that
∀m > i : q′′ 6∈ Em. We say the transition (q, u, c, q′) matches the escape
(q, u, c′, q′′).

Given two error levels Ei and Ei+1, we denote by RTi the following set of
tuples, representing the “removable” transitions, i.e., all transitions from Ei to
Ei+1 that match an escape:

RTi = {(q, u, q′) | q ∈ Ei, q′ ∈ Ei+1 and ∃(q, u, c, q′) ∈ R that has an escape}.

97

modelCheck

isCorrect? solution
yes

extract&mergeErrorLevels

no

nextLevelpreviousLevel

delErrTrans

isPrunable?firstLevel?
yes

no

yes

lastLevel?
no

no

unrealizable

yes

Figure 6.4: Control flow of the algorithm

Overview

Figure 6.4 sketches the control flow of the algorithm where all operations are
performed symbolically on sets of states. It starts by model checking the con-
trollable system, without any restriction on the transition relation wrt. the
controllable inputs. If unsafe states are reachable, the model checker returns a
sequence of error levels. Iterating over all levels, we identify the transitions from
the current level for which there exists an escape, and temporarily remove them
from the transition relation. Based on the new restrictions on the transition re-
lation, the algorithm then prunes the current error level by removing states that
do not have transitions to the next level anymore. Whenever we prune at least
one state, we move to the previous level to propagate back this information. If
this eventually allows us to prune the first level, i.e., remove the initial state,
then this error sequence has been invalidated and the new transition system

98

(with deleted transitions) is sent to the model checker. Otherwise the system is
unrealizable. In any following iteration, we accumulate information by merging
the new error sequence with the ones we found before, and reset the transition
relation before we analyze the error sequence for escapes.

Detailed Description

In more detail, Algorithm 5 describes a symbolic lazy synthesis algorithm. The
method takes as input a controllable system and checks if its transition relation
can be fixed in a way that error states are avoided. Upon termination, the
algorithm returns either unrealizable, i.e., the system can not be fixed, or a
restricted transition relation that is safe and total. From such a transition
relation, a (deterministic) solution for the synthesis problem can be extracted
in the same way as for existing algorithms. Therefore, we restrict the description
of our algorithm to the computation of the safe transition relation.

LazySynthesis: In Line 2, we initialize TR to the unrestricted transition
relation R of the input system and E to the empty sequence, before we enter the
main loop. Line 4 uses a model checker to check if the current TR is correct, and
returns a sequence of error levels mcLvls if it is not. In more detail, procedure
ModelCheck(TR) starts from the set of error states and uses the preimage
function (see Section 6.2) to iteratively compute a sequence of error levels.1

It terminates if a level contains the initial state or if it reaches a fixed point.
If the initial state was reached, the model checker uses the image function to
remove from the error levels any state that is not reachable from the initial
state.2 Otherwise, in Line 6 we return the safe transition relation. If TR is
not safe yet, Line 7 merges the new error levels with the error levels obtained
in previous iterations by letting E[i] ← E[i] ∨mcLvls[i] for every i. In Line 8
we call PruneLevels(sys.R, E), which searches for a transition relation that
avoids all error paths represented in E, as explained below. If pruning is not
successful, in Lines 9-10 we return “Unrealizable”.

PruneLevels: In the first loop, ResolveLevel(E, i, TR) is called for
increasing values of i (Line 4). Resolving a level is explained in detail be-
low; roughly it means that we remove transitions that match an escape, and
then remove states from this level that are not on an error path anymore. If
ResolveLevel has removed states from the current level, indicated by the re-
turn value of isPrunable, we check whether we are at the topmost level — if
this is the case, we have removed the initial state from the level, which means
that we have shown that every path from the initial state along the error se-
quence can be avoided. If we are not at the topmost level, we decrement i
before returning to the start of the loop, in order to propagate the information
about removed states to the previous level(s). If isPrunable is false, we instead
increment i and continue on the next level of the error sequence.

The first loop terminates either in Line 7, or if we reach the last level. In
the latter case, we were not able to remove the initial state from E[0] with the
local propagation of information during the main loop (that stops if we reach a

1This part is the light-weight backward search: unlike UPRE in the standard backward
algorithm, preimage does not contain any quantifier alternation.

2This is the only place where our algorithm uses image, and it is only included to keep the
definitions and correctness argument simple - the algorithm also works if the model checker
omits this last image computation step, see Section 6.6.

99

Algorithm 5 Lazy Synthesis

1: procedure LazySynthesis(ControllableSystem sys)
2: TR← sys.R, E ← ()
3: while true do
4: isCorrect,mcLvls←ModelCheck(TR, sys.BAD)
5: if isCorrect then
6: return TR
7: E ← mergeLevels(E,mcLvls)
8: isUnrealizable, TR← PruneLevels(sys.R, E)
9: if isUnrealizable then

10: return Unrealizable

1: procedure PruneLevels(TransitionRelation TR, ErrorSequence E)
2: i← 0
3: while i < length(E)− 1 do
4: isPrunable, TR,E ← ResolveLevel(E, i, TR)
5: if isPrunable then
6: if i == 0 then // we have removed the initial state from E[0]
7: return false, TR

8: i← i− 1
9: else

10: i← i+ 1

11: while i ≥ 1 do // i == length(E)− 1 when we enter the loop
12: i← i− 1
13: isPrunable, TR,E ← ResolveLevel(E, i, TR)

14: if isPrunable then // we have removed the initial state from E[0]
15: return false, TR
16: else // we could not remove the initial state from E[0]
17: return true, ∅
1: procedure ResolveLevel(ErrorSequence E, Int i, TransitionRelation

TR)
2: RT ← (∃L′ ((∃Xc TR) ∧ ¬E[i+ 1 : n]′)) ∧ E[i] ∧ E[i+ 1]′

3: TR← TR ∧ ¬RT
4: AV Set← ∀Xu (E[i] ∧ ∃L′(∃Xc TR ∧ ¬E[i+ 1 : n]′))
5: E[i]← E[i] ∧ ¬AV Set
6: return AV Set 6= ∅, TR,E

level that cannot be pruned). To make sure that all information is completely
propagated, afterwards we start another loop were we resolve all levels bottom-
up, propagating the information about removed states all the way to the top. If
we arrive at E[0] and still cannot remove the initial state, we conclude that the
system is unrealizable. This last propagation is needed because, unlike previous
propagations, it propagates all information up lo level E[0] even if some error
level is not prunable. To see why this is necessary, consider an error sequence
obtained after merging error sequences from different iterations, where a state
q can be in more than one error level at the same time, say in levels i and j
with i < j. Now if some error level between i and j is not prunable, then level
i will not be resolved again, and escapes for transitions from q will not be used

100

to prune level i, even if they are used to prune level j.
ResolveLevel: Line 2 computes the set of transitions that have an escape:

∃L′ ((∃Xc TR)∧¬E[i+ 1 : n]′) is the set of all (q, u) for which there exists an
escape (q, u, c, q′), and by conjoining this set with E[i] ∧ E[i + 1]′ we compute
all tuples (q, u, q′) that represent transitions from E[i] to E[i + 1] matching
an escape. Line 3 removes the corresponding transitions from the transition
relation TR. Line 4 computes AV Set which represents the set of all states
such that all their transitions within the error levels match an escape. ∀Xu

(E[i] ∧ ∃L′(∃Xc TR ∧ ¬E[i+ 1 : n]′)) returns the set of states that have an
escape for every uncontrollable input. After removing AV Set from the current
level, we return.

Illustration of the Algorithm

As an example, Figure 6.5 shows error levels that may be obtained from the
model checker in a first iteration. The transitions are labeled with vectors of
input bits, where the left bit is uncontrollable and the right bit controllable.
The last level is a subset of BAD. After the first iteration of the algorithm,
the transitions that are dashed in Figure 6.6 will be deleted. Note that another
solution exists where instead we delete the two outgoing transitions from level E1

to the error level Err. This solution can be obtained by a backward algorithm.
However, our solution makes all states in E1 unreachable and thus has a care-set
that is much smaller than the winning region.

E1

Err

q0

00 10

00 10

Figure 6.5: Error levels from iteration 1

E1

Err

q0

00
01

10
11

00
01

10
11

Figure 6.6: solution for iteration 1

Figure 6.7 depicts merged error levels obtained from iteration 1 and 2 where

101

you can see that the initial state init cannot avoid the error level E1 on un-
controllable input 0. Figure 6.8 shows that a state can be pruned from level
E1 as it state can avoid level E2. Pruning E1 allows init to find an escape for
uncontrollable input 0 and as a consequence it can avoid E1 completely.

E1

E2

Err

init

00
01

10

11

000001 10

0001

Figure 6.7: Error levels from iteration 2

E1

E2

Err

init

00
01

10

11

000001 10

0001

Figure 6.8: Solution for iteration 2

Comparison

Having defined our symbolic lazy synthesis algorithm formally, let us again
compare it to the existing lazy synthesis algorithm, as well as to the standard
backwards algorithm.

102

Lazy Synthesis: The approach depicted in Figure 6.1 uses model checking
to obtain information on paths to the error states, just like our new approach.
However, in contrast to our approach the error paths are encoded into SMT con-
straints, and based on these constraints the SMT solver chooses a deterministic
strategy that avoids all known error paths. Thus, the two essential differences
are:

1. The SMT encoding explicitly branches over all possible decisions in the
error paths, making it impractical to encode long error paths due to the
exponential growth of the encoding.

2. The candidate generated by the SMT solver is deterministic, in contrast to
the non-deterministic strategy generated by the symbolic lazy algorithm,
where the strategy is only determinized after being found correct by the
model checker.

To evaluate the impact of the second point, we have implemented a version of
the algorithm where the strategy is determinized before being sent to the model
checker. As expected, it can only solve a few small instances from the chal-
lenging SYNTCOMP benchmark set, and the approach with non-deterministic
strategies performs much better. We did not put any of these results in the
experimental evaluation section as the obtained results were not interesting.

Standard Backwards Algorithm: Compared to the standard backward
fixed-point approach (see Section 6.3.1), an important difference is that we
explore the error paths in a forward analysis starting from the initial state, and
avoid progress towards the error states as soon as possible. As a consequence,
our algorithm can find strategies with a care-set that is much smaller than the
winning region, and may solve the problem faster than the standard approach.
We give a detailed comparison of the performance of our algorithm against the
standard algorithm in Section 6.7.

6.5.2 Correctness of Algorithm 5

Theorem 20 (Soundness). Every transition relation returned by Algorithm 5
is safe, and total in the first two arguments.

Proof. The model checker guarantees that the transition relation is safe, i.e.,
unsafe states are not reachable. To see that the returned transition relation
is total in the first two arguments, i.e., ∀q ∈ BL ∀u ∈ BXu ∃c ∈ BXc ∃q′ ∈
BL′ : (q, u, c, q′) ∈ TR, observe that this property holds for the initial TR, and
is preserved by ResolveLevels: Lines 2 and 3 of the procedure ensure that a
transition (q, u, c, q′) ∈ TR can only be deleted if ∃c′ ∈ BXc ∃q′′ 6= q′ ∈ BL′ :
(q, u, c′, q′′) ∈ TR, i.e., if there exists another transition with the same state q
and uncontrollable input u.

To prove completeness of the algorithm, we define formally what it means
for an error level to be resolved.

Definition 1. Given a sequence of error levels E = (E0, ..., En) and a transition
relation TR, an error level Ei with i < n is resolved with respect to TR if the
following conditions hold:

103

• RTi = ∅

• ∀qi ∈ Ei \BAD : ∃u ∈ BXu ∃c ∈ BXc ∃qi+1 ∈ Ei+1 : (qi, u, c, qi+1) ∈ TR

Ei is unresolved otherwise, and En is always resolved.

Informally, Ei is resolved if every state in Ei, on some uncontrollable input
u, cannot avoid reaching lower levels (i.e. each controllable input of u leads to
some Ej where i < j ≤ n). We can conclude the following lemma.

Lemma 30. A controllable system is unrealizable iff there exists an error se-
quence E0, E1, ..., En where E0 = {q0}, and for all i ≤ n, Ei is resolved and
non-empty.

Proof. Suppose the system is unrealizable, i.e., Player 1 has a strategy to always
reach BAD. Then for some n ∈ N there exists a sequence of (non-empty) sets
of states E0, E1, . . . , En such that E0 = {q0}, En ⊆ BAD, and for every Ei
and every q ∈ Ei, Player 1 can force the game into Ei+1 in one step, i.e.,
∀q ∈ Ei ∀c ∈ BXc ∃u ∈ BXu : (q, u, c, q′) ∈ TR with q′ ∈ Ei+1. In particular,
E0, E1, . . . , En is an error sequence. To see that it is resolved, assume that it
was not: then from some Ei, RTi would have to be non-empty, i.e., for some
q ∈ Eiand u ∈ BXu there would have to be a transition (q, u, c, q′) ∈ TR with
q′ 6∈ Ei+1, contradicting the properties of our error sequence.

In the other direction, suppose there exists an error sequence E0, E1, ..., En)
with E0 = {q0} and ∀i ≤ n, Ei is resolved and non-empty. Then we can
construct a strategy for Player 1 to win the game: in each Ei, there must exist
a state q and inputs u, c such that there is (q, u, c, q′) ∈ TR with q′ ∈ Ei+1, for
which there is no escape. A winning strategy for Player 1 is to always choose
such an uncontrollable input u.

Theorem 21 (Completeness). If Algorithm 5 returns “Unrealizable”, then the
controllable system is unrealizable.

Proof. Observe that the algorithm returns unrealizable only when there exists
an error sequence E0, E1, ..., En where E0 = {q0} and all levels are resolved
and non-empty. Lines 2 and 3 of ResolveLevel guarantee that all transitions
from Ei to Ei+1 that match an escape will be deleted, so the only remaining
transitions between Ei and Ei+1 are those that have no escapes. Line 4 computes
all states in Ei that no longer have transitions to lower levels (levels with greater
index) and Line 5 removes these states. Thus, after calling ResolveLevel, the
current level will be resolved.

However, since ResolveLevel may remove states from Ei, the levels Ej
with j < i could become unresolved. To see that this is not an issue note that
before we output Unrealizable, we go through the second loop that resolves all
levels from n to 0. After execution of this second loop all levels are resolved,
and if E0 still contains q0, then from our sequence of error levels we can extract
a subsequence3 of resolved and non-empty error levels, which by Lemma 30
implies unrealizability.

Theorem 22 (Termination). Algorithm 5 always terminates.

3It may be a subsequence due to the merging of error levels from different iterations of the
main loop.

104

q0

Figure 6.9: Example with small solution

Proof. Every call of the procedure PruneLevels returns a transition relation
that is guaranteed to avoid all error paths returned by the model checker in
all previous iterations (see Line 7 of procedure LazySynthesis). This is ac-
complished by making at least one state on every path from the initial state
to an error state unreachable (see Lines 6-7,14-15 of PruneLevels). In par-
ticular, any transition relation returned by PruneLevels is different from all
previous transition relations. Since for a fixed controllable system there is only
a finite number of possible transition relations, the procedure will eventually
terminate.

6.5.3 Example Problems

We want to highlight the potential benefit of our algorithm on two families of
examples.

First, consider a controllable system where all paths from the initial state to
the error states have to go through a bottleneck, e.g., a single state, as depicted
in Figure 6.9, and assume that Player 0 can force the system not to go beyond
this bottleneck. In this case, the care-set of our solution only includes the states
between the initial state and the bottleneck, whereas the winning region detected
by the standard algorithm may be much bigger (in the example including all the
states in the fourth row). Moreover, the strategy produced by our algorithm will
be very simple: if we reach the bottleneck, we force the system to stay there.
In contrast, the strategy produced by the standard algorithm will in general
be much more complicated, as it has to define the behavior for a much larger
number of states.

Second, consider a controllable system where the shortest path between error
and initial state is short, but Player 1 can only force the system to move towards
the error on a long path. Moreover, assume that Player 0 can avoid entering
this long path, for example by entering a separate part of the state space like
depicted in Figure 6.10. In this case, our algorithm will quickly find a simple
solution: move to that separate part and stay there. In contrast, the standard
algorithm will have to go through many iterations of the backwards fixed-point

105

q0

Figure 6.10: Example that is solved fast

computation, until finally finding the point where moving into the losing region
can be avoided.

6.6 Optimization

As presented, Algorithm 5 requires the construction of a data structure that
represents the full transition relation R, which causes a significant memory
consumption. In practice, the size of a BDD that represents the full transition
relation can be prohibitive even for moderate-size models.

Since the transition relation is deterministic, it can alternatively be repre-
sented by a vector of functions, each of which updates one of the state variables.
Such a partitioning of the transition relation is an additional computational ef-
fort, but it results in a more efficient representation that is necessary to handle
large systems. In the following we describe optimizations based on such a rep-
resentation.

Definition 2. A functional controllable system is a 6-tuple TSf = (L,Xu,

Xc, ~F ,BAD, q0), where

• L is a set of state variables for the latches

• Xu is a set of uncontrollable input variables

• Xc is a set of controllable input variables

• ~F = (f1, ..., f|L|) is a vector of update functions fi : BL ×BXu ×BXc → B
for i ∈ {1, . . . , |L|}

• BAD : BL → B is the set of unsafe states

106

• q0 is the initial state where all latches are initialized to 0.

In a functional controllable system with current state q and inputs u and c,
the next-state value of the ith state variable li is computed as fi(q, u, c). Thus,
we can compute image and preimage of a set of states C in the following way:

• imagef (C) = ∃L ∃Xu ∃Xc (
∧|L|
i=1 l

′
i ≡ fi ∧ C)

• preimagef (C) = ∃L′ ∃Xu ∃Xc (
∧|L|
i=1 l

′
i ≡ fi ∧ C ′)

However, computing
∧|L|
i=1 l

′
i ≡ fi ∧ C ′ is still very expensive and might be

as hard as computing the whole transition relation. To optimize the preimage
computation, we instead directly substitute the state variables in the Boolean
function that represents C by the function that computes their new value:

preimages(C) = ∃Xu ∃Xc C[li ← fi]li∈L

Since substitution cannot be used to compute image(C), forward explo-
ration of the state space is in practice much more expensive than backwards
exploration. This even holds for alternative, more efficient ways to compute
image, such as using the range function [75]. We consider a forward algorithm
based on this alternative in Section 6.8.1.

6.6.1 The Optimized Algorithm

The optimized algorithm takes as input a functional controllable system, and
uses the following modified procedures:

OptimizedLazySynthesis: This procedure replaces LazySynthesis, to
which it is different in two aspects concerning the model checker:

1. the preimage is computed using preimages, and

2. unreachable states are not removed, in order to avoid image computation.
Thus, the error levels are over-approximated.

OptimizedResolveLevel: This procedure replaces ResolveLevel and
computes RT and AvSet more efficiently. Note that for a given set of states
C, the set pretrans(C) = {(q, u, c) ∈ BL × BXu × BXc | ~F (q, u, c) ∈ C} can
efficiently be computed as C[li ← fi]li∈L. Based on this, we get the following:

• RT : we compute the transitions that can be avoided as the conjunction of
the transitions from Ei to Ei+1, given as pretrans(E[i+ 1]′) ∧ E[i], with
those transitions that have an escape, ∃Xc pretrans(¬E[i+ 1 : n]′)∧E[i].

• AvSet: The states that can avoid all transitions to the lower levels can
now be computed as ∀Xu [∃Xc pretrans(¬E[i+ 1 : n]′) ∧ E[i]].

Generalized Deletion of Transitions

In addition, we consider a variant of our algorithm that uses the following heuris-
tic to speed up computation: whenever we find an escape (q, u, c, q′) with q ∈ Ei,
then we not only remove all matching transitions that start in Ei, but matching
transitions that start anywhere, and lead to a state q′′ ∈ Ej with j > i. Thus,
we delete more transitions per iteration of the algorithm, all of which are known
to lead to an error.

107

6.7 Experimental Evaluation

We implemented Algorithm 5 in Python, using the BDD package CUDD [91].
We evaluate our prototype on a family of parameterized benchmarks based on
the examples in Section 6.5.3, on the benchmark set of SYNTCOMP 2017 [62],
and on a set of random benchmarks.

We evaluate two versions of Algorithm 5: a version without generalized
deletion (see Section 6.6.1), in the following called Lazy, and a version with gen-
eralized deletion, in the following called LazyGD. We compare them against our
own implementation of the standard backward approach, in order to have a fair
comparison between algorithms that use the same BDD library and program-
ming language. For the SYNTCOMP benchmarks, we additionally compare
against the results of the participants in SYNTCOMP 2017. Our implemen-
tations of all algorithms include the most important general optimizations for
this kind of algorithms, including a functional transition relation and automatic
reordering of BDDs (see Jacobs et al. [63]).

Note that we did not add here the experimental results of Algorithm 4. This
is due to the fact that it includes the function BuildErrPathsConstr which
explore the error paths in an explicit manner. therefore the algorithm was able
only to solve toy benchmarks of SYNTCOMP 2017.

6.7.1 Parameterized Benchmarks

On the parameterized versions of the examples from Section 6.5.3, we observe
the expected behaviour:

• for the first example, the care-set of the strategy found by our algorithm is
always only about half as big as the winning region found by the standard
algorithm. Even more notable is the size of the synthesized controller
circuit: for example, our solution for an instance with 218 states and
10 input variables has a size of just 9 AND-gates, whereas the solution
obtained from the standard algorithm has 800 AND-gates.

• for the second example, we observe that for systems with 15 to 25 state
variables, our algorithm solves the problem in constant time of 0.1s, whereas
the solving time increases sharply for the standard algorithm: it uses 1.7s
for a system with 15 latches, 92s for 20 latches, and 4194s for 25 latches.

6.7.2 SYNTCOMP Benchmarks

We compared our algorithms against the standard algorithm on the benchmark
set that was used in the safety track of SYNTCOMP 2017, with a timeout of
5000s on an Intel Xeon processor (E3-1271 v3, 3.6 GHz) and 32 GB RAM.

First, we observe that our algorithms often detect care-sets that are much
smaller than the full winning region: out of the 76 realizable benchmarks that
the Lazy algorithm solved, we found a strictly smaller care-set in 28 cases. In
14 cases, the care-set is smaller by a factor of 103 or more, in 8 cases by a
factor of 1020 or more, and in 4 cases by a factor of 1030 or more. The biggest
difference in size is by a factor of 1068. For the LazyGD algorithm, the care-sets
are somewhat bigger, but the tendency is the same. Table 6.1 gives detailed
information for a selection of such examples.

108

Table 6.1: Comparison of care-set and winning region size for selected bench-
marks
(number of states)

Instance Standard Lazy LazyGD Difference
factor

load 2c comp comp5 1.08 ∗ 1040 5.67 ∗ 1013 3.79 ∗ 1022 > 1026

load 3c comp comp4 2.39 ∗ 1052 1.21 ∗ 1018 8.5 ∗ 1037 > 1044

load 3c comp comp7 4.97 ∗ 1086 1.21 ∗ 1018 6.28 ∗ 1057 > 1068

load 4c comp comp4 4.03 ∗ 1063 TO 4.79 ∗ 1052 > 1010

load 4c comp comp6 9.03 ∗ 1092 TO 2.2 ∗ 1071 > 1021

load full 2 comp5 2.52 ∗ 1080 TO 4.21 ∗ 1065 > 1015

load full 2 comp7 4.99 ∗ 10108 TO 3.11 ∗ 1085 > 1023

ltl2dba C2-6 comp3 2.46 ∗ 1035 4.55 ∗ 1025 4.55 ∗ 1025 > 109

ltl2dba E4 comp3 2.96 ∗ 1079 3.74 ∗ 1050 1.05 ∗ 1065 > 1028

demo-v10 5 1.93 ∗ 1025 1.31 ∗ 105 2.25 ∗ 1015 > 1020

demo-v12 5 2.81 ∗ 1014 1.64 ∗ 104 6.98 ∗ 1010 > 1010

demo-v14 5 1.23 ∗ 1014 356 2.69 ∗ 108 > 1011

demo-v16 5 9.03 ∗ 107 1.36 ∗ 104 3.09 ∗ 105 > 103

demo-v18 5 3.67 ∗ 1027 TO 6.97 ∗ 1016 > 1010

demo-v19 5 1.27 ∗ 1011 305 2.68 ∗ 108 > 108

demo-v20 5 2.31 ∗ 1041 3.44 ∗ 1010 1.22 ∗ 1024 > 1030

demo-v22 5 3.4 ∗ 1038 1.71 ∗ 1015 4.76 ∗ 1021 > 1023

demo-v23 5 1.37 ∗ 1012 9.22 ∗ 103 1.09 ∗ 109 > 108

demo-v24 5 3.27 ∗ 1063 1.17 ∗ 1031 4.23 ∗ 1028 > 1032

However, note that our smaller sets do not necessarily correspond to smaller
symbolic representations of these sets. Table 6.2 compares the sizes of BDDs
instead of explicit number of states, showing that in some cases the BDD is
smaller, but more often the symbolic representation for the smaller set of states
is actually more complex. The results are also mixed when regarding the size
of the synthesized circuits: in 11 cases the Lazy algorithm produces a smaller
solution than the standard algorithm, in 21 cases it is the other way around. The
LazyGD algorithm produced smaller circuits in 15 cases. Tables 6.3,6.3 contain
a sample of these results, including also the size of the symbolic representation
of the winning strategy. It is also important to note that the Lazy algorithm,
for 10 out of the 11 benchmarks with smaller synthesized circuits, has produced
smaller care-sets. Furthermore LazyGD has produced smaller care-sets for 11
out of the 15 benchmarks with smaller synthesized circuits.

Out of the 234 benchmarks, the Lazy algorithm solved 99 before the time-
out, and the LazyGD algorithm solved 116. While the standard algorithm solves
a higher number of instances overall (163), for a number of examples our algo-

109

Table 6.2: Comparison of care-set and winning region size for selected bench-
marks
(number of BDD nodes in symbolic representation)

Instance Standard Lazy LazyGD

load 2c comp comp5 299 986 518

load 3c comp comp4 345 9299 669

load 3c comp comp7 442 11253 1507

load 4c comp comp4 2075 TO 3263

load 4c comp comp6 4413 TO 7814

load full 2 comp5 1308 TO 2182

load full 2 comp7 2068 TO 5071

ltl2dba C2-6 comp3 199 484 501

ltl2dba E4 comp3 7361 454 508

demo-v10 5 16 83 49

demo-v12 5 10 44 34

demo-v14 5 53 83 87

demo-v16 5 262 233 132

demo-v18 5 125535 TO 52687

demo-v19 5 156 83 76

demo-v20 5 87 135 600

demo-v22 5 226 1373 1768

demo-v23 5 46 139 92

demo-v24 5 195 4075 561

rithms are faster. In particular, both versions each solve 7 benchmarks that are
not solved by the standard algorithm, as shown in Table 6.5.

Moreover, we compare against the participants of SYNTCOMP 2017: with
a timeout of 3600s, the best single-threaded solver in SYNTCOMP 2017 solved
155 problems, and the virtual best solver (VBS; i.e., a theoretical solver that
on each benchmark performs as good as the best participating solver) would
have solved 186 instances. If we include our two algorithms with a timeout of
3600s, the VBS can additionally solve 7 out of the 48 instances that could not
be solved by any of the participants of SYNTCOMP before. As our algorithms
also solve some instances much faster than the existing algorithms, they would
be worthwhile additions to a portfolio solver for SYNTCOMP.

6.7.3 Random Benchmarks

The SYNTCOMP benchmark library consists of crafted benchmarks that were
submitted by the participants. An inspection of these benchmarks shows that
in many cases these benchmarks are such that progress towards the error states
can only be avoided when we reach the border of the winning region. Obviously,

110

Table 6.3: Comparison of the size of solutions for selected benchmarks
(number of AND-gates in synthesized circuit / number of BDD nodes in winning
strategy)

Instance Standard Lazy

amba10c6n 28137 / 18612 28621 / 18711

driver d10y 226581 / 140789 156776 / 105244

factory assembly 7x5 2 0errors 31469 / 22841 19853 / 18541

genbuf12c30n 3914 / 4808 2153 / 3278

genbuf24c30y 23974 / 15528 18495 / 12365

genbuf56c40n 135025 / 59629 TO

genbuf8c30n 5767 / 5536 5753 / 5463

genbuf16c4y 7137 / 10605 49373 / 55322

demo-v18 5 REAL 50620 / 88189 TO

driver d8n 171348 / 108099 TO

factory assembly 5x5 2 0errors 11187 / 8578 21078 / 13728

factory assembly 5x5 2 1errors 21300 / 17118 46963 / 33821

benchmarks with such a structure benefit the standard backward approach and
do not allow the lazy synthesis approach to show its strengths.

To obtain additional benchmarks that avoid the potential bias of hand-
crafted examples, we developed a tool called AIGEN for generating random
benchmarks. Our tool implementation takes as input the number of control-
lable variables c, the number of uncontrollable variables u and the number of
latches l, and generates an AIGER benchmark based on a uniformly random
distribution over all controllable systems with these parameters. The imple-
mentation uses ROBDD as an intermediate representation of the benchmark
to be generated and therefore the uniformity is guaranteed by the canonicity

of ROBDDs. For a fixed u, c, and l there are 22u+c+l

different Boolean func-
tions, and we need one such function to update each latch, and in addition we
need a Boolean function only over l that determines the BAD output. Thus,

overall we have a space of (22u+c+l

)l · (22l) possible benchmarks. Optionally, we
can restrict the number o of latches that are used to define BAD. Using fewer
latches for BAD decreases the expected size of the error states and increases the
chance of obtaining a realizable benchmark. Chapter 7 describes the AIGEN
tool in details. We have generated thousands of random benchmarks from dif-
ferent classes, where a class is defined by the number of controllable variables,
uncontrollable variables, latches, and output function variables. A primary ob-
servation is that whenever a benchmark is easy to solve because there are many
winning strategies (e.g., if parameters o and u are much smaller than l and
c, respectively), then the standard algorithm is usually able to find a solution
faster. However, when it is hard to find a winning strategy, then the results
change. For instance, we compared the lazy algorithm with and without gen-

111

Table 6.4: Comparison of the size of solutions for selected benchmarks
(number of AND-gates in synthesized circuit / number of BDD nodes in winning
strategy)

Instance Standard LazyGD

amba10c6n 28137 / 18612 25816 / 17466

driver d10y 226581 / 140789 TO

factory assembly 7x5 2 0errors 31469 / 22841 21453 / 17713

genbuf12c30n 3914 / 4808 2278 / 3172

genbuf24c30y 23974 / 15528 9789 / 6529

genbuf56c40n 135025 / 59629 65284 / 32154

genbuf8c30n 5767 / 5536 5189 / 4890

genbuf16c4y 7137 / 10605 7375 / 10469

demo-v18 5 REAL 50620 / 88189 140172 / 105279

driver d8n 171348 / 108099 180917 / 116347

factory assembly 5x5 2 0errors 11187 / 8578 22586 / 16680

factory assembly 5x5 2 1errors 21300 / 17118 52730 / 33430

eral deletion against the standard algorithm on 100 random benchmarks with
c = 3, u = 1, l = 13 (i.e., 17 variables overall), and o = 12. For 66 benchmarks,
both of our algorithms synthesized circuits that were smaller or equal to the
solutions of the standard algorithm (out of these 66, 30 where strictly smaller).
Moreover, the Lazy algorithm solved 26 faster than the standard algorithm,
and the LazyGD algorithm was faster on 33 benchmarks.

Figures 6.11, 6.12, 6.13 compare solving time between the Lazy and the
standard algorithm, for benchmarks with 17,18, and 19 variables respectively.
For the benchmarks with 19 variables the Lazy algorithm solved 6 instances out
of 100 that the standard algorithm could not solve, visible on the line on the
right-hand side, marked with TO. The remaining benchmarks that we generated
had 16 or fewer variables, and every single benchmark could be solved by all
three algorithms, usually in a few seconds.

For the benchmarks we generated, we chose the parameters of our random
generator in order to obtain interesting benchmarks, i.e.,

1. not too easy to solve (benchmarks with ≤ 16 variables can almost always
be solved very quickly)

2. not too hard to solve (for 19 variables, both tools already run into a
timeout on many examples), and

3. preferably realizable (by having more controllable than uncontrollable in-
puts).

We prefer realizable benchmarks since we also want to compare properties of the
solutions, such as care-set/winning region or the size of the synthesized circuit.

112

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Backward

TO

L
az

y

T
O

Figure 6.11: Time comparison between backward and lazy approaches for bench-
marks with 17 variables. 100 random benchmarks with c = 3, u = 1, l = 13, o =
12, and 100 random benchmarks with c = 3, u = 1, l = 13, o = 11

113

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Backward

TO

L
az

y

T
O

Figure 6.12: Time comparison between backward and lazy approachses for
benchmarks with 18 latches. 100 random benchmarks with c = 3, u = 1, l =
14, o = 12

114

Table 6.5: Comparison of solving time for benchmarks solved by a lazy algo-
rithm, but not by the standard algorithm (seconds)

Instance Standard Lazy LazyGD SYNTCOMP 2017
Participants

gb s2 r3 comp1 TO 38 TO solved by 1

genbuf48c6y TO TO 3839 solved by 4

ltl2dba E6 comp4 TO 2435 TO not solved

ltl2dba Q4 comp5 TO 125 304 solved by 1

ltl2dba U1-6 Comp3 TO TO 4590 not solved

ltl2dpa alpha5 Comp2 TO TO 1880 not solved

ltl2dpa alpha5 Comp3 TO TO 2651 not solved

ltl2dpa E4 comp2 TO 1081 TO not solved

ltl2dpa E4 comp4 TO 2122 TO not solved

ltl2dpa U14 comp2 TO 4019 615 not solved

ltl2dpa U14 comp35 TO 2605 1681 not solved

6.8 Why Not a Purely Forward Exploration?

6.8.1 A Forward Algorithm

In Section 6.3.2 we mentioned a completely forward algorithm presented by
Cassez et al. [28]. The algorithm starts from the initial state and explores all
states that are reachable in a forward manner and checks if they can avoid mov-
ing to a losing state. The algorithm is not symbolic and it explicitly enumerates
states and transitions. In this section, we propose a symbolic implementation
and report on our experiences with integrating this form of forward exploration
into our algorithms.

For a symbolic implementation, given a set of states, we need to compute
all states that are reachable from this set in one transition. This can be ac-
complished by computing the image as defined in Section 6.6. However, image
computation is very expensive in terms of memory and may be as hard as com-
puting the whole transition relation. We explain below two methods that aim
to reduce the overhead of image computation.

Early quantification [26]

When computing a BDD respresentation of an expression that contains existen-
tial quantification, it is desirable to evaluate terms under existential quantifiers
as early as possible: existentially quantified variables can be completely elim-
inated from the ROBDD, which often results in a considerable reduction in
the size of the BDD. Unfortunately, existential quantification is not distributive
over conjunction and therefore we often have to first compute the result of the
conjunction before we can remove the quantified variables.

However, if a term contains variables that are used only in this term, then
existential quantification of these variables can always be performed locally.

115

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Backward

TO

L
az

y

T
O

Figure 6.13: Time comparison between backward and lazy approaches for bench-
marks with 19 latches. 100 random benchmarks with c = 4, u = 2, l = 13, o = 12

For synthesis algorithms, this would be useful for the update functions fi of
latches li. To take advantage of this property, one can use heuristics to search
for a convenient ordering of update functions, represented as a permutation
π : {1, . . . , n} → {1, . . . , n} such that as many existentially quantified sub-
expressions can be evaluated as early as possible. For a Boolean function f ,
we denote by support(f) the set of variables which constitute f , i.e., the set

of variables that f depends on. Let Ei ← support(fπ(i)) \
⋃i−1
k=1 support(fπ(k))

then the image can be computed as follows:

1. S1 ← C

2. Si+1 ← ∃x ∈ Ei (Si ∧ (l′π(i) ≡ fπ(i)))

3. imagef (C) = Sn+1

We did not implement this optimization since an inspection of the bench-
mark set from SYNTCOMP has shown that the support of most of the update
functions and the ROBDDs that represent them contain all the variables, which
makes this optimization unlikely to be very useful. It remains open if this could
be a worthwhile addition to synthesis tools, at least on certain kinds of bench-
marks.

The range function

Given a function f : A → B and C ⊆ A, define:

116

• range(f) = {y ∈ B | ∃x ∈ A with y = f(x)}.

• image(f, C) = {y ∈ B | ∃x ∈ C with y = f(x)}.

Given f : A → B one can easily see that range can be used to compute
the image of f on A, since range(f) = image(f,A). However what we need
for forward exploration of the state space is a way to compute image(f, C) for
arbitrary C ⊆ A.

Another way to view this is that instead of range(f), where f covers the
whole set A, we are interested in range(f ′) for some restriction f ′ of f that is
only defined on C. To this end, Coudert et al. [35] introduced the constraint
operator, a variant of the generalized cofactor [93].

Definition 3. Let fi : Bm → B, ~F : Bm → Bn with ~F = (f1, . . . fn) and

C : Bm → B. The generalized cofactor ~F |C = (f1|C , . . . fn|C) is defined as

~F |C(x) =

{
~X if C(x) = False
~F (x) if C(x) = True

In the above definition ~X denotes a vector of “don’t care” values, and these
can be chosen in a way that makes the BDD that represents ~F |C smaller than

the BDD of ~F .
Now, we can use the following theorem to implement the desired image

computation:

Theorem 23. [35, 93] range(~F |C) = image(~F ,C)

Although this method alleviates the memory requirements of
∧|L|
i=1 l

′
i ≡ fi ∧

C ′, the algorithm to compute range(~F |C) is a recursive algorithm [75] that
requires a large number of recursive calls.

We have tried to integrate this form of forward search into our algorithms in
order to detect unreachable states and prune the corresponding error paths. In
our experiments, we experienced unacceptably large computation times, even
on rather small examples, and with optimizations such as storing intermediate
computation results. Therefore, we do not expect an algorithm based on image
or range computation to be competitive on the class of benchmarks that we
considered.

6.9 Synthesis of Resilient Controllers

As mentioned in Section 6.1, our algorithm produces strategies that avoid pro-
gress towards the error states as early as possible, which can be useful for gener-
ating controllers that allow for a margin of error, e.g. in the presence of sporadic
faults or perturbations. In this section we review an algorithm that generates
strategies with resilience to perturbations, compare it to the lazy synthesis al-
gorithm and observe commonalities of their behavior on certain benchmarks.

6.9.1 Controllable Systems with Perturbations

Dallal et al. [36] have modeled systems with perturbations, which are defined as
extraordinary transitions where values for the controllable inputs, or a subset

117

thereof, are chosen non-deterministically. Thus, in a perturbation step Player 0
has only limited control over the behavior of the system, or none at all.

Formally, we modify controllable transition systems by fixing a subset XP ⊆
XC and considering a transition relation of the form R : BL × BXu × BXP ×
BXc\XP × BL′ → B. Given a set of solution functions for Xc and a bound k on
the number of perturbations, the semantics of the composed system is the same
as before, except that in a given run of the system, up to k times the values for
variables in XP are not chosen according to the solution function, but can be
arbitrary.

Then, we are interested in an upper bound on the number of perturbations
such that the synthesis problem can still be solved, and in strategies for the
system with this number of perturbations, called maximally resilient strategies.

6.9.2 An Algorithm for Synthesis of Resilient Controllers

Dallal et al. [36] introduced an algorithm that produces maximally resilient
strategies. It can be summarized as follows:

1. use the standard fixed-point algorithm to compute the winning region
without perturbations,

2. use a mixed forward/backward analysis to find a strategy that makes as
little progress towards the losing region as possible.

The second part can be seen as a variant of our lazy synthesis algorithm,
except that it only has to handle a restricted setting: instead of the error states,
the winning region can be used as a basis for the backwards analysis, and the
forward analysis is simplified by the fact that from all states inside the winning
region there is a winning strategy, so no backtracking is necessary to remove
states from which winning is impossible.

6.9.3 Implementation, Experiments and Comparison to
Lazy Synthesis

We have implemented this algorithm as a combination of the backward fixed-
point algorithm and symbolic lazy synthesis, providing to our knowledge its first
implementation. An evaluation on the SYNTCOMP 2017 benchmarks provides
interesting insights: only on 6 out of the 234 benchmarks the algorithm can
give a guarantee of resilience against one or more perturbations, as shown in
Table 6.6.

When inspecting the behavior of our lazy algorithms on these benchmarks,
we find that for 5 out of 6 benchmarks, our algorithms can give an additional
quantitative safety guarantee by measuring the distance between the error states
and any states that can be visited under the given strategy. Note that this
information can be extracted without additional cost, simply by inspection of
the final sequence of error levels. However, also note that this distance is not
the same as the resilience property of Dallal et al., since (i) we compute the
distance to the unsafe states, not to the losing region, and (ii) we do not take
into account whether after a single perturbation there is still a winning strategy
for Player 0. Thus, a distance of k to the unsafe states does not imply that the

118

Table 6.6: Benchmarks with Resilience Guarantees.
For Lazy Synthesis, we give the distance to error states, regardless of controlla-
bility after a perturbation. For Dallal et al., we give the distance to the losing
region, taking controllability into account, i.e., the number of perturbations that
the controller is resilient against.

Instance Lazy Synthesis Dallal et al. [36]

beembrdg2f1 c0to1 32 32

demo-v10 5 6 6

demo-v12 5 7 7

demo-v20 5 6 5

ltl2dba C2-6 comp3 0 3

ltl2dba E4 comp3 4 4

strategy is resilient to k perturbations—in fact, such a strategy does not always
exist, as the results for benchmark demo-v20 5 in Table 6.6 show.

Furthermore, we observe that on all of these examples our algorithms detect
a care-set that is much smaller than the full winning region. The results in
Table 6.1 include 5 of the 6 benchmarks, and show that the care-sets provided
by lazy synthesis are smaller by a factor of 109 or more. This leads us to the
conjecture that lazy synthesis performs particularly well on synthesis problems
that allow resilient controllers, together with the observation that not many
of these appear in the SYNTCOMP 2017 benchmark set that we have tested
against.

6.10 Conclusion

We have introduced lazy synthesis algorithms with a novel combination of for-
ward and backward exploration. Our experimental results show that in many
cases our algorithms detect solutions with care-sets that are much smaller than
the full winning region. Moreover, they can solve a number of problems that
are intractable for existing synthesis algorithms, both in crafted and random
benchmarks. Finally, our algorithm produces eager solutions, and in some cases
we can give quantitative safety guarantees, i.e., we can determine the minimum
distance to any error state that a system running on our generated strategy will
keep during execution.

119

120

Chapter 7

Random Generation of
Symbolic Transition
Systems

Verification and synthesis algorithms require a set of benchmark problems that
can be used for testing and evaluation. Unfortunately a diverse set of bench-
marks is very hard to obtain. This is a tedious problem not only for tool
developers, but also for organizers of competitions [12, 14, 27, 63] that need to
test and evaluate tools on a wide range of benchmarks, and to regularly search
for new meaningful benchmarks.

If done properly, the generation of random benchmarks can be a solution
to this problem by providing the best possible diversity and by generating new
benchmarks whenever needed. On the other hand, random benchmarks come
with a few caveats. First of all, totally random generation is usually not desired,
since that may result in many benchmarks that, while drawn from a diverse set,
are not interesting for different reasons, e.g. due to the fact that they may be too
easy or too difficult to solve for existing tools. Second, the user may be interested
in how his implementation handles benchmarks from a specific subset of the
space of all possible benchmarks, for instance those that require long chains
of computations to reach a conclusion. Finally, if the user knows how realistic
benchmarks for a certain type of verification or synthesis problem usually look
like, he may want to restrict the random generation to such benchmarks, e.g.
by forcing them comply with certain conditions on their structure.

In this chapter we consider random generation of transition systems in a
symbolic representation. Like in Chapter 6, the transition system we generate
has a partitioned transition relation, i.e., it consists of a set of Boolean functions.
To ensure diversity, we require a uniform random sampling over the space of all
Boolean functions with a given number of variables.

While for some application areas there exist tools that generate random
Boolean functions in a specific form (e.g. randomly generated propositional
formulas in CNF [29, 82]), to the best of our knowledge none of these supports
uniformly random distributions over sets of Boolean functions with a given
number of inputs. The obvious benefit is that random samplings allow to make
statements about the actual space of Boolean functions, instead of statements

121

about a specific representation of the functions. These benefits extend to the
random generation of transition systems.

To ensure uniform random sampling, we need a canonical representation
for Boolean functions. To this end we can enumerate truth tables randomly
and generate out of them, in a straight forward way, random Boolean functions
in canonical disjunctive normal form (CDNF) or canonical conjunctive normal
form (CCNF). As a more memory-efficient alternative and the main contribution
of this chapter, we present an encoding that is inspired by data structures used
for implementing reduced ordered binary decision diagrams (ROBDDs).

The tool AIGEN implements our ROBDD-based algorithm and a CDNF-
based algorithm. Development of AIGEN was motivated by the evaluation
of reactive synthesis tools [66]. It was used to generate benchmarks for the
reactive synthesis competition (SYNTCOMP) [63, 64], and we used it to test
the lazy synthesis algorithm that is presented in Chapter 6. Since the existing
benchmark library of SYNTCOMP consists mostly of benchmarks that were
hand-crafted by tool developers, the diversity of benchmarks is limited, and
their choice may be skewed towards problems or encodings that are well-suited
for the existing tools. Therefore, random benchmarks are a valuable source of
insight into the performance of synthesis algorithms, when used in addition to
the existing hand-crafted examples.

Outline. We introduce BDDs and ROBDDs in Section 7.1. In Section 7.2 we
present our basic idea for the random generation of symbolic transition systems,
based on enumerating Boolean functions. In Section 7.3, we present a detailed
description of the ROBDD-based algorithm, and in Section 7.3.2 the algorithm
based on CDNF. Section 7.4 explains how we can efficiently use AIGEN and
produce diverse benchmarks. Finally, in Section 7.5 we present a comparison
between the ROBDD and the CDNF approaches, and we give details about our
implementation.

7.1 Canonical Representation of Boolean Func-
tions

A Binary Decision Diagram (BDD) over a set of variables X is a directed acyclic
graph G = (V,E) with V ⊂ N, exactly one root vr ∈ V , and a labeling on nodes
with the following properties:

• each terminal node v ∈ V is labeled with a value val(v) ∈ {0, 1}

• each non-terminal node v ∈ V is labeled with a variable var(v) ∈ X
and has exactly two outgoing edges, leading to nodes that are denoted by
high(v) ∈ V and low(v) ∈ V , respectively.

Note that if v ∈ V is a non-terminal node, then the directed acyclic graph
rooted in v is also a BDD. It is called the sub-BDD of G with root v.

A BDD G over a set of variables X is ordered if on every path from the root
to a terminal node, variables in node labels occur in the same order and each
variable occurs at most once.

A BDD G(V,E) is reduced if it does not contain any of the following:

122

• non-terminal nodes v 6= w ∈ V with var(v) = var(w), low(v) = low(w)
and high(v) = high(w),

• terminal nodes v 6= w ∈ V with val(v) = val(w),

• a non-terminal node v ∈ V with low(v) = high(v).

Any ordered BDD can be transformed into a reduced BDD by using the
isomorphism and Shannon reductions (cp. [40]). A BDD that is reduced and
ordered is called a Reduced Ordered Binary Decision Diagram (ROBDD).

Note that in an ROBDD, a triple (x, high(v), low(v)) of a non-terminal node
v, where x = var(v), uniquely defines a sub-ROBDD. This implies that ROB-
DDs are a canonical representation of Boolean functions [40], i.e., for a fixed
variable order there is a unique ROBDD representation for every Boolean func-
tion.

7.2 Enumerating Boolean Functions

Based on a canonical representation of Boolean functions, we define an enumer-
ation, i.e., a bijective mapping from natural numbers to Boolean functions (or
ROBDDs), such that any procedure that produces uniformly random natural
numbers (in some range) can be used to produce uniformly random Boolean
functions (in some range, see below for details).

To define our mapping, we first describe the data structure for ROBDDs that
is used by various BDD packages. Then we will illustrate the data structure
we use for ROBDDs and how it guarantees canonicity and uniform random
distribution. In the following, we assume that X = {x1, . . . , xm} is a set of
variables with a fixed order.

Unique Table.

BDD packages use the so-called unique table as a base data structure for storing
ROBDD nodes. The unique table of a BDD G = (V,E) over a set of variables
X is a hash table that establishes a bijection between nodes v ∈ V and triples
(x, h, l) ∈ X × V × V that uniquely identify them, where x = val(v) if v is
a terminal node, and x = var(v) otherwise, h = high(v) and l = low(v). A
terminal node has no children nodes and therefore has no h and l.

7.2.1 Virtual ROBDD Table

We will use the ideas from the unique table that is used in BDD packages to
define the virtual ROBDD table that enumerates all possible ROBDDs with
respect to our variable order. This table can of course not be constructed
explicitly, but the idea of this table can be used to define a (bijective) mapping
from natural numbers to ROBDDs.

To generate a ROBDD that represents a random Boolean function with m
inputs, the idea of our algorithm is to generate randomly a natural number
bddID ≤ 22m (since there are 22m different Boolean functions of type Bm → B),
compute the unique triple that corresponds to bddID, and iteratively build the
ROBDD by computing the unique triples for its children.

123

To illustrate how the algorithm computes these triples, assume that there
exists a table, called Virtual ROBDD Table (or short: VRT), that maps natural
numbers to ROBDDs, identified by a triple of variable index and high and low
children. In other words, every entry in the table maps uniquely a number
bddID ∈ N to a tuple (level, high, low) where level is a variable index. Like
the unique table, none of the entries (i.e., ROBDDs) appears twice. However,
in contrast to the unique table, the VRT is based on the fixed variable order,
and uses the variable index in this order instead of the variable itself. Table 7.1
depicts a sketch of the VRT.

Table 7.1: VRT: Entries in the table are in ascending order over bddID. The
first row in the table corresponds to level 0 which include the two terminal nodes
1 and 2 which points to the values 0 and 1 respectively. Each row (except the
first row) is annotated with a level and a sublevel. Li denotes the ith level,
containing all triples with variable index i. The sublevel slij denotes the jth

sublevel of Li which contains all triples of Li where either the high element or
the low element is equal to j. Each cell in a row annotated with Li and slij is
of the form (bddID)[high.low] where bddID is the unique identifier of the triple

(i, high, low). Let X = 22i−1

and Y =
j−1∑
m=1

2(22i−1 −m).

L0 (1)[0] (2)[1]

L1 sl11 (3)[1.2] (4)[2.1]

L2 sl21 (5)[1.2] (6)[2.1] (7)[1.3] (8)[3.1] (9)[1.4] (10)[4.1]

sl22 (11)[2.3] (12)[3.2] (13)[2.4] (14)[4.2]

sl23
(15)[3.4] (16)[4.3]

...
...

...

Li sli1 (X+1)[1.2] (X+2)[2.1] . . . (X+2(X−1))[X.1]
...

...

slij (X+Y+1)[j.j+1] . . . (X+Y+2(X−j))[X.j]
...

...

sliX−1

...
...

7.2.2 Computing ROBDDs from Random Numbers

In the VRT, a bddID between 1 and 22m corresponds to a Boolean function
with at most m input variables, and a bddID between 22m−1

+ 1 and 22m corre-
sponds to a function with exactly m input variables. Thus, to uniformly sample
Boolean functions, we can use a random number generator that uniformly sam-
ples natural numbers in such a range.

It is important to remember that the VRT is not constructed explicitly.
Instead, given a number of variables m, the algorithm generates first a ran-
dom number bddID ≤ 22m , then computes the triple (level, high, low) to which
bddID maps in the VRT. We note: level (or i) is equal to dlog2(log2(bddID))e.
Let X = 22i−1

, then we solve the following system of equations to compute x
which is equivalent to the sublevel:

124

(16)[4.3]

(4)[2.1] (3)[1.2]

(1)[0] (2)[1]

2 :

1 :

0 :

Figure 7.1: BDD generated for number 16. Equivalent to the Boolean function:
x2x1 + x̄2x̄1. The numbers on the left of the BDD represent the level i.e. the
corresponding variable indices.

X + 2(X − 1) + . . .+ 2(X − x) < bddID
X + 2(X − 1) + . . .+ 2(X − (x+ 1)) ≥ bddID

High and low are then computed according to what is given in the table, see
Section 7.3 for more details. Figure 7.1 shows the BDD generated for bddID =
16 which is equivalent to: x2x1 + x̄2x̄1.

7.3 Random Generation of (Controllable) Tran-
sition Systems

In this section we present our algorithm for generating random transition sys-
tems, represented as AIGER circuits [15]. We use a generalization of the usual
notion of transition systems that allows some of the input signals to be declared
as controllable. This is useful to define synthesis problems, i.e., a synthesis pro-
cedure can define how these inputs should behave depending on the state and
uncontrollable inputs of the system.

A controllable transition system (check Section 6.2 for more details) TS is a

6-tuple (L,Xu, Xc, ~F ,BAD, q0), where:

• L is a set of state variables (also called latches)

• Xu is a set of uncontrollable input variables

• Xc is a set of controllable input variables

• ~F = (f1, ..., f|L|) with fi : BL × BXu × BXc → B is a vector of update
functions for the latches

• BAD : BL → B is the set of unsafe states

• q0 is the initial state where all latches are initialized to 0.

Then, the idea of our algorithm for random generation of transition systems
can be summarized in the following way:

• as input, the procedure receives numbers l, c, u, o ∈ N and optionally a list
of seeds (i.e., natural numbers used to initialize a pseudorandom number
generator), where l is the desired number of latches, c, u are the numbers of

125

controllable and uncontrollable inputs, respectively, o ≤ l is a parameter
that bounds the size of the set of unsafe states to be less than 2o, and
the list of seeds can be used if the user wants to generate a replica of the
transition system that used the same list of seeds to generate the random
numbers.

• for each latch, we generate a random function Bl+c+u → B that determines
how this latch is updated based on the current state and input of the
system.

• we generate a random function fBAD : Bo → B that determines the set of
unsafe states of the system: BAD is defined as
f(xi1 , . . . , xio) ∧

∧
j∈{1,...,l}\{i1,...,io} xj where the indices {i1, . . . , io} are

also picked randomly.

• the system composed of these functions is then encoded into an AIGER
circuit.

7.3.1 ROBDD based Algorithm

The procedure GenerateRandomAiger takes as input the number of latches
l, uncontrollable inputs u, controllable inputs c, the bound o, optionally a list
of seeds, and produces a file in AIGER format as output. Lines 3-6 generate for
every latch a random ROBDD that represents the update function of the latch,
i.e., a function that takes all current values of inputs and latches as input, and
returns a new value for the given latch. Line 4 generates a random integer with
2var random bits, i.e., a natural number between 1 and 22var . All the seeds used
for generating the random integers will be written in the comment section at
the end of the generated file. These seeds can be fed to the algorithm in order to
regenerate the same instance. Line 5 constructs the ROBDD that corresponds
to the generated number. Line 6 converts the constructed ROBDD into an AIG
(And Inverter Graph) relying on the fact that a BDD can be seen as a network
of multiplexers. Lines 8-10 construct the ROBDD of the BAD function which
uses o ≤ l latch variables. Line 11 creates the AIGER file that corresponds to
the total number of variables and to the update functions that were randomly
generated. Line 12 uses the ABC [13] tool to reduce the size of the generated
AIGER file.

ConstructBDD is a recursive procedure for constructing all the nodes of the
ROBDD that corresponds to the unique ID bddID. It starts with the root
node and recursively proceeds to the child nodes until it reaches the nodes 1 or
2 (which corresponds to values 0 and 1 respectively). Line 2 checks if the node
was already created. If not, Line 3 computes the triple (level, high, low) that
uniquely represent the node and adds it to the table ROBDDTable. Lines 5-6
construct the child nodes. Note that the ROBDDTable is initialized with the
IDs 1 and 2 which correspond respectively to the values 0 and 1.

Given an ID, the GetChildren procedure computes the triple (level, high, low).
Line 2 computes the level. Lines 3-6 compute the sublevel. Note that, as de-
picted in Table 7.1, a sub-level sij has size 2(22i−1−j), where 22i−1

is the sum of
the sizes of all levels that are smaller than i. To compute the sublevel, we have
to compute the single solution of the system of inequations in Lines 4,5, to see
that check the VRT table. Line 7 computes the ID of the first element in the

126

Algorithm 6 Generate Random Aiger

1: procedure GenerateRandomAiger(l, u, c, o)
2: vars← l + u+ c, l′ = l, ROBDDTable = [(1, 0), (2, 1)]
3: while l′ > 0 do
4: rand fct ID = random.getrandbits(2vars) + 1
5: ConstructBDD(rand fct ID,ROBDDTable)
6: AIGERTable[rand fct ID] = ConvertToAIG(rand fct ID)
7: l′ ← l′ − 1

8: BAD ID = random.getrandbits(2o) + 1
9: ConstructBDD(BAD ID,ROBDDTable)

10: AIGERTable[BAD ID] = ConvertToAIG(BAD ID,ROBDDTable)
11: aigerF ilePath← CreateAiger(AIGERTable)
12: ABCMinimize(aigerF ilePath)

1: procedure ConstructBDD(bddID,ROBDDTable)
2: if bddID 6∈ ROBDDTable then
3: level, high, low ← GetChildren(bddID)
4: ROBDDTable[bddID]← (level, high, low)
5: ConstructBDD(high)
6: ConstructBDD(low)

1: procedure GetChildren(bddID)
2: level = dlog2(log2(bddID))e
3: n← 22level−1

4: sli← ComputeASol(n+ 2(n− 1) + . . .+ 2(n− x) < bddID,
5: n+ 2(n− 1) + . . .+ 2(n− (x+ 1)) ≥ bddID)
6: child1 ← sli+ 1
7: sl 1 ID ← n+ 2(n− 1) + . . .+ 2(n− sli)
8: sle← bddID − sl 1 ID
9: child2 ← child1 + dsle/2e

10: if sle mod 2 6= 0 then
11: return level, child1, child2

12: return level, child2, child1

127

sub-level. Lines 8-9 compute the ID of the second child node, and Lines 10-12
check which node is the low edge and which node is the high edge.

7.3.2 CDNF Approach

An obvious alternative to our ROBDD approach is to make use of the canonical
disjunctive or conjunctive normal forms to generate random Boolean functions.
Algorithm 7 employs CDNF as it is easier to convert to And-Inverter graph.
CDNF is usually constructed directly from a truth table (which has an ex-
ponential size) by taking the OR of all satisfying assignments. To convert a
Boolean formula fi = cl1 ∨ cl2 ∨ . . . ∨ cln in CDNF to AIG, we consider its
equivalent f ′i = ¬(¬cl1 ∧ ¬cl2 ∧ . . . ∧ ¬cln).

7.3.3 CDNF based Algorithm

Algorithm 7 Random Aiger generation using DNF approach

1: procedure DNFGenerateRandomAiger(l, u, c, o)
2: vars← l + u+ c, l′ ← 0
3: while l′ < l do
4: truthTable = random.getrandbits(2vars)
5: dnfFormula = ConstructDNF (truthTable, vars)
6: AIGERTable[l′] = ConvertToAIG(dnfFormula)
7: l′ ← l′ + 1

8: BADtruthTable = random.getrandbits(2o)
9: BADdnfFormula = ConstructDNF (truthTable, o)

10: AIGERTable[l′] = ConvertToAIG(BADdnfFormula)
11: aigerF ilePath← CreateAiger(AIGERTable)
12: ABCMinimize(aigerF ilePath)

1: procedure ConstructDNF(bitV ec, vars)
2: dnfFormula← True, i← 0
3: while i < bitV ec.size() do
4: if bitV ec[i] = 1 then
5: clauseBitvec← ToBinary(i, vars)
6: dnfClause← ToClause(clauseBitvec)
7: negate(dnfClause)
8: dnfFormula← dnfFormula ∧ dnfClause
9: return negate(dnfFormula)

The procedure DNFGenerateRandomAiger takes as input the number
of latches l, uncontrollable inputs u, controllable inputs c, the bound o, and
produces a file in AIGER format as output. Lines 3-6 generate for every latch
a random update function. Line 4 generates a random bit vector of size 2vars.
This bit vector represents the valuation of all the minterms1 of the truth table
that represents the random function fi. For instance, if the first element of
the bit vector is equal 1 then xc0 = 0, . . . , xc|c|−1

= 0, xu0
= 0, . . . , xu|u|−1

=

1A minterm of n variables is a product (logical AND) of the variables in which each variable
appears exactly once in uncomplemented or complemented form.

128

0, xl0 = 0, . . . , xl|l|−1
= 0 is a satisfying assignment of fi. Similarly if the

last element of the bit vector is equal 1 then xc0 = 1, . . . , xc|c|−1
= 1, xu0

=
1, . . . , xu|u|−1

= 1, xl0 = 1, . . . , xl|l|−1
= 1 is a satisfying assignment of fi. Line

5 builds the random function that corresponds to the generated bit vector, and
Line 6 converts it to AIG. Lines 8-10 generate the output random function, and
Lines 11, 12 creates the AIGER file and call ABC to minimize it.

The procedure ConstructDNF takes as input a bit vector and the number
of variables and generates the corresponding Boolean function. Line 2 initializes
the DNF function to be created. For every element in the bit vector if the ith
element is equal to 1, Line 3, then, in order to obtain the corresponding minterm,
Line 5 converts the positive integer i to binary. For instance if i = 3 and vars =
3, then the minterm xc ∧ ¬xu ∧ xl is created. Line 6 creates the corresponding
minterm. Line 7 negates the created clause and Line 8 adds is to the DNF
formula. Line 9 returns the negation of the constructed formula. As mentioned
earlier, as the formula represented by the truth table is in DNF, we need to
generate its equivalent that includes only AND and NOT logical gates. For
instance giving a formula fi = cl1 ∨ cl2 ∨ . . . ∨ cln in CDNF, we construct its
equivalent f ′i = ¬(¬cl1 ∧ ¬cl2 ∧ . . . ∧ ¬cln).

7.4 How to effectively use the tool

AIGEN implements both algorithms (Algorithm 6 and 7). It takes as input
a file name FileName, the number of uncontrollable inputs u, the number of
controllable inputs c, the number of latches l, the bound o, and optionally
a seed for each latch. Given these inputs, the tool randomly generates an
AIGER circuit (uniformly distributed in the given settings) FileName.aag,
and an equivalent circuit of reduced size FileName abc.aag. FileName.aag
contains the exact AIG generated by the algorithm, and as comments the seeds
used by the random number generator which can be fed as parameters to the tool
in order to replicate the same file. FileName abc.aag is obtained by running
an ABC command on FileName.aag in order to reduce its size. Note that we
can further reduce the size of FileName.aag using a BDD tool: once the file is
read by a BDD manager, the size of the corresponding BDD can be minimized
automatically using a variable reordering function. The minimized BDD can be
then re-encoded into an AIGER file.

As mentioned, the tool can be used to generate benchmarks to evaluate
model checking and/or synthesis tools. Although the benchmarks are randomly
generated, the user can choose the input parameters to obtain benchmarks with
certain properties that correspond to their needs, for example:

• The degree of the generated graph (i.e., the transition system) is equal
to 2u+c, therefore increasing the ratio (u+ c)/l will make the graph more
congested and consequently more complex.

• The parameter o gives the user the ability to determine the size of the set
of unsafe states, and as a consequence it is one of the factors that allows
the user to manipulate the complexity of the benchmark. For instance,
suppose that a user chooses l = 10 and o = 3, this means that the number
of unsafe states cannot exceed 23 as the BAD function will be of the
following form: f(x3, x2, x1) ∧ x10x9x8x7x6x5x4.

129

• Increasing the ratio o/l will increase the probability that the error set is
reachable, and decreasing this ratio will lower the probability.

• Increasing the ratio c/u will increase the probability that the benchmark is
realizable, and decreasing it will serve the opposite goal. Moreover, if this
ratio is close to 1 the realizability check will be harder, since the probability
of realizability will be roughly equal to the probability of unrealizability.

To demonstrate the effect of these parameters, Table 7.2 shows the run-
ning time and results (realizable or unrealizable) on selected benchmarks for
the tool SimpleBDDSolver in SYNTCOMP 2019. SimpleBDDSolver has won
all previous iterations of the SYNTCOMP competition safety track based on
AIGER circuits. A benchmark name contains the parameters that was used
to generate the file. For instance random n 19 1 3 15 14 1 abc.aag means that
the benchmark has in total 19 variables with 1 controllable input, 3 uncon-
trollable inputs, 15 latches, and o = 14. The table shows that the bench-
marks with ratio c/u = 1/3 or c/u = 1/5 were unrealizable, the benchmarks
with ratio c/u = 2 were realizable, while benchmarks with ratio c/u = 1/2
were difficult to solve for the tool, which timed out while trying to solve them.
Note that the results of Table 7.2 can be found at the following URL: https:
//www.starexec.org/starexec/secure/details/job.jsp?id=35621

Table 7.2: Results of the SimpleBDDSolver tool on selected random benchmarks
generated by AIGEN in SYNTCOMP 2019

Benchmark Time(s) Results

random n 19 1 3 15 14 1 abc.aag 3412.41 UNREALIZABLE

random n 19 1 5 13 13 2 abc.aag 1361.39 UNREALIZABLE

random n 19 1 2 16 14 8 abc.aag Timeout -

random n 19 1 4 14 13 11 abc.aag Timeout -

random n 19 4 2 13 12 11 abc.aag 43.68 REALIZABLE

random n 19 4 2 13 12 12 abc.aag 35.71 REALIZABLE

random n 19 4 2 13 12 3 abc.aag 240.61 REALIZABLE

random n 19 4 2 13 12 62 abc.aag 299.5 REALIZABLE

random n 19 4 2 13 12 95 abc.aag 258.92 REALIZABLE

7.5 Implementation & Evaluation

AIGEN is implemented in Python, and available for download at https://

github.com/mhdsakr/AIGEN-Tool. The tool is open source software, allowing
interested users to add functionality, e.g., in order to add further parameters to
generate only Boolean functions or transition systems with certain properties.

130

https://www.starexec.org/starexec/secure/details/job.jsp?id=35621
https://www.starexec.org/starexec/secure/details/job.jsp?id=35621
https://github.com/mhdsakr/AIGEN-Tool
https://github.com/mhdsakr/AIGEN-Tool

10-11-28-8-46-4-8 9-9-44-4-7 4-5-7 6-7-6
0

200

400

600

R
u

n
n

in
g

ti
m

e
in

se
co

n
d

s

BDD
DNF

Figure 7.2: Average running times using ROBDD and DNF approaches

It uses the mpmath [70] library together with GMPY [1] to deal with large
numbers. By default, mpmath uses Python integers, however if GMPY is also
installed on the operating system, mpmath will automatically detect it and use
gmpy integers intead. This makes mpmath perform much faster, particularly
at high precision (approximately above 100 digits). Furthermore, AIGEN uses
ABC [13], and the AIGER tool set [16] to post-process AIGER circuits.

AIGEN has been used to generate thousands of random transition systems.
Figures 7.2, 7.3, and 7.4 show average times and sizes for the generated systems
where, for example, 4-3-7 denotes systems with 4 controllable inputs, 3 uncon-
trollable inputs, and 7 latches (o = l = 7). These times were measured on a
laptop with quad-core i7-6600U CPU at 2.6 GHz and 20 GB RAM.

Figure 7.2 shows average running time comparison between ROBDD and
DNF approaches. These time results do not include the time needed for ABC
tool to minimize the generated transition system (i.e. ABCMinimize(FilePath)
is skipped). The chart shows that the DNF approach was faster in all cases which
was expected due to the fact that generating a random ROBDD is much more
complex than generating a truth table. Figure 7.3 compares average number
of AND Gates in generated transition systems. The depiction shows that the
ROBDD approach is much better in all cases. Figure 7.4 shows average running
time comparison between the ROBDD and DNF approaches including the time
needed for ABC tool to minimize the generated transition system. Benchmarks
8-8-4, 9-9-4, and 10-11-2 timed out for the DNF approach(we used 10 hours as
a time limit). Obviously the ABC tool needed a lot of time to process these
benchmarks. After a thorough inspection, the reason was, in addition to the
huge size of these circuits, the incredibly long chains of AND-gates for every
generated Boolean function. This figure show that the total running time of the
tool was way better when used with the ROBDD approach.

Transition systems generated by AIGEN have been used as benchmark prob-
lems in SYNTCOMP 2019. The difficulty of benchmarks can be scaled based

131

10-11-28-8-46-4-8 9-9-44-4-7 4-5-7 6-7-6
0

5 · 106

1 · 107

1.5 · 107

2 · 107

2.5 · 107

N
u

m
b

er
of

A
N

D
g
a
te

s

BDD
DNF

Figure 7.3: Average number of generated AND gates for ROBDD and DNF
approaches

on several parameters, such as the number of inputs, number of latches, and
ratio of controllable and uncontrollable inputs. In this way, we can generate
benchmarks that are challenging for most or all existing synthesis tools, even
though they may only be medium-sized (e.g., 15-20 variables overall, with a
state space between 210 and 216 states).

7.6 Conclusion

Although the ROBDD based approach generates much smaller symbolic tran-
sition systems, the CDNF approach is faster when the ABC minimization pro-
cedure is disabled, however the resulting systems way smaller when the mini-
mization procedure is used. In contrast to the ROBDD approach, to generate a
random formula in CDNF, no heavy or complex computation is needed. How-
ever the huge size of these formulas becomes a problem for the ABC tool as it
has to deal and inspect all the generated AND gates in order to carry out the
minimization.

132

10-11-28-8-46-4-8 9-9-44-4-7 4-5-7 6-7-6
0

10,000

20,000

30,000

R
u

n
n

in
g

ti
m

e
in

se
co

n
d

s

BDD
DNF

Figure 7.4: Average running time comparison including the time needed to
minimize generated Aiger using ABC tool.

133

134

Chapter 8

Conclusion and Future
Work

This last chapter of the thesis summarizes the main contributions and the chap-
ters’ content. Furthermore we suggest and discuss future works.

8.1 Summary

In this thesis, we presented novel techniques for model checking, repair and
synthesis of parameterized concurrent systems. These new techniques allowed
us to improve existing results for conjunctive, disjunctive, and token passing
systems by extending the class of systems, the class of process templates, and
the class of specifications for which the parameterized model checking problem
is decidable. Furthermore, we presented, to our knowledge, the first repair al-
gorithm for the synchronizations inside parameterized systems, and we showed
how the algorithm may be applied on classes of systems that can be simulated
by well structured transition systems (WSTS). Additionally we presented new
approaches for the safety synthesis problem, and showed how one of these ap-
proaches solved many benchmarks that were not solved before.

8.1.1 Results for LTL\X Properties

In Chapter 3 we showed how we can profit from knowledge about the com-
munication (specifically the number and the form of transition guards) and the
structure of process templates in order to obtain better cutoff results on disjunc-
tive and conjunctive systems for k-indexed LTL\X properties (see Table 8.1).
Additionally we showed how our results enable us to verify systems that were
intractable before (see Section 3.2). These results circumvent existing tightness
results, which state that no smaller cutoffs can exist. Furthermore, we extended
the existing cutoff results for a new class of disjunctive systems and a new class
of specifications that have not been studied before (check Sections 3.3.4, and
3.3.5).

In Chapter 4 we investigated the parameterized model checking problem for
guarded protocols and token passing systems under bounded fairness. Given
a bound b, bounded fairness requires that in a global run of the system each

135

process has to execute at least one transition in every b steps of the global
system. To obtain cutoff results, we showed that if there exists a bounded-
fair run that violates a specification in LTL\X, then there exists an ultimately
periodic run with the same property that can be extracted from the product of
the automaton that represents the property and the system. Table 8.1 lists the
obtained results.

8.1.2 Results for Prompt-LTL\X Properties

In Chapter 4 we investigated the parameterized model checking problem for
specifications in Prompt-LTL\X. Prompt-LTL is a linear time temporal logic
that extends LTL with the prompt eventually operator Fp. The formula Fpa is
satisfied when the event a happens at some time in the future, and there exists
a bound on the time that elapses before it happens. However, this new opera-
tor makes Prompt-LTL a stutter sensitive logic. For instance, given a run of a
parameterized system that satisfies GFpa for some bound b, we can construct
a run that does not satisfy GFpa for any bound b′ by introducing an increasing
(and unbounded) number of stuttering steps between every two appearances of
a. Therefore, after establishing a connection between bounded fairness, bounded
stuttering, and the satisfaction of Prompt-LTL\X, we showed that we can mod-
ify existing approaches that solve parameterized model checking by the cutoff
method to obtain correctness guarantees for specifications in Prompt-LTL\X.

The types of systems that we covered in this chapter are guarded protocols
and token-passing systems. Check Table 8.1 for more detailed results.

8.1.3 Deadlock Detection

A deadlock is an unwanted state of a parameterized concurrent system where
one or more processes are unable to take any action. In this thesis we studied two
types of deadlocks, global and local deadlocks. A run of a system is globally
deadlocked if all processes are prevented from executing transitions. On the
other hand, we say that a system run is locally deadlocked in a process p, if
after some moment in the run, p can never execute any transition again.

Emerson and Kahlon [44] proved that, for conjunctive systems, a cutoff
linear in the size of the process template is sufficient to detect global deadlocks.
Außerlechneret al. [10] showed that, for local deadlock detection in conjunctive
systems, a cutoff that is linear in the size of the process template is also adequate,
but under a strong restriction where the results are only for systems in which
each guard can only exclude a single state (1-conjunctive). Unfortunately, these
results does not support even simple systems like the one in Figure 3.1. In
Chapter 3, we expanded, for local deadlock detection in conjunctive systems,
the class of process templates that have cutoff results. These results support
classes of templates that are not 1-conjunctive, and handle systems like the one
in Figure 3.1. Unfortunately we did not solve the general problem, however we
proved that a cutoff for an arbitrary conjunctive system is at least quadratic in
the size of the process template.

Furthermore, in Chapter 5, Section 5.3.3, we showed how we can modify a
backward-based model checking algorithm (see Section 5.3.2) in order to detect
global deadlocks in parameterized disjunctive systems. The modified version

136

of the algorithm checks if a given counter system can reach a globally dead-
locked state, where a counter system is an abstract model that can simulate
parameterized disjunctive systems.

8.1.4 Parameterized Repair

In Chapter 5, we presented an algorithm for the repair of parameterized concur-
rent systems. Our repair algorithm interleaves the generation of candidate solu-
tions (repairs) with parameterized model checking and parameterized deadlock
detection approaches. The parameterized model checker and the parameterized
deadlock detector provide the algorithm with the needed information in order
to direct the search for candidate repairs. This information is encoded into
propositional constraints in order to use a SAT solver to automatically find cor-
rect repairs. To achieve that, we modeled disjunctive systems as well-structured
transition systems. Due to the well quasi order over its states, this system model
facilitates parameterized model checking and parameterized deadlock detection.

The repair algorithm is not restricted to disjunctive systems, therefore we
showed how it can be extended to other types of systems, like pairwise rendez-
vous, and broadcast protocols.

8.1.5 Safety Synthesis

In Chapter 6 we presented two safety synthesis algorithms that are based on
the counter-example guided synthesis approach, and interleave symbolic model
checking with the synthesis of candidate solutions. These two algorithms target
monolithic systems, however, we believe that they can also be used for param-
eterized systems.

Algorithm 4, in Page 96, is SAT-based, and therefore it encodes error paths
computed by the model checker into a set of constraints that guarantees that
any synthesized candidate must respect these constraints. One of the advantages
of this algorithm is that it can be used for concurrent systems. Algorithm 4,
in addition to the non-deterministic system and the set of error states, takes
as input the so-called transition relation constraint (TrConstr). Therefore, if
the system we want to synthesize is a monolithic representation of a concurrent
system, then we can encode the totality of each component inside TrConstr
and pass it as a parameter to the algorithm.

Unfortunately, Algorithm 4 does not scale due to the fact that it explores
error paths in an explicit manner.

Algorithm 5, in Page 100, is BDD-based and uses a forward/backward proce-
dure to search for candidate solutions. This technique allows us to detect small
subsets of states that are sufficient to define a candidate solution. Therefore,
it can solve certain classes of problems more efficiently than other approaches.
Furthermore, due to the forward/backward exploration of error paths, Algo-
rithm 5 avoids progress towards the error states as early as possible, and hence
it can compute candidate solutions in which error states are ”far away” from the
set of reachable states. Such solutions are desirable in systems that need to be
tolerant to hardware faults or perturbations in the environment. We evaluated
a prototype implementation of the BDD-based algorithm on the benchmark set
of the Reactive Synthesis Competition (SYNTCOMP) 2017. The prototype im-
plementation solved 8 benchmarks that have not been solved by any participant

137

in SYNTCOMP 2017.
Additionally, we evaluated Algorithm 5 on a set of random benchmarks that

were generated by our tool AIGEN. AIGEN is a tool for generating random
symbolic transition systems. It takes as input the number of controllable vari-
ables, the number of uncontrollable variables, and the number of latches, and
generates an AIGER benchmark based on a uniformly random distribution over
all controllable systems with these parameters. As an intermediate representa-
tion of the symbolic transition system to be generated, AIGEN uses ROBDDs
in order to guarantee canonicity (see Chapter 7).

8.2 Future Work

Parameterized Verification In Chapter 3, we have shown that for param-
eterized guarded protocols there exists a cutoff that is linear in the number of
guards in the process template. These results make parameterized model check-
ing easier for process templates in which the number of guards is smaller than the
number of states. On the other hand, such results could be used to synthesize
systems with a minimal number of guards, i.e. with minimal synchronization.
Given a process template without guards, and a set of specifications, we can
gradually increase the number of introduced guards, and check, in each step,
if the new system satisfies the specification. Using our results, the complexity
of the last step will increase gradually, and will reach the same complexity as
previous results only when the number of guards will be equal to the number of
states in the process template.

Furthermore, we improved existing results for local deadlock detection in
conjunctive systems. However, although we showed that a cutoff for an arbitrary
conjunctive system is at least quadratic in the size of the process template,
we did not solve the general problem. We tend to believe that the problem
is in general undecidable, however it remains open, and therefore, it will be
considered in future works.

As shown in Table 8.1, we have no results for specifications in Prompt-LTL\X
under global bounded fairness. In addition to these missing results, we want to
check in future work if we can compute a maximal bound on the eventuality
operator for parameterized systems. Kupferman et al. [76] showed that if a
Prompt-LTL\X formula is satisfied in a monolithic system S , then it is satisfied
with bound b, where b is exponential in the size of the formula and polynomial
in S. For parameterized systems, when a cutoff exists, we would like to check
if there exists a bound in terms of the cutoff size instead of the system size.

Parameterized Repair and Synthesis The repair algorithm in Chapter 5
uses the counter-example guided approach. In a future work we would like to
use instead the attractor approach where we start from the set of error states
and compute states that cannot avoid it until we reach a fixed point.

Additionally, in Section 5.3.3, we presented an algorithm for global deadlock
detection in disjunctive system. This algorithm is used in the repair algorithm
in order to check if candidate solutions introduce global deadlocks. In a future
work, we would like to develop similar deadlock detection algorithms for other
type of systems, like pairwise-rendezvous and broadcast protocols.

138

Table 8.1: A summary for the cutoff results of Chapters 3 and 4.

Disjunctive Systems Conjunctive Systems

k-indexed LTL\X non-fair |G|+ k + 1 & |BG |+ k + 1 k + 1

k-indexed LTL\X fair |BG |+ |G|+ k & 2|BG |+ k k + 1

Local Deadlock non-fair m+ |G|+ 1, m < |B| |GU,B |+ 2∗

Local Deadlock fair |BG |+ |G|+ 1 & 2|BG |+ 1 2|GU,B |∗∗

Global Deadlock - |B|+ |N ∗|, |N ∗| < |B| 2|B| − kstr

k-indexed LTL\X lb-fair |B|+min(|G|, |B|) + k k + 1

k-indexed LTL\X gb-fair |B|+min(|G|, |B|) + k k + 1∗∗∗

k-indexed Prompt-LTL\X lb-fair |B|+min(|G|, |B|) + k k + 1

k-indexed Prompt-LTL\X gb-fair - k + 1∗∗∗

Token Passing Systems

k-indexed LTL\X lb-fair 2k

k-indexed LTL\X gb-fair 2k

k-indexed Prompt-LTL\X lb-fair 2k

k-indexed Prompt-LTL\X gb-fair 2k
∗ : systems need to have alternation-bounded local deadlocks (see Sect. 3.1.4)
∗∗ : systems need to be initializing and have alternation-bounded local deadlocks

∗∗∗ : Restricted to bounded initializing processes (Section 4.3). kstr = 2k1 + 2k2 + k3
where:

k1: number of free states
k2: number of non-blocking states that are not free

k3: number of not self-blocking states that are not free or non-blocking
N = {q ∈ QB | q ∈ Enableq}

N ∗ is the maximal subset of N such that ∀qi, qj ∈ N ∗ : qi /∈ Enableqj ∧ qj /∈ Enableqi
lb-fair: Local Bounded Fairness
gb-fair: Global Bounded Fairness

139

140

Bibliography

[1] Gmpy. https://pypi.python.org/pypi/gmpy2/.

[2] Parosh Abdulla, Frédéric Haziza, and Lukáš Hoĺık. Parameterized verifi-
cation through view abstraction. International Journal on Software Tools
for Technology Transfer, 18(5):495–516, 2016.

[3] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay.
General decidability theorems for infinite-state systems. In Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science, pages 313–321.
IEEE, 1996.

[4] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Monotonic
abstraction in action. In International Colloquium on Theoretical Aspects
of Computing, pages 50–65. Springer, 2008.

[5] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, Julien d’Orso, and
Mayank Saksena. Regular model checking for ltl (mso). In International
Conference on Computer Aided Verification, pages 348–360. Springer, 2004.

[6] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron A. Peled.
Parametric temporal logic for ”model measuring”. ACM Trans. Comput.
Log., 2(3):388–407, 2001. doi:10.1145/377978.377990.

[7] B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized
model checking of rendezvous systems. In CONCUR, volume 8704 of LNCS,
pages 109–124. Springer, 2014. doi:10.1007/978-3-662-44584-6_9.

[8] Paul C Attie, Kinan Dak Al Bab, and Mouhammad Sakr. Model and
program repair via sat solving. ACM Transactions on Embedded Computing
Systems (TECS), 17(2):1–25, 2017.

[9] Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for
guarded protocols with fairness. CoRR, abs/1505.03273, 2015. Extended
version with full proofs. URL: http://arxiv.org/abs/1505.03273.

[10] Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for
guarded protocols with fairness. In VMCAI, volume 9583 of LNCS, pages
476–494. Springer, 2016. doi:10.1007/978-3-662-49122-5_23.

[11] Christel Baier and Joost-Pieter Katoen. Principles of model checking, vol-
ume 26202649. MIT press Cambridge, 2008.

141

https://pypi.python.org/pypi/gmpy2/
https://doi.org/10.1145/377978.377990
https://doi.org/10.1007/978-3-662-44584-6_9
http://arxiv.org/abs/1505.03273
https://doi.org/10.1007/978-3-662-49122-5_23

[12] Clark W. Barrett, Leonardo Mendonça de Moura, and Aaron Stump.
Design and results of the first satisfiability modulo theories competition
(SMT-COMP 2005). J. Autom. Reasoning, 35(4):373–390, 2005. doi:

10.1007/s10817-006-9026-1.

[13] Berkeley Logic Synthesis and Verification Group. ABC: A system for
sequential synthesis and verification, release 140221, http://www.eecs.

berkeley.edu/~alanmi/abc/.

[14] Dirk Beyer. Competition on software verification - (SV-COMP). In
TACAS, volume 7214 of LNCS, pages 504–524. Springer, 2012. doi:

10.1007/978-3-642-28756-5_38.

[15] Armin Biere. AIGER Format and Toolbox. URL: http://fmv.jku.at/
aiger/.

[16] Armin Biere. The AIGER And-Inverter Graph (AIG) format version
20071012. Technical report, FMV Reports Series, Institute for Formal
Models and Verification, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria, 2007.

[17] Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer,
Simon Außerlechner, and Raphael Spörk. Synthesis of synchronization us-
ing uninterpreted functions. In 2014 Formal Methods in Computer-Aided
Design (FMCAD), pages 35–42. IEEE, 2014.

[18] Roderick Bloem, Swen Jacobs, and Ayrat Khalimov. Parameterized syn-
thesis case study: AMBA AHB. In SYNT, volume 157 of EPTCS, pages
68–83, 2014. doi:10.4204/EPTCS.157.9.

[19] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Ru-
bin, Helmut Veith, and Josef Widder. Decidability of Parameterized Veri-
fication. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2015. doi:10.2200/S00658ED1V01Y201508DCT013.

[20] Roderick Bloem, Robert Könighofer, and Martina Seidl. SAT-based syn-
thesis methods for safety specs. In VMCAI, volume 8318 of LNCS, pages
1–20. Springer, 2014.

[21] Michael Blondin and Mikhail Raskin. The complexity of reachability in
affine vector addition systems with states. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 224–236,
2020.

[22] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In CAV, volume 1855 of LNCS, pages 403–418. Springer, 2000.
doi:10.1007/10722167_31.

[23] Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, and Ocan
Sankur. AbsSynthe: abstract synthesis from succinct safety specifications.
In SYNT, volume 157 of EPTCS, pages 100–116, 2014. doi:10.4204/

EPTCS.157.11.

142

https://doi.org/10.1007/s10817-006-9026-1
https://doi.org/10.1007/s10817-006-9026-1
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
http://fmv.jku.at/aiger/
http://fmv.jku.at/aiger/
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/10722167_31
https://doi.org/10.4204/EPTCS.157.11
https://doi.org/10.4204/EPTCS.157.11

[24] Francesco Buccafurri, Thomas Eiter, Georg Gottlob, and Nicola Leone.
Enhancing model checking in verification by ai techniques. Artificial Intel-
ligence, 112(1-2):57–104, 1999.

[25] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-
state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969. doi:10.

2307/1994916.

[26] Jerry R Burch, Edmund M Clarke, and David E Long. Representing circuits
more efficiently in symbolic model checking.

[27] Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis
Patti, Stefano Quer, Danilo Vendraminetto, Armin Biere, Keijo Heljanko,
and Jason Baumgartner. Hardware model checking competition 2014: An
analysis and comparison of solvers and benchmarks. Journal on Satisfia-
bility, Boolean Modeling and Computation, 9:135–172, 2016.

[28] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR, volume 3653 of LNCS, pages 66–80. Springer,
2005.

[29] Peter C. Cheeseman, Bob Kanefsky, and William M. Taylor. Where the
really hard problems are. In IJCAI, pages 331–340. Morgan Kaufmann,
1991.

[30] Alonzo Church. Applications of recursive arithmetic to the problem of
circuit synthesis. Summaries of the Summer Institute of Symbolic Logic,
I:3–50, 1957.

[31] E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by net-
work decomposition. In CONCUR, volume 3170 of LNCS, pages 276–291.
Springer, 2004. doi:10.1007/978-3-540-28644-8_18.

[32] E. M. Clarke, M. Talupur, and H. Veith. Environment abstraction for
parameterized verification. In VMCAI, volume 3855 of LNCS, pages 126–
141. Springer, 2006. doi:10.1007/11609773_9.

[33] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Workshop on
Logic of Programs, pages 52–71. Springer, 1981.

[34] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of model checking, volume 10. Springer, 2018.

[35] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verifi-
cation of synchronous sequential machines based on symbolic execution.
In Automatic Verification Methods for Finite State Systems, volume 407
of Lecture Notes in Computer Science, pages 365–373. Springer, 1989.
doi:10.1007/3-540-52148-8_30.

[36] Eric Dallal, Daniel Neider, and Paulo Tabuada. Synthesis of safety con-
trollers robust to unmodeled intermittent disturbances. In CDC, pages
7425–7430. IEEE, 2016. doi:10.1109/CDC.2016.7799416.

143

https://doi.org/10.2307/1994916
https://doi.org/10.2307/1994916
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/11609773_9
https://doi.org/10.1007/3-540-52148-8_30
https://doi.org/10.1109/CDC.2016.7799416

[37] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameter-
ized verification of ad hoc networks. In CONCUR, volume 6269 of LNCS,
pages 313–327. Springer, 2010. doi:10.1007/978-3-642-15375-4_22.

[38] B. Demsky and M. Rinard. Automatic detection and repair of errors in
data structures. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’03), pages 78–95, 2003.

[39] Edsger W Dijkstra. Solution of a problem in concurrent programming
control. In Pioneers and Their Contributions to Software Engineering,
pages 289–294. Springer, 2001.

[40] Rolf Drechsler and Bernd Becker. Binary decision diagrams: theory and
implementation. Springer Science & Business Media, 2013.

[41] Rüdiger Ehlers. Symbolic bounded synthesis. Formal Methods in System
Design, 40(2):232–262, 2012. doi:10.1007/s10703-011-0137-x.

[42] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266,
1982. doi:10.1016/0167-6423(83)90017-5.

[43] E. A. Emerson and V. Kahlon. Reducing model checking of the many to
the few. In CADE, volume 1831 of LNCS, pages 236–254. Springer, 2000.
doi:10.1007/10721959_19.

[44] E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS,
pages 361–370. IEEE Computer Society, 2003. doi:10.1109/LICS.2003.

1210076.

[45] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc.
Principles of Programming Languages, pages 85–94, 1995.

[46] E. A. Emerson and K. S. Namjoshi. On reasoning about rings.
Foundations of Computer Science, 14(4):527–549, 2003. doi:10.1142/

S0129054103001881.

[47] E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of param-
eterized synchronous systems (extended abstract). In CAV, volume 1102
of LNCS, pages 87–98. Springer, 1996. doi:10.1007/3-540-61474-5_60.

[48] J. Esparza, A. Finkel, and R. Mayr. On the verification of broad-
cast protocols. In LICS, pages 352–359. IEEE Computer Society, 1999.
doi:10.1109/LICS.1999.782630.

[49] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized
verification (invited talk). In STACS, volume 25 of LIPIcs, pages 1–10.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/

LIPIcs.STACS.2014.1.

[50] Kousha Etessami. Stutter-invariant languages, ω-automata, and temporal
logic. In International Conference on Computer Aided Verification, pages
236–248. Springer, 1999.

144

https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/s10703-011-0137-x
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1007/10721959_19
https://doi.org/10.1109/LICS.2003.1210076
https://doi.org/10.1109/LICS.2003.1210076
https://doi.org/10.1142/S0129054103001881
https://doi.org/10.1142/S0129054103001881
https://doi.org/10.1007/3-540-61474-5_60
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.4230/LIPIcs.STACS.2014.1

[51] Peter Faymonville and Martin Zimmermann. Parametric linear dynamic
logic. Inf. Comput., 253:237–256, 2017. doi:10.1016/j.ic.2016.07.009.

[52] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and
compositional algorithms for LTL synthesis. Formal Methods in System
Design, 39(3):261–296, 2011. doi:10.1007/s10703-011-0115-3.

[53] B. Finkbeiner and S. Jacobs. Lazy synthesis. In VMCAI, volume 7148 of
LNCS, pages 219–234. Springer, 2012.

[54] B. Finkbeiner and S. Schewe. Bounded synthesis. STTT, 15(5-6):519–539,
2013. doi:10.1007/s10009-012-0228-z.

[55] Bernd Finkbeiner and Swen Jacobs. Lazy synthesis. In VMCAI, vol-
ume 7148 of LNCS, pages 219–234. Springer, 2012. doi:10.1007/

978-3-642-27940-9_15.

[56] Alain Finkel and Ph Schnoebelen. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[57] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues. A genetic program-
ming approach to automated software repair. In Genetic and Evolutionary
Computation Conference (GECCO’09), pages 947–954. ACM, 2009.

[58] Hadar Frenkel, Orna Grumberg, Corina Pasareanu, and Sarai Sheinvald.
Assume, guarantee or repair. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 211–227.
Springer, 2020.

[59] S. M. German and A. P. Sistla. Reasoning about systems with many pro-
cesses. J. ACM, 39(3):675–735, 1992. doi:10.1145/146637.146681.

[60] A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean programs with
an application to C. In 18th Conference on Computer Aided Verification
(CAV’06), pages 358–371, 2006. LNCS 4144.

[61] S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in
Computer Science, 10:1–29, 2014. doi:10.2168/LMCS-10(1:12)2014.

[62] Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Max-
imilien Colange, Peter Faymonville, Bernd Finkbeiner, Ayrat Khalimov,
Felix Klein, Thibaud Michaud, Guillermo A. Pérez, Jean-François Raskin,
Ocan Sankur, and Leander Tentrup. The 4th reactive synthesis competition
(SYNTCOMP 2017): Benchmarks, participants & results. In SYNT@CAV,
volume 260 of EPTCS, pages 116–143, 2017. doi:10.4204/EPTCS.260.10.

[63] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timo-
theus Hell, Robert Könighofer, Guillermo A. Pérez, Jean-François Raskin,
Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup, and Adam
Walker. The first reactive synthesis competition (SYNTCOMP 2014).
STTT, 19(3):367–390, 2017. doi:10.1007/s10009-016-0416-3.

145

https://doi.org/10.1016/j.ic.2016.07.009
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1145/146637.146681
https://doi.org/10.2168/LMCS-10(1:12)2014
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.1007/s10009-016-0416-3

[64] Swen Jacobs, Roderick Bloem, Maximilien Colange, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger,
Philipp J. Meyer, Thibaud Michaud, Mouhammad Sakr, Salomon Sickert,
Leander Tentrup, and Adam Walker. The 5th reactive synthesis compe-
tition (SYNTCOMP 2018): Benchmarks, participants & results. CoRR,
abs/1904.07736, 2019.

[65] Swen Jacobs and Mouhammad Sakr. Analyzing guarded protocols: Better
cutoffs, more systems, more expressivity. In VMCAI, volume 10747 of
Lecture Notes in Computer Science, pages 247–268. Springer, 2018. doi:

10.1007/978-3-319-73721-8_12.

[66] Swen Jacobs and Mouhammad Sakr. A symbolic algorithm for lazy syn-
thesis of eager strategies. In ATVA, volume 11138 of Lecture Notes
in Computer Science, pages 211–227. Springer, 2018. doi:10.1007/

978-3-030-01090-4_13.

[67] Swen Jacobs, Mouhammad Sakr, and Martin Zimmermann. Promptness
and bounded fairness in concurrent and parameterized systems. CoRR,
abs/1911.03122, 2019. URL: http://arxiv.org/abs/1911.03122.

[68] Swen Jacobs, Leander Tentrup, and Martin Zimmermann. Distributed
synthesis for parameterized temporal logics. Information and Computation,
262:311–328, 2018. doi:10.1016/j.ic.2018.09.009.

[69] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In
17th Conference on Computer Aided Verification (CAV’05), pages 226–238.
Springer, 2005. LNCS 3576.

[70] Fredrik Johansson et al. mpmath: a Python library for arbitrary-
precision floating-point arithmetic (version 0.18), December 2013.
http://mpmath.org/.

[71] Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations
for verifying infinite-state systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 220–
235. Springer, 2000.

[72] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order
reduction: An optimal symbolic partial order reduction technique. In In-
ternational Conference on Computer Aided Verification, pages 398–413.
Springer, 2009.

[73] A. Khalimov, S. Jacobs, and R. Bloem. PARTY parameterized synthesis
of token rings. In CAV, volume 8044 of LNCS, pages 928–933. Springer,
2013. doi:10.1007/978-3-642-39799-8_66.

[74] A. Khalimov, S. Jacobs, and R. Bloem. Towards efficient parameterized
synthesis. In VMCAI, volume 7737 of LNCS, pages 108–127. Springer,
2013. doi:10.1007/978-3-642-35873-9_9.

[75] Thomas Kropf. Introduction to formal hardware verification. Springer
Science & Business Media, 2013.

146

https://doi.org/10.1007/978-3-319-73721-8_12
https://doi.org/10.1007/978-3-319-73721-8_12
https://doi.org/10.1007/978-3-030-01090-4_13
https://doi.org/10.1007/978-3-030-01090-4_13
http://arxiv.org/abs/1911.03122
https://doi.org/10.1016/j.ic.2018.09.009
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-35873-9_9

[76] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to
promptness. Formal Methods in System Design, 34(2):83–103, 2009.

[77] Leslie Lamport. A new solution of dijkstra’s concurrent programming prob-
lem. Communications of the ACM, 17(8):453–455, 1974.

[78] Alexander Legg, Nina Narodytska, and Leonid Ryzhyk. A SAT-based
counterexample guided method for unbounded synthesis. In CAV (2),
volume 9780 of LNCS, pages 364–382. Springer, 2016. doi:10.1007/

978-3-319-41540-6_20.

[79] Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal
fixed points (extended abstract). In ICALP, volume 1443 of LNCS, pages
53–66. Springer, 1998. doi:10.1007/BFb0055040.

[80] Ernst W Mayr. An algorithm for the general petri net reachability problem.
SIAM Journal on computing, 13(3):441–460, 1984.

[81] Jedidiah McClurg, Hossein Hojjat, and Pavol Černỳ. Synchronization syn-
thesis for network programs. In International Conference on Computer
Aided Verification, pages 301–321. Springer, 2017.

[82] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy
distributions of SAT problems. In AAAI, pages 459–465. AAAI Press /
The MIT Press, 1992. URL: http://www.aaai.org/Library/AAAI/1992/
aaai92-071.php.

[83] Martin Monperrus. Automatic software repair: A bibliography. ACM
Comput. Surv., 51(1):17:1–17:24, 2018.

[84] A. Pnueli and R. Rosner. Distributed systems are hard to synthesize. In
FOCS, pages 746–757. IEEE Computer Society, 1990.

[85] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[86] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293.

[87] Amir Pnueli, Sitvanit Ruah, and Lenore Zuck. Automatic deductive verifi-
cation with invisible invariants. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 82–97.
Springer, 2001.

[88] Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured
systems. In International Conference on Concurrency Theory, pages 5–24.
Springer, 2013.

[89] Saqib Sohail and Fabio Somenzi. Safety first: a two-stage algorithm for
the synthesis of reactive systems. STTT, 15(5-6):433–454, 2013. doi:

10.1007/s10009-012-0224-3.

[90] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.
Sketching concurrent data structures. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 136–148, 2008.

147

https://doi.org/10.1007/978-3-319-41540-6_20
https://doi.org/10.1007/978-3-319-41540-6_20
https://doi.org/10.1007/BFb0055040
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/s10009-012-0224-3
https://doi.org/10.1007/s10009-012-0224-3

[91] Fabio Somenzi. CUDD: CU decision diagram package, release 2.4.0. Uni-
versity of Colorado at Boulder, 2009.

[92] Ichiro Suzuki. Proving properties of a ring of finite-state machines. Infor-
mation Processing Letters, 28(4):213–214, 1988.

[93] Herve J Touati, Hamid Savoj, Bill Lin, Robert K Brayton, and Alberto
Sangiovanni-Vincentelli. Implicit state enumeration of finite state ma-
chines using bdd’s. In Computer-Aided Design, 1990. ICCAD-90. Digest of
Technical Papers., 1990 IEEE International Conference on, pages 130–133.
IEEE, 1990.

[94] Moshe Y Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In LICS, pages 322–331. IEEE Computer
Society, 1986.

[95] Martin Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided synthe-
sis of synchronization. In Proceedings of the 37th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 327–
338, 2010.

148

Appendix A

Glossary of symbols

A.1 Chapters 2,3,4, and 5

Q a finite set of states.
QU a the finite set of states of process U .
G G ⊆ {∃,∀} × 2Q is a set of guards.
GU is the set of guards of process U .
δU δU : QU × P(Q)×QU is a guarded transition relation of process U .
|U | |U | = |QU | is the size of the state space of process U .
P is the set of all processes in a parameterized system.
s(p) is the local state of process p in the global state s.
s(p1, . . . , pk) is the projection of s onto the processes p1, . . . , pk ∈ P.
k-conjunctive is a guard of the form Q \ q1, . . . , qk for some q1, ..., qk ∈ Q
u-fair(x) x is an unconditionally fair run.
b-gfair(x) x is a globally b-bounded fair run.

∀p ∈ P ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m+ b and p moves at moment j.
b-lfair(x,E) x is a locally b-bounded fair run if x is an unconditionally fair run and

∀p ∈ E ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m+ b and p moves at moment j.
appearsBi(q) is the set of all moments in x where process Bi is in state q:

appearsBi(q) = {m ∈ N | sm(Bi) = q}.
appears(q) is the set of all moments in x where at least one B-process is in state q:

appears(q) = {m ∈ N | ∃i ∈ {1, . . . , n} : sm(Bi) = q}.
fq is the first moment in x where q appears: fq = min(appears(q))
firstq firstq ∈ {1, . . . , n} is the index of a B-process where q appears first
lq lq = max(appears(q)) is the last moment where q appears
lastq is a process index with slq (Blastq) = q
Visited(x) is the set of B-states that appeared in the run x.

Visited(x) = {q ∈ QB | appears(q) 6= ∅}.
VisitedF (x) is the set of states in F ⊆ QB that appeared in the run x.

Formally, VisitedF (x) = {q ∈ Visited(x) | q ∈ F}.
Visitedinf(x) is the set of B-states that appeared infinitely often in the run x.

Visitedinf(x) = {q ∈ QB | ∃Bi ∈ {B2, . . . , Bn} : appearsBi(q) is infinite}.
Visitedfin(x) is the set of B-states that appeared finitely often in the run x.

Visitedfin(x) = {q ∈ QB | ∀Bi ∈ {B2, . . . , Bn} : appearsBi(q) is finite}.
Set(si) is the set of all state that are visited by some process at moment i:

149

Set(si) = {q|q ∈ (QA ∪QB) and ∃p ∈ P : si(p) = q}.
ϕ(A,Bi1 , . . . , Bik) is a temporal logic formula over atomic propositions from QA and indexed

propositions from QB × {i1, . . . , ik}.
ϕ(A,B(k)) ϕ(A,B(k)) = ϕ(A,B1, . . . , Bk)
deadset a deadset of a local state q is a minimal set D ⊆ Q that blocks all outgoing

transitions of any process that is currently in local state q.
dead∧q is the set of all deadsets of q.
non-blocking a state q is non-blocking if it does not appear in dead∧q′ for any q′ ∈ Q.

not self-blocking a state q is not self-blocking if it does not appear in dead∧q .
maxDU is be the maximal number of states from B that appear in any deadset

of a state in U . maxDU = max{|D ∩QB | | D ∈ dead∧q for some q ∈ QU}.
GU,B is the set of guards of U that exclude one of the states of B.
Cq is a connected sequence of states q, q1, . . . , qn, q, i.e. a cycle

such that ∀qi, qj ∈ {q1, . . . , qn} : qi 6= qj .
GU,B∗ is the set of guards of U that exclude at least one state of B.
Gq is the set of non-trivial guards in transitions from q.
Glo is the set of guards of the transitions on lo.
BG is the set of B-states that appear on a guard.
Enableq is the set of states of A and B that enable a transition from q.
N N = {q ∈ QB | q ∈ Enableq}
N ∗ is the maximal subset of N such that:

∀qi, qj ∈ N ∗ : qi /∈ Enableqj ∧ qj /∈ Enableqi .
AP is the set of atomic propositions.
block is a finite word w ∈ (2AP)+ where ∃α ⊆ AP such that w = α|w|.
N ŵ
i given an infinite sequence of blocks ŵ = w0, w1, w2 . . .,

N ŵ
i = {

∑i−1
l=0 |wl|, . . . ,

∑i−1
l=0 |wl|+ |wi| − 1} be the set of positions of the ith

block.
|=gb is the satisfies relation under global bounded fairness.
|=lb is the satisfies relation under local bounded fairness.
A‖bBn is a bounded-fair system.
Aϕ is the Büchi automaton that accepts exactly all words that satisfy ϕ.
Aϕ is the Büchi automaton that accepts exactly all words that satisfy ¬ϕ.
Gnb (ϕ) is a run graph of a Büchi automaton Aϕ on a system A‖bBn
Binfq is a process that visits q infinitely often in a run x.
≡d is the d-stutter equivalence relation.
wc wc = wc0w

c
1 . . . ∈ (2AP∪{r})ω is an r-coloring of the word w.

altr altr = GFr ∧GF¬r.
relr(ϕ) is a formula obtained from ϕ by replacing every instance of Fpψ by

(r → (rU(¬rUψ))) ∧ (¬r → (¬rU(rUψ))).
c(ϕ) c(ϕ) = altr ∧ relr(ϕ) is an LTL formula.
c̄(ϕ) c̄(ϕ) = altr ∧ ¬relr(ϕ) is an LTL formula.
Pnb (ϕ) is the colored Büchi graph that represents the product A‖bBn ×Ac̄(ϕ).
QT is a finite non-empty set.
QT QT = QT × {0, 1} is a finite set of states where the Boolean component

{0, 1} indicates the possession of the token.
TnG is a token passing system with an arbitrary number of T processes and a

topology G.
ac is an action in a token passing system.
tU is a transition of process U .

150

δU (qU) is the set of all outgoing transitions of qU ∈ QU .
~c(i) or ~c(qi) indicates how many processes are in state qi.

~c is the vector (~c(q0), . . . ,~c(q|B|−1)) ∈ N|B|0 .
∆local(σ) is the set of all enabled outgoing local transitions from global counter system state σ.

∆(σ, tU) ∆(σ, tU) = σ′ if σ
tU−→ σ′.

↑R is the upward closure of the set R.
minBasis(R) is a minimal basis of the upward closed set R.
. is the component-wise ordering of vectors.

/ / ⊆ Ω× Ω is the binary relation defined by: (qA,~c) / (q′A,
~d) ⇔

(
qA = q′A ∧ ~c . ~d

)
.

pred(R) is the set of immediate predecessors of R pred(R) = {σ ∈ Ω | ∃r ∈ R : σ −→ r}.
.0 .0⊆ N|B|0 × N|B|0 where ~c .0

~d ⇔
(
~c . ~d ∧ ∀i ≤ |B| :

(
~c(i) = 0⇔ ~d(i) = 0

))
.

/0 is the relation /0 ⊆ Ω× Ω where (qA,~c) /0 (q′A,
~d) ⇔

(
qA = q′A ∧ ~c .0

~d
)
.

opred(R) is the O-predecessors of R, i.e. opred(R) = {σ ∈ S | ∃r ∈ R : σ
tU−→+ r}.

Succ(R) Succ(R) = {σ′ ∈ Ω | ∃σ ∈ R : σ −→ σ′}.
∆local(σ,R) ∆local(σ,R) = {tU ∈ δ | tU ∈ ∆local(σ) ∧∆(σ, tU) ∈ R}.
REi is a reachable error level. REi = Succ(REi−1) ∩ ↑Ei.
RE is the reachable error sequence. RE = RE0, . . . , REk.
UE is the sequence ↑REk, . . . , ↑RE0.
TRE is a local witness of RE , i.e., TRE = tUk . . . tU1

where for all i ∈ {1, . . . , k}
there exists σ ∈ REi, σ′ ∈ REi−1 with σ

tUi−−→ σ′.
TUE is a local witness of UE .
a! is a send action in a pairwise rendezvous system.
a? is a send action in a pairwise rendezvous system.
a!! is a send action in a broadcast system.
a?? is a send action in a broadcast system.
MPR is a pairwise rendezvous system.
MBC is a broadcast system.

A.2 Chapters 6, and 7

B is the set {0, 1}.
L is a set of state variables for the latches.
Xu is a set of uncontrollable input variables.
Xc is a set of controllable input variables.
L′ is the set of state variables after the transition, L′ = {l′ | l ∈ L}.
R is the transition relation, R : BL × BXu × BXc × BL′ → B.
BAD is the set of unsafe states, BAD : BL → B.
F [xi ← fxi] is the Boolean function that substitutes xi by fxi in F .

image(C) image(C) = {q′ ∈ BL′ | ∃(q, u, c) ∈ BL × BXu × BXc : C(q) ∧R(q, u, c, q′)}.
preimage(C) preimage(C) = {q ∈ BL | ∃(u, c, q′) ∈ BXu × BXc × BL′ : C(q′) ∧R(q, u, c, q′)}.
UPRE(C) UPRE(C) = {q ∈ BL | ∃u ∈ BXu ∀c ∈ BXc ∃q′ ∈ BL : C(q′) ∧R(q, u, c, q′)}.
Ei is an error level, i.e. a set of states that are on a path from q0 to BAD,

and all states in Ei are reachable from q0 in i steps.
RTi for two error levels Ei and Ei+1, RTi is the set of tuples, representing the “removable”

transitions, i.e., all transitions from Ei to Ei+1 that match an escape.

imagef (C) imagef (C) = ∃L ∃Xu ∃Xc (
∧|L|
i=1 l

′
i ≡ fi ∧ C).

151

preimagef (C) preimagef (C) = ∃L′ ∃Xu ∃Xc (
∧|L|
i=1 l

′
i ≡ fi ∧ C ′).

preimages(C) preimages(C) = ∃Xu ∃Xc C[li ← fi]li∈L.

152

	Introduction
	Formal Verification
	Concurrent Systems
	Parameterized Systems
	Contributions
	Research Papers

	Guarded Protocols and Parameterized Model checking
	System Model
	Specifications
	Model Checking Problems and Cutoffs

	Better Cutoffs for Guarded Protocols
	New Cutoff Results for Conjunctive Systems
	Verification of the Reader-Writer Example
	New Cutoff Results for Disjunctive Systems
	Conclusion

	Promptness and Bounded Fairness
	Prompt-LTLX and Bounded Stutter Equivalence
	Cutoffs for Disjunctive Systems
	Cutoffs for Conjunctive Systems
	Token Passing Systems
	Conclusions

	Parameterized Repair of Concurrent Systems
	Basic Idea
	System Model
	Parameterized Model Checking of Disjunctive Systems
	Parameterized Repair
	Beyond Reachability
	Beyond Disjunctive Systems
	Conclusion

	A Symbolic Algorithm for Lazy Synthesis of Eager Strategies
	Safety Synthesis
	Preliminaries
	Existing Approaches
	SAT-Based Lazy Safety Synthesis
	Symbolic Lazy Synthesis Algorithms
	Optimization
	Experimental Evaluation
	Why Not a Purely Forward Exploration?
	Synthesis of Resilient Controllers
	Conclusion

	Random Generation of Symbolic Transition Systems
	Canonical Representation of Boolean Functions
	Enumerating Boolean Functions
	Random Generation of (Controllable) Transition Systems
	How to effectively use the tool
	Implementation & Evaluation
	Conclusion

	Conclusion and Future Work
	Summary
	Future Work

	Glossary of symbols
	Chapters 2,3,4, and 5
	Chapters 6, and 7

