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by Dilip Ariyur DURAI

RNA-sequencing (RNA-seq) is one of the most-widely used techniques in molecular
biology. A key bioinformatics task in any RNA-seq workflow is the assembling the
reads. As the size of transcriptomics data sets is constantly increasing, scalable and
accurate assembly approaches have to be developed.Here, we propose several ap-
proaches to improve assembling of RNA-seq data generated by second-generation
sequencing technologies. We demonstrated that the systematic removal of irrelevant
reads from a high coverage dataset prior to assembly, reduces runtime and improves
the quality of the assembly. Further, we propose a novel RNA-seq assembly work-
flow comprised of read error correction, normalization, assembly with informed pa-
rameter selection and transcript-level expression computation.

In recent years, the popularity of third-generation sequencing technologies in-
creased as long reads allow for accurate isoform quantification and gene-fusion de-
tection, which is essential for biomedical research. We present a sequence-to-graph
alignment method to detect and to quantify transcripts for third-generation sequenc-
ing data. Also,we propose the first gene-fusion prediction tool which is specifically
tailored towards long-read data and hence achieves accurate expression estimation
even on complex data sets. Moreover, our method predicted experimentally verified
fusion events along with some novel events, which can be validated in the future.
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RNA-sequenzierung (RNA-seq) ist eine weit verbreitete Methode der Molekular-
biologie. Eine Schiisselaufgabe kommt dabei auch der Bioinformatik zu, die Assem-
blierung der Sequenzfragmente. Da die Grofie von RNA-seq datensitzen kontinuer-
lich steigt, ist die Entwicklung von skalierbaren und korrekten Assemblierungsver-
fahren von grofler Bedeutung. Hier prdsentieren wir verschiedene Methoden zur
Optimierung der Assemblies von RNA-seq daten die mittels Sequenzierungs Tech-
nologie zweiter Generation erstellt wurden. Wir haben am Beispiel verschiedener
komplexer Datensitze aufgezeigt, dass das systematische Entfernen von unrele-
vanten Sequenzfragmenten zu einer Verbesserung der Assemblierung und zu einer
verkiirzung der Laufzeit fithrt. Auflerdem stellen wir einen neuen RNA-seq Ansatz
vor, der sich durch Fehlerkorrektur der Sequenzfragmente, Normalisierung, Assem-
blierung mit systematischer Parameterauswahl und Expressionsquantifierzung auf
Transkriptebene auszeichnet.

Sequenzierungstechnologien der dritten Generation finden seit geraumer Zeit
vermehrt Verwendung, da diese eine genaue Quantifizrung von Isoformen und Gene-
fusions Ereignissen ermoglichen. Diese Eigenschaften sind essentiel fiir biomedi-
zinische Anwendungen. Wir haben eine neue Alignierungs- und Quantifierungsmeth-
ode fiir Sequencierungsdaten der dritten Generation entwickelt, welche auf dem
sequenz-to-graph Ansatz beruht. Dariiber hinaus stellen wir die erste Methode zur
Erkennung von Genefusions Ereignissen vor, welche speziell fiir Sequenzierungsmeth-
oden der dritten Generation entwickelt wurde und daher zu sehr genauen Expres-
sionsquantifizierung fiihrt. Neben einigen neuen Kandidaten, wurde einer Vielzahl
von vorhergesagten Genefusions Ereignissen bereits experimentell validiert.
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Chapter 1

Introduction

This chapter briefly describes the motivation for the work done in this these. A
technical background that is of general relevance is provided and an outline of the
thesis is given at the end of the chapter.

1.1 Basic building blocks of life: DNA and RNA

All living organisms are made of individual and identifiable cells. The number of
cells present in a human body is estimated to be around 37.2 trillion ([Bia+13]). The
number of major cell types, i.e, cells with different morphology is estimated to be
around 200-300. During the early 19th century, it was widely accepted that cells arise
from the growth and division of other cells. The nucleus of a cell contains a thread-
like structure named chromosome which is responsible for carrying the hereditary
information of a cell. A chromosome consists of half nucleic acid and half protein.
In the following sub-sections, we will focus on the molecular structure of the nucleic
acids DNA and RNA. We will also touch upon gene expression which should give us
a glimpse of how cellular diversity is initiated and maintained in a living organism.

1.1.1 Deoxyribo Nucleic Acid (DNA)

DNA is a macromolecule consisting of the genetic information of the cell. Isolated in
the year 1869, the structure of DNA was not determined until 1953. In 1953, Francis
Crick and James Watson proposed the structure based on X-Ray diffraction stud-
ies( [WC53]) which is now widely accepted. The DNA is composed of four basic
molecules called nucleotides. The nucleotides further consists of five-carbon sugar
called deoxyribose, a phosphate group, and a nitrogenous base which can be either
Adenine, Thymine, Cytosine or Guanine. The pair of Adenine and Guanine are classi-
tied as Purines and the pair of Cytosine and Thymine are considered as Pyrimidines.
Purines consist of a double ring structure where a six-carbon ring is fused into a
five carbon-ring whereas Pyrimidines consist only of a single six-carbon ring struc-
ture. The carbon of the carbon sugar is numbered 1’ through 5’. The nucleotide
base is connected to the 1" carbon of the sugar. The phosphate group connected to
the 5" carbon of the sugar of one nucleotide bonds with the hydroxyl group of the
3’ carbon of the sugar of the other nucleotide molecule and hence connecting the
two molecules. A sequence of such connections forms a strand of a DNA where the
sugar and the phosphate form the backbone of the strand.

Figure 1.1 depicts the orientation and structure of DNA. A DNA molecule con-
sists of two anti-parallel strands twisted in the form of a double helix (fig. 1.1a).
The two strands are held together by a purine base of one strand and a pyrimidine
bases of another strand by a hydrogen bond (fig. 1.1b). The plane of the bases is
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FIGURE 1.1: Structure of a DNA. (a) the double helix structure of a DNA consisting of two

anti-parallel DNA strands forming a right-handed double helix. (b) Complementary base

pairing within a DNA where adenine always bonds with a thymine and cytosine always

bonds with a guanine. The hydrogen bonds between the bases is depicted as pink lines.
Figure inspired from [Alb+02]

perpendicular to the axis of the helix. Adenine bonds with Thymine and Cytosine
bonds with Guanine. These pairings are known as complementary base pairing. A
chromosome consists of such DNA molecules tightly packed around a protein called
histones which makes up the genetic structure of a species. The human species has
23 pairs of chromosomes which constitute around 3,2 billion nucleotide bases.

1.1.2 Ribo Nucleic Acid (RNA)

Similar to DNA, Ribo Nucleic Acid (RNA) are macromolecules consisting of chains
of nucleotides. Although there are multiple types of RNA molecules, all of them
have a similar basic structure made by adding the 5’-phosphate group of one nu-
cleotide onto the 3" hydroxyl group of the previous nucleotide in the chain. Like
DNA, an RNA strand is composed of nitrogenous bases covalently bound to a sugar-
phosphate backbone. But unlike DNA, RNA is single-stranded and consists of ribose
instead of deoxyribose. Also, an unmethylated form of thymine known as uracil
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forms the complementary base of adenine. Another major difference in the structure
of RNA, as compared to that of a DNA, is the presence of a hydroxyl group attached
to the 2" position of the pentose sugar ring which makes RNA highly unstable in
nature ([Sal+93]). The secondary structures of RNA involves folding of single RNA
molecule to form hairpin loops. The loops are stabilized by intramolecular hydro-
gen bonds between complementary bases. Such secondary structures are critical for
many RNA functions such as the ability of a tRNA to bind to the correct sequence of
mRNA during translation.

1.1.3 Gene Expression

An important functional segment of a DNA is gene. According to the central dogma
of molecular biology, a genomic DNA is transcribed into a mature RNA (mRNA).
The mRNA gets either translated into a functional protein or remain as a non-coding
RNA. The strands of a genomic DNA are labeled as "Template Strand" and "Coding
strand". The template strand is used during the process of transcription to form
RNA sequence.

Transcription

The process of transcription is initiated by binding of the enzyme RNA-polymerase,
along with transcription factors, to a region of DNA sequences known as promoter
region. This complex unwinds the DNA to form a single-stranded region of DNA
known as the transcription bubble. RNA-polymerase along with transcription fac-
tors then binds to the transcription start site present in the bubble and starts synthe-
sizing the RNA. The RNA-polymerase complements the sequence of the template
strand from 3’ end to 5" end except for the base Thymine(T) which is substituted by
Uracil(U) ([Har+00]). In prokaryotes, the resulting RNA strand is directly translated
to form functional proteins. However, in eukaryotes, the resulting RNA strand, also
known as pre-mRNA, goes through enzyme enabled reactions that add the purine
nucleoside 7-methylguanosine to the 5" end of the strand. If a polyadenylation sig-
nal sequence 5'-AAUAAA-3" is present in the pre-mRNA, then the pre-mRNA is
cleaved and a series of adenine(A) is added to the 3’ end of the sequence ([FS81]).
Pre-mRNA consists of regions called introns and exons. Each intron contains a 5’
donor splice site and a 3" acceptor splice site. An RNA-protein complex known
as spliceosome cleaves the introns and splices consecutive exons together to form a
mature-RNA(MmRNA) ([Gil78]).

Figure 1.2 summarizes the two-step mechanism of splicing in eukaryotes. Cleav-
age of the 5" donor site of the intron with the help of spliceosome marks the first
step of splicing. This step yields a 5" exon-intermediate with a free 3" OH residue.
The 5 end of the intron is joined to an adenosine residue within the intron by a 2’-
5 phosphodiester bond (fig.1.2b). The second step comprises of cleavage of the 3’
acceptor site of the intron and splicing of the two exons by a 3’-5" phosphodiester
bond. The intron is released in its lariate form and then degraded (fig.1.2c). The
exons splice together to form a mature RNA (mRNA) ([MQS93]). In most cases, the
intron is removed as a single unit from pre-mRNA. However, in some cases where
the pre-mRNA contains long introns, the intron is removed in parts as a recursive
step. This process is known as recursive splicing ([Sib+15]).
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FIGURE 1.2: Intron cleaving and splicing of exons. (a) Each intron is flanked

by a GU pair at its 5" end and an AG pair at its 3" end. (b) The spliceosome

cleaves the 5" end of the intron and bonds it to an adenosine residue within

the intron. (c) The 3’ end of the intron is cleaved and the two exons are joined
by a phosphodiester bond. Figure inspired from [MQS93]

Alternative splicing

Before the year 1978, it was believed that one gene can only code for one protein.
However in 1978, Gilbert ([Gil78]) proposed the theory of alternative splicing which
now explains the discrepancy between the number of protein-coding genes and the
number of different proteins generated. The general roadmap for a transcription
process comprises of intron removal and exon splicing. Alternative splicing devi-
ated from this roadmap by skipping certain exons or retaining introns. This results
in the generation of multiple transcripts of mRNA, also known as isoforms, from a
single gene ([BMS77; MCS05]). It has been shown that more than 95% of the multi-
exonic genes undergo alternative splicing ([CM09; Bla03; SFG08]). Depending on
the region which is cleaved, alternative splicing event is classified into - 1) exon
skipping in which an exon is cleaved out of the pre-mRNA, 2) mutually exclusive
exons in which only one exon from a pair of exons is retained, 3) intron retention
in which intronic sequence between a pair of exons is retained, 4) alternate donor
where an alternative donor site is used for splicing the intron and 5) alternate accep-
tor where an alternate acceptor site is used during the process of splicing ([SFGO08]).
The mechanism of alternative splicing is highly dependant upon controlling splice
site recognition by facilitating or interfering with the binding of spliceosome com-
plex with the splice site ([(CMO09]). This is achieved by the activity of RNA sequence
elements and protein regulators within an exon such as exonic splicing enhancers
(ESE), exonic splicing silencers (ESS), intronic splicing enhancers (ISE) and intronic
splicing silencers (ISS). ESEs are usually bound to SR proteins (family containing
a long stretch of Serines and Arginines) which promote exon splicing while ESSs
usually bind to heterogeneous nuclear RNPs (hnRNPs) to block exon splicing. Both
types of proteins (SR-proteins and hnRNPs) are involved in the assembly and func-
tioning of spliceosomes.
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FIGURE 1.3: Different types of alternate splicing events. Figure recre-
ated from [Sen18]

Translation

The mRNA formed during the transcription serves as the base for a ribosome me-
diated synthesis of one or more proteins. An mRNA consists of three regions -
1) a 5" untranslated Region (5'UTR), 2) a protein-coding region or Open Reading
Frame (ORF) and a 3) 3" untranslated Region (3'UTR). The process of translation is
initiated when a ribosome is assembled around an mRNA. The ribosome consists of
two sub-units namely a 60S subunit and a smaller 40s sub-unit. Organic molecules
containing amine and acidic carboxylic groups, also known as amino acids, are
transferred to the ribosome by transfer RNA (tRNA). The 40S subunit of the ribo-
some positions the mRNA such that it can be read in groups of three bases (known as
codons) at a time. Each codon matches a complementary triplet in the tRNA known
as an anticodon. Each ribosome consists of three sites namely - an aminoacyl site
(A-site), a peptidyl site (P-site) and an exit site (E-site). The tRNA first goes into the
A-site where the codon and the anticodon are checked for a match. If matched, the
tRINA is forwarded to the P-site where the 60S sub-unit removes the amino acid from
the matched tRNA and joins it to a growing amino acid chain. The remaining tRNA
is then transferred to the E-site and ejected from the ribosome. The linear chain of
amino acid folds according to the sequence of amino acid to form a 3-dimensional
protein structure.

1.2 Methods for measuring gene expression

In the previous section, we looked into the flow of information from DNA to RNA
to protein. Proteins are responsible for the functionality of a cell. Hence, the amount
of genes expressed in a cell dictates what a cell can do and what it cant. We also
noted that, due to alternative splicing, a single mRNA can encode for multiple pro-
teins. Hence, it can be deduced that the primary control point of gene expression is
usually the initiation of transcription. The amount of mRNA present in the cell can
give an accurate picture of the functionality of the cell. Measuring gene-expression
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by measuring mRNA levels is an important step towards understanding cellular ac-
tivity especially in a disease infected cell. In the coming sub-sections, we will look
into two major strategies to measure gene expression namely DNA microarray and
RNA-seq.

1.2.1 DNA-microarray

DNA microarray is a collection of microscopic DNA spots containing specific DNA
sequences attached to a surface in a grid-like structure. These DNA sequences are
termed as "probe sequences" and are about 20bps in length. They represent tiny
but unique regions of the gene in the genome. Figure 1.4 depicts a typical microar-
ray setup. The target mRNA, whose levels is to be measure, is first reverse tran-
scribed to a more stable cDNA. The cDNA is then labeled with fluorescent dyes and
added to the microarray. The cDNA, which is complementary to the probes, binds
or hybridizes to the probe and stick to the array. The unbound cDNAs are washed
away. The microarray is then scanned using a laser and signals emitted from the dye
are detected. The strength of the signal depends upon the amount of target cDNA
binding to the probe. Hence, by measuring the strength of the signal and matching
the probe to its corresponding gene, the relative gene expression levels can be mea-
sured ([Bum13]).

Although efficient and widely used, DNA-microarray suffers from some major
drawbacks. Accurate gene-expression estimation is hindered by background hy-
bridization in the probes. Also, the technology is limited to the analysis of the genes
for which the probes are designed ([Zha+14]). This makes microarrays unattrac-
tive for studying non-model species. In contrast to hybridization-based techniques,
sequence-based methods quantify the cDNA by determining their sequence and
mapping them to a genome. In the initial years, Sanger sequencing and ESTs were
used for this purpose. However, their usage deteriorated due to their low through-
put. Tag-based methods such as Serial Analysis of Gene Expression(SAGE) and Cap
Analysis of Gene Expression (CAGE) were seen as an alternative. But their popular-
ity soon faded due to the high costs ([WGS09]). In recent years, RNA-seq technolo-
gies are considered as a strong replacement for traditional sequencing technologies.

1.2.2 RNA-seq

With the advances in next-generation sequencing (NGS), RNA-seq has become a go-
to technology for scientists who wish to sequence the mRNA. RNA-seq has a big
advantage over DNA-microarray in terms of studying the fine prints of transcrip-
tion such as allele-specific profiling, detecting novel transcripts and analyzing splice
junction ([Zha+14]).

Library preparation

A general procedure for RNA-seq is initiated by isolating RNA from the tissue and
treating it with deoxyribonuclease (DNAase). This reduces the amount of genomic
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RNA sample 1 RNA sample 2

(a) RNA isolation mRNA mMRNA
(b) Reverse transcriptase tagged cDNA tagged cDNA
labelling _—
—_—
—_—
—_—

(c) Hybridisation to micro array
with known transcript probes

Gene expression estimation by
studying the flouroscence levels

FIGURE 1.4: Workflow of gene expression measurement using DNA microarray. From

the given samples, mRNAs are extracted and converted into stable complementary DNA

(cDNA). These cDNAs are tagged using fluorescent dyes and are added to a microarray.

The microarray is scanned using a laser to measure the strength of the signal from the fluo-
rescent dyes.
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FIGURE 1.5: Workflow of a typical RNA-seq experiment. Given the

samples, mRNA is first isolated and then fragemented into smaller

pieces. The fragmented mRNA is highly unstable in nature. Hence it

is reverse transcribed to form a stable complementary DNA (cDNA).

The cDNA is then sequenced using various sequencing technologies.
Figure recreated from [MW11]

DNA. The RNA degradation is measured and indicated by RNA Integrity Num-
ber (RIN). Figure 1.5 depicts the basic protocol followed by most of the sequenc-
ing technologies. To enable sequencing, the long mRNA is size selected and frag-
mented to smaller pieces of RNA. A single-stranded RNA is highly unstable in na-
ture. Hence, RNA fragments are converted into double-stranded cDNA by the pro-
cess of reverse transcription. A major challenge before the investigators is whether
to amplify the fragments or not. Although PCR amplification increases the number
of cDNA molecules that are sequenced, they might introduce errors in the sequence
which propagates to later cycles ([Fu+18; CT93]). Recent technologies from Pacific
Biosciences and Oxford Nanopore adopt an amplification-free sequencing protocol
which has gained prominence. We will be introduced to these technologies later in
the chapter.
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Sequencing

Sequences are obtained from the fragments in the form of reads. Reads are either gen-
erated from only one end of the fragment (single-end sequencing) or generated from
both the ends in opposite directions (paired end sequencing). The distance between
the two adapters, in case of paired end sequencing, is usually represented in terms of
fragment length or insert size. Reads generated by the above general protocol loose
their strand information, i.e, the strand from which the sequence is generated cannot
be deduced. However, there are alternate protocols which preserves the information
in the read ([Zha+15]).

Sequencing by synthesis

The sequencers from Illumina follow the sequencing-by-synthesis process to gen-
erate reads from a sample. The sequencing workflow consists of two major steps
which are termed as clustering and sequencing. As mentioned above, the library
preparation steps adds adapter sequences to the end of the cDNA fragments. Us-
ing a reduced cycle amplification process, additional motifs such as the sequencing
binding sites, indices and sequences complementary to the flow cell oligos are added
to the cDNA fragments.

In the clustering phase, each fragments is isothermally amplified on a flow cell.
Figure 1.6 depicts a workflow for the clustering procedure followed by Illumina se-
quencing technology. A flow cell is a planer optical transparent surface which is
similar to a microscopic slide. Each flow cell consists of lanes and each lane consists
of lawns of two types oligonucleotides bound to its surface (fig.1.6a). These oligos
are complementary to adapter sequences in a cDNA fragment. One of the oligos
is hybridized to the corresponding complementary adapter sequence in the frag-
ment (1.6b). A polymerase creates a complement of the hybridized fragment (fig.1.6c).
The double stranded molecule is denatures and the original strain of the fragment
is washed away (fig.1.6d). The remaining strand is clonally amplified using bridge
amplification. In this process, the strand bends over such that the adapter sequence
of the free end hybridizes to the second type of oligonucleotide (fig.1.6e). This forms
a bridge like structure between the two types of oligonucleotides. A polymerase
then creates the complementary strand from the bridge to form a double stranded
bridge (fig.1.6f). The double stranded bridge is denatured to form two strands (for-
ward and reverse strand) of the molecule tethered to the flow cell (fig.1.6g). The
process is repeated several times to form millions of such strands attached to the
flow cell. After the process, the reverse strand is cleaved and washed off leaving
only the forward strand which is termed as the template strand. The 3" ends of the
templates are blocked to prevent unwanted priming.

In the sequencing step, primer attached to the template are extended to produce
the first read. Fluorescent labelled nucleotides are introduced to the flow cell which
bind to their complementary bases in the template sequence. After each binding, the
cluster is excited by a light source and a characteristic fluorescent signal is emitted.
The order of the nucleotide bases in the fragment is determined by measuring the
strength of these signals. This process is repeated several times to generate millions
of reads. Paired end sequencing extends the above procedure to generate reads from
the reverse strand of an cDNA fragment. After the generation of the first read, the
read product is washed away and the remaining template strand is bend over. The
adapter sequence at the free end of the template strand hybridizes to the second type
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of oligonucleotide sequence present in the flow cell to form a bridge. Similar to the
single-end sequencing procedure, a polymerase creates the complementary strand
of the bridge to form a double stranded bridge. The double stranded bridge is dena-
tured to form a forward strand and reverse strand template. The forward template
is now washed away and the read is generated from the reverse template.

The throughput of the Illumina technology is measured in terms of read cov-
erage which the number of unique reads covering any given nucleotide in a refer-
ence sequence. Given the length of the reference sequence (G), the number of reads
sequenced (N) and the average length of the reads sequences (L), the coverage is
calculated using the following formula:

L
= NX= 11
cov =N c (1.1)

For example, if the length of the reference genome is 10,000bps and the sequencer
produces 400 reads of length 50bps, then the coverage is calculated to be 2. In scien-
tific terms, we say that the dataset has a 2x coverage. In general, Illumina sequencing
technologies have a high throughput. For instance, the Illumina sequencer HiSeq X
Ten can produce sequences equivalent to 7 human genomes at 30x coverage daily.

Single Molecule Real Time sequencing (SMRT)

As mentioned above, Illumina sequencing technologies have an advantage of high
throughput. However, the read length produced by these technologies are only in
the order of 100-500bps. The reads might not be long enough to cover the entire tran-
scripts. This is problematic especially in case of accurate expression estimation or for
detection of gene-fusion events. Single Molecule Real Time sequencing (SMRT) from
Pacific Biosciences (PacBio) extends the sequencing by synthesis approach by incor-
porating a real-time imaging of fluorescently tagged nucleotides producing longer
and accurate reads ([Eid+09]). Briefly, DNA/cDNA molecule is isolated during the
library preparation phase and adapters are ligated to the ends of the strand form-
ing a circular template. Polymerase and primers are added to the template and the
entire setup is placed in a sequencer. The sequencer consists of SMRT-cell, similar
to flow cell, which consists of millions of tiny wells known as Zero Mode Waveg-
uides (ZMW). As single molecule DNAs are incorporated into these ZMWs, the
polymerase begins to incorporate nucleotides in these wells. As each nucleotide
is incorporated by the polymerase, a light is emitted from the wells which can be
measures in real time to determine the sequence. On an average, SMRT technolo-
gies produce read-length in the range of 10-14 kilobases with an average error rate
of 15% ([Ard+18]).

Nanopore sequencing
The other technology which produces longer reads is the nanopore sequencing tech-
nique. Nanopre sequencing deviates from the fluorescence detection step incorpo-
rated in Illumina and PacBio sequencing technologies. First proposed by David
Deamer and Daniel Branton ([DB02]), Nanopore sequencing depends upon differ-
ent ionic burst by nucleotide bases when passes through an ionic channel. Figure
1.7a depicts the general setup of a nanopore sequencing workflow. Nanopore se-
quencing uses an orifice, also known as nanopore, that is approximately 10~ meters
in diameter. It is embeded on a membrane bathed in electrophysiological solution
through which an ionic current is be passed. Motor proteins are added to the end
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FIGURE 1.7: Workflow of nanopore sequencing. (a) The DNA or the RNA molecule is passed

through a nanopore with the help of a motor protein attached to the end of the molecule frag-

ment. The nanopore is attached to a membrane and a steady ionic current passes through it.

(b) Passing of nucleotide through the membrane causes a disruption in the electric current
which is evaluated to determine the sequence of the fragment.

of DNA or RNA molecules during the library preparation step. These motor pro-
teins allow the DNA or the RNA molecule to pass through the orifice at a certain
speed (approx 450bps/second for DNA and 70bps/second for RNA). The motor
protein also unzips the double strand of the DNA when it is being feeded to the
nanopore. When the molecule passes through the pore, a nanopore reader reads
the nucleotides which creates a characteristic disruption in the ionic current passed
through the membrane (fig. 1.7b). Each strand is read four bases at a time and the
overlap between the signals are evaluated using various base calling algorithms to
determine the sequence. ([Sto+09; AB12; Alv+15]).

During sequencing, the nanopore technologies analysis the entire fragment of
DNA or RNA presented to it. Hence, the read length produced is directly pro-
portional to the length of the fragment being sequenced. This enables Nanopore
sequencers to produce read length upto 100s of kilobases. By varying the sample
extraction methods, users can achieve a read length upto 2 megabases. Such read
lengths are enough to cover the entire span of transcripts. However, nanopore se-
quencing suffers from a high error rate (can reach upto 40%) due to inaccurate base
calling and noises in the signal waveform ([OWD13; Lav+15]). Designing an effec-
tive base calling algorithm for nanopore sequencing is a computational challenge
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which is currently in progress.

1.3 Downstream analysis

Using the obtained sequences, investigators design various pipelines depending
upon the species they are working with. Reads obtained from sequencers are gener-
ally marred by presence of adapter sequences and sequencing errors which might re-
sult in faulty downstream analysis. Hence it is always beneficial to remove adapter
segeunces and correct for error using softwares such as CutAdapat ((MW11]) and
SEECER ([Le+13]). If the species is well studies and has its genome well annotated,
reads can be mapped onto it using aligners such as TOPHAT ([TPS09]), Blat ([Ken02])
or Minimap ([Li16]) to identify and quantify transcripts. In some cases, praction-
ers assemble the reads using state-of-the-art assemblers to identify transcripts. This
can be achieved by either mapping the reads onto a reference genome if available
and generating contigs based on the mappings or implementing a reference-free
de novo approach ([Con+16; MW11]). The later one is mostly used when dealing
with non-model species. Accurate gene expression can be quantified by feeding
either the alignment of reads or the assembly to quantification softwares such as
Salmon ([Pat+17b]) or Kallisto ([Bra+16]). Some of the above approaches will be
discussed in the next chapter. RNA-seq data can also be combined with functional
genomics methods to enhance and strengthen gene expression estimation ([Con+16;
Con+05; KTT13]). RNA-seq data can also be couple with various biochemical as-
says to study RNA-protein or RNA-RNA interactions. These approaches wont be
discussed as they are beyond the scope of this thesis.

1.4 Motivation for this work

As mentioned above, transcriptome assembly is one of the key steps in any gene
expression analysis using RNA-seq. In recent times, with the reduced cost of se-
quencing, it is highly recommended to sequence deep as this would ensure a proper
coverage of transcripts ([Cah+12; Ung+17; Sze+17]). As mentioned above, in the ab-
sence of a well-annotated reference sequence, the reads have to be assembled using
a de novo strategy. This has resulted in the development of many state-of-art algo-
rithms such as TranABySS ([Rob+10]), Trinity ([Gra+11]), and Oases ([Sch+12b]).

However, there are issues regarding the de novo transcriptome assembly namely
misassemblies due to artificial chimeras, the inability of the assembler to resolve
reads originating from repetitive regions, and sensitivity of alignment error due to
paralogs ([Til+15; Ung+17; PS+16]). Another major hindrance is the memory and
runtime required to assemble high coverage datasets ([Bro+12; DS16; Wed+17]). This
problem can be mitigated to a certain extend by considering only the relevant set
of reads for the process of assembly. The quality of assembled sequences is also
downgraded by inefficient pre-processing of the data and selection of inappropriate
assembly parameters. Researchers generally rely on the pre-processing step of the
assembler which is not efficient especially for high coverage dataset ([Le+13]). Also,
while selecting the parameters for the assembler, researchers either use the default
setting of the algorithm or use a random set of parameters. Since, the assemblers
are trained on only a limited set of data, the default parameter does not guarantee
high quality for most of the datasets ([DS16]). Hence, we felt that there is a need
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for a proper workflow which can be referred to the scientific community to avoid
the common mistakes and improve the assembly quality. The workflow can guide
the users through necessary pre-processing steps and appropriate data-dependant
parameter selection.

Third generation sequencing technologies such as Oxford Nanopore and Pa-
cific Biosciences are also gaining prominence in the current scientific community.
These technologies produce reads which are long enough to cover an entire tran-
script which enables accurate expression estimation. However, they are marred by
sequencing errors which hinder their usage for various applications ([Byr+17]). Cur-
rently, researchers combine the long read and short-read data to reduce the effect of
sequencing errors in the analysis ([Des+16; Sov+16; FWA19]). Two of the areas in
which long reads can be applied is the detection of alternate isoforms in a species
and prediction of gene fusion events. But, there are only a few long read specific
tool which detects and quantify isoforms and to our knowledge, there is no long-
read specific tool to predict gene-fusion events.

1.5 Structure of the thesis

In Chapter 2, we will visit some of the most commonly used tools used for de novo
transcriptome assembly. We will learn about their functionalities, their advantages,
and their shortcomings. Chapter 3 would try to answer the question of what percent-
age of the data is actually used by the assembler. We propose a set multi-cover based
algorithm to remove redundant reads from a high-coverage dataset without affect-
ing the quality of the final assembly. In chapter 4, we suggest a workflow around de
novo transcriptome assembly which has a high positive effect on the performance
of an assembler. In chapter 5, we will move our focus towards long reads. We will
learn about an algorithm that quantifies transcripts and predicts gene fusion events
in different cell lines. Finally, we will summarize the work done and look towards
the future direction in the field of transcriptome assembly and analysis.
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Chapter 2

Algorithms for de novo
transcriptomic assembly

Advances in sequencing technologies have enabled the assembly of an entire tran-
scriptome even without the presence of a reference. These assemblies are further
used in applications such as gene-expression analysis, differential expression of al-
lelic variants, and detection of fusion genes. In the first half of this chapter, we
will revisit some of the concepts from computer science and computational biology
which are required to understand the functioning of an assembly algorithms. Sec-
ond half of the chapter will introduce some of the state-of-the-art algorithms which
are commonly used for de novo transcriptome assembly.

2.1 Sequence

In bioinformatics, biological sequences are subjected to wide variety of analytical
treatment to mine information about its structure, function and evolution. Gen-
erally, a sequence is represented as a concatenation of characters from the set o =
A,C,T,G,N. The characters A, C, T and G represents the four nucleotide bases, de-
tails about which were given in the previous chapter. Character N is used if the base
at a particular position is unknown. The length of a sequence is denoted as | = |s].
If i is an index where 1 < i < [ then any position in the sequence s is denoted by
s[i] such that s[1] denotes the first character of the sequence and s[!| denotes the last
character of the sequence. Similarly, if i and j are two indices where 1 <i <j </,
then the sub-sequence between i and j is denoted as s[i..j]. In this work, the termed
k-mer will be used to denote a sub-sequence of length k. If S = sy, s, ..., 5, denotes
a set of n sequences, then the number of occurrences of a k-mer in S is denoted as
occs(kmer). The entire set of k-mers present in the set S is termed as k-universes.

211 Sequence Alignment

Perhaps one of the most fundamental step in any downstream analysis of biolog-
ical data is sequence alignment. In simple terms, sequence alignment is arrang-
ing sequences to find the region of similarity between them. If only two sequences
are arranged against each other then the process is known as pairwise alignment. If
more than two sequences are compared against each other, them the process be-
comes multiple alignment. The alighment can span over the entire length of the
sequence. Such an alignment is termed as global alignment. On the other hand,
a local alignment deals with only a certain region with in the sequences. Though
multiple methods have been developed for sequence alignment, most of them are
based on dynamic programming. It is applied via Needleman-Wunsch algorithm to
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achieve global alignment ([NW?70]) and Smith-Watermann algorithm to obtain local
alignment ([SW81]). In general, dynamic programming fills up a substitution ma-
trix with scores which represents match, mismatch or a gap penalty. Alignment
is achieved by retracting paths in the substitution matrix which minimizes the to-
tal score. Although efficient, dynamic programming is computationally expensive
both in time and memory. An alternative to this is a word based alignment method
which is especially useful for large scale datasets. Although, word based methods
are heuristics and do not guarantee optimal results, they are shown to be efficient
as compared to dynamic programming. The most common word based alignment
strategy is seed-and-extent wherein short regions of exact match is found in the query
(seed step). The alignment is initiated from the seed and extended in both the direc-
tions of the match (extend step) allowing for mis-matches and substitutions ([Alt+97;
Del02]). Although efficient, this strategy is time consuming and the performance is
affected if there are repetitive seeds in the reference ([Jai+17a]). Many applications
do not require accurate base-to-base mapping. Rather, they look towards finding
regions of similarity within the query sequence. This can be achieved by calculat-
ing the Jaccard similarity coefficents between two subsections of sequences which
can computed efficiently ([Bro97]). This concept gave rise to new mapping strate-
gies used in tools like Minimap, MinHash alignment and BALAUR. Effectiveness of
such algorithms is still a topic of research which is being researched upon.

2.1.2 Graphs

Since the advent of graph theory in the early 1700s, it has been successfully applied
to solve complex mathematical and computer science problems. More recently, it
has been extensively used for biological problems. In general terms, a graph is rep-
resented as an ordered pair G = (V,E) where V is the set of vertices(or nodes) and
E is the set of edges which has a binary relation on V. Graphs can be finite and in-
finite depending upon its order. All graphs in this work are finite unless otherwise
stated. An empty graph is a graph with no vertex and edge set. It is denoted by
(¢, ¢) or simply ¢. The vertex set of graph G is denoted as V(G) and the edge set
of G is denoted as E(G). Each edge in the set E(G) connects two vertices from the
vertex set V(G). Hence each element of E(G) is a two element subset of V(G), i.e,
E C [V]2. Figure 2.1a represents a schematic diagram of a graph G = (V, E) where
V =1{1,23,4} and E = {(1,2),(1,3),(2,3),(3,4). The number of vertices in the
graph is termed as the order of the graph and is denoted as |G|. The number of edges
in the graph is denoted as ||G||. For any vertex v € V, an edge e € E is said to be
incident on v if v € e. If edge e = (v1,v2) connects two vertices v; and vy, then v;
and v; are termed as end-vertices. If one of the two end-vertices is assigned as initial
vertex and the other end is assigned as terminal vertex, then the edge is referred as a
directed edge otherwise it is undirected. If a graph Gp consists of only directed edges,
then it is termed as a directed graph. Figure 2.1b depicts a directed graph Gp = (V, E).
A graph G' = (V', E') is a sub-graph of G, denoted as G’ C G,if V' C Vand E” C E.
Figure 2.1c represents a sub-graph G’ of the directed graph Gp. If edges or vertices
of a graph have a weight associated with them, then the graph is known as weighted
graph. If such as a graph is also directed then it is termed as adirected weighted graph
otherwise it becomes a undirected weighted graph. The number of egdes originating
from a vertex v is known as the out-degree of v. Similarly, the number of edges ter-
minating at v is known as the in-degree of v. A vertex in a graph is balanced if its
in-degree is equal to its out-degree.
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(a) (b) (c)

FIGURE 2.1: The graph on vertex V=1,2,3,4

Path or a walk in a graph G = (V,E) from vertex v; € V to vertex v, € V is
a sequence of pair of vertices (v1,v2), (v2,03), ..., (Vy—1,7n) such that (v;_1,v;) € E.
Vertex vy is termed as the source vertex and v, represents the destination vertex.
In fig. 2.1a, the path from vertex 1 to vertex 3 is either the set {1,2,3} consisting of
edges {(1,2),(2,3)} or the set {1,3} consisting of edges {(1,3)}. The number of edges
in the path is termed as the length of the graph. If no edge is repeated in a path,
then the path is termed as a trail. A graph is said to be cyclic if it has a trail where
the source vertex is same as the destination vertex. If there is no cycle in the graph
then it is termed as acyclic. The graph G is called connected if there is a path from all
the vertices to all the other vertices in G. Figure 2.1a represents a connected graph
since all the vertices can be connected to other vertices via a path. However, fig 2.1b
is not a connected graph as there is no path from vertex 4 to vertex 2 or to vertex
1. A sub-path of the a path p is any contiguous sub-sequence of p. For instance, if
p = ((vo,v1), (v1,02), ..., (Vk_1, k) represents a path from vertex vy to vy, then the
sub-path of p can be represented as the sequence ((v;, vi+1), (Vit1, Vit2..., (0j—-1,7;)
where v;,v; € pand 0 <i <j <k.

Eulerian graphs

First used by Leonard Euler in the year 1736 while solving the famous Seven Bridges
of Konigsberg problem, a eulerian graph is extensively used in bioinformatics espe-
cially in the field of sequence assembly ([PTWO1],[NP13]). A eulerian path of a graph
G is a trail in G if every edge in the path is traversed only once. However, a ver-
tex can be traversed more than once in a eulerian path. A eulerian cycle or a eulerian
circuit is a eulerian path which starts and ends at the same vertex. A graph with
such a circuit is termed as a eulerian graph. A graph where every vertex has an even
degree is also termed as a eulerian graph. Figure 2.2 represents a simple eulerian
graph which has a eulerian circuit p = ((1,2),(2,3),(3,4),(4,2),(2,1)). Here, the
path starts and end on the same vertex (vertex 1) and each edge of the path is visited
only once.

Hamiltonian graphs

Another interesting variant of a graph is a hamiltonian graph. A hamiltonian path is a
path in which each vertex is visited exactly once. Figure ?? represents a hamiltonian
path in a dodecahedron graph. Dashed lines represents the hamiltonian paths in
the graph. If a hamiltonian path is also a cycle then the path is termed as hamiltonian
cycle. If a graph consists of a hamiltonian cycle, then it is termed as a hamiltonian graph.
The problem of whether a hamiltonian path exists in a graph is a hamiltonian path
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FIGURE 2.2: Eulerian graph consisting of circuit p = ((1,2),(2,3),(3,4),(4,2),(2,1)) de-
picted by red dashed line

FIGURE 2.3: Hamiltonian graph containing a hamiltonian circuit depicted by the red dashed
line

problem which is NP complete. Figure 2.3 depicts a hamiltonian graph containing
the hamiltonian circuit p = ((1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,1)). It
can be noted that the hamiltonian circuit can be converted into a hamiltonian path
by removing just the last edge (in the above case the edge (8,1)) from the path.

De Bruijn graph

In this thesis, we will mostly deal with de novo transcriptome assembly algorithms

which are based on de Bruijn graphs ([PTWO01; CPT11]). Introduced by Nicolaas

Govert de Bruijn ([Bru46]), a de bruijn graph is a directed graph which represents

overlaps between series of symbols. We consider S = {s1, sy, ..., S } as a set of m sym-

bols and the vertices of the de Bruijn graph as V = {{s1, 51,51, ...,51}, {51,51,51, -, 52}, {51, 51,51, -, Sm },
{s1,51,51, /52,51 }, s {Sm, Sm, Sm, .-, Sm } }. In other words, vertices are strings pf length

n generated by concatenating various combinations of the symbols. Two vertices

v1,02 € V would be connected by a directed edge if v; can be converted into v, by
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—— Hamiltonian cycle
— Eulerian cycle

6

FIGURE 2.4: De bruijn graph generated strings of length 3 generated by concatenating sym-

bols 0 and 1. Two vertices are connected by a directed edge if removing the first symbol and

adding a symbol towards the end of the source vertex converts it into the destination vertex.

The sequence of edges in the eulerian cycle of the graph is depicted in blue. The sequence of
edges in the hamiltonian cycle of the graph is depicted in red.

removing the first symbol and adding one symbol at the end of v;. Every de Bruijn
graph is eulerian and hamiltonian. The sequences resulting from the eulerian cycle
and the hamiltonian cycle in the de Bruijn graph are known as de bruijn sequences.
The de Bruijn sequence is formed by taking the sequence of the first vertex and se-
quentially concatenating the last character of each vertex along the path. We show a
sample de Bruijn graph consisting of vertices, each of length 3, generated by various
combinations of the symbols 0s and 1s. A possible de Bruijn sequence can be gen-
erated by following the eulerian path (denoted as blue numbers in the figure) along
the graph which would lead to the sequence 10001100101111010.

Most of the de novo assemblers generate a de Bruijn graph from RNA-seq data.
The k-mers (sub-strings of length k) from the reads are considered as the vertices
of the graph and two vertices are connected by a directed edge if they havea k — 1
overlap. Contigs are generated by following various eulerian paths in the graph.
In the following sections, we will look into some of the well-utilized practices in de
novo assembly procedures. For the sake of brevity, the techniques and algorithms
related to transcriptome assembly are shortly summarized. However, the algorithms
which we have used throughout this work are explained in detail.



20 Chapter 2. Algorithms for de novo transcriptomic assembly

2.2 Pre-processing of RNA-seq data

Data generated by sequencing technologies are marred by artifacts such as sequenc-
ing errors, PCR contamination, over-represented k-mers and redundant adapter se-
quences. These artifacts have a huge effect on the quality of the assembly produced.
For instance, sequencing errors results in the loss of overlap between two read se-
quences. Since most of the assemblers rely on the overlap between read sequences
to connect two regions of a genome, a error in the sequence results in fragmented
assembly. Also, contaminants like adapter sequences and PCR artifacts increase the
memory and runtime requirements of an assembler without adding any useful in-
formation to the final assembly ([Le+13]). Hence, it is important to pre-process the
reads before the assembly process.

2.2.1 Quality control

The quality control of reads includes adapter trimming, checking for the GC con-
tent, and checking for over-representation of k-mers. Software packages such as
FastQC ([And+15]) and NGSQC ([Dai+10]) provide an efficient way to do the above
analysis. They provide a detailed report on aspects such as per base sequence qual-
ity, per base GC content and average read quality. Practitioners can run these tools
not only to gauge the quality of sequences produced by the sequencing run but also
to measure the quality of the starting material used for library preparation. Once
the low-quality regions are identified using the above tools, other software packages
such as FASTX-toolkit ((GHG14]), trimmmomatic ([BLU14]), cutadapt ((MW11]) and
AfterQC ([Che+17]) can be used to remove low quality reads and trim adapter se-
quences.

2.2.2 Error correction

Although the RNA-seq technologies are more accurate than DNA-microarrays, they
still are hindered by sequencing errors. In case of Illumina sequencing, these errors
are more probable towards the 3’ end of the read than the 5" end ([Liu+12; ME13]).
The above-mentioned methods are efficient in removing low-quality bases and re-
duce the number of absolute errors from the data, But it also leads to a significant
loss in sequence data which in turn affects the ability of an assembler to reconstruct
transcripts especially from the low expressed regions ([ME13; SBJZ17]).

In the genomic world, there are algorithms such as SHREC ([Sch+09]), Quake ([KSS10]),
and HiTec ([IFI11]). However, they are all designed with the specifics of DNA se-
quencing. The k-mers generated from DNA-sequencers display a uniform coverage
distribution. Hence, any k-mer, which has a low abundance (generally between 1-
3) can be considered as an error and be subsituted with an alternate similar k-mer
having a higher abundance. However, reads generated from RNA-seq experiments
show a non-uniform distribution. Hence, the above error correction methods are not
suited for RNA-seq data. RNA-specific error correction algorithms includes tools
like Hammer ([Med+11]), BayesHammer ([NKA13]), SEECER ([Le+13]), and RCor-
rector ([SF15]). Hammer, BayesHammer and RCorrector identify a group of "solid
k-mers" based on their abundance information. These solid k-mers are considered as
correct k-mers and generally have high abundance. The erroneous k-mers or "weak"
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k-mers are corrected based on their edit distance to the solid k-mers. However in-
dels, which are insertions and deletions in the genome, are not corrected by these
models.

In our work, we used SEECER which has sensitive error correction approach to-
wards indel errors. We will now look into the workflow of SEECER. The description
and the terminologies used here are based on the manuscript written by [Le+13].

SEECER: error correction of RNA-seq data using Hidden Markov Model (HMM)

Given a read to correct, SEECER first tries to reconstruct the transcript/contig from
which the read has originated. This is done by looking into the overlapping reads
which might belong to the same transcripts. It then characterizes the contig as a
profile HMM and identifies and corrects the error according to it. It performs the
above tasks in the following way:

1. Given a read dataset P, SEECER begins by counting the k-mers in P and stor-
ing all the k-mers whose count is above a threshold in a hash table. The hash
table stores the read indices and the position of each k-mer within the reads
and can be accessed via the k-mer sequences as the keys. The counting of k-
mers is done by the JellyFish program ([MK11]) and the read sequences are
stored and analysed using the SeqAn library ([Dor+08]).

SEECER proceeds by selecting a random read r from P and considers it as
seed read. It then obtains a set of reads S C P such that each read in S shares
at least one k-mer with r. Simultaneously, it generates a multiple sequence
alignment (MSA) matrix M using the reads from S. All reads in S are said
to be assigned to r. This procedure is repeated for multiple seed reads and the
reads which remain unassigned to any of the seed read are kept in a pool of
unassigned reads.

2. To build a homogeneous contig, the read sequence belonging to the contig
should originate from the same transcript. However, the sequences in S might
come from different transcripts sharing the same/similar sequence. Hence,
the next step of SEECER is to perform cluster analysis on S to find the largest
subset $* which satisfies a quality measure. This is done by clustering columns
of the MSA matrix M and getting S* based on the clusters. This ensures the
fact that reads in $* arise from a real biological difference as they would share
a similar set of mismatches. This subset of reads is then used to generate the
initial set of contig HMM.

3. SEECER learns the initial HMM and estimates the parameters based on the
alignment of reads and the k-mer positions within the reads. It then uses the
consensus sequence defined by the contig HMM and extracts additional reads,
which are not assigned to any other read. These additional reads overlap the
edges of HMM and hence are used to extend the HMM in both the directions.
When no more reads can be added to the HMM, a likelihood of the read being
generated from the contig HMM is calculated. If the likelihood is above a
threshold, then the contig HMM is used to correct the errors in the read. The
error-corrected reads are removed from the pool of unassigned reads.

With regards to the performance, SEECER is effective in identifying and correct-
ing errors in reads generated from RNA-seq sequencers. This was evident from the
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FIGURE 2.5: Workflow of the SEECER. 0) The input dataset is considered as the intial pool of
reads. 1) SEECER selects a random read from the pool as a seed and collects a set S of reads
such that each read in the set shares at least one k-mer with the seed read. Simultaneously,
SEECER generates a multiple sequence alignment of reads in S and generates a matrix M.
2) SEECER analysis the matrix and obtains a set S* which consists of reads originating from
the same transcripts. 3) The reads in S are used for building an initial HMM. 4) and 5) The
consensus sequence defined by the contig HMM is used to extract additional reads which
are not assigned to any other reads. These additional reads are used to extend the contig
HMM. The final HMM sequence is used to correct errors in the read. 6) The error corrected
reads and the reads aligned to the HMM are removed from the pool of reads. Illustration
taken from [Le+13]



2.2. Pre-processing of RNA-seq data 23

improvement in the quality of assembly when error-corrected datasets were given as
an input to the assembler ([Mac15]). Also, SEECER has been shown to perform well
on both substitution as well as indel errors ([SBJZ17]). The assemblies generated
from SEECER corrected data were also successful in detecting differential expressed
genes between two conditions ([Le+13]).

2.2.3 Read normalization

It has been shown that 100x or more sequencing coverage is required to cover the
entire human genome ([Gne+11]). Transcriptomes and metagenomes also require
similar coverage as they have low expressed regions which needs to covered us-
ing deep sampling ([Bro+12]). This results in generation of millions of short reads
which needs to be assembled within the limits of the available computational re-
sources. While there is a considerable improvement in hardware technologies, the
sequencing capacity is growing faster than the computational capacity. Hence, to
make the assembly of high coverage dataset possible, practitioners normalize the
input read datasets using k-mer based algorithms such as Diginorm ([Bro+12]), Big-
Norm ([Wed+17]), and NeatFreq ([McC+14]). The latest version of the Trinity ([Gra+11])
assembler has its own k-mer abundance based normalization step which is inte-
grated in its assembly algorithm.

Although efficient, all the above mentioned algorithms come with a risk of los-
ing important sequence information which effects the quality of the final assembly.
We proposed a normalization algorithms, named ORNA and ORNA-Q/K, which
reduce the input RNA-seq data without losing any sequence information from the
original dataset. The details of the algorithms is given in chapter 3 of this thesis.
We compared our normalization algorithms with Diginorm, Trinity’s In Silico (TIS)
normalization and Bignorm which is described here. The description and the ter-
minologies used here are based on the manuscript written by [Bro+12] (Diginorm),
[Gra+11] (TIS) and [Wed+17] (Bignorm).

Diginorm

Digital normalization or "Diginorm" aims to reduce the input dataset P to P’ by
removing erroneous and redundant reads and limits the coverage of P’ to a user-
defined threshold C. But how do we determine whether a read contains errors with-
out mapping them to a reference genome first? The authors of Diginorm had the
following idea. It is implied that all k-mers within a read should have similar abun-
dances since they originate from a single source molecule. If a read contains an
error, k-mers overlapping the error would have lower abundances as compared to
their surrounding k-mers. Using simulated data from an artificial genome and real
data from E.Coli, [Bro+12] established a correlation between the median k-mer abun-
dances of the dataset and the coverage of the dataset. They found that reads which
contains multiple sequencing errors had a skewed median k-mer abundance.

Based on the above observation, Diginorm formulates its normalization as a
three-step approach as described below.

1. In the first pass, Diginorm extracts all the k-mers from a given read r € P
and calculates their abundances in P’. In order to save memory consumption,
Diginorm uses the CountMin sketch data structure ([CMO05]) to obtain an ap-
propriate estimate of the k-mer count. Count-min sketch is a probabilistic data



24 Chapter 2. Algorithms for de novo transcriptomic assembly

structure which maps events, in our case k-mers, to their frequencies. If the
median abundance of k-mers in P” is below the user-defined threshold C, the
read r is kept otherwise it is rejected.

2. In the second pass, Diginorm counts the k-mers present across the accepted
reads. It then goes through the accepted reads and removes the 3’ ends of
reads having low-abundance k-mers.

3. In the third pass, Diginorm executes a second round of normalization on the
accepted reads, with the same parameters as the first pass, and eliminates re-
dundant data.

The three-pass approach of Diginorm was shown to eliminate most of the reads
with sequencing error. However in the case of reads from RNA-seq technologies, it
was observed that a lot of non-erroneous k-mers were also being eliminated along
with the erroneous ones. This is because Diginorm is unable to distinguish between
sequencing errors and k-mers from under sampled regions. Also, Diginorm obtains
k-mer abundance information from the count-min sketch. When the memory set for
the data structure is not too large as compared to the k-mer space, the k-mer counts
may include false positives.

In terms of assembly performance, it was shown the time and memory require-
ments for genome assemblies reduced by a factor of 10 whereas for transcriptome as-
semblies, the resource requirement reduced by a factor of 3. The genome assemblies
produced by Diginorm reduced datasets were able to overlap upto 98% to known
reference sequences. Whereas in case of transcriptome, assemblies produced by nor-
malized datasets overlapped upto 97% with the assemblies generated from the orig-
inal datasets.

Bignorm

Although efficient, the performance of Diginorm can be improved substantially by
incorporating Phred score information in its decision making. The Phred score of a
base is inversely proportional to the probability of the base being called incorrectly.
Hence, a low Phred score indicates that the base is a sequencing error. Also, Digi-
norm handles Ns (uncertain bases in the read) inefficiently as it converts all the Ns
to As. The idea of incorporating Phred scores was tested out by [Wed+17] in their
algorithm Bignorm. Bignorm extends the approach of Diginorm by utilizing a qual-
ity score cut-off based on Phred scores and formulates the normalization approach
in the following way.

1. Let r be a read from a dataset P of length s. Every position t < s in r would
have a Phred score g,(t) associated with it. Bignorm extracts the k-mers set K,
from r.

2. For each k-mer | € K, beginning from a position p in r, it extracts the Phred
scores of all nucleotides belonging to I. Let Q. (I, p) = {4:(p), 9r(p +1), ..., q:(p +
k — 1)} be the set of Phred scores of all nucleotides belonging to k-mer [ start-
ing from position p.
Bignorm calculates the quality score gs,(I) of the k-mer [ by taking the lowest
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Phred score from the set Q,(I, p). This procedure is followed till the position
s—kinr.

3. Bignorm then keeps a read r if there are at-least b k-mers in r such that:

(a) the quality scores of all the b k-mers are above a user defined threshold
Qo

(b) the abundance of all the b k-mers in the original dataset is above a rarity
threshold and below an abundance threshold.

Condition (a) ensures that only high quality k-mers are included in the decision
making. Condition (b) ensures that the k-mers which are kept are too frequent
to be considered as a sequencing error (as they are above rarity threshold) and
not too abundant to be considered as a redundancy.

Like Diginorm, Bignorm also uses CountMin sketch for counting k-mers. How-
ever, it provides a faster implementation by efficient hashing and usage of OpenMP
functionality (C programming language) for parallel processing. Bignorm is also
able to reduce more number of reads as compared to Diginorm. However, the
speedup in time and memory comes at a cost of the assembling full length tran-
scripts as the Bignorm reduced datasets resulted in a shorter contigs as compared to
Diginorm reduced datasets.

Trinity’s In Silico (TIS) normalization

The Trinity assembler has its own normalization algorithm integrated with it. The
procedure is optional and can be switched off if not required. The algorithm can
also be run independently using a provided script. The normalization procedure is
formulated in the following way:

1. Given a read dataset P and a desired coverage c, TIS runs the k-mer counting
software jellyfish to store the abundances of k-mers present in the reads of P.
Next, given a read r € P, TIS calculates the average (avg(r)), median (med(r))
and standard deviation (stdev(r)) of abundances of k-mers present in 7.

2. For each read r, TIS selects a random number (rand) between 0 and 1. The read
r is kept if both the following conditions are met:

(@) The random number rand is greater than the ratio of the desired coverage
¢ and median k-mer coverage med(r).

(b) The ratio of standard deviation of k-mer coverage stdev(r) and average
k-mer coverage avg(r)is below a cutoff (set as 100 by default).

Condition (a) ensures that only reads with very high k-mer coverage are part
of the decision process and the reads with low k-mer coverage are always kept.
Reads which contain multiple errors would have a high standard deviation as
the k-mer abundance across the read would not be similar. Hence, condition
(b) ensures that such reads are always discarded.

2.3 Transcriptome assembly

The complexity of a transcriptome makes the procedure of assembly a rigid task to
fulfil. There is a high variability in the expression levels of various transcript. On one
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hand, there are transcripts which are highly expressed, whereas on the other hand
their might be many transcripts which have a shallow expression level. Alternate
splicing event makes the process even more complicated as one locus can produce
many transcripts due to which resolving the isoforms becomes a major challenge.
An efficient transcriptome assembler should successfully deal with the above issues
and should be able to recover accurate full-length transcripts at various levels of
expression. This challenge and the scope has resulted in the development of many
transcriptome assemblers. The present assemblers are divided into two categories
namely - reference based and de novo.

2.3.1 Reference based assembly

For a lot of well studied species, a high-quality reference genome is available via
public databases such as Ensembl([Zer+18]) and Gencode ([Har+12]). Many assem-
blers use these reference genomes generate the target transcriptome. A reference-
based assembly consists of three major steps. The first step involves aligning of
RNA-seq reads against the reference genome using splice-aware aligners such as
TopHat ([TPS09]) and Blat ([Ken02]). This step is followed by building a graph based
on overlapping reads from each locus. Reads from RNA-seq datasets form the nodes
of the graph. Two nodes are connected if the constituting reads have bases overlap-
ping with each other. The final step involves the traversal of the graph to resolve in-
dividual isoforms. Some of the well known assemblers which work on the basis of a
reference genomes are Cufflinks ([Tra+10]), Scripture ([Gut+10]), IsoLasso ([LFJ11]),
SpliceGrapher ([Rog+12]), StringTie ([Per+15]) and scallop ([SK17]).

All the above algorithms have the same step of aligning reads against a refer-
ence genome using a splice aware aligner such as TopHat. However, the difference
arises in the way the assemblers utilize the alignments to generate sequences. For
instance, Cufflinks uses the alignments to assembles transcripts based on mapped
fragments sorted by reference position. One can imply the intronic positions in the
fragments based on the reference genome coordinates. Cufflinks first divides the
non-overlapping fragments into classes and assembles each class separately. Inside
a class, each fragmented alignment is assigned to a node in the "overlap graph" G.
Two nodes are connected by a directed edge if their alignments overlapped in the
genome and the two fragments are compatible. Two fragments are compatible if the
implied intron of one fragment matches the implied intron of the other. Cufflinks
resolves the overlap graph by finding the minimum path cover of the graph. In other
words, it finds a minimum cardinality set of paths such that each fragment of the
graph is a part of at least one path. Each path in the set is a series of mutually com-
patible fragments connected from left to right in the graph. A major drawback of
Cufflinks is the low number of transcripts assembled from a locus.

Scripture, on the other hand, has less stringent conditions. From the alignments,
Scripture first considers all the spliced reads, i.e, reads which have gaps in their
alignment. It then forms a connectivity graph where each base in the chromosome
acts as a node. A directed edge connects a base to the next base in the genome and
also to another base if there is a read supporting this connection. Scripture then finds
all the paths through the graph which have statistically significant read coverage. In
this way, Scripture produces far more transcripts from a locus than any other assem-
bler. However, it also produces a lot of false positives and its assembly generally
results in a low precision ([Per+15]). The IsoLasso algorithm introduced by [LFJ11]
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extends the approach to Scripture. It begins by enumerating all the isoforms from
the connectivity graph as done in Scripture. IsoLasso then uses the Least Absolute
Shrinkage and Selection Operator (LASSO) ([Tib96]) method to estimate the isoform
abundance given the read alignment. It then filters out all the isoforms for which the
abundance estimation does not comply with the number of reads mapped to it.

The SpliceGrapher approache makes use of Expressed Sequence Tags (EST) align-
ments along with gapped and ungapped alignment to infer a splice-graph from the
read dataset. A splice graph is a graph where each node represents an exon and each
path in the graph represents an alternate isoform. SpliceGrapher then uses a ma-
chine learning approach to construct a database of potential splice site and removes
any assembled isoform which does not match with the database. On some occasions,
short reads tend to map ambiguously to multiple regions of the genome which com-
plicates the assembly process. The recently developed algorithm StringTie tackles
this issue by first creating a super read from the initial set of data. A super read
is generated by considering a seed read and extending it in both directions using
other reads which overlaps with the seed read ([Zim+13]). StringTie maps the su-
per read to the genome to form an Alternate Splice Graph (ASG) for each gene lo-
cus.Like in SpliceGrapher, an ASG represents all possible transcripts of a gene where
each node represents a contiguous regions of the genome defined by uninterrupted
splice-aware alignment of reads and edges represents reads which align across two
nodes from 5" to 3’ of the genome. StringTie then considers the path, also known as
the heaviest path, with the highest read per base coverage as an assembled transcript.
In addition to this, StringTie estimates the coverage level of the transcript by solving
a maximum-flow problem which equates to the maximum number of fragments that
can be associated with the chosen transcript. The above iterations are stopped when
the coverage of the heaviest path in the ASG drops below some fixed threshold.

Advantages of reference based assembly

Presence of a reference sequence serves as the major advantage for reference-based
transcriptome assemblers. Artifacts such as sequencing errors have a negligible
impact of the assembly process as they would hardly get aligned to the reference
genome. Also, gaps in the alignment can be filled since the original sequence is
already known. This allows the assembly of regions having low expression quite
efficient and accurate. Similarly, reference based assembly produces longer stretch
of UTRs which have a low read coverage.

Disadvantages of a reference based assembly

Presence of the reference genome which serves as an advantage to such assembler
can also prove to be the achilles heel of the assembler. A reference based assembly
highly depends on the quality of the reference sequence available. Except for a few
species, the genomic sequence contains large fraction of deletions in the sequences
which might cause misassemblies. Also, as the field of next generation sequencing
is advancing, more and more non-model species are getting sequenced whose ref-
erence genome are not available. For some non-model species, practitioners use a
genome from closely related species. However, using a closely related genome does
not guarantee the capture of divergent genomic regions. Lastly, reference based as-
semblers miss the assembly of trans-spliced genes ([MW11]) which are shown to be
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useful in studying the genetic pathways in cell lines related to cancer.

In general, a reference based assembly is only preferred when a high-quality ref-
erence sequence is available. However as more and more non-model species are
being sequenced, assembly using de novo approaches is becoming a routine. In this
work, we worked only with algorithms related with de novo transcriptome assem-
blers which we discuss in the next few sections

2.3.2 De novo transcriptome assemblers

In the absence of a reference genome, practitioners assemble RNA-seq data using
the de novo approaches. These approaches use short sub-strings from reads to con-
struct a sequence graph and traverse eulerian paths within the graphs to build con-
tigs. Most of the de novo approaches like TransABySS ([Rob+10]), Trinity ([Gra+11]),
Oases ([Sch+12b]), and SOAPdenovo-trans ([Xie+14]) construct a de Bruijn graph
(DBG) from the reads. Briefly, they disintegrate reads into k-mers and consider
them as vertices of the graph. They connect two vertices by a directed edge if they
have k-1 overlap. A simple "walk" within the graphs generates an initial set of con-
tigs. The assembly algorithms then apply various heuristics on the set of contigs to
generate the final assembly. An alternative of de Bruijn graphs is the splice graphs
which is used by algorithms such as Bridger ([Cha+15]), BinPacker ([Liu+16]), and
TransLiG ([Liu+19]). The splice graph representation is as accurate as the de Bruijn
graphs. However, their computational resource requirements are lower as compared
to the de Bruijn graphs. For our work, we use four de Bruijn graph based assembler
namely TransABySS, Trinity, Oases and SOAPdenovo-trans and one splice graph
based assembler namely TransLiG. We describe the functioning of each algorithm
below.

Trinity

Trinity is an RNA-specific de novo assembler which combines the functioning of
three k-mer based contig generation algorithms namely Inchworm, Chrysalis and But-
terfly. Figure 2.6 depicts the functioning of trinity assembler.

1. Inchworm (Figure 2.6a): Given the RNA-seq reads as input, Inchworm counts all
25-mers from the dataset. The erroneous k-mers which have low abundances
are removed from the k-mer dictionary. Inchworm considers a k-mer having
the highest frequency as a contig k-mer. Each contig is extended in both the
direction by finding high frequency k-mers having k-1 overlap with the contig
terminus. Inchworm concatenates the last base of the overlapping k-mer to
grow the sequence of the contig. The above procedure is repeated for the next
high frequency of k-mer until all the k-mers in the dictionary are exhausted.

2. Chrysalis (Figure 2.6b): Chrysalis builds on the contigs generated from the
Inchworm step. It clusters the contigs into sets of connected components. Two
clusters belong to the same component if (i) they have a k-1 overlap with each
other (ii) there is a minimal number of reads which span the junction of the two
contigs. Chrysalis then builds a de Bruijn graph (DBG) from each component
with (k-1)-mers as nodes and k-mers as edges. It assigns a weight to each edge
which is equal to the number of reads which supports the edge. Chrysalis then
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assigns a read to a component with which it shares the maximum number of
k-mers.

3. Butterfly (Figure 2.6c): Butterfly marks the last step of the trinity assembler. It
takes the DBG from Chrysalis and merges consecutive nodes in linear paths.
It prunes tips and minor edges which might have originated from sequencing
errors. In the more recent versions of Trinity, the error correction step is done
by removing k-mers whose abundance is less than 5% of the abundance of
the adjacent k-mer in the graph. This is done keeping in mind that low k-mer
abundance might not necessarily originate from a sequencing error. Hence,
keeping a fixed abundance cut-off might result in some useful k-mers being
clipped out/ Butterfly then identifies paths in the graph which are supported
by reads (and their pairs) and traverses them to form contigs. The support
is used mainly to solve ambiguities and reduce the combinatorial number of
paths to a smaller number of contigs.

In recent times, the Trinity assembler was tried on many datasets and has been
shown to be efficient in producing full-length transcripts. However, Trinity does
not use the sequencing depth information to the full extent. It uses a brute force
strategy to find transcript-representing paths which results in a high false-positive
rate. Another major drawback of Trinity is that it uses only a single k-mer size (k=25)
for constructing the graph. A single k-mer size might be too small to resolve repeat
regions or might be too large to assemble low expressed regions of the genome.

TransABySS

Unlike Trinity, TransABySS generates assemblies using multiple k-mer sizes and
merges them to form a single non-redundant assembly. It extends the implemen-
tation of genome assembler ABySS ([Sim+09]) to make it suitable for RNA-seq data.
The working of TransABySS is as follows:

1. DBG construction and initial contig set generation: Given the input set of tran-
scriptomic reads, TransABySS uses the graph construction step of ABySS to
build a DBG. Repeat sequences with minor variations or sequencing errors
form bubbles and tips in the graph. ABySS resolves those by removing the
variant, with the lower coverage, from the graph. After the basic error correc-
tion, a "walk" in the graph generates single-end contigs. If paired-end informa-
tion is available, then the pairs are aligned to the single-end contigs. Mates of a
pair might get aligned to different single-end contigs. In such cases, contigs are
merged unambiguously if the length of the contigs is above a certain threshold
and they have sufficient mate-pair support.

2. Transcript assembly and processing: Starting from an initial k-mer size k;, step
1 is repeated iteratively for several k-mer sizes. In the manuscript, [Rob+10]
used a k-mer range starting from k=26 till k=50. For a k-mer size k;, contigs
longer than (2k-1)bps are considered as main contigs of k;. The main contigs
of k; are aligned against the contigs generated using k;,,. Similarly, the main
contigs of k;;; were aligned against the contigs of k;. After each alignment,
contigs which were completely subsumed by any other contigs are discarded.
The above procedure is repeated for all the possible combinations of k-mer
sizes in a hierarchical manner till a single set of homogeneous contigs is ob-
tained. From the final set of contigs, any contig which is smaller than 150bps
is eliminated from the final assembly.
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a set of connected components. Two contigs are part of the same component if they have

k-1 overlap and enough read support. DBGs are made from each of the components. (c)

The DBGs generated from the previous step are simplified and traversed on the basis of a
number of reads supporting a path. Illustration taken from [Gra+13]
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Qases

Similar to TransABySS, Oases also merges assemblies from multiple k-mer sizes and
recreates low expressed regions (using small k-mer sizes) and resolves repeat regions
(using large k-mer sizes). Oases reuses the graph constructed by the velvet assem-
bler ([ZB08]) and tweaks the graph traversal process to assemble transcripts from
reads. Figure 2.7 depicts the functioning of Oases. Briefly,

1. Contig Assembly and correction: Like most of the de novo assemblers, Oases
builds a de Bruijn graph from the reads and traverses them to form the ini-
tial set of fragmented assemblies. The graph building and storing steps are
reused from the genome assembler Velvet ([ZB08]). Oases receives the set of
fragmented assemblies and mapping of reads onto the fragments from Vel-
vet (Figure 2.7-2). It then finds parallel paths in the graph which have the
same starting and ending nodes (bubbles). Oases merges the path with a low
read coverage with the path having a higher read coverage. In addition to this,
Oases examines every node and removes an outgoing edge from the node if
its coverage is less than 10% of the sum of the coverage of all outgoing edges
from the node. The final correction step includes the removal of all contigs
below a static coverage cutoff (<3x coverage). A contig is labeled as long if its
length is greater than a pre-defined value (by default (50+k1) bp), otherwise it
is labelled as short.

2. Scaffold construction and filtering: Oases summarizes the distance information
between contigs as a set of distance estimates known as scaffolds. The distance
estimate for a connection between two contigs can be supported by spanning
single-end reads or paired-end reads. A connection is said to be direct if there
are reads which span the connection, otherwise it is termed as indirect. A
short contig can only be connected to a long contig by a direct connection.
Oases removes a contig and its corresponding connections if the length of the
contig is below a static threshold (by default (50-k+1) bp where k is the k-mer
size). Similarly, Oases removes a connection if it has low read support, i.e, the
number of reads spanning the connection is low. Also, indirect connections
which have a read support less than a static threshold are eliminated.

3. Loci construction and reduction: Oases organises the contigs into clusters called
loci. First, Oases considers long connected contigs as they are unique and are
likely to come from the same gene (Figure 2.7-3). To this connection, Oases
adds short contigs which are connected to one of the long contig (Figure 2.7-4).
Oases elimates long distance and redundant connections (Figure 2.7-5).

4. Transcript assembly from loci: The sequence information lies in the loci. Oases
analyzes the topology of each loci and classifies them as chains, bubbles and
forks. These topologies are easily identifiable by the connections originating
from the contigs. Oases detects these topologies and traverses all possible
transcripts from them. There might be a complex topology which does not
fit into any of these categories. For such cases, Oases uses the graph traversal
algorithm suggested by [Lee03] to generate the transcripts.

5. Merging assemblies from multiple k-mer sizes: To capture transcripts from differ-
ent regions of varied expression levels, the Oases-M script of the Oases pack-
age runs the assembler over multiple k-mer sizes. The lower k-mer sizes cap-
ture transcripts from low expressed regions whereas the higher k-mer sizes
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FIGURE 2.7: Workflow of the Oases assembler. (1) Reads from RNA-seq are given as input
to velvet assembler. (2) Velvet assembler generates the initial set of contigs which is further
used by Oases. (3) Oases clusters the contigs into loci and connects long contigs based on the
reads spanning the two contigs. (4) Oases iteratively adds short contigs to the long contigs
based on the reads spanning the short and the long contig. (5) Oases removes redundant
and long distance connections from the graph. It then classifies the contigs into topologies
namely (A) chain, (B) bubble, and (C) fork. If the toplogy doesnt fall in any of the above cat-
egories, then it is termed as (D) complex. Oases traverses each of these toplogies seperately
to form the transcript assemblies. [llustration taken from [Sch+12b]

resolve repeat regions present in the genome. The assemblies or transfrags gen-
erated from the individual k-mer sizes are then fed to contig correction stage of
the assembler with a different user defined k-mer size. Apart from applying all
the correction steps described above, Oases-M also removes a transfrag if it is
similar to a transfrag generated in any other k-mer iteration. The final assem-
bly is constructed by following the remaining transfrags through the merged
graph.

In their manuscript, [Sch+12b] tested Oases on Human and Mouse datasets and
found it to outperform both Trinity and TransABySS in terms of assembly quality.
Also, they show that running assemblies over multiple k-mer sizes and merging
them produces more sensitive assemblies as compared to running assembler using a
single k-mer size. However, running the assembler using multiple k-mer sizes results
in a high number of transcripts most of which are misassemblies ([DS16]). Hence,
an efficent reference-free post-processing step is required to remove such fraudulent
transcripts. [DS16] proposed a clustering based technique to identify and remove
misassemblies from the final assembly set. Such methods can studied and integrated
into Oases to improve the quality of the final assembly.

SOAPdenovo-trans

As mentioned above, Oases produces a high percentage of redundant transcripts
due to running assembler on multiple k-mer sizes and also due to a lack of efficient
error removal mode ([LZS13]). On the other hand, Trinity does not use pair end
information for contig connection and hence misses out on certain full-length tran-
scripts. SOAPdenovo-trans (ST) extends the implementation of Trinity and Oases to
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improve the assembly performance. Figure 2.10 depicts the functioning of SOAPdenovo-
trans assembler.

The assembler consists of two main steps:

1. Contig assembly: Given the input RNA-seq dataset, the genome assembler SOAP-
denovo?2 ([Luo+12]) builds the initial de Bruijn graph using the k-mers from the
reads. SOAPdenovo2 implements a variation of de Bruijn graph where it stores
a large number of linear and unique k-mer as one combined unit. This reduces
the runtime and memory consumption of the whole algorithm. For error cor-
rection, SOAPdenovo2 removes low-frequency k-mers to resolve bubbles, tips,
and low-frequency edges. This is based on the assumption low-frequency k-
mers are a result of sequencing errors and hence can be removed from the
graph. By default, the low-frequency cut-off is set to 2. However, for highly
expressed genes in a transcriptome, the abundance of the erroneous k-mers
exceed this cut-off. Hence, SOAPdenovo-trans implements an additional step
similar to the one used in Trinity. A local threshold is set for each k-mer which
is equal to 5% of the abundance of adjacent graph elements (adjacent node k-
mer). An unambiguous walk in the de Bruijn graph generated the initial set of
contigs which is used further for scaffold construction.

2. Transcript assembly: ST maps the single-end reads and paired-end reads back
to the contigs generated from SOAPdenovo2 (Figure 2.10A.2). It obtains the
contig linkage information from either single-end reads spanning two con-
tigs or from paired-end information (mate pairs mapped to two contigs). The
distance information is estimated based on the insert size of the paired-end
dataset. ST removes any contig that is shorter than a defined threshold (by
default-100bps). This removes ambiguous contigs that are formed due to se-
quencing errors and repeat regions of the genome (Figure 2.10A3-1 and 2.10B).
The assembler then proceeds by linearizing chains of contigs. Given three con-
tigs c1, c2, and c¢3, SOAPdenovo-trans linearizes the contigs if there exists an
explicit linkage between c1-c2, cp-c3 and c;-c3 (Figure 2.10A3-2 and 2.10C). In
other words, the assembler considers the linkage between c; and c3 as redun-
dant and removes it keeping only the linkage information between c;-c, and
cp-c3. Like Oases, SOAPdenovo-trans then clusters the contigs into sub-graphs
(linear, bubble and fork) and traverses each sub-graph separately to assemble
a transcript.

SOAPdenovo-trans combines the best parts of Oases and Trinity assembler and
comes up with an memory-efficient way to generate accurate assembly. However,
one of the major drawbacks of SOAPdenovo-trans is its inability to use strand infor-
mation which results in generation of misassemblies and missing out of certain tran-
scripts. Also, SOAPdenovo-trans, by default, runs only in single k-mer size mode.
Assemblies can be generated using multiple k-mer sizes and merged together. How-
ever, efficient merging algorithm is required to perform this.

TransLiG

The above methodologies use a de bruijn graph to represent a transcriptome. How-
ever, Trinity, Oases and TransABySS required a huge amount of computational re-
sources (memory and runtime). SOAPdenovo-trans outperforms the three algo-
rithms in terms of computational resource requirements. But as mentioned above, it



34 Chapter 2. Algorithms for de novo transcriptomic assembly

’:‘ SOAPdenovo2 based DBG construction and
Trinity based low frequency k-mer removal
! | Map reads to the contigs
and build linkages
4 A\
1) Utilizing single-end 2) Utilizing paired-end  3) Merge the linkages
read information read information
2 Ctgl[— _]Ctg2Ctg3 — _|Ctg4 Ctg2[ _Ctg3 N e | |
Ctg1 Ctg2 Ctg3 Ctg4
read1 read2 read31 | I read32
N\ J
Y
Remove erroneous and
redundant linkages
4 = N\
3 1) Manage ambiguous 2) Linearize contigs into
contigs (Fig. 1B) scaffolds (Fig. 1C)
|\ J
Y
! | Divide graph into sub-graph
4 Oases based graph traversal ]
S [ Gap closure and output the transcripts ]
B 1) Able to be i ized
[ I | ) Able to be linearize
._.]'El [ 1 | 11
C1 c2 c3
@ Remove short contigs [ 1 T 1
C1 c2 c3

2)Unable to be linearized

I | 1
| [
N

! ! 1 c1 c2 c3

FIGURE 2.8: Workflow of the SOAPdenovo-trans assembler. (A) (1) DBG is constructed us-
ing SOAPdenovo2. Potential k-mers arising from sequencing errors are removed by cobining
the strategies used in SOAPdenovo2 and Trinity. A walk in the graph generates the initial set
of contigs (2) Reads are mapped back to contigs are linkage information is obtained based on
the mapping. (3) Contigs shorter than a length threshold are removed. Remaining contigs
are linearized according to their linkage information. (4) Contigs are clustered into sub-
graphs and each sub-graph is traversed individually to generate transcripts. (5) Gaps in
the contigs, which were generated due to the removal of short contigs, are filled using the
semi-mapped paired-end reads. lllustration taken from [Xie+14]
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produces a high percentage of misassemblies and fragmented assemblies which re-
sults in low precision ([Cha+15]). The Bridger algorithms, introduced by [Cha+15],
generates a splice graph from the RNA-seq data and uses a minimum path-cover
model to enumerate transcripts. An extension of Bridger, BinPacker, was proposed
by [Liu+16] uses the bin packing model without limiting the minimum number of
paths to enumerate transcripts. However, it does not integrate paired-end informa-
tion which leaves a large proportion of transcripts unassembled. TransLiG ([Liu+19])
progresses the algorithm of Bridger and BinPacker by integrating sequencing depth
information and paired end information in its implementation. It generates a splice
graph from the RNA-seq reads and from the splice graph iteratively constructs weighted
line graphs and traverses paths in the graph to generate the final assembly. Figure 2.9
depicts the workflow of TransLiG. Below, we describe the algorithm of TransLiG.
The description is based on the manuscript authored by [Liu+19].

e Splice graph construction (fig. 2.9a): TransLiG reuses the splice construction
step of BinPacker. Given the RNA-seq reads, TransLiG selects the most fre-
quent k-mer as the main contig of the initial splice graph and extends the ends
by finding the most frequent unused k-mer which has k-1 overlap with the
ends of the main contig. The main contig is extended till there are no un-
used k-mer which can extend the contig. For each k-mer in the splice graph,
TransLiG checks whether there is an alternate extension that is not present in
the main contig. If present, TransLiG terms these k-mers as bifurcation k-mers.
The bifurcation k-mer is extended (using the above procedure) until either an
already used k-mer is encountered or no further extension is possible. In the
case of the former, the splice graph is modified by adding an edge from the
bifurcation k-mer to the k-mer in the main contig which matched the bifurca-
tion branch. If the latter case is encountered, i.e, if there are no unused k-mer
available for extending the bifurcation branch, then the branch is kept after
checking its validity using the paired-end information. Each edge of the splice
graph is weighted by the number of reads supporting the edge.

e Pair supporting paths (fig. 2.9b): If the paired end information is available,
the splice graph is converted into a pair-supporting path and a set P; of such
paths is maintained. Considering a pair (r1,12), if r1 spans a path p; of G
and r; spans a path py of G, TransLiG checks if there is a path p, connecting
the last node of p; to the first node of p,. If such a path exists, then the path
Pf = p1 — pc — p2 is considered as pair-supporting path and is added to Pg.
Different reads may generate the same pair-supporting path. So, each pair-
supporting path is assigned a weight, cov(P), which is equal to the number of
reads generating the pair-supporting path.

e Line graphs and iterations (fig. 2.9c): TransLiG converts each splice graph
into a line graph. For each splice graph G = (V,E), a line graph L(G) of G is
a directed acyclic graph where nodes u, v are edges of G. The nodes u and v
are connected if they share an node in G. For instance, consider three nodes
in G namely a, b and ¢ with edges connecting a to b and b to c. In the line
graph L(G), the edges (a,b) and (b, c) would correspond to the nodes u and
v. The nodes u and v would be connected as they have a common node of G
which is b. The line of graph of n'* order is defined by L" = L(L"(G)) where
L°(G) = G. Each isolated node generated during the line graph iteration can
be expanded into a transcript representing path.
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Starting from LY = G, TransLiG goes through all the nodes of the line graph
and at each node v, minimizes the deviation between the weights of in-coming
and the out-going edges of v. This is done to find the correct connections in
the line graph which would represent a transcript. Based on the found con-
nections, TransLiG generates the line graph L! = L(L?). In the next iteration,
L! is taken as the input to generate L2 = L(L!) and so on. The iterations are
continued till a line graph L" is formed where all the nodes are isolated, i.e,
they cannot be connected by an edge.

e Transcript generation (fig. 2.9d): Transcripts are generated by expanding the
isolated nodes of the final line graph L".

KREATION: informed parameter selection of multi k-mer based assembler

As mentioned repeatedly in the above sections, an assembly generated using mul-
tiple k-mer sizes always outperforms assembly using a single k-mer size. But se-
lecting an appropriate k-mer size is still a challenge. Practitioners either use the
default k-mer size set by the assembler or run the assembly over the entire set of
possible k-mer sizes. The problem with the former approach is that the algorithms
are tested on a limited set of data. Since the assembly algorithms are mostly heuris-
tics, a single k-mer range is barely suitable for all datasets. The problem with the
second approach, which is using the entire set of k-mer sizes, results in genera-
tion of misassemblies and a massive consumption of computational memory and
runtime. At present, only a few algorithms such as velvetoptimizer ([ZB08]) and
kmergenie ([CM14]) predict an optimal k-mer size for assembly. However, these al-
gorithms are designed on the specifics of genome sequencing and hence are not suit-
able for transcriptome assembly. To our knowledge, there is only one RNA-specific
algorithm named KREATION ([DS16]) which predicts the upper bound of a k-mer
range for de Bruijn graph based assemblers. We have integrated KREATION in our
pipeline to streamline de novo transcriptome assembly which we will describe in
chapter 4. Here, we describe the procedure for KREATION which consists of the
following steps.

1. Estimating the contribution of a k-mer size: Given a set of reads R and an initial
k-mer sizes ki, three single k-mer assemblies are generated using the k-mer size
ki, ko and k3 where k; 1 = k; + s (s is a step size given by the user). Let C(k1),
C(kz) and Cy, be the contigs sets generated by the assembler. In order to quan-
tify the useful sequence added in the iteration k» as compared to the iteration
using ki, KREATION clusters C(k;) and C(k;+1) using the program CD-HIT-
EST to extract the number of extended sequences. An extended sequence is
representative sequence of a cluster which is a member of C; and completely
overlaps at least one sequence from C;j. It has been shown in the manuscript of
[DS16] that the extended sequences are mostly composed of correctly assem-
bled transcripts and hence can be considered as a measure to the importance
of a k-mer iteration.

2. Predicting the upper bound of k-mer range: The number of extended sequences
declined with the increase in k-mer size in an exponential manner. This trend
becomes linear when the numbers of extended sequences are converted into
a log scale. KREATION calculates the number of extended clusters from iter-
ation k; and k3 and plugs them in a linear regression model to calculate the
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FIGURE 2.9: Workflow of TransLiG: a) Splice graphs are generated from RNA-seq reads.
The algorithm similar to BinPacker is used here for the construction of the graphs. b) From
the splice graphs, pair-supporting paths are extracted. c) Line graphs iteratively till a point
where all the nodes of the line graph are isolated. d) The isolated nodes are expanded to

generate transcripts. Figure taken from [Liu+19]
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regression coefficients. Based on the predicted coefficients, KREATION pre-
dicts the number of extended cluster, say ex, from the assembly using the next
k-mer size (ks4). Assembly is generated using the k-mer size k4 and the resultant
contig set Cy is clustered with C;, C; and Cs to calculated the actual number of
extended sequences. If the difference between the actual number ex, and the
predicted number ex, also known as dscore, exceeds a user defined threshold,
the assembly algorithm is stopped otherwise the whole process is repeated for
a k-mer size ks and beyond.

KREATION was shown to accurately predict the upper bound for various tran-
scriptome assembler. It was shown to reduce the number of misassembled tran-
scripts in the final assembly and there was a significant reduction in the runtime of
the assembler.

2.3.3 De novo transcriptome assembly evaluation

As can be noted from the above section, each assembly algorithm has its own heuris-
tics for transcriptome assembly. Moreover, all the assembly algorithms have their
own parameter settings which can be tweaks as per the requirements of the users.
As a result. different assemblies can be generated from the same read dataset by ei-
ther using a single assembler (by varying the parameter settings) or using multiple
assemblers. Given such diversity, there is a constant need to access the quality of a
de novo assembly and learn about the algorithm and/or parameter settings which
best reconstructs the transcriptome. Commonly used evaluation statistics include
median contig length, number of contigs and N50 ([KB10; Sch+12a]). But in the case
of transcriptome assembly, these metrics are often misleading ([OE13]). For instance,
N50 denotes the longest length x of a contig such that 51% of the assembled contigs
are longer than x. In case of genome assembly, higher the value of N50 better the
quality of the assembly. However in case of transcriptome assembly, an assembled
contig should reflect the genes isoform which might be short in length. Hence, a
high N50 does not always imply a good quality assembly.

Current algorithms like REF-EVAL ([Li+14]) and RNAQuast ([Bus+16]) align
the assemblies against the provided reference genome and calculate the sensitivity
and specificity at nucleotide level. Similarly, [Sch+12b], [Rob+10] and [Gra+11] in
their work aligned assemblies against a reference genome using Blat ([Ken02]) and
calculated the nucleotide sensitivity, nucleotide specificity and the number of full
length transcripts assembler. BUSCO ([Sim+15]) aligns the assemblies against a set
of known orthologous genes to access the completeness of the assembly. Reference
free algorithms such as RSEM-eval ([Li+14]) and TransRate ([SU+16]) estimate the
assembly likelihood given the read dataset. The algorithms REF-EVAL and RSEM-
EVAL is combined into a single software package known as DETONATE ([Li+14]).

Throughout this work, we have used the metric of nucleotide sensitivity, speci-
ficity and the number of full-length transcripts assembler. In addition to this, we
also evaluated our assemblies using the referenced based methods REF-EVAL and
BUSCO which we describe below.
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Nucleotide sensitivity, specificity and 100%-hits

Given a reference sequence, the assemblies are aligned again the sequence using a
splice-aware aligner. The nucleotide sensitivity is defined as the proportion of refer-
ence genome which is correctly assembled in the transcriptome assembly. Similarly,
the nucleotide specificity is the proportion of assembled transcripts which is correctly
generated by the assembler. In other words, if n, is the number of nucleotide bases
in the reference transcriptome, 1, is the number of bases in the assembly and t, is
the number of bases correctly aligned to an annotated base in the assembled contig,
the nucleotide sensitivity is calculated by the following formula

t
sensitivity = = (2.1)

ny

and the nucleotide specificity is calculated by

t
specificity = — (2.2)
Ny
Further, the number of annotated transcripts which are completely overlapped by
an assembled transcript is termed as full length hits or 100%-hits. We will use these
two terms interchangeably throughout this work.

REF-EVAL

REF-EVAL is a reference based assembly evaluation algorithm which is the part of
the DETONATE package. Both, RSEM-EVAL and REF-EVAL of the DETONATE
package work with true assembly. True assembly is a set of transcript sub-sequences
which is covered by reads having at least w overlapping bases where w is a user
defined non-negative integer. In other words, if r; denotes a read i which aligns to a
transcript ¢(7;) from the position x;(t) to y;(t) in t(r;) then, a transcript sub-sequence
T is a true assembly if their exists a set of n reads R = {ry, 11, ..., 7n }:

1. Vi<n, tr)=T

2.V €R,  yi(t) —xiq(t) >w

3. T is not subsumed in any other true assembly

REF-EVAL estimates the true assembly using the following procedure:

1. The reads are aligned against a reference sequence using a short read align-
ment program. For each alignable read, REF-EVAL samples an alignment us-
ing a posterior probability that it is a true-alignment. The posterior probability
is calculated using RSEM-EVAL.

2. REF-EVAL considers the sampled alignment as true alignment and builds true
assembly according to it.

3. If the member of the paired-end reads spans multiple true assemblies, the as-
semblies are joined with the distance determined by their position in the parent
transcript.



40 Chapter 2. Algorithms for de novo transcriptomic assembly

REF-EVAL performs a bidirectional alignment of assembled transcripts against
the estimated true assemblies and calculates the nucleotide and contig level pre-
cision and recall. A Recall is the fraction of the reference element (contigs or nu-
cleotides) correctly recovered in the assembly. Precision is the fraction of the as-
sembly which correctly reflects the reference element. REF-EVAL also output the F1
score which is the harmonic mean of precision and recall.

BUSCO

Algorithms such as REF-EVAL and RSEM-EVAL measure the fraction of sequences
correctly assembled. However, they are limited to the species which are sequenced
and annotated in a database. With a vast number of species being sequenced in the
current times, the knowledge of the orthologous gene content can be used to develop
an evolutionary measure. Orthologous genes are genes in different species which is
a direct descent from a single gene in the last known common ancestor of the two
species ([Fit70]). Databases such as OrthoDB ([Wat+13]) determine the orthology of a
gene pair based on the bidirectional alignment of genes from different specie pairs.
OrthoDB has identified orthologous genes from Metazoan, Vertebrate, Arthropod,
and Fungal lineages and clustered similar genes using CD-HIT-EST ([Fu+12]). For
each of these lineages, OrthoDB has also compiled a set of genes (abbreviated BUS-
COs) which are representatives of an ortholog group and exist as a single-copy in at
least 90% of the species belonging to the phylum.

To differentiate between the software package BUSCO and the set BUSCO com-
piled by OrthoDB, we will use the term S-BUSCO from hereon for the software pack-
age. S-BUSCO aligns the assemblies against BUSCOs from OrthoDB. Based on the
alignments and a precalculated hidden Markov model profile from amino acid align-
ment, S-BUSCO determines whether an assembled transcript is a BUSCO or not. It
divides the assembled BUSCOs into three categories namely complete, fragmented
and missing. An assembled BUSCO is complete if its length is not more than a defined
threshold length. In S-BUSCO, the threshold is different for different BUSCO group
and is set to two times the standard deviation of lengths of the genes belonging to
the group. If the complete BUSCO is present as multiple copies in the assembly then
it is termed as complete and duplicated otherwise it is termed as complete and single.
BUSCOs which are recovered partially are classified as fragmented and those which
are not recovered are classified as missing.

Assemblers or assembly settings are compared in terms of number of complete
BUSCOs assembled. A setup is said to outperform another if it assembles a higher
number of complete and single BUSCOs.

2.4 Transcript quantification

Transcript quantification estimates the levels of alternate isoforms within a RNA-
seq sample. It enables the detection of differences in the levels of isoforms un-
der different conditions. This is especially useful if the aim is to detect biomark-
ers between diseased and the normal tissue sample. Various quantification soft-
wares have been proposed in recent times. Read mapping based algorithms such
as Cufflinks ([Tra+10]), RSEM ([LD11]), Kallisto ([Bra+16]), RNASkim ([ZW14]) and
salmon ([Pat+17b]) calculate the probability of a read originating from a transcript
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by maximizing the joint likelihood of read alignments based on distribution of tran-
script fragments. Cufflinks and RSEM map the reads using a short-read splice aware
aligner such as TopHat and Bowtie.

However, base-by-base alignment of reads to transcripts is time consuming pro-
cess and consumes a lot of memory. Moreover, it is not always necessary to know
the exact alignment of reads against a transcriptome. Algorithms such Kallisto,
RNASkim and Salmon use a pseudo mapping approach where instead of mapping a
read to a transcript end-to-end, they approximately determine the position of a read
within a transcript by matching k-mers from the read to k-mers from the transcript.
This results in a drastic reduction of runtime. Throughout our work, we compared
the expression estimates from assemblies generated using different assemblers and
different parameter settings. For this purpose, we used salmon which we briefly
describe below.

Salmon runs in three phases namely lightweight alignment to map the reads onto
the transcript using a k-mer matching based approach, an online phase to estimate
intial transcript expression and predict model parameters and an offline phase to
refine the expression estimates.

1. Lightweight mapping: Given an input reference transcript or the assembled
transcript set, salmon builds a suffix array and a BWT (Burrow Wheeler Trans-
for) based index. Given the reads and using the index, salmon calculates the
set of Maximal Exact Matches (MEMs) between the reads and the transcripts.
Based on the position of the MEMs with respect to the transcript, continuous
chains of MEMs are joined together to estimate an approximate position of the
read in a transcript.

2. Online phase: In the online phase, salmon uses the mapping and a variant
of bayesian inference to infer initial transcript level abundance and learn the
parameters for auxiliary models such as fragment length distribution. During
this phase, salmon also builds a set of "rich" equivalence classes over the ob-
served sequence fragments, which consists of any pair of sequence fragments
which map to the same set of transcripts. This vastly reduces the data repre-
sentation for subsequent inferences.

3. Offline phase: In the offline phase, salmon applies the standard Expectation
maximization (EM) algorithm (or a variational Bayesian inference method) on
the reduced data representation using equivalence classes to refine the initial
estimation of transcript expression until a data-dependent convergence crite-
rion is satisfied

Salmon has been shown to outperform other methods on several synthetic RNA-
seq datasets ([Pat+17b; Zha+17]). Its innovation in terms of lightweight alignment,
stochastic inference and reduced representation of datasets in terms of equivalence
classes has drastic improvement the runtime of the algorithms. However since the
mapping is only based on approximate positioning of reads on the transcript, it ac-
curacy might drop for certain cases. Hence, salmon also gives an option of giving
pre-aligned BAM files as input which directly feeds into the online phase.
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FIGURE 2.10: Workflow of the salmon. (a) An suffix array and BWT based index is generated

from the reference transcript sequence or the assembly output. (b) Using the index, reads are

mapped to the transcript set by finding the read’s Maximal Exact Matches (MEM). Chains of

sequential MEMs are joined together to estimate an approximate position of the read on the

transcript. (c) Bayesian inference model is used to estimate an initial transcript abundance.

Equivalence class is generated to reduce data representation. (d) Expectation maximization
is applied to refine the intial transcript abundance. lllustration inspired from [Pat+17b]
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2.5 Discussion

In this chapter, we introduced some of the most commonly used graph based as-
sembly algorithms. All these algorithms start from the same basic step which is to
construct a de Bruijn graph and traverse paths in the graph to generate the initial
contig set. The difference between the algorithms comes from the procedure they
use to construct the DBG and the heuristics they follow to process the contig set to
generate the final transcriptome assembly. We also saw some of the pre-processing
(error correction and normalization) and post-processing algorithms (quantification)
which makes the overall process of assembly efficient. Here, we only discussed in
detail the algorithms which is used throughout this work. However, there are many
more pre-processing and post processing algorithms which were not discussed due
to the limited scope of this thesis.

The field of transcriptome assembly is vast and constantly needs an upgrade. Al-
though there are multiple transcriptome assemblers and they have been evaluated
and compared in various studies, there is no optimal assembly tool which is suitable
for all RNA-seq datasets. There are many factors which effects the performance of
an assembly algorithm such different species, variation in sequencing protocol and
different sequencing conditions. Combining assemblers from multiple assemblers
seems to be a way forward as the disadvantages of one assembler can be negated
by the other assembler ([JKP13]). However, this process needs to be further looked
into. Most of the de novo assemblers suffer from a set of high memory require-
ments for storing the graph structure ([Zha+11; DS18]). There are constant updates
made especially in the area of compressed de Bruijn graphs ([BO16; Tur+18]) which
is applied for pan genomic analysis. Such updates needs to brought more in use for
RNA-seq data. The current algorithms are also coming up their updates to make
them memory efficient. The updates include implementation of efficient data struc-
tures to store k-mers, integration of modern graph traversal procedures and in-silico
normalization of the input data. In the coming chapters, we will introduce an al-
gorithm and discuss some methods which could further enhances the procedure of
transcriptome assembly.
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Chapter 3

In-silico read normalization using
set multi-cover optimization

Last chapter introduced some of the transcriptome assembly algorithms which are
considered to be state-of-art. We noted that, some of these algorithms require a ref-
erence transcriptome to function whereas some of them are de novo. As mentioned,
the available computational resources, especially computational memory required
by de novo assemblers, have not been able to catch-up with the high demands of
assembling the high-coverage datasets ([[DS16; DS18]). Practitioners are looking out
for different methods and data-structures to make the process of assembly space-
efficient for one or several datasets ((CLM16; Sze+17; Pel+12]). In this chapter, we
look into the concept of data-reduction, also known as data normalization, and its
effect on transcriptome assembly. Precisely, we try to answer the question "which
parts of the data are being used by the assembler". Finally, we propose a set multi-
cover based approach for normalizing a dataset that does not compromise on the
structure of the de Bruijn graph produced from the data.

3.1 Current normalization approaches are sub-optimal

The previous chapter introduced read-normalization approaches namely Diginorm,
Trinity’s in silico normalization, and Bignorm. These approaches normalize datasets
based on the average or median abundance of k-mers present in a read. For instance,
Diginorm keeps or discards a read based on the median abundance of k-mers present
in the read. Similarly, Trinity’s In Silico (TIS) normalization calculates the median
coverage of k-mers in the read and discards the read if the median is more than the
desired coverage. Bignorm, an extension of Diginorm, incorporates a cutoff on the
base quality values of reads to ensure high-quality reads in the final dataset. We
direct the reader to chapter 2 for details of the above algorithms

These k-mer based approaches have three main advantages i) reads with high re-
dundancy are removed which reduces the memory and runtime requirements of the
assembly process, ii) erroneous k-mers might get removed in the process especially
if the quality filter is applied, and iii) these approaches are fast and the memory re-
quirements are low. Hence, scientists have considered including these algorithms
as part of the pre-processing step. However, the above algorithms do not preserve
the structure of the original DBG. These algorithms also remove a high percentage
of low abundance k-mers especially from the read terminals ([Bro+12]). Some of the
lost k-mers form connections between two sections of the de Bruijn graph (DBG).
Hence, final assembly produced is short and fragmented. To be more clear in this as-
pect, let as assume that the DBG shown in fig 3.1 is generated from a sample dataset
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FIGURE 3.1: A toy de Bruijn graph with nodes representing k-mers and the number below

every node represent the abundance of corresponding k-mer in the dataset. The solid red

lines represents some of the reads which contribute k-mers forming the nodes. Read r; con-

tributes k-mers to the node A, B, C, D and E. The dashed node C and D are the k-mers which

get removed when read rq is discarded by a normalization algorithm. This results in the loss
of connectivity between node B and E.

R. The nodes of the DBG are 3-mers and the connections are labelled as 4-mers such
that the source node is the prefix of the label and the destination node is the suffix
of the label. The k-mers C (CGC) and D (GCA) have an abundance of 1 while its
surrounding k-mers A (ATC), B (TCG) and E (CAT) have k-mer abundances greater
than 20. So if we were to apply Diginorm on R with a median cut-off of 20, read
r1 € R covering nodes A, B, C, D, and E and G will be removed. This would result
in the loss of the dashed node C and D. The connection between the node B and
E would be lost which would result in a fragmented assembly. Hence, it is can be
argued that there is a value in retaining all k-mers from the original dataset.

But how can we reduce the dataset without losing any connections from the
original graph? One possible solution would be to remove duplicated reads. But
this strategy would affect the in-built error correction step of the assembler. For in-
stance, in the toy example depicted in fig. 3.2, a bubble is formed due to an error in
the read sequence. The error in the read sequence results in the formation of node E
and node F. We see that the connection labels involving true k-mers (nodes B and C)
have higher abundances as compared to the connections labels involving erroneous
k-mers (nodes E and F) (fig.3.2a). To resolve this bubble, an assembler would con-
vert node E and node F to nodes B and C respectively. In the final assembly step, a
path through A, B, C and D (depicted as the red-dashed line in the figure) would be
traversed. However, if we only keep 2 copies of each read, all the connections within
the bubble would end up with the same abundance. When all the abundances are
the same (fig 3.2b), the assembler would randomly choose a path between the two
possibilities which might end in false positive transcripts.

A similar situation might occur for tip removal. An assembler removes tips
from the graph if they have a lower abundance as compared to its neighboring
nodes. However, normalization using the above method would result in similar
abundances of k-mers in the region. This would generate contigs of shorter length.
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FIGURE 3.2: A toy de Bruijn graph (DBG) with a bubble formed due to error. The nodes

of the graph represent k-mers from the dataset and the connections are represented as

k'=(k + 1)-mers. The number above the connections represent the abundance of the k’-mer

corresponding to the connection. (a) Error controlling step of an assembly algorithm where

the path with the highest abundance is taken as the correct path (red-dashed line). (b) Mod-
ified DBG where only 2 copies of each read is kept.
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3.2 Normalization as an optimization problem

In this chapter, we propose an Optimized Read Normalization Algorithm (ORNA)
with the following two ideas:

e All the connection information from the unreduced dataset, which form the
backbone of the DBG, should be covered in the normalized dataset. Like in the
above example, if the nodes are formed by k-mers, we label the edges between
two nodes as k' = (k + 1)-mer such that the source node of the edge is the
prefix of the k’-mer and the destination node of the edge is the suffix of the k-
mer. Hence, we aim to retain all the labels, i.e, k’-mer from the original dataset.

e The relative abundance difference between adjacent connections should be
preserved.

Given a set of n reads, where each read consists of m k’-mers, we phrase normal-
ization as a set multi-cover (SMC) optimization problem on reads. We suggest an
O(nmlog(nm)) time heuristics read normalization algorithm called ORNA which
we describe below. But first, a brief introduction to set multi-cover (SMC) optimiza-
tion problem is given.

3.2.1 Set multi-cover optimization

An important class of optimization problem which deals with covering objects with
a certain set of characteristics is the set-cover optimization problem. In set-cover op-
timization problem, we are given a pair }_ = {X, S} with the set X = {x1,x2, ..., x,,}
consisting of 1 objects and set S = {s1,5s2, ..., s, } consisting of m sets. Each element
of X can be mapped to at least one set in S. We term the set X as the universe. The
cover of S, say S’ is defined as a subset of S such that the union of sets in S’ consists of
all elements of X. For instance in fig 3.3a, the elements of X are represented as black
dots and sets of S namely s1, 57, 53,54 and ss5 are represented as rectangles. We notice
that a union of s4 and s5 and a union of s1, s, and s3 would comprise of all elements
of X (fig.3.3b). Hence, the cover of S would either be S’ = {s4,s5} or S’ = {s1,52,53} .

Based on the above definitions, we can formulate the set-cover problem as: Given
apair ) = {X,S} where X is the universe and S = {s1, 5y, ...,5} is a set of m sets
such that each element of X can be mapped to a set in S, compute S’ of minimum
cardinality such that

Us=X (3.1)
ses’

The set-cover (SC) problem is an NP-HARD problem with many approximate al-
gorithms towards solving it with a different degree of completeness ([Kar72; CCS09]).
A simple approach is the classical greedy algorithm for a polynomial-time approx-
imation that iteratively chooses a set from S which contains the highest number of
uncovered elements of X and adds them to S’ ([Chv79]).

A variant of the set-cover problem is the set multi-cover (SMC) problem, where
each element x € X should occur at least ¢, distinct sets in the cover of minimum
cardinality. The number of distinct sets in which element x should occur in the cover
is termed as the demand of x. The SMC problem is formulated as computing S’ C S
of minimum cardinality such that equation 3.1 holds and for any x € X, there are at
least d(x) distinct sets in S’ containing x.
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FIGURE 3.3: A toy example of a set-cover problem. (a) The elements of the universal set X

are depicted with black dots and the sets are represented as rectangle. (b) A possible solution

to the set cover problem where sets S; and S5 (depicted as shaded boxes) cover the universe
X.

3.2.2 Normalization as a set multi-cover problem

The set multi-cover optimization problem explained above can be extended to our
normalization problem. We consider a dataset R = {r1,72,...,1,} as a set of n reads.
Note, that a dataset might contain duplicated reads, i.e, two reads might have the
same sequence. Each read is a sequence of DNA bases of fixed length 2 and would
consist of a set of k-mers. As explained in the previous chapters, a de Bruijn graph is
constructed using k-mers as nodes and two nodes are connected if they have a k — 1-
overlap. We label each edge with a unique label ! which is equal to the k' = (k + 1)-
mer corresponding to the edge. The source node is a prefix of I and the destination
node is a suffix of I. Conceptually, each label is generated from the reads in the
dataset. Hence, each read r € R can be considered as a set of p = a — k labels, i.e,
r = {l,l,..1,} where l; is the k’-mer obtained from the ith position of the read. The
union of all the reads is equivalent to a set of all the labels present in the dataset. In-
tuitively, a k’-mer is composed of two k-mers (from the source and destination node).
So, when a k’-mer/label is retained, the corresponding k-mers are also retained.

The objective of a normalization algorithm is to reduce the data as much as pos-
sible without having a significant impact on the quality of the assembly produced.
As explained earlier, apart from keeping all the k’-mers from the original dataset, it
is also important to preserve the relative abundance information of k’-mers. With
these points in mind, we formulate the normalization problem as a slight variation
of the set multi-cover statement as follows:

Instance: A dataset R of n reads, a set of labels L obtained from R such that
U r = L and a demand ¢, for every [ € L. Since, we aim to retain all the labels from
reR
R, t; is always greater than 1.

Valid solutions: R’ C Rsuch that |J r = Land VI € L,abund(l,R") > t; where
rer’
abund(l,R") denotes the number of occurrences of I in R’. A read r; € R’ can have
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multiple instances of a label I.

Objective:
argmin |R'| (3.2)
R
There are multiple approaches to solve the SMC problem. In a classical greedy
approach, we start from a read which has the maximum number of uncovered labels
(k'-mers) and iteratively go through the dataset R. The number of uncovered labels
would change after every iteration. Hence, a data structure has to be maintained
which would contain the reads in a decreasing order starting from the one which has
the highest number of uncovered elements. This data structure has to be updated
after every iteration. Given n reads each having m labels, the entire procedure would
require O (n?mlog(nm)) runtime which might not be efficient for large datasets.

3.2.3 Optimized Read Normalization Algorithm (ORNA)

Here, we propose a slightly different approach of the greedy algorithm. We summa-
rize the approach in the form of an algorithm (algorithm 1). A read set R consist-
ing of n reads and a k-mer size k are the inputs of the algorithm. As mentioned in
the previous section, a read is a set of p labels. Hence, we first extract all labels or
k' = (k + 1)-mers from the reads and store them with their abundance information
using the BuildBloom(R k') function (line 3) in a data structure L. We can consider L as
the universe as it contains all labels from the original dataset. It is very important to
store them efficiently as it can blow up the memory required quite easily especially
for huge datasets. With this point in mind, we store the labels in bloom-filters imple-
mented using the GATB library ([CR13; Dre+14]). GATB uses the BBHash algorithm
for building a minimal perfect hash function after counting the k-mers with the DSK al-
gorithm ([RLC13]). For label counting and storing, ORNA requires O(nmlog(nm))
time. We maintain an array NodeCounter for each label in the bloom filter which is
initialized to zero (line 5). Entries in the array depict the number of times the label
has been encountered during the iterations. This operation requires O (nm) time.

The dataset is iterated in the order of occurrence in the input file. For each read,
we extract all the labels in the read using the ObtainKmers(r, k') function and store it
in a temporary array L’ (line 8). For each label I € L', we calculate the corresponding
demand using ObtainDemand function (line 11). This demand value corresponds
to the number of times / should appear in the normalized dataset. We check the
corresponding entry for / in our NodeCounter array and increment the value if the
current value is less than the demand (line 12-15). We accept a read and transfer
it to the pool of normalized dataset R, if it contains at least one label for which
the corresponding entry in the NodeCounter array is incremented (line 17-19). If no
such case is found, we reject the read. The entire procedure of iterating the data and
selecting the reads for the normalized dataset (line 7-20) requires O(nm) time. The
overall time complexity of the algorithm is O(nmlog(nm)).

An important parameter for ORNA is the demand value ¢. This can be set to
a fixed value, which means that all labels would have the same demand. But as
mentioned earlier, it is important to maintain the relative difference in abundances
between k-mers for the sake of error correction. We lose the relative difference in
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Algorithm 1 Set multi-cover based approach for read normalization

1: Input: Reads R, k-mer size k
2. kK =k +1

3: L = BuildBloom(R,k’)

4: b = NumberOfkmers(L)

5: NodeCounter[1...b]<-0
6:
7:
8

9

Rout - (P
forallr € R do
L' = ObtainKmer(r,k’, L) >L' CL
flag=0
10: foralll/ € L' do
11: t=ObtainDemand(!, R)
12: if NodeCounter(l) < t then
13: NodeCounter(!) = NodeCounter(l) + 1
14: flag=1
15: end if

16: end for
17: if flag == 1 then

18: Rout = Rout U
19: end if
20: end for

21: Output: Reads R,

abundance if all the labels have a same demand. Therefore, we set the demand of
each label equal to the log of the abundance of the label in R.

VI € L, t; = logy(abund(l, R)), (3.3)

where abund(l, R) is the abundance of I in R. L is the universe consisting of all
labels from the original dataset. A read r; € R’ can have multiple instances of /. The
log function used in the formulation has two advantages: 1) the labels having a high
abundance in R would be reduced significantly in R" whereas the labels having low
abundance in R would have a similar number of occurrences in R’ and 2) the relative
abundance differences between adjacent k-mers would be maintained. The level of
the demand can be varied by varying the base (b) of the logarithm function which
would in turn vary the level of reduction.

3.2.4 Incorporating quality and k-mer abundance information into ORNA

ORNA retains all k-mers from the original dataset which includes true as well as
erroneous k-mers. One way to identify erroneous base, as done in Bignorm, is to use
Phred score. A Phred score is inversely proportional to the probability of the base
being incorrectly called by the sequencer. So a low Phred score means that there is
a high chance that the base is most likely an error. In a FASTQ file, Phred scores are
encoded as ASCII characters along with the read sequence. Another indication that
a read contains erroneous bases is the distribution of k-mer abundance along the
read sequence. The k-mers containing erroneous bases generally have lower abun-
dance as compared to its neighbouring k-mers. This information was also used in
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Diginorm and TIS.

ORNA iterates reads in a file in the same order by which it was generated by the
sequencer. This might result in some high-quality reads, which are towards the end
of the dataset, being left out of the final dataset. To avoid this situation, we propose
two separate extensions of ORNA’s SMC namely ORNA-Q and ORNA-K. ORNA-Q
and ORNA-K assign a weight to each read of the input dataset based on either the
Phred quality of bases in the read (ORNA-Q) or abundances of k-mers present in the
read (ORNA-K). We consider the sum of the read-weights belonging to the original
dataset R as the weight of the dataset W(R). We obtain a normalized dataset R’
from R, which fulfills the constraints of ORNA (equation 3.2) and at the same time,
minimizes the overall weight W(R’) of R’. The weight of a read is set in one of the
following two ways:

Base quality aware formulation: For a given read r; of length s, let q{ represent
the Phred score of r; at position j. The read quality score gr is then defined as:

qri = Z 7. (3.4)
Then, the phred quality weight qw; can be defined as the inverse of read quality score:

1
qu; = % . (3.5)

Label abundance aware formulation: For a given read r; of length s, let l{ be label

(k" = (k + 1)-mer) starting at position j in r;. The abundance of the label lg in the

.. . ' —k
original dataset is represented as a?. Leta; = (a?, u}, ...afs )

of labels in r;. We define the read abundance score kr; as:

) be the set of abundances

kr; = median(a;) . (3.6)
We define the label abundance weight kw; as

1
kw; = —. .7
Based on the above definitions of the weights, we formulate the extensions of
ORNA'’s SMC as a weighted set multi-cover problem (WSMC):

Instance: A dataset R of n reads, a set of (k + 1)-mers (defined as labels) L ob-

tained from R such that |J » = L and a threshold t; > 1 for every | € L.
reR

Valid solutions: R* C Rsuch that |J r = L, VI € L,abund(l,R") > t; where
reR’
abund(l,) denotes the number of occurrences of I in R" and t; = log;, (abund(l,)).

Objective: argmin W(R’) (3.8)
R/

In other words, we want to pick a subset R’ from R that:

e retains all k-mers from the original dataset R a certain number of times (f;)
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e has the minimal read weight W(R’)

As the WSMC problem is a generalization of SMC, it is also considered as NP-
hard ([Var10]).

3.2.5 ORNA-Q and ORNA-K

Currently, the weighted set multi-cover problem (WSMC) is an area of active re-
search. The classical greedy approach generally gives preference to sets having the
maximum number of active elements and minimum weights. As in the case of SMC,
a data structure has to be maintained to keep a track of sets having the maximum
number of inactive elements and minimum weight. This data structure has to be
updated after every iteration which makes the runtime of the whole process in poly-
nomial order concerning the number of sets. Hence, for our scenario where we con-
sider each read as a set, this approach is infeasible especially for large datasets.

Again, we follow a simplified version of the greedy algorithm where we reorder
the reads only once using a counting sort based strategy. We use two approaches to
keep track of weights in the dataset:

Phred quality based weight (ORNA-Q): Given a read dataset R with n reads
(each of length s) as input, we first calculate the read quality score gr; for a read i
using equation 3.4. Let the value of the largest possible read quality score be de-
noted as g7,4.x. Hence, the value of gqr; would range from 0 to gr,,,,. We initiate an
array T of size gr,ax Which is used to record the number of times a quality score is
encountered in R.

Label abundance weight (ORNA-K): Given a read dataset R consisting of n
reads (each of length s), we first calculate read abundance score kr; for each read
r; using the equation 3.6. We divide the reads into d bins of size b based on their read
abundance score. Similar to the Phred quality based weights, we maintain an array
T of size d such that each index i in T represents a bin. T[i] then records the number
of elements in bin i. For instance, if the size of each bin is 1000, then say T[10] con-
tains the number of reads having label abundance weight between 9000 and 10000.

We proceed by performing a counting sorting step to sort reads by their read
weights ([SC54]). Briefly, we create an array B of size n to store the ordered list of
reads. We divide this array into f chunks where f is the number of non-zero entries
in T. We iterate over reads in dataset R and calculate the read weight (g7; or kr;) of
each read r; € R. We calculate the sorted position of 7; in B using T and store it to the
corresponding chunk. We apply algorithm 1 to the sorted list of reads. In ORNA-Q,
the input set of reads is stored in the order of decreasing Phred scores. Since, the read
weight is inversely proportional to the quality score (equation 3.5), the algorithm
will process a read which has the lowest weight in each iteration. Hence, there is
no need to change the order of the reads after every iterations. Similarly, in ORNA-
K, each iteration would process a read which has the lowest or close to the lowest
weight, since the reads are sorted into a bin based on label abundances. We assume
that the bin-size in ORNA-K is small as compared to the number of reads. Hence,
we ignore the ordering of reads within the bin.
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3.2.6 Normalization of paired-end data:

In the process of assembly, paired-end information is used to extend contigs as it
can resolve longer repeats ([Mas+12]). Hence, it is important to retain the paired-
end connection while normalizing the dataset. In ORNA, we do not care about the
ordering of the reads in the datasets. In ORNA-Q and ORNA-K, we calculate pair-
score by taking the sum of individual scores of the reads belonging to a pair. We
calculate pair-weight, which is the inverse of the pair-score. We proceed by sorting
the pairs in increasing order of pair-weights. The remaining steps are the same for
ORNA, ORNA-Q, and ORNA-K. Briefly, we iterate the entire dataset once and check
the acceptability of each read in the pair using algorithm 1. A pair is accepted if
and only if both the reads satisfy the accepting conditions. In other words, both
the reads should have at least one label which has not reached its demand in the
normalized dataset. If only one read of the pair satisfies the condition, then the pair
is put into a pool named Marked. The pair is rejected if both the reads of the pair fail
the conditions. After the complete iteration of the dataset, there might still be labels
that are not covered. Hence in the second stage, we iterate through the Marked pool
again. We accept a pair from the pool if there is at least one read in the pair which
fulfills the acceptance conditions.

3.3 Data retrieval and normalization

For the analysis of ORNA, we used seven different datasets. We downloaded two
datasets from the SRA run browser namely - Brain ([BM+12], SRR332171) which
consisted of 147M paired-end reads and hESC ([Au+13], SRR1020625) which con-
sisted of 142M paired-end reads. Both the datasets consisted of 50bps long reads.
The datasets were error corrected using SEECER version 0.2 ([Le+13], with default
parameters). Further, we generated an ENCODE dataset of 883M reads by con-
catenating five individual ENCODE datasets: 101M paired-end reads from hESC
(GSM758573), 192M paired-end reads from AG04450 (GSM765396), 207M paired-
end reads from GM12878 (GSM758572), 1656M paired-end reads from A549 (GSM767854)
and 216M paired-end reads from HeLa (GSM767847).

For the analysis of ORNA-Q and ORNA-K, we reused the Brain dataset from
above. The hESC dataset from above didnt have the proper Phred score informa-
tion. Hence, we used 216M paired-end reads from the HeLa cell line (SRR317049).
Reads error corrected by SEECER lose their quality score information. As far as we
investigated, there were no methods to map the quality values from the original read
to it corresponding error corrected version. Hence, we used the uncorrected version
of both datasets.

Normalization: We normalized the error corrected Brain and hESC data, down-
loaded from the SRA browser, using ORNA, Diginorm and Trinity’s In-Silico (TIS)
normalization. For the analysis of ORNA-Q and ORNA-K, we normalized uncor-
rected Brain and HeLa datasets using ORNA-Q, ORNA-K, Diginorm, and Bignorm.

Since the heuristics of ORNA, ORNA-Q and ORNA-K are different from those
of Diginorm, TIS and Bignorm, it is unfair to compare the algorithms using just one
constant parameter setting. Hence, we normalized the dataset to different levels of
reduction and compared the individual assemblies generated from them. In ORNA,
ORNA-Q, and ORNA-K, we can control the level of reduction by tuning logarithm
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TABLE 3.1: Parameters used for different normalization algorithms. ORNA requires base b of the
logarithm function. Diginorm and TIS requires a coverage cut-off value c. The first column depicts
the label (k’-mer size) used for the normalization algorithms. The second column contains the datasets
used for the algorithms. A star next to the value indicates the default coverage/base of the algorithm.

k'-mer | Dataset ORNA(b) Diginorm(c) TIS(c)
SRR332171 | (1.3,1.5,1.7%,3,5,7,10) | (5,10%15,20,25,30) (5,10,15,20,25,30)

22 SRR1020625 | (1.3,1.5,1.7%,3,5,7,10) | (15,20,25,30,35,45,50,55,60,65,70) | (30,35,45,50%,55,60,65,70)
ENCODE 5 10 10
SRR332171 | (1.3,1.5,1.7%,3,5,7,9) | (5,10*15,20,25,30) (5,10,15,20,25,30)

26 (1.7%,3,5,7,9,15,25 (1,5,10%,20,30,40,50,60,70,80) (5,10,20,30,40,50%,
SRR1020625 ,35,100,200,300) 60,70,80,90,100,110)

base value (b). Similarly, in Diginorm and TIS, the level is controlled by the cover-
age cut-off c. We varied these parameters to obtain different levels of reduction. For
Bignorm, we varied the quality cutoff parameter to get different levels of reduction.
We report these parameter settings used for comparisons of ORNA in table 3.1 and
the values used for the comparisons of ORNA-Q and ORNA-K in table 3.2.

TABLE 3.2: Parameters used for different normalization algorithms. ORNA-Q, ORNA-K
and ORNA requires base b of the logarithm function. Diginorm and Bignorm requires a
coverage cut-off value c and quality score cutoff g respectively. The first column contains the
datasets used for the algorithms. A star next to the value indicates the default coverage/base

of the algorithm.
Dataset ORNA-K(b) | ORNA-Q(b) ORNA(b) Diginorm(c) Bignorm(q)
SRR332171 | (1.7%,3,5,7,9) (1.31.7%,35,711) | (1.3,1.7%,3,5,7,9) | (5,10%15,20,25) | (5,10,15,20%,25)
SRR317049 | (1.3,1.7%,3,5,7) | (1.3,1.5,5,7,9) (1.3,1.5,2,35,7,9) | (5,10%15,20,25) | (1,5,10,15,20%)

3.4 Transcriptome assembly and evaluation

The idea of ORNA stems from the de Bruijn graph (DBG) based assemblers. Hence,
we wanted to analyze the quality of the assemblies produced from the normal-
ized datasets. For this, we applied three DBG based assemblers namely - Oases-
M ([Sch+12b]), TransABySS ([Rob+10]) and Trinity ([Gra+11]) on our reduced datasets.
For the analysis of ORNA-Q and ORNA-K, we normalized the uncorrected Brain
and HeLa dataset and assembled it using TransABySS.

The assemblers were executed in their default settings except for the k-mer size.
We ran the multi k-mer based assembler Oases-M with a k-mer size ranging from
21 to 49 having an increment of 2. We merged the assemblies generated from in-
dividual k-mer sizes using the Oases merge script. We ran TransABySS a single
k-mer size of 21. Trinity uses k-mer size of 21 for all its assembly which we didn’t
change. By default, Trinity runs its normalization on the data before assembling
them. We disabled this option to get the correct estimate of the assembly quality.
The assembled transcripts were evaluated using the REF-EVAL program of the Det-
onate package ([Li+14], version 1.11). REF-EVAL quantifies the assembly quality
in terms of nucleotide level precision, recall and F1 score which is the harmonic
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mean of precision and recall. Nucleotide F1 score evaluates an assembly by com-
paring its coverage of nucleotides with the reference. However, it does not mea-
sure the assembly quality. To achieve the assembly contiguity, we aligned the as-
sembled transcripts against a reference genome and matching the overlaps against
ENSEMBL transcripts ([Cun+15], GRCh38). We obtained the number of ENSEMBL
transcripts which overlapped completely at least one distinctly assembled transcript
and termed it as 100%-hit transcript. The number of 100%-hit transcripts obtained
from an unreduced dataset was considered as complete. We evaluated the perfor-
mance of a normalization algorithm in terms of % of complete. For example, if an
unreduced dataset result in an assembly of 2000 100%-hit transcripts and assem-
bling a normalized dataset produces 1000 100%-hit transcripts, then the normalized
data has achieved 50% of complete. When comparing normalization algorithm, we
consider an algorithm A to be better than B if the % of complete of A is higher than B.

3.4.1 ENCODE dataset analysis

For the analysis of combined datset (see section: 3.3), we normalize the dataset us-
ing ORNA and assembled them using TransABySS with k-mer size=21. We term the
generated assembly as combined assembly. The goal of the analysis was to obtain tran-
scripts which would not have been assembled from the individual dataset. But how
can we determine whether an assembled transcripts is only possible when multiple
datasets are combined? For this, we used a technique introduced by [DS16]. We
assembled the individual datasets (using TranABySS) and clustered the assemblies
with the combined assembly. For clustering, we used CD-HIT-EST ([Fu+12]) with
the sequence identity of 99%. If a transcript in the combined assembly is also assem-
bled by any of the individual datasets, then it would be clustered with the sequences
assembled by that dataset. Hence, we obtained all clusters which only contained se-
quences from the combined assembly and termed them as missed clusters. We termed
the longest sequence from the cluster as missed transcript. All the missed transcripts
were then compared against annotations from ENSEMBL ([Cun+15], GRCh38) and
GENCODE ([Har+12], version 17).

3.4.2 Correlation analysis

To obtain the gene-expression estimates from assemblies, we used Salmon ([Pat+17b],
v0.8.2) with k-mer size set to 21. Salmon provides transcript level quantification in
terms of Transcripts Per Million (TPM). To obtain the gene-level quantification, we
summed up the TPM values for all transcripts belonging to a gene. We calculated the
Spearman correlation between the gene-expression estimates from reduced datasets
against estimates from the original datasets.

3.5 Results

3.5.1 ORNA retains all k-mers and their relative difference in abundance
from the original dataset

An important parameter for any assembler is its k-mer size. As previously men-
tioned, a small k-mer size would assemble transcripts from low expressed regions of
the transcriptome. However, a k-mer size too small would leave the repeat regions
unresolved. Also, the assembly would produce a high percentage of false positives
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FIGURE 3.4: Information retained from the original dataset in the reduced datasets. (a)

percentage of unique k-mers retained (y-axis) from the original dataset compared to the level

of reduction by varying the normalization algorithm parameters (x-axis). Spearman’s rank

correlation values for gene-level TPM values obtained from the assembly of unreduced and
reduced (b) Brain dataset and (c) hESC dataset

as there would be too many false connections in the DBG ([Sch+12b]). On the other
hand, a k-mer size too high would result in a fragmented assembly. For the assembly
of our reads having a read length of 50bps, we chose a k-mer size of 21 which was
previously shown to produce a high percentage of correctly assembled transcripts
( [DS16]) for our tested datasets. The nodes of the DBG thus generated by the as-
semblers would have a length 21 and the label (k’-mer) of the edge connecting two
nodes would have a size of 22. Since the aim of our algorithms is to retain all the la-
bels from the original dataset, we first obtained all the 22-mers from the original and
reduced datasets. Figure 3.4a shows the retention of all 22-mers in reduced Brain
datasets obtained from various normalization algorithms. We see that for any level
of reduction, ORNA retains all the 22-mers from the original dataset. Diginorm loses
nearly 2% and TIS loses nearly 8% of the 22-mers from the original dataset. ORNA
treats the sets of all 22-mers present in the original data as the universe. It then se-
lects the minimum number of reads, which is required to cover all the elements of
the universe a certain number of times. Hence, all 22-mers or edge labels from the
original dataset are retained.

Another important goal of ORNA is to maintain the relative difference in abun-
dance between k-mers. The in-built error correction step of the assembler uses the
relative difference in abundances to resolve bubbles and tips. We maintain the rel-
ative difference by keeping different abundance thresholds for each label or k’-mer
present in the dataset. To analyze the effect, we compared the expression estimates
from ORNA reduced datasets against the estimates produced from Diginorm and
TIS reduced dataset. Figure 3.4b and c show the correlation between TPM values
obtained from reduced datasets against the TPM values obtained from the original
data. We see that the spearman correlation values for ORNA are always similar or
higher than the values obtained using Diginorm and TIS reduced datasets. This is
because ORNA can produce more number of correct transcripts as (a) it retains all
the k-mers from the original dataset and (b) it maintain the relative difference in
abundances between k-mers better than Diginorm and TIS.
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3.5.2 ORNA produce better quality assemblies

For accessing the quality of the transcripts produced from the normalized datasets,
we used REF-EVAL from the Detonate package ([Li+14]) to calculate nucleotide pre-
cision, recall and F1 score. Further, we calculated the number of 100%-hit transcripts
from all the assemblies. We evaluate the performance of a normalization algorithm
in terms of % of complete where complete is the number of 100%-hit transcripts ob-
tained from unreduced dataset (see section 3.4). We compare the performance of
ORNA against TIS and Diginorm using a k-mer parameter value of 22 with assem-
blies generated using Oases and TransABySS on Brain and hESC dataset. For as-
sembly using Trinity, we use a k-mer parameter value of 26 as trinity use only k-mer
size=25 to construct its DBG. It was our intuition that the three algorithms would
behave differently with respect to the number of reads reduced in a data dependant
manner since the heuristics followed by the algorithms are different. Hence, we var-
ied the parameters of all algorithm and obtained various normalized datasets.

We assembled these normalized datasets using Oases, Trinity and TransABySS.
As shown in fig 3.5 from brain dataset and from fig 3.6 for hESC dataset, with higher
reduction values, the nucleotide recall obtained from the corresponding assemblies
reduced for all three assemblers especially at higher levels of reduction. Nucleotide
recall is calculated by dividing the number of correct nucleotides assembled by the
number of total nucleotides present in the reference. At higher levels of reduction,
the number of transcripts assembled reduces which, in turn, reduces the correctly
assembled nucleotides. As a result, the nucleotide recall reduces. But this drop is
negated with the increase in nucleotide precision making the overall F1-score for all
assemblies relatively stable as seen in table 3.3. In most cases, assemblies generated
from ORNA datasets had slightly better F1 score as compared to other normalization
algorithms except for Oases assemblies of the Brain datasets.

TABLE 3.3: Comparison of average F1 scores using REF-EVAL. Each entry in a cell denotes the aver-

age of F1 scores obtained by assembling Brain and hESC datasets normalized by the three algorithms

(ORNA, Diginorm and TIS) in the rows. Averages are taken over results obtained with several pa-

rameters for each algorithm. The F1 score obtained for the original (unreduced) dataset is shown in

the first row. Columns denote the assembler used. The highest mean obtained by any normalization
algorithm is underlined.

Method Brain hESC
Oases | TransABySS | Trinity | Oases | TransABySS | Trinity
unreduced | 0.402 0.441 0414 | 0.304 0.577 0.621
ORNA 0.404 0.440 0.421 | 0.302 0.582 0.616
Diginorm | 0.411 0.418 0.419 | 0.280 0.578 0.601
TIS 0.419 0.437 0413 | 0.283 0.579 0.599

However, the F1 score does not capture assembly contiguity and hence we inves-
tigated the number of full-length assemblies (100%-hits). In fig 3.8, we compare the
amount of read reduction (x-axis) against the assembly performance as % of complete
(y-axis). In general, the quality of the assembly remains at lower levels of reduc-
tion (50%-70%) but starts degrading at a higher percentage of reduction (70%-90%).
However, for Brain datasets, assemblies generated from ORNA datasets perform
better as compared to assemblies generated from Diginorm and TIS at a higher per-
centage of reduction. In other words, assembly of ORNA reduced datasets retains
equally or more 100%-hit transcripts for all. In the case of hESC, we see similar
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different parametrization of the algorithms. The amount of data reduction (x-axis) is compared against
the precision/recall measured from REF-EVAL (y-axis).
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FIGURE 3.7: Comparison of assemblies generated from ORNA, Diginorm and TIS reduced

datasets. Each point on a line corresponds to a different parameters of the algorithms. The

amount of data reduction (x-axis) is compared against the assembly performance measured

as % of complete (y-axis, see text). (a) and (d) represent TransABySS assemblies (k=21) applied

on normalized Brain and hESC data, respectively. (b) and (e) represent Trinity assemblies

(k=25) and (c) and (f) represent Oases multi k-mer assemblies applied on normalized Brain
and hESC data, respectively.

behavior in assemblies generated using TransABySS. However, in the case of Trin-
ity assemblies, some of the reduced datasets gave more 100%-hits than the original
assemblies with TIS performing slightly better than the rest. For hESC assemblies
generated using Oases, we noticed that TIS was performing much better with Dig-
inorm and ORNA performing similar to each other. The difference in performance
between Oases, Trinity and TransABySS assemblies from the hESC dataset under-
lines that data reduction shows varying effects on assembly contiguity depending
on the assembler used.

For evaluating ORNA in paired-end mode, we normalized Brain dataset using
ORNA, TIS, and Diginorm. We ran all the normalization algorithms in paired-end
mode. We assembled the normalized dataset using TransABySS. We noticed a sim-
ilar behavior to the single-end mode. At a higher percentage of reduction ORNA
reduced datasets produced more number of 100%-hit transcripts as compared to TIS
and Diginorm reduced datasets (fig. 3.8).
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(x-axis) is compared against the assembly performance measured as % of complete (y-axis,
see text).

3.5.3 Finding novel transcripts by joint normalization of large datasets

Detection of novel transcripts from assemblies has been an active area of interest for
many researchers. Practitioners generally combine multiple assemblies and either
align them to a reference genome or calculate the protein-coding potentials of the
assemblies ([Gil13; CJ16; Ven+18]). Here, we propose an alternative method for the
detection of novel transcripts where we combine multiple RNA-seq datasets and as-
semble them. We use five diverse datasets to form an ENCODE dataset of 883M
reads (see section 3.3). Assembling the ENCODE dataset required 357GB of RAM
and 173hrs of runtime to produce the final assembly. Hence, we first normalized the
ENCODE dataset using ORNA in single-end mode and assembled them. The run-
time and memory requirements for the process of assembly got reduced by nearly
90%. We obtained the missed transcripts (see section 3.4). We aligned the missed
transcripts against a reference genome and compared the alignment with annotated
Ensembl and GENCODE annotation to obtained the bio-types of the missed tran-
scripts. We were able to successfully assemble 381 protein-coding transcripts which
would not have been assembled using the individual datasets. Along with these,
the set of missed transcripts consisted of 22 long non-coding RNA’s, 49 non-coding
RNAs and 15 pseudogenes which could be investigated further.

3.5.4 Adding quality and k-mer abundance information enhances the nor-
malization

As mentioned above, ORNA iterates over datasets in the order created by the se-
quencer. An important read which is towards the end of the dataset might get
skipped if all the labels present in the reads are covered from the reads before. But
how can we know if a read is important without assembling the whole dataset first?
For this, we came up with two scores of a read r; namely (a) read quality score which
is set by taking the sum of Phred scores of all the bases (3.4) and (b) read abundance
score which is set by taking the median of abundances of all labels present in r; (3.6).
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FIGURE 3.9: Average read quality score (a) and average read abundance score (b) distribu-

tion in Brain RNA-seq data. The position-wise distribution of average read quality score

(c) and average read abundance score (d) in the brain dataset. Reads in both datasets were

divided into bins of 1 million (x-axis). These bins were then considered as partial datasets
and the scores (Qy and K, ) was calculated for each bin (y-axis).

We assign a weight to r; by taking the inverse of the scores (eq. 3.5 and 3.7). Fig-
ure 3.9a,b shows the distribution of both types of scores in the uncorrected Brain
dataset. We see that there is a large percentage of low quality and low abundant
reads in the dataset which might never be used in the process of assembly. Next,
we wanted to see at which position do these reads occur in the original dataset. For
this, we divided the read set into bins of 1 million according to their position in the
data file (in fastq format). For each bin, we calculated the average quality score (Q,)
and the average read abundance score (Q,) where x denotes a bin of size 1 million.
Figure 3.9¢,d show the position-wise distribution of average read quality scores and
average read abundance scores in the Brain RNA-seq dataset. In both cases, we
see that there is a decent percentage of high scoring reads towards the end of the
dataset which might get skipped during the process of normalization using ORNA.
To ensure that high scoring reads are given priority over others in the process of nor-
malization, we propose two extensions of ORNA namely ORNA-Q and ORNA-K.
They assign weights to each read which is inversely proportional to the read-quality
score or read-abundance score. ORNA-Q/-K retains a minimum number of reads
required to cover all k-mers from the original dataset a certain number of times. At
the same time, it minimizes the overall weight of the normalized dataset. We achieve
this by reordering the input set of reads according to read weights and proceed with
the read normalization on the ordered set as input.

Read ordering in ORNA-Q/-K is better than random ordering

To check the effect of ordering on normalization, we randomized the ordering of
reads in the Brain dataset to come up with four different orderings (order 1-4). We
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FIGURE 3.10: Comparison of (a) ORNA-Q and (b)ORNA-K applied on original Brain dataset against
ORNA applied on four random orders (Order 1-4) of Brain dataset. The y-axis denotes the average
read score obtained from normalization of different ordering (x-axis).

applied ORNA, in its default settings, to all the orders. Simultaneously, we applied
ORNA-Q and ORNA-K on the original ordering of the Brain dataset. Figure 3.10
compares the application of ORNA on the random orderings against the perfor-
mance of ORNA-Q/-K in terms of average read score of the normalized dataset.
We observed that both ORNA-Q and ORNA-K improve the average read score in
the reduced datasets as compared to all other orderings. This suggests the fact that
ORNA-Q/-K reorders the original dataset correctly and selects more high-scoring
reads as compared to ORNA on the random ordering.

ORNA-Q/-K improves assembly performance

Next, we wanted to check the effect of ORNA-Q/-K on the assembly quality. To
obtain various levels of reduction, we normalized the Brain and HeLa dataset using
ORNA-Q and ORNA-K with different parameter settings. Simultaneously, we nor-
malized the two datasets using ORNA, Diginorm, and base-quality aware normal-
ization software Bignorm. Again, we used different parameters to achieve different
levels of reduction. We assembled the normalized datasets using TransABySS. We
used REF-EVAL to evaluate the resultant assemblies and obtained nucleotide pre-
cision, recall, and F1 score. Table 3.4 lists the average precision, recall and F1 score
across all normalized datasets for the Brain and HeLa dataset. We observe that the
F1 score, which is the harmonic mean of nucleotide precision and recall, behave
more or less similar and stable across all the algorithms. We see ORNA-Q perform-
ing slightly better in the case of Brain and ORNA-K performing slightly better in the
case of HeLa. It is also interesting to see that for the datasets, ORNA-Q and ORNA-
K perform better than ORNA. This might be because both ORNA-Q/-K retain more
high scoring reads which are important for the assembler. We also noticed this in
fig 3.10.

To measure assembly contiguity, we obtained the number of 100%-hits from each
assembly. We compared the performance of ORNA-Q/-K against the performance
of ORNA, Diginorm, and Bignorm. Figure 3.11 compares the number of reads re-
duced (x-axis) against % of complete (y-axis) for the Brain and HeLa datasets, re-
spectively. We observe that ORNA, ORNA-Q, and ORNA-K perform better than
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TABLE 3.4: Comparison of mean F1 scores, nucleotide precision, and nucleotide recall. Brain
and HeLa datasets normalized by the five algorithms (ORNA, ORNA-Q/-K, Diginorm, and
Bignorm) were assembled using TransABySS. Several normalized datasets were obtained by
varying parameters for each algorithm. Each of these datasets was assembled separately.
All the assemblies were then evaluated using REF-EVAL. Averages were taken over results
obtained from different assemblies. The mean F1, precision and recall scores obtained for
the original (unreduced) dataset is shown in the first column. The highest mean obtained by
any normalization algorithm is underlined.

Dataset | measure | Unreduced | ORNA-K | ORNA-Q | ORNA | Diginorm | Bignorm
Brain Fyscore 0.442 0.441 0.442 0.438 0.441 0.426
HeLa Fiscore 0.280 0.280 0.279 0.278 0.273 0.272
Brain Recall 0.347 0.347 0.350 0.345 0.349 0.331
Hela Recall 0.354 0.355 0.360 0.359 0.372 0.369
Brain | Precision 0.610 0.608 0.603 0.603 0.598 0.635
HeLa | Precision 0.232 0.232 0.227 0.227 0.214 0.219

Diginorm and Bignorm in general. This is mainly due to the retention of all k-mers
from the original dataset which is not ensured in Diginorm and Bignorm. For Brain
dataset, at a higher percentage of reduction (>75%) both, ORNA-Q and ORNA-K,
outperform ORNA. A reason for this might be the fact that at a higher percentage of
reduction the three algorithms require fewer reads to cover all labels from the origi-
nal dataset. Since ORNA processes read in an order in which it is present in the input
file, it selects the low-scoring reads which are in abundant towards the start of the
file (fig 3.9). However, both ORNA-Q and ORNA-K reorder the reads according to
the read score. Hence, they only select high scoring reads to fulfill the optimization
conditions. At the lower percentage of reduction (55% - 75%) all the three algorithms
retain similar reads and hence show similar performance. For HelLa, the perfor-
mance of ORNA-Q and ORNA-K are only slightly better than ORNA. This might
be again attributed to the ordering of reads in the original dataset. We found that
unlike Brain, there is a significant percentage of high scoring reads at the start of the
HeLa dataset. Hence, the event at a higher rate of reduction, ORNA’s performance is
comparable with the performance of ORNA-Q and ORNA-K. This supports the idea
that the position of high-quality reads in the dataset influences in-silico normaliza-
tion algorithms.

3.5.5 Comparison of resource requirements

As mentioned in section 3.2.3, ORNA retrieves, and stores all the k-mers from the
original datasets in bloom filters which makes it runtime and memory efficient. In ta-
ble 3.5, we show the comparison of memory and runtime required by ORNA against
those required by Diginorm and TIS for Brain, hESC and the ENCODE dataset. We
chose the normalized datasets which had similar read-counts. All the algorithms
were run on a machine with 16GB register memory (RDIMM) and 1.5TB RAM. In
general, ORNA requires less than half the memory and runtime as compared to
TIS for both single and multi-threaded version. In Diginorm, a user can control
the memory consumed by tuning the number of hashes and the size of each hash.
A smaller number of hashes would reduce the runtime of Diginorm. However, it
would also increase the probability of false-positives k-mers. A higher number of
hashes would increase the runtime of Diginorm. For Diginorm, we tested two differ-
ent parametrizations, denoted as Diginorm? and Diginorm®. The first uses less and
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FIGURE 3.11: Comparison of assemblies generated from ORNA-Q, ORNA-K, ORNA, Dig-
inorm and Bignorm reduced datasets. Each point on a line corresponds to a different pa-
rameters of the algorithms. The amount of data reduction (x-axis) is compared against the
assembly performance measured as % of complete (y-axis, see text). (a) and (b) represent
TransABySS assemblies (k=21) applied on normalized Brain and HeLa data.

the second a similar amount of memory compared to ORNA. In both cases, we see
that ORNA has an advantage of runtime over Diginorm. While Diginorm’s memory
can be flexibly set, we note that ORNA uses much less space than the assembly of
the reduced dataset itself, therefore not restraining the workflow.

TABLE 3.5: Runtime (in minutes) and memory (in GB) required by different normalization algo-
rithms. Time and memory as obtained by running with 10 threads are shown in brackets (if possible).
Note that the memory of Diginorm can be set by the user. For comparison it is set such that it uses
less or similar memory than ORNA denoted as Diginorm # and b respectively. The percent of reads
reduced by each method (% reduced) is shown in the first column for each dataset. The total number
of reads (in millions) and the file size (in GB) of the original dataset is shown in brackets next to the

dataset.
method Brain (147M - 20.1GB) hESC (142M - 13.2GB) combined (883M - 98.1GB)
%reduced | time [min] | mem [GB] | %reduced | time[min] | mem [GB] | %reduced | time[min] | mem [GB]
ORNA 833 104 (41) | 6.62(5.57) 63.90 58 (21) 6.16 (6.11) 814 740 (314) | 32.9 (33.01)
Diginorm” 81.86 110 3.13 61.63 115 3.13 80.37 760 12.51
Diginorml7 81.51 135 6.26 62.59 126 6.26 79.31 2158 34.3
TIS 83.92 160 (95) | 20.39 (20.19) 62.16 145 (127) | 13.54 (13.53) 82.04 1859 (783) | 95.19 (96.09)

In case of ORNA-Q and ORNA-K, we encounter an additional runtime and
memory requirements for the sort step of the algorithms. Table 3.6 compares the
resource requirements of ORNA-Q/-K against the requirements of ORNA, Digi-
norm and Bignorm for uncorrected Brain and HelLa dataset. Like Diginorm, the
memory consumption of Bignorm can be controlled by tuning the algorithm pa-
rameters. Hence, we have used two versions of Bignorm (Bignorm“ and Bignorm?)
where Bignorm? uses the default setting except the k-mer size. and Bignorm® uses
a smaller hash size which limits the memory consumed. We also used two versions
of Diginorm namely Diginorm? and Diginorm’ where Diginorm® uses the default
settings and Diginorm’ sets the number of hashes to 2 to reduce the memory re-
quirements. The parameters for Bignorm® and Diginorm” were set in a way so that
the memory consumption of these variants were similar to that of ORNA-Q and
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ORNA-K. Note that the amount of memory used in Diginorm and Bignorm is di-
rectly proportional to the precision of k-mer counts. In other words, to obtain a high
precision in their normalized datasets, both Diginorm and Bignorm require a large
amount of memory.

Since ORNA-Q and ORNA-K calculates and stores read weights, it requires more
memory and runtime as compared to ORNA which is validated from the table.
However, we see that the increase is not significant and is outweighed by the im-
provement in the performance. One of the reason for this might be the fact that
ORNA-Q/-K store the read weights in disk as files. Also, the count-sort step used to
re-order the reads is quite fast and memory efficient. When compared to Diginorm”
and Bignormb, ORNA-Q and ORNA-K require more runtime when the memory con-
sumption is similar. But in these settings Diginorm and Bignorm lose out on preci-
sion of the k-mers. And when default settings are used for Diginorm and Bignorm
(Diginorm* and Bignorm?*), they require more than double the memory required by
ORNA-Q/-K

TABLE 3.6: Runtime (in minutes) and memory (in GB) required by ORNA-Q/-K, ORNA, Diginorm

and Bignorm for normalizing Brain (147M) and HeLa dataset (216M). Notes: The memory required

to store the complete dataset in the main memory is indicated in brackets next to the name of the

dataset. The column % reduced states the percent of reads reduced by each method. Time and memory

as obtained by running the algorithm with 10 threads (if possible) are shown in brackets. * Bignorm
always runs with 4 cores and fixed memory settings.

method Brain (147M - 35.1GB) HeLa (216M - 60.7GB)
% reduced | time [min] | mem [GB] | % reduced | time [min] | mem [GB]

ORNA 69.8 112 (42) 6.38 (6.31) 75.31 219 (64) 9.81(9.85)
ORNA-Q 70.65 116 (50) 7.10 (7.13) 72.72 223 (70) 10.01 (10.02)
ORNA-K 70.3 130 (52) 6.41(6.5) 73.86 279 (75) 9.98 (10.01)
Diginorm* 72.03 135 12.5 72.91 198 12.51
Diginormb 70.51 112 6.26 75.10 155 9.76
*Bignorm* 69.38 47) 41.94 71.28 (58) 41.94
Bignormb 69.39 (41) 5.23 71.26 (55) 5.24

3.6 Discussion

Transcriptome sequencing have been constantly used to study non-model species
for which no reference sequence is available. De novo assembly strategy is used to
assemble the high coverage data produced from the sequencer. However, it has al-
ready been shown that a high percentage of data is redundant and can be removed
prior to assembly process ([Yor+16]). Current normalization algorithms do not guar-
antee the preservation of the underlying de Bruijn graph structure (nodes and con-
nections). In this chapter, we proposed a set multi-cover (SMC) based optimization
approach, named ORNA, for normalization of RNA-seq data. ORNA preserves the
nodes and edges of the de Bruijn graph by retaining all the connections from the
original dataset. It retains the minimum number of reads required to cover all con-
necting k-mers from the original dataset a certain number of times. We termed the
connecting k-mers as labels. We also set individual demands/threshold of each la-
bel allowing us to retain the relative difference in abundances between labels. This is
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important as many assemblers use this information to resolve complex graph struc-
tures.

Since ORNA retains all the k-mers from the original dataset, it is quite natu-
ral that any erroneous bases present in the dataset will be retained. Hence, it is
always beneficial to error correct the dataset, using RNA-seq specific error correc-
tors like SEECER ([Lee03]), before normalizing them. However, the error correction
algorithms are themselves a heuristics and many erroneous bases escape their strin-
gent filter. To reduce the probability of retaining such erroneous bases, we proposed
two extensions of ORNA namely ORNA-Q and ORNA-K which were based on the
principles of Weighted Set Multi Cover (WSMC) optimization. These extensions in-
corporate base quality (ORNA-Q) or k-mer abundance information (ORNA-K) into
ORNA'’s SMC approach. ORNA-Q and ORNA-K score each read based on either the
Phred score of bases present in the read or the abundance of k-mers in the read. The
scoring is done in such a way that the reads have erroneous bases end up with low
scores. Both ORNA-Q and ORNA-K retain a minimum number of reads required
to cover all labels from the original dataset. But at the same time, they ensure that
high-scoring reads are given priority over others during the process of selection.
However, any erroneous base which is covered by only one k-mer will always be
retained.

We compared the performance of ORNA against two state-of-the-art normaliza-
tion algorithm namely Diginorm and Trinity’s In-Silico normalization. Both these
algorithms are k-mer based like ORNA. However, neither of the two algorithm guar-
antee the preservation of k-mers which form connections in the DBG. We applied the
three algorithms and normalized two datasets generated from Brain and hESC. We
assembled the normalized datasets using two DBG based assemblers and evaluted
the assemblies produced. In terms of F1 score, we noticed that all the algorithms pro-
duced stable results with ORNA performing slightly better. Concerning the amount
of full-length assemblies (100%-hits), ORNA reduced datasets performed better than
Diginorm and TIS reduced datasets on the brain data. For hESC data, the results
were not as clear as in Brain and depended highly on the assembler used. The dif-
ference in the distribution of expressed mRNAs and their expression in Brain and
hESC might be another reason behind this variation. Also, we found that order
of the reads within a dataset has an impact on the normalization. This was con-
firmed by the observation that ORNA-Q and ORNA-K retained better quality and
high scoring reads as compared to ORNA. Also for the Brain dataset, where a high
percentage of high-scoring reads were towards the end of the dataset, ORNA-Q and
ORNA-K were able to retain more number of 100%-hits. We observed that, for both
the datasets, Bignorm was performing the worst in terms of number of 100%-hits
assembled. Apart from the quality threshold, Bignorm bases its decision on three
other parameters namely rarity threshold, contribution threshold and abundance
threshold. There effect on the performance of Bignorm were not explored in the
manuscript of Bignorm. To study the effect of these parameters, one has to try mul-
tiple combinations which would result in a large and complex search space. Hence,
we restricted our analysis on the most important parameter which is the quality
threshold (-Q). However, proper optimization of all the four parameters may lead to
a better performance of Bignorm on the RNA-seq data.

Now that we saw ORNA and its extensions are able to scale down the process of
de novo assembly, they can also be used to fulfill other computationally expensive
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applications. We proposed one such application we generated a dataset by concate-
nating multiple ENCODE datasets and normalized it. Upon assembling the normal-
ized dataset, we obtained more than 300 protein coding transcripts along with sev-
eral novel non-coding RNAs. The sequence information required to assemble these
protein coding transcripts and non-coding RNAs could be only obtained when the
datasets are combined. And since ORNA retains all k-mers, these sequences are also
retained. The principles of ORNA and its extensions can also be applied on metage-
nomics and metatranscriptomics datasets as these kind of datasets also exhibit a
non-uniform coverage. Although ORNA is designed keeping DBG based assem-
blers in mind, it can also prove to be effective for other approaches like overlap-
layout-consensus assembly which currently requires a large amount of computa-
tional resources ([Li+12]). We noticed from the results that there is a variability in
the performance of ORNA and its extension when different parameters are used.
This underlines the fact that ORNA is still a heuristic that can be tuned further to
achieve better results. Overall, ORNA'’s reduction of data and its impact of the as-
sembly performance is promising and thereis scope of integrating it into a sequence
assembler. We feel it will encourage researchers in developing complex heuristics
to the assembly problem without worrying about the resource requirements. This
would then be step forward in achieving the goal of generating an accurate and
complete transcriptome of a species from short read data.

3.7 Availability

ORNA and ORNA-Q/K are open-source software developed in C++11 language
and compiled using GCC version 4.7. ORNA can be downloaded via the code host-
ing platform GitHub (github.com/SchulzLab/ORNA) and should be executed in a
linux based system. ORNA-Q/K are extensions of ORNA and can be executed by
setting the corresponding parameter in ORNA. The input to the program is a fasta
or fastq read file along with a k-mer size, and a value of the base of the logarithm
function (for threshold calculation). Using the k-mer size and the base value, ORNA
calculates the threshold ¢ for each label present in the dataset and retains minimum
number of reads required to cover each label at least ¢ times.
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Chapter 4

SOS: Streamlined de novo
transcriptome assembly

The previous chapters describe algorithms for normalizing the coverage of RNA-
seq data in an informed way. This chapter introduces a pipeline named SOS which
streamlines de-novo transcriptome assembly by adding a tuple of read-error correc-
tion and normalization over the existing layer of sequence assembly. In the results,
we show that using SOS enhances the quality of the assemblies produced by gen-
erating more full-length transcripts as compared to running the assemblers in their
default mode.

4.1 Motivation

Existing pipelines such as DRAP ([Cab+17]) and the approach used for the re-assembly
of Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) data ([Kee+14;
JAB18]) offer insight towards using a streamlined workflow for de novo transcrip-
tome assembly. These pipelines pre-process their data by trimming adapters and
removing low-quality regions from the input reads followed by normalization us-
ing Diginorm. Studies have shown that these pre-processing steps run into a major
risk of losing important k-mer information and hence might cause sub-optimal as-
semblies ([DS18; Le+13]). Moreover, DRAP uses only two assemblers namely Oases
and Trinity whereas the MMETSP pipeline uses only Trinity. Since assembly algo-
rithms are mostly heuristics, we believe that using one or two assemblers does not
guarantee a high-quality assembly for multiple datasets. Also, due to the recent
advances in second generation sequencing technologies high coverage data from
non-model species are being constantly sequenced. This has resulted in develop-
ment of modern and sophisticated assembly procedure. We believe that this trend
would continue for a while. So in future, pipelines such as DRAP might become ob-
solete unless since they use only a limited set of tools for analysis. So there is a need
for streamlined pipeline which could incorporate multiple pre-processing, assembly
and post-processing tools which can be easily updates to future changes.

In this chapter, we introduce SOS which combines tools for error correction,
normalization, assembly, and transcript quantification. The advantage of SOS lies
twofold 1) SOS improves the quality of the assembly produced as it incorporates
necessary pre-processing steps like error correction and normalization and 2) it is
quite flexible in its assembly implementation. In other words, assembler used in the
pipeline can be easily replaced with another assembler by changing just a few lines
of codes in the source file.
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4.2 Method

4.2.1 SOS at a glance

SOS pipeline consists of three major steps: 1) pre-processing, 2) de-novo transcrip-
tome assembly and 3) expression estimation. Figure 4.1 depicts the major steps in
the pipeline. We begin by removing sequencing errors from the dataset. This is done
using RNA-specific error correction algorithm named SEECER. We then proceed by
normalizing the data using ORNA. This reduces the coverage of the dataset with-
out losing any sequence information from the original dataset. However, this step
is optional and can be skipped if the coverage of the original data is already low.
The error correction and normalization steps constitute the pre-processing stage of
the pipeline. The resultant data from the pre-processing step is assembled using a
multi k-mer based assembler incorporated with the parameter estimator algorithm
KREATION. The final step of the pipeline is to quantify the transcripts produced
from the assemblers using Salmon. In further sections, we explain all the above
procedure in detail. All the tools and evaluation metrics used in SOS have been
explained in detail in chapter 2.

4.2.2 Pre-processing

Error correction is considered as one of the most important steps in any pre-processing
workflow. However, the non-uniform coverage of RNA-seq data posses a major
challenge towards this. Since DNA-specific error correctors rely on the coverage of
the input dataset, they cannot be applied directly to RNA-seq data. RNA-seq specific
error correction methods such as HAMMER ([Med+11]), BayesHammer ([NKA13]),
and RCorrector ([SF15]) error correct the data using a combination of k-mer based
hamming graph and probabilistic error models. They identify groups of "solid k-
mers" based on the abundance information. The erroneous or "weak" k-mers in the
dataset are corrected based on the solid k-mers using probabilistic models. In our
work, we use SEECER which has been shown to perform accurately on substitution
as well as indel errors ([BM+12]). For analysis, we use default parameters except for
the k-mer size which was set to 17. We direct the readers to chapter 2 for more details
on SEECER.

Error corrected reads are then normalized using ORNA. As described in the pre-
vious chapter, ORNA retains the minimum number of reads required to retain all
k-mers from the original dataset a certain number of times. This ensures that the
structure of the de Bruijn graph is preserved and the quality of the assemblies pro-
duced is not compromised. Again, we direct the readers to chapter 3 for details of
ORNA.

4.2.3 Transcriptome assembly

Reference free transcriptome assembly marks the next step of SOS. Currently, SOS is
tested on three de Bruijn graph-based assemblers namely - Oases ([Sch+12b]), Trans-
ABySS ([Rob+10]) and SOAPdenovo-trans ([Xie+14]) and one splice graph-based
assembler namely TransLiG ([Liu+19]). Assemblies generated using multiple k-mer
sizes outperform assemblies using a single k-mer size. Hence, we generate assem-
blies using multiple k-mer values and merge them to form a single non-redundant
assembly. However, selecting a range of k-mer sizes for obtaining a good quality
assembly is a challenge. Random selection of k-mer range comes with a risk of
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FIGURE 4.1: Workflow of SOS. Reads are error corrected using HMM model based algorithm

SEECER. The error corrected are normalized using ORNA. The normalized reads are assembled us-

ing a multi k-mer based assemblers. The assembler is integrated with KREATION which is a k-mer

parameter selection. The final assembly is quantified using salmon to achieve a transcript level expres-
sion estimation.
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losing out on important k-mers and hence lowering the overall sensitivity of the
final assembly. Default k-mer ranges provided with the assembly algorithms are
not guaranteed to produce optimal assemblies as they are data-dependant. Run-
ning the assembler over the entire range of the read length generally results in a
lengthy assembly process. Parameter prediction algorithms such as "velvetadvisor"
and kmerGenie ([CM14]) are not effective as they are genomic read specific. Also,
none of the above methods estimates a k-mer size range which could be used for a
multi k-mer based assembly procedure. The RNA-specific method KREATION al-
gorithm only estimates the upper bound of k-mer range. This came closet to our
requirements. In SOS, we set the minimum k-mer size of the range to one-third of
the read length and let KREATION estimate the stopping k-mer for the assembler.

4.2.4 Transcript quantification

The assembly procedure is followed by a transcript quantification step. Current
tools for transcripts expression quantification can be classified into two sub-types:
1) alignment-based and 2) alighment-free. In the alignment-based mode, reads are
aligned back to the assembled transcripts using aligners such as Bowtie2 ([Lan+09]).
Given the alignment, tools such as eXpress ([RP13]) and cuffllinks ([Tra+10]) use
expectation-maximization (EM) procedures to estimate transcript abundance. TIGAR2 ([Nar+14])
uses Bayesian inference to quantify transcript expression levels. However, alignment-
based methods are slow and memory intensive. Also, reads, if not long enough, can
map to multiple transcripts thus making the quantification procedure inaccurate.
Recently developed algorithms such as Sailfish ([PMK14]), Kallisto ([Bra+16]) and
Salmon ([Pat+17b]) do not rely on accurate base-to-base mapping and only wish to
know the region from which the read might have originated. This speeds up the
quantification process. The sophisticated error models used in these modern quan-
tification algorithms improves the accuracy of the expression estimation. For SOS,
we use salmon for quantifying transcripts in alighment-free mode. We use default
parameters for building the index from the assembled sequences and quantifying
the expression estimates.

4.3 Data retrieval and assembly evaluation

The pipeline was applied on three Illumina paired-end datasets - 147M paired-end
reads from Brain (SRR332171, [BM+12]), 344M reads from A549 cells (SRX085304)
and 250M reads from Blood (SRX984188, [Zha+15]). All the datasets were down-
loaded from the SRA run browser.

For evaluating the assembled transcripts, we aligned transcripts against the ref-
erence genome using Blat ([Ken02]) and compared it against annotated ENSEMBL
transcripts ([Zer+18], version 78). We then used standard metrics of 100%-hits, nu-
cleotide sensitivity, and nucleotide specificity. Further we compared our assem-
blies against benchmarking sets of universal single-copy orthologs (BUSCOs) com-
piled by [Wat+13]. The sets are identified using OrthoDB database from Metazoan,
Vertebrate, Arthropod and Fungal lineages. BUSCO sets consists of orthologous
genes which exists as single-copy in at least 90% species of the lineage. The tool
BUSCO ([Sim+15], v4.0, [HM19]) detects these orthologous candidate genes and ob-
tains the abundance of single-copy orthologs. To avoid confusion between the tool
BUSCO and set BUSCO, we will from hereon use the term BUSO-T for referering
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to the tool. The obtained orthologs or BUSCOs are generally divided into four cat-
egories namely i) complete and single-copy, ii) complete and duplicated, iii) frag-
mented, and iv) missing. If more than one copy of a Complete gene is recovered,
then it is classified as Complete and Duplicated. Similarly, if the gene is recovered only
in fragments, then it comes under the category of Fragmented. We term the genes
which are not covered by any of the transcripts as Missing. For our analysis, we only
compared our assemblies from 255 single-copy orthologs from eukaryotes.

4.4 Results

4.4.1 Error correction improves assembly quality

Most of the current assemblers have their error correction step integrated into them.
The basic idea behind their error correction procedure is the difference in abundance
between true k-mers and the erroneous k-mers generated from allelic differences, re-
peat sequences with minor variations and base-calling read errors. As mentioned in
the previous chapters, these erroneous k-mers have a low abundances as compared
to their neighbouring k-mers and form bubbles and tips in the graph. An assemblers
generally pops the bubbles and tips by removing the lower coverage variants from
the graph. However, in case of RNA-seq low k-mer abundance does not always im-
ply the k-mer being erroneous. As a result, the assemblers in-built error correction
step is not always effective in case of RNA-seq data.

In SOS, we added a tuple of error correction using SEECER over the assembly
step. We studied the impact of error correction on the quality of the assemblies. We
assembled an uncorrected and error corrected Brain dataset separately. Note, that
there is normalization is not executed for this analysis. For assembly, we used a sin-
gle k-mer based assembler(TransABySS) and a multi k-mer based assembler(Oases-
M) with default parameters. Table 4.1 compares the assemblies generated using both
the strategies. We see that using error corrected data, there is an improvement in the
nucleotide sensitivity and nucleotide specificity for both the assemblers. We are also
able to assemble at least 15% more full-length transcripts (100%-hits). We took these
additional 15% full length hits and checked its existence in the assembly done us-
ing uncorrected data. As can be seen from fig 4.2, these transcripts were present in
fragments in their respective assemblies. Many of the transcripts were assembled
50%-80% of their total length. Due to the sequencing errors, they lacked important
k-mer information to connect regions in the graph and complete their sequence. It
is interesting to note that many of these transcripts get assembled up to 99% of their
length. The reads, forming these transcript, had very few errors towards the end.
Hence, the assembler were short of few correct bases needed to complete the se-
quence. Error-correcting the reads transforms the erroneous bases into true bases
and thus completing the transcript.

Assembler  Strategy #Transcripts 100%-hits Sensitivity Specificity
Assembly 142037 4435 28.15 76.8

TransABYSS g Acsembly 149290 5129 29.25 79.11

Oases Assembly 704807 5790 39.97 76.2
EC-Assembly 529766 6795 44.15 80.81

TABLE 4.1: Impact of error correction on the quality of the assembly
produced from Brain dataset.
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FIGURE 4.2: Distribution of annotated transcripts which were assembled completely when error
corrected data was used but were assembled only in fragments when uncorrected data is used for the
assembly.

4.4.2 Combined error correction and normalization generates fast and ac-
curate de novo assemblies

The process of assembly generally requires a lot of computational memory and run-
time especially for bigger datasets. Hence, to reduce the memory and runtime re-
quirements, we use ORNA which has been shown to normalize the data upto 70%
without a significant impact on the assembly quality ([DS18]). As ORNA retains all
the k-mers from the original dataset, the normalized dataset also contains erroneous
k-mers. The error-correction step before normalization procedure limits the number
of errors retained. We tested the impact of error correction and normalization on the
assemblies produced from Brain datasets. First, we normalized the error corrected
and uncorrected Brain dataset separately to different levels. This is done by varying
the base(b) parameter of ORNA. We assembled these datasets using Oases with a k-
mer size range of 21-49 and a step size of 2 (read length of Brain dataset was 50bps).
As seen in fig 4.3a, running ORNA on the corrected data reduces more reads com-
pared to the uncorrected data. This is expected as erroneous k-mers are converted
into true k-mers reducing the total number of unique k-mers in the original datasets.
As a result, the size of universe k-mer set is reduced and ORNA requires smaller
number of reads to cover the universe set. We also observe error correction leads
to more number of 100%-hits as due to error correction the assemblers traverse the
correct path in the DBG.

But what about the computational resource requirement for the additional step
of error correction and normalization? So far, we saw that assembly can be per-
formed on —(i) unreduced and uncorrected dataset, (ii) unreduced but error cor-
rected dataset, (iii) error corrected and normalized dataset. Figure 4.3b shows the
maximum memory required for assembling the brain dataset using the above three
strategies. Erroneous k-mers complicate the de Bruijn graph by adding extra nodes
and extra paths. This is reflected in the higher memory requirement for the uncor-
rected data (red dot in fig. 4.3a). By error-correcting the data, the memory is reduced
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FIGURE 4.3: Impact of error correction on assembly performance. Corrected and uncorrected brain

dataset were normalized to different levels by varying the base parameter of ORNA (a) Number of full-

length hits (y-axis) obtained at different levels of reduction (y-axis). Each point in the graph represents

the base value used for reduction.(b and c) Comparison of the number of full-length transcripts (y-axis)

assembled using error corrected (EC, depicted as green triangle), EC and normalized (depicted as blue

square), and uncorrected data (depicted as red cirlce) against the memory (b) and runtime(c) required
to assemble using the mentioned strategies (x-axis).

by nearly 20% (green triangle in fig. 4.3a). It is further reduced when the error cor-
rected data is first normalized and then assembled. The users might be worried with
the increase in runtime due to the additional pre-processing steps. But this increase
outweighed by the improvement in the assembly quality. Moreover, the runtime
can be reduced by the normalization step. As shown in fig. 4.3c that for three ORNA
parameters (b=1.3, 1.5, 1.7) the assembly quality is better than the assembly of un-
corrected data with much lower time and memory consumption. For more stringent
parameters (b>1.7) the quality degrades due to a high % of reduction.

4.4.3 KREATION avoids unnecessary runs of assembly

It has been previously shown that uninformed parameter selection, especially k-mer
size range, for the process of assembly results in a sub-optimal assembly ([DS16]). In
this work we used KREATION which can be integrated into any multi k-mer based
assembler. Starting from an assembly using a user-defined k-mer size, KREATION
evaluates the novel sequences added in each k-mer iteration and stop the assem-
bly process when no new sequence information is added to the assembly pool. In
the manuscript of KREATION, it was shown that the algorithm is able to accurately
predict the stopping k-mer for multiple combinations of datasets and assemblers.
KREATION also resulted in the reduction of misassemblies produced and the run-
time required by the assembler.

However, the performance of KREATION on the assembly of normalized dataset
has never been studied. To test this, we ran Oases and TransABySS on Brain dataset
using the k-mer range which spanned over the entire read-length. We used a series
of increasing kmer values K = (ky, ..., k,), where 0 < ky < ky, ..., < k,, < read-length
and k; = k(;_1) + 2. We set k; = 21 and ran the assembly till k, = 49. We term the
number of 100%-hits obtained as optimal. With this notion, we measure the perfor-
mance of any k; € K by calculating the number of 100%-hits obtained by merging
assemblies from k; to k; and denoting the number as % of optimal.
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FIGURE 4.4: Performance of KREATION on error-corrected and reduced Brain dataset using

Oases(a) and TransABySS(b) assembler. The stopping k-mer estimated by KREATION is

depicted by dashed line on the x-axis and the percentage of optimal reached till the stopping

k-mer is depicted on the y-axis. The number of 100-% hits achieved when the assembler is
run using a k-mer range covering the entire read-length is considered as optimal

As seenin fig 4.4, % of optimal increases with the increase in k-mer size. KREATION
estimated a stopping k-mer of k = 39 for Oases (fig 4.4a) and k = 37 for TransABySS
(fig 4.4b) denoted by a dashed line in the figure. As expected, the assembly perfor-
mance starts getting saturated after these k-mers. In other words, very few 100%-hits
are assembled in the iterations after the KREATION estimated stopping point. We
list the complete numbers in tab 4.2. As the table shows, nucleotide sensitivity and
specificity are not affected when KREATION is used in the assembler. The number
of k-mer assemblies not computed and the time saved due to KREATION is also
shown in the table.

Assembler  Strategy 100%- Sensitivity Specificity Runs %runtime

hits saved reduced
on Full 5851 32.01 7031 - -
S€s KREATION 5835 32.12 7059 5 10
Full 7459 32.41 6632 - -
TransABYSS  ( REATION 7417 32.57 66.62 7 12

TABLE 4.2: Impact of KREATION on the quality of the assembly produced
from Brain dataset in terms of 100%-hits, nucleotide sensitivity and speci-

ficity. We also report the number of assembly runs saved and % runtime
reduced due to KREATION.

4.4.4 SOS shows improvement over running assemblers in their default
version

An important feature of SOS is its flexibility to accommodate multiple assemblers
with different settings. Here we tested SOS with three de Bruijn graph based assem-
blers namely TransABySS, Oases, SOAPdenovo-trans, and one splice graph based
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Dataset Strategy TransABySS Oases
100%-hits Sensitivity Specificity | 100%-hits Sensitivity Specificity
A549 Default 9350 34.8 15.2 - - -
SOS 12620 37.3 13.49 11702 39.06 15.54
Brain Default 4435 28.1 76.8 5790 39.97 76.21
SOS 7417 31.9 69.56 5842 32.21 70.64
Blood Default 16367 38.04 33.76 - - -
SOS 22399 41.86 35.62 22026 46.66 50.58
Dataset Strategy SOAPdenovo trans TransLig
100%-hits Sensitivity Specificity | 100%-hits Sensitivity Specificity
A549 Default 3287 30.8 11.8 12220 20.66 28.9
SOS 5586 32.3 9.4 14296 34.7 41.7
Brain Default 2669 28.5 66.0 4796 24.01 77.98
SOS 4380 29.8 66.0 7807 30.5 85.2
Blood Default 6232 32.88 30.7 22712 35.21 64.13
SOS 12281 35.01 23.91 20579 33.72 62.95

TABLE 4.3: Comparison of assemblies generated using default settings (depicted as Default
in the table) and assemblies generated using SOS (depicted as SOS in the table) in terms of
100%-hits, nucleotide sensitivity and specificity.

assembler TransLiG. All the assemblers were run with multiple k-mer sizes (where
ever possible) and the assemblies generated from each k-mer size were merged to
form a single non-redundant assembly. We started from a k-mer equivalent to one-
third of the read-length. However, we couldn’t follow this criteria for assembly of
Blood dataset (read length of 101bps) using TransLiG as the assembler does not sup-
port k-mer size>31 and hence we used only a single k-mer size of 31. We generated
assemblies till a stopping k-mer size predicted by KREATION. To compare our re-
sults, we also applied the four assemblers in their default settings. Table ?? shows
the metric obtained using the above assembly strategies. As previously mentioned,
SOS resulted in a consistent improvement of 100%-hits and nucleotide sensitivity ex-
cept for Blood assembled with TransLiG. SOS could only generate a single assembly
from a reduced dataset due to the limitation of the assembler. The drop in assembly
performance for TransLiG assembled Blood dataset is mainly due to the high per-
centage of reduction in the dataset.

Interestingly, we also see a drop in nucleotide specificity in the case of Trans-
ABySS and SOAPdenovo-Trans. Using multiple k-mer sizes results in the generation
of more transcripts. These extra transcripts are either unannotated in the original
ENSEMBL annotation or are misassemblies. Since nucleotide specificity depends on
the number of assembled bases from the original annotation, multi-k-mer based as-
sembly might show a drop in nucleotide specificity. However, for TransLiG there
is an improvement in all the measures. This underlines the fact that assembly algo-
rithms are heuristics and a single assembler cannot guarantee high-quality assembly
all the time.

Further, to test the performance of assemblies in terms of gene content, we inte-
grated SOS with Oases and TransABySS assemblers and tested in on Brain, A549 and
Blood datasets. Simultaneously, we ran the assemblers individually with their de-
fault settings. For Blood and A549 datasets, Oases (in its default settings) required a
huge amount of runtime and computational memory. Hence, the assemblies had
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BUSCO Assessment Results
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FIGURE 4.5: Identification of BUSCOs from the assemblies generated using SOS and from the assem-
blies generated using assemblers in their default version.

to be interrupted after nearly 27 days of execution. From the remaining assem-
bled transcripts, we obtained the number of single-copy orthologs using BUSCO-
T. These single-copy orthologs were termed as BUSCOs. As seen from fig 4.5, SOS
consistently assembles a higher number of "Complete" BUSCOs except for the Blood
dataset where the numbers are similar. It is interesting to note that there is a signif-
icant increase in the number of Complete and Duplicated BUSCOs. This might either
be due to assembly of multiples copies of a single transcript or due to assembling
of alternate isoforms of a gene which results in the gene getting covered multiple
times.

4.5 Discussion

The progress in de novo transcriptome assembly has given an impetus to the study
of non-model species. It has also shown the potential to detect novel transcripts that
are not present in the reference genome assembly. However, only a few practition-
ers quality control and error correct their data before assembling them and hence
miss out on important transcripts. There is a need for a streamlined approach to-
wards transcriptome assembly which would guarantee a high-quality assembly all
the time. With this thought, we introduce an automated pipeline named SOS which
error corrects, normalizes and assembles short-reads from RNA-seq technologies.
We integrated three de Bruijn graph-based assemblers (TransABySS, SOAPdenovo-
trans, and Oases) and one splice-graph based assembler (TransLiG) to the pipeline.
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We ran the assemblers using multiple k-mer sizes and merged the final assemblies to
obtain a single non-redundant assembly. However, running assemblers in multi k-
mer mode usually results in high memory and runtime consumption. We addressed
this issue by adding two other tools namely i) ORNA which reduces the redundancy
in the input dataset without affecting assembly sensitivity and ii) KREATION which
estimates appropriate k-mer parameter for the assembler and hence avoids unneces-
sary assembly iterations. For evaluation, we used reference-based approaches such
as detecting single-copy orthologs using BUSCO-T and obtaining of the number of
full-length transcripts. We saw that the mere addition of error correction step and
running the assemblers with multiple k-mers showed a drastic improvement in the
number of full-length annotated transcripts being assembled. We also noticed that
normalization using ORNA and parameter estimation using KREATION makes the
assembly of large datasets feasible. But in general, we observed that no tool was
dominant for all datasets.

We feel that SOS is an important step towards improving the transcriptome as-
sembly procedure. However, this study was limited to only a few tools for pre-
processing and assembly. There are many other tools which can be integrated into
SOS and tested for its effect. We tried making SOS flexible such that these new tools
can be incorporated into the pipeline. For instance, the performance of SEECER
is found to drop when the sequencing depth is moderate to low ([ME13]). Hence,
an alternative to SEECER when using low coverage data can be tested. Similarly
we saw in the previous chapter that in some cases, Trinity’s in-silico normalization
works better than ORNA. The selection of the best assembler and pre-processing
tools based on appropriate metric remains a challenge and needs to be investigated
in the future.

It has been a constant endeavor of researchers around the globe to understand
the complexity of the transcriptome. RNA-seq data has always been a reliable method
to perform this task. However, there are certain gaps in the analysis that cannot be
filled using RNA-seq data alone. The combination of RNA-seq data and other data
types can resolve certain voids and hence being constantly applied. For instance,
RNA-seq data can be combined with DNA sequencing data for RNA-editing anal-
ysis or Single Nucleotide Polymorphism (SNP) discovery ([Con+16; Gaf13]). Simi-
larly, a combination of RNA-seq data with chromatin immunoprecipitation sequenc-
ing (ChIP-seq) data can throw light on the activating or repressive effect of transcrip-
tion regulators on its target genes ([Wan+13; Cha+18]). RNA-seq data combined
with proteomics can be effectively used for accurate isoform discovery. Moreover,
practitioners can study post-translation regulatory effects by combining mass spec-
trometry data with RNA-seq data ([SSKO08]). All these possibilities are been actively
researched upon and tools incorporating these are constantly being developed. In
future, SOS can be developed into a sophisticated pipeline which could incorpo-
rate all such tools. The final goal of SOS or any such pipeline should be to make a
transcriptome which is close to the true sequence which would enable an accurate
expression analysis.

4.6 Availability

SOS is an open source pipeline which is managed using workflow management tool
SnakeMake. It can be downloaded via GitHub (github.com/SchulzLab/SOS). We
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executed the pipeline in Linux and Mac environment. However, the requirements
of SOS is not constant as it depends upon the requirements of the individual tools
integrated in the pipeline.
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Chapter 5

Transcript quantification and
gene-fusion detection using long
reads

In previous chapters, we used data from short-read or second-generation sequenc-
ing technologies. For a long period, sequencers such as Illumina’s HiSeq, NextSeq,
and MiSeq have been in favor due to its cost-effectiveness and accuracy. As a result,
many tools and algorithms were developed for mining information from the reads
generated from such sequencers. However, second-generation sequencing technolo-
gies suffer from some major drawbacks. For instance, mapping or assembling reads
originating from complex regions of the genome, such as repeat regions and re-
gions with high GC-content, is a challenge ([MKH19]). Also, short reads do not
have enough coverage information for accurate estimation of alternate splice forms.

Long reads technologies such as sequencers from Pacific Biosciences and Oxford
Nanopore have made significant progress in terms of sequencing output per run at
a reduced cost. They cover a large percentage of transcript (in many cases the com-
plete transcript) which makes them a candidate for accurate transcript quantification
and gene-fusion detection. In this chapter, we propose an algorithm for long-read
specific transcript quantification and gene-fusion detection. This work was done in
collaboration with Prof. Dr. Tobias Marschall and Mikko Rautiainen from Saarland
University and Prof. Dr. Jonathan Goke from Genome Institute of Singapore, Singa-
pore. The work on fusion detection was done by Mikko Rautiainen.

5.1 Motivation

Numerous tools are available for quantification of transcripts using short reads. As
mentioned in the previous chapter, modern bioinformatics algorithms such as Cuf-
flinks ([Tra+10]), Kallisto ([Bra+16]) and Salmon ([Pat+17b]) rely on mapping reads
on a reference transcriptome and estimate abundance. Read mapping is also the
first step for fusion detection approaches such as TopHat-Fusion ([KS11]), SOAP-
fuse ([Jia+13]) and MapSplice ([Wan+10]). These algorithms align reads to a refer-
ence transcriptome using a "splice-aware" aligners. They detect fusion events by
considering reads which span two different genes ([Kum+16]). Although efficient,
the above methods deal with specifics related to short-read RNA-seq protocol. In
other words, they treat biases inherent with short-read protocols and hence are not
efficient with long reads. There are few tools that deal with transcript quantification
using long reads. They are not able to assign the exact exon to which a read belong
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and hence fall short of mapping an exon to a transcript. In regards to fusion de-
tection, the read-length is not large enough to span the exonic junctions and hence
accurate fusion-event detection is a challenge. To our knowledge, no work was done
regarding long-read specific fusion detection.

5.2 Related work

As mentioned above, there are limited number of algorithms which deal with tran-
script quantification using long reads. Tools such as ToFU ([Gor+15]) and isON-
clust ([SM19]) cluster reads based on similar sequences. The idea behind this ap-
proach is that reads originating from the same gene or transcript would cluster to-
gether. Practitioners can quantify transcripts by counting the number of reads in a
cluster. However, many genes have regions of similar sequences. Reads originating
from these regions might get clustered together. This would produce sub-optimal
quantification. Also, finding similarity between reads, especially pairwise, would
be time and memory intensive. Algorithm SQANTI ([Tar+18]) rely on the output
of ToFU for its abundance estimation, annotation, and quantification. However, it
is designed only for reads generated from PacBio sequencers and does not support
reads from other technologies like Oxford Nanopore sequencers

An alternative approach is to align long reads against a reference sequence and
count the number of reads aligned to a transcript. However, the alignment of long
reads is challenging due to the high error rate from the sequencers (ranging from
10-20%, [FWAT19]). Hence, special alignment packages such as BLAT ([Ken02]),
BLASR([CT12]) and Minimap ([Lil6]) were developed to deal with the high error
rate. Recently developed long-read specific methods such as TALON ([Wym-+19])
and Mandalorian ([Byr+17]) use Minimap? for aligning reads to reference transcrip-
tome and base their quantification on the alignment output. Similarly, a study by
[Son+19] gave Minimap?2 input to Salmon and ran its quantification.

We observe that most of the above algorithms rely on alighment produced by
the Minimap2 package. Given an input read dataset and a reference sequence, Min-
imap?2 finds a seed in the reference sequence and extends the seed to find an optimal
alignment. The quantification tools then assign the read to its corresponding aligned
transcript. However, in the case of multiple alignments, the aligner output the align-
ment which has the maximum score. This makes the assignment of a read to a tran-
script biased towards how the primary alignment is selected. In other words, if a
read maps to multiple highly-similar transcripts, the assignment becomes ambigu-
ous. Hence, there is a scope of improvement in finding the correct alignment which
would enable accurate quantification and gene-fusion detection.

The concept of splicing graph as a representation of the transcriptome has been
used in many research works ([Heb+02b; Pat+17a; Gar+18]). Tools for variant call-
ing, genome assembly and short tandem repeat analysers use graphs with nucleotide
sequences as nodes and edges representing the adjancencies ([Pat+17a; Ant+16; Wic+17]).
Furthermore, it has been studied that alternate splicing event can be detected using
the splicing graph ([Den+18]). Hence, in this work we use alignments of reads to a
splice-graph generated from reference transcriptome. Based on the alignments, we
quantify transcripts and detect gene-fusion events in the concerned specie.
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5.3 Method

In this work, we introduce Aeron, a long-read specific pipeline for transcript quan-
tification and gene-fusion event detection. Aeron consists of three steps namely 1)
index construction, 2) alignment of reads to the graph and 3) quantification and/or
gene-fusion event detection.

5.3.1 Index construction

Index for the quantification and gene-fusion step consists of (a) a splice graph gen-
erated from reference transcriptome and (b) paths followed by annotated transcripts
in the splice graph. Here, we discuss the steps followed to generate the splice graph
and obtain the paths followed by transcripts in the graph.

Graph construction

The idea of splice-graph as a representation of a transcriptome was first explored by
[Heb+02a]. Briefly, a splice-graph is a Directed Acyclic Graph (DAG) where nodes
represents the splicing sites of a given gene and edges represents exons and introns
between the sites. For our work, we wanted to represent all the possible alternative
splicing events. Hence, we modify the splicing graph construction and term it as
gene-exon graph. Figure 5.1 summarizes the graph construction process.

We define DNA sequence as a string consisting of characters from the set > =
{A,C,T,G}. We define a gene g as a section of the DNA sequence which has protein
coding regions. A gene g consists of multiple exonic and intronic regions. Different
combinations of exonic regions (along with intronic regions in some cases) consti-
tute different transcripts of the gene (see chapter 2 for more details). We term a base
within g as exonic-base if it is overlapped by at-least one exon belonging to g (blue
characters in fig.5.1). Otherwise, the base is termed as intronic base (black characters
in fig. 5.1). A genomic position in g serves as a border position if it is the boundary of
any exon belonging to ¢. 5 boundary of an exon is considered as 5" border (depicted
as 5 in fig.5.1) and the 3’ boundary of an exon is termed as the 3’ border (depicted
as 3’ in fig.5.1). Hence, it can deduced from the above definitions that each exon of
g is represented by a pair of the border positions x = (a,b) where a and b are 5 and
3’ borders respectively. We refer to a list of all 5" borders and 3’ borders as border list
p. This list can further be sub-divided into acceptor-list « containing all the 5" borders
and donor list § containing all the 3’ borders. We order the members in each list
incrementally.

Each exon of g represents a node in our gene-exon graph. If an exon goes through
alternative splicing event, i.e, it has an alternate donor or an alternate acceptor site,
then is split into sub-nodes. The split happens at the position of the alternate site.
We formalize the split in the following way. We consider each node v;; in the graph
as sub-string g[i...j] between two consecutive border positions i € p(g) and j € p(g).
The node v;; is created using the following formula:
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i Ji k
] N 3
ATCGTCGTACGTCGATCGTACGGGAACGCATGCGATCATGCAGTCAGTCAGTGACGATEGAAAGTCA

FIGURE 5.1: Gene-exon graph construction. Each exon sequence of a gene is considered as a node
(blue boxes) of the graph. If the exon has an alternate donor or an alternate acceptor site, then the
corresponding node is divided into subnodes. A node is connected to all the nodes downstream of it.

gli...j—1] ifi ca(g)andj € a(g),
gli...j] ifi ca(g)andj € d(g),
gli+1...7] ified(g)andj€d(g),
vij=qgli+1...j—1] ificd(g)andje a(g)and (5.1)
gli+1...j—1]is composed of exonic bases
¢ ifi€d(g)andj € a(g) and
gli+1...j— 1] are intronic bases

where v;; = ¢ represents an null node.

For instance in figure 5.1, position i, j and k represents three border positions
where i and j are 5" borders and k is a 3" border. The position i and j satisfy the
condition 1 of equation 5.1. Hence, we take the sub-string g[i...j — 1] for the node
between i and j which is equal to v;; = ACGTC. Similarly, position j and k satisty
the condition 2 of equation 5.1. As a result, the node between j and k would be the
sub-string g[i...j] which is vy = GATCGTA.

As mentioned above, the gene-exon graph should take into account all possible
alternative splicing events in a gene. Hence, there should always be a path in the
graph that connects all exons and its sub-exons (sub-nodes). For instance, if there
are three nodes v13,034 and vs corresponding to three exons x12, X34 and xs56 respec-
tively. If a transcript is formed by splicing out x34 and using only x;, and xs¢, then
this event should be represented in the graph as a path passing through nodes vi,
and vss. Hence, in the graph, given two non-null nodes v and v;j, an edge e;; is
created between all vertices with i’ < j.

We construct a separate gene-exon graph for each and every gene belonging to a



5.3. Method 87

specie. As a result, we end up with a set of graphs G = {Gy, Gy, ...,, G, } where m is
the number of genes present in a specie.

Sequence-to-graph alignment

An important step of the index construction is aligning all the transcripts to all
the gene-exon graphs and obtaining the path traversed by each transcript. This is
achieved by the recently developed GraphAligner ([RM19]). As defined in chapter
2, a path in a graph G = (V,E) is a list of nodes p = v1, v, ..., v, where v; € V and
edges (v;,vi41) € E. We define the path sequence as a sequence of nucleotide bases
which is formed by concatenating the labels of all the nodes in p. The goal of our
alignment is to find, for each transcript, the path in the graph with the smallest edit
distance between the path sequence and the transcript sequence. GraphAligner is
a seed-and-extend based aligner which finds the maximal exact matches between
the query sequence and the node sequences and extends them with a bit-parallel
dynamic programming algorithm ([RMM19]). The similarity between sequences is
measured in terms of E-value which is calculated by the following formula:

E = Kmne (5.2)

where E is the expected number of spurious hits, K, and A are parameters that de-
pend on the scoring scheme, S is the alignment score, m is the database size in base
pairs and n is the query size in base pairs. We use the number of base pairs in the
graph as the database size. The K and A were chosen to correspond to a scoring
scheme with match score +1 and mismatch cost -2. The final alignment results con-
tain a path, edit distance between the query sequence and the graph and start and
end position of the alignment in the query sequence.

Alignment of transcripts to the graphs

Once all the gene-exon graphs are constructed, we align all the transcripts present
in species to every gene-exon graph in G. We obtain the path followed by each tran-
script in a graph. For each transcript t, we obtain the path which has the minimal
edit distance to the transcript. Ideally, the path should come from the gene-exon
graph of the gene from which ¢ originates. Hence, each transcript will only have one
path associated with it. We collect all such paths in set P = {p1,p2, .-, pm} and name
the set as transcript-path set

The gene-exon graph set § and transcripts-path set P constitute the index of
Aeron. The index can be used for multiple samples of the same species.

5.3.2 Alignment of reads to the graph

Similar to the alignment of the transcripts to the graph, we align all reads in a dataset
R against all the graphs in G. We only consider alignments with an E-value below
1. In case there are multiple alignments with E-value below 1, we select the longest
alignment. For each read, we then obtain path-sequence followed by the reads. Let
qr = {v1}.{v2}...{vx} be the path sequence of read r where v; € V is the node se-
quence. We then compare g, against every path sequence belonging P. We align ¢, to
each and every path in p; € P, which belongs to transcript t;, using the Needleman-
Wunsch algorithm ([NW70]). We discard all the secondary alignment and retain
only those alignments which span end-to-end of a read. We define overlap-score of a
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read r as the fraction of r which matches a given path-sequence of a transcript t;. If
the overlap score is above 20%, the read r is said to be aligned to ¢;.

5.3.3 Quantification of transcripts

We assign the read to the transcript to which it aligns. A read may get aligned to
multiple transcripts. In such cases, we assign the read to the transcripts with which
it has the highest overlap score. In some cases, a read can get aligned to multiple
transcripts with the same score. In this scenario, we assign the read to the transcript
whose 3’ end is closest to the 3" end of the read. We quantify a transcript by count-
ing the number of reads assigned to it and converting these counts to Transcripts Per
Millio (TPM). TPM for a transcript t; measures the expected number of copies of t; in
one million transcripts. We calculated this by first taking the raw count of reads as-
signed to a transcript and dividing the number by the transcript-length. This gave us
the transcript-level expression. We then summed up all the transcript level expres-
sions and divided the resultant by 1,000,000 which gave us a scaling factor. TPM of
t; was then calculated by dividing the transcript-level expression of ¢; by the scaling
factor. To obtain the gene-level expression estimate, we summed the TPM values of
all the transcripts belonging to a gene.

Evaluation

We tested the quantification step of Aeron on multiple datasets and compared the re-
sults generated against the expression estimates from Minimap. We used the widely
known concept of Transcripts Per Million (TPM) for our evaluation. In addition
to this, we also calculated the Mean Absolute Relative Difference (MARD) met-
ric which was previously used for transcript expression comparison by [Pat+17b].
Briefly, we first calculate the Absolute Relative Difference using the following formula:

ARD; = {O’ =y =0 (5.3)
i xi—yil : :
o otherwise,

where x; and y; are the true value and estimated value respectively for transcript i.
For real datasets, we used the TPM values obtained using short reads (from salmon)
as the true value and the TPM value obtained using long reads (from Aeron and
Minimap2) as the estimated value. We also used simulated data generated using
NanoSim ([Yan+17]) for our analysis. For calculating the ARD score for simulated
datasets, we used the actual number of reads originating from a transcript i as true
value and the number of reads assigned to i by Aeron as the estimated value. One
can deduce from equation 5.3 that when the estimated expression is close to the true
value, the ARD value tends to move towards zero. Hence, to score the overall perfor-
mance of an algorithm, we can take an average of ARD values of all the transcripts
as shown in equation 5.4.

1 M
MARD = i Z ARD;. (5.4)
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5.3.4 Fusion detection

One of the major applications of Aeron is to detect gene-fusion events using long-
reads generated from third-generation technologies. The algorithm for fusion detec-
tion was developed and implemented by Mikko Rautiainen. Similar to the quantifi-
cation step, we align the reads to gene-exon graphs. However, this time we retain all
the secondary alignments of a read. We might obtain partial alignment of a read to
multiple gene-exon graphs. Whenever a read get partially aligned to two different
genes such that the end-points of the alignment are within 20bps with the read, then
the read is said to support a tentative-fusion between the two genes.

We collect the genes which are part of tentative fusions and generate a fusion
graph from it. A fusion graph is a combination of gene-exon graphs of the two
genes involved in the tentative fusion and depends on which part of the read is
aligned to which gene. For instance, if the first half of a read aligns to gene A and
the second half aligns to gene B, we combine the gene-exon graphs of A and B. We
place a cross-over node between the graphs of A and B and connect each base of A to
the cross-over node by a directed edge. We also connect the cross-over node to each
base of B by a directed edge. This way, an alignment can start from any position in
A and end up in any position in B. We then align the reads to their fusion graphs
keeping a condition that the alignment must span the entire read length.

A read getting aligned end-to-end against a fusion graph might just be by chance
and is not an indication that the read supports the fusion event. To further analyze
the predicted fusion event, we align the reads to the gene-exon graphs of tentative-
fusion genes. Again, the alignment must span the entire read length. We calculate
the difference between the lowest edit distance between the read sequence and the
gene-exon graph and the lowest alignment edit distance between the read sequence
and the fusion graph to obtain a fusion score. At each point, a read can support only
one fusion event. We decide this by keeping the alignment of a read with a fu-
sion graph which has the lowest edit distance. Read alignment whose fusion score
is below a user-defined threshold is discarded. Similarly, a read alignment whose
alignment error rate to the fusion graph is above 20% is discarded. We then consider
the paths of the remaining fusion alignments as predicted fusion transcripts. When
multiple reads align to the same fusion graph and cross over at the same exon, we
consider them as the same fusion event. We then select one of them is arbitrary as
the fusion transcript. Similarly, if multiple reads align to the same fusion graph but
cross over at different exons, we consider them as separate events. We output the
list of predicted fusion transcripts as path-sequence.

5.3.5 Data retrieval

For analyzing Aeron, we used a novel dataset with 2.7M reads from K562 cells with
an average read length of 750bps. The dataset was generated in the Genome Institute
of Singapore, Singapore. Apart from these, we used 25M reads from the NA12878
dataset ( [Jai+17b]) with an average read length of 1030bps downloaded from SRA
run browser. For the alignment step, we used the chromosomes and transcripts from
GRCh38.p12 ([Sch+16]). We also aligned the datasets against the human reference
genome using Minimap2. We filtered out all the secondary alignments from the re-
sultant SAM file. For each transcript, we counted the number of reads aligned to it.
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We then converted the count values to Transcripts Per Million (TPM). As in the case
of Aeron, to achieve gene-level expression estimates, we summed the TPM values of
all transcripts belonging to a gene.

To compare the expression estimates obtained from long reads (using Aeron
and Minimap?2) against estimates obtained using short reads, we downloaded two
short-read datasets: one for K562 cell which consisting of 113M paired-end reads
(SRX498124, [Wan+19]) and second for NA12878 which consisted of 188M paired-
end reads (ERX329308, [Kil+13]). We then calculated the expression for both the
datasets using Salmon (v0.11.12) with default parameters except for k-mer parame-
ter which was set to 17.

5.3.6 Parameter optimization

As mentioned above, Aeron using GraphAligner for aligning reads against a sequence-
graph generated from the reference genome. Two of the most important parameters
for GraphAligner are the seed-length and the (number of seeds) (NOS) which are used
for the seeding step of the aligner. Seeds hits are exact matches between portions of
the reads and parts of the node sequence. Hence, the higher the seed-length lesser
than the number of seeds found and alignments achieved. Similarly, the number of
seeds denotes how many available seeds are used to compute an alignment. Hence,
a high number of seeds and a small seed-length are required to achieve an accurate
assembly. However, a very small seed-length might result in spurious alignment.
Similarly, a very high number of seeds would increase the runtime of the pipeline
drastically. We wanted that the default values of these parameters should give us
a good accuracy in a reasonable runtime. For this, we first simulated 1M oxford
nanopore reads using NanoSim (v2.5.0, [Yan+17]) in transcriptome mode. We gave
the novel K562 ONT data as the reference to NanoSim to create the training read
profile.

We performed several runs of Aeron on the simulated dataset. Each run con-
sisted of a different combination of seed-length and the number of seeds. We mea-
sured the accuracy of each run using the MARD score (see section 5.3.3). Figure 5.2
shows the effect of varying seed length and the number of seeds on the runtime (x-
axis) and the MARD score (y-axis). The curves in the graph represent a single NOS
parameters and the points on the curve represent the different seed length. We see
an improvement in accuracy when we increase the number of seeds. Note that a
MARD score is inversely proportional to accuracy. Hence, a lower MARD score de-
picts an accurate expression estimation. However, we observe that setting the NOS
parameter too high results in an increase in runtime. We also observe that with the
increase in seed-length, the accuracy also goes down. We selected a combination
of parameters (NOS=15 and Seed-length=17) which seemed to be a good trade-off
between the accuracy and the run-time. However, please note that this combination
might be data-specific. Different datasets might result in different combinations.

5.4 Results

In this chapter, we present the Aeron pipeline which quantifies transcripts and pre-
dicts gene-fusion events using alignments of long-reads against sequence-graphs.
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Figure 5.3 depicts the workflow of the quantification step of Aeron. We begin by con-
structing a gene-exon graph for each gene in the genome. In the gene-exon graph,
each exon belonging to the gene constitutes a node. If an exon has an alternate
donor/acceptor site, we divide the corresponding node into sub-nodes where the
split occurs at the alternate donor/acceptor site. We connect the 3’ end of a node to
the 5" end of all the nodes downstream of it (figure. 5.3a). This way, any alternate
splicing event can be mapped to the graph. We represent a transcriptome as the set
of all gene-exon graphs. We proceed by aligning all the transcripts against all the
gene-exon graphs are record the path followed by each transcript in the graph (fig-
ure 5.3b). The above steps mark the indexing phase of Aeron. We can use the same
index for multiple datasets belonging to the same species.

In the next phase, we align long reads against all the gene-exon graphs (figure.
5.3c). We compare the alignment of each read against the set of paths followed by
transcripts in the gene-exon graph (figure. 5.3d). We consider a transcript t as ex-
pressed if there is a read r such that: 1) at-least 20% of the path covered by r is
contained in the path traversed by t and 2) the E-value of the alignment between r
and the gene-exon graph is less than 1.0. We assign read r to transcript t with a score
s, where s is the percentage of the path of r contained in ¢. If a read aligns to two dif-
ferent transcripts with the same score, we assign the read to the candidate transcript
whose 3’ end is closest to the 3" end of the read. This idea stems from the concept
that long-read sequencers generate sequences from the 3’ to the 5" end. Hence, there
is a certain bias towards the 3’ end of the transcripts ([Dep+19]). We then perform
the final quantification of a transcript ¢ by counting the number of reads assigned to
t and converting the number into Transcripts Per Million (TPM).

5.4.1 Performance of Aeron on different sequencing protocols

In this work, we tested Aeron on reads generated from Oxford Nanopore (ONT) se-
quencing technologies. Like most of the short read technologies, oxford nanopore
technology synthesizes complementary DNA (cDNA) and amplifies it using PCR.
An alternate protocol is to directly synthesize the single stranded RNA (DirectRNA) ([Dep+19]).
This reduces the amplification biases introduced during the PCR site. We down-
loaded two ONT datasets from NA12878 cell line generated from the above two
protocols. The first one contained 15M sequences obtained using the cDNA proto-
col and the second 10M sequences obtained using the DirectRNA protocol. We ran
Aeron with default parameters on both the datasets and measured the performance
in terms of the TPM values. Figure 5.4 shows the distribution of reads generated
from both the protocols along the transcript length. As expected, we see most of the
reads aligned towards the 3’ end of the transcripts. We see a stronger bias in the
alignments of Direct RNA reads as compared to the reads from the cDNA protocol.

We then computed the expression levels of the know ENSEMBL ([Zer+18], v92)
genes and transcripts for both the datasets. Out of 58,336 annotated genes and
203,675 annotated transcripts, we obtained expression estimates of 28,584 genes and
102,748 annotated transcripts in the case of cDNA data and 28,021 genes and 107,030
transcripts in case of Direct RNA data. We then compared the gene and transcript
level TPM values for both the protocols. We calculated the Spearman correlation be-
tween the expression estimates from cDNA data and the expression estimates from
Direct RNA data. Figure 5.6 compares the expression estimates of NA12878 data
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generated from the two protocols. We observe that at gene-level (figure 5.6a), the ex-
pression estimates are highly correlated with the spearman coefficient of 0.90. How-
ever at transcript level, the correlation drops to 0.68 (figure 5.6a). A reason for this
might be the position of transcript sequences within a gene. Within a gene, many
transcripts may overlap with each other. A high percentage of these overlapping
transcripts have the same 3’ end position. In cases, if the read aligns to the over-
lapping transcripts with the same score, we assign the read randomly to one of the
transcripts. Hence, we may encounter discrepancy in transcript level expression es-
timates.

To check whether Aeron generates reproducible quantification, we combined the
cDNA and Direct RNA datasets and divided the combined datasets into three sub-
sets. We ran Aeron separately on the three subsets using the default parameters. We
calculated the transcript-level expression for the three subsets. We found the expres-
sion estimates to be highly correlated with each other asserting the fact that Aeron
generates reproducible expression estimates.

5.4.2 Comparison of Aeron against expression estimates from Minimap2

To test the performance of Aeron over multiple datasets, we ran Aeron on 2M novel
K562 data and 25M Nal2878 data. We aligned and quantified both the datasets
against the annotated human Ensembl transcriptome. As mentioned in section 5.2,
current long read specific algorithms depend upon alignments from Minimap?2 for
expression estimation. Hence, we also aligned the NA12878 and novel K562 against
a reference genome using Minimap?2 and filtered out all the secondary alignments.
We assigned a read to a transcript if it aligns with the transcript. We then counted the
number of reads assigned to a transcript and converted the number into TPM values.

In the case of Aeron, we achieved more than 80% alignment rate for K562 and
around 96% alignment rate for NA12878. We looked into the read length and the
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K562 (first row) and NA12878 (second row) dataset.

base quality of the reads which were left unaligned in both the datasets. We aver-
aged the quality scores of individual bases in the read and termed this as average
base quality of the read. Figure 5.7 shows the properties of the reads which were
left unaligned in both the datasets. As expected, many of the unaligned reads (blue
bars in the plot) were either had either a low average base quality (5.7a and c) or
were shorter in length (5.7b and d). In Aeron, shorter reads are mostly overlapped
by longer reads in the graph. Hence, the aligner considers these reads as secondary
alignment and filters them out. In the case of low-quality bases, these are generally
sequencing errors. Hence, when a read has low average base quality, it is difficult
to determine its origin correctly. The K562 dataset was a combination of data pro-
duced by three different sequencing runs (three different peaks in (5.7a)). The first
sequencing run generated a lot of low-quality bases and the aligner was not able to
align most of the reads from this run.

We compared the performance of Aeron against estimates from Minimap?2 at
both gene and transcript levels. Table 5.1 summarizes the results obtained from the
comparison. We see that in K562, Aeron can assign 50% more reads to transcripts
as compared to Minimap2. In the case of the NA12878 dataset, Aeron can map 3%
more reads to transcripts. To check whether these additional assignments are correct,
we generated expression estimates from short-read data using Salmon. Taking the
salmon estimates as true value, we calculated the MARD scores for Aeron and Min-
imap2. We also calculated the Spearman correlation between the estimates from the
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Gene level

Dataset Aeron Minimap2

#reads mapped Correlation MARD #reads mapped Correlation MARD
K562 (2.7M) 2,167,286 0.833 0.350 1,074,411 0.704 0.428
NA12878 (25M) 23,902,112 0.822 0.349 23,211,716 0.778 0.37

Transcript level

Dataset Aeron Minimap2

#reads mapped Correlation MARD #reads mapped Correlation MARD
K562 (2.7M) 2,167,286 0.297 0.635 1074411 0.209 0.659
NA12878 (25M) 23,902,112 0.270 0.664 23211716 0.207 0.637

TABLE 5.1: Spearman correlation and MARD between Transcripts

Per Million (TPM) at gene level obtained from Aeron/Minimap2 us-

ing Oxford Nanopore Sequencing (ONT) data and TPM at gene and

transcript level obtained from Salmon using Illumina data. The size
of the dataset is depicted in brackets next to the name.

long reads (using Aeron and Minimap2) and the estimates from the short reads (us-
ing Salmon). In these comparisons, we considered all genes and transcripts present
in the human genome according to Ensembl annotation (v92). We found the Aeron
estimates to be closer to the expression estimates from short reads evident by the
higher correlation value and lower MARD scores at both gene and transcript levels.
An exception to this is in th case of the MARD score of NA12878 where Minimap?2
performs better than Aeron. Note that, MARD score is based on the difference be-
tween the estimated value and the true value. So if the estimated value to closer to
the true value, the MARD score would move closer to 0.

We observe from the table 5.1 that the correlation between the expression esti-
mates from long reads and the expression estimates from Salmon at transcript level
is constantly low. We also a similar behavior in MARD score where it is constantly
high for both the datasets. As mentioned in section 5.4.1, presence of overlapping
transcripts might be one plausible reason for this. Another reason might be the pres-
ence of high percentage of short length transcripts in the transciptome. Error-prone
reads generated from these transcripts might not have enough length to get aligned
to the correct transcript. Also, if the shorter transcript is completely overlapped
by a longer transcripts, a read may get aligned to the longer transcript instead of
the shorter one. Hence, we might not be able to quantify such short-length tran-
scripts. To test this hypothesis, we applied a length threshold on the transcripts.
We removed all the transcripts, whose length is below the threshold, from the tran-
script pool and recalculated the correlation value. Figure 5.8 shows the effect of
transcript length cutoff on the expression estimation. As expected, when we remove
transcripts of smaller length, the correlation with Salmon estimates increases. For a
range of transcript length cutoff of 0-10000bps, the correlation improved from 0.29 to
0.64 for K562 cell line and 0.27 to 0.74 for NA12878 dataset. This asserted our hypoth-
esis that the presence of short transcripts affects the quantification at transcript-level.

One of the drawbacks of long read based quantification is the inability to quan-
tify low expressed regions. We wanted to check whether Aeron can map and quan-
tify low expressed regions. Figure 5.9 shows a scatter plot of gene expression esti-
mates of Aeron (first column) and Minimap2 (second column) applied on the novel
K562 data and the NA12878 data. For this plot, we only take the genes which have
non-zero expression estimate by either Aeron or Minimap?2. Again, we take the ex-
pression estimates from Salmon as the true value and depict that on the y-axis of
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each plot. We observe that Aeron can achieve estimates closer to the true value re-
sulting in the majority of the points lying close to the diagonal. We observe that
Aeron is able to detect more genes at lower range of expression (1-5 TPM) as com-
pared to Minimap2. A plausible reason for this behaviour might be that few reads
originate from these low-expressed regions. Since these reads are error-prone, min-
imap?2 is not able to map the reads to the correct region of origin. The conditions of
mapping is less stringent in case of Aeron where only 20% of the path covered by a
read should be contained in the transcripts. Hence, the reads originating from low
expressed transcripts are successfully mapped back to the correct genomic region.

Next, we wanted to check whether the alignments produced by Minimap?2 could
be processed differently to produce better quantification. Recently, [Son+19] pro-
posed an alternate approach for quantifying transcripts by using Salmon on the
BAM file produced by Minimap2. Simultaneously, Soneson et al also ran Salmon
in quasi-mapping mode with the index generated from ENSEMBL cDNA reference
fasta file. We compared these two approaches with the quantification produced from
Aeron at gene and transcript level. Table 5.2 summarizes the results obtained. We
found that Aeron was still able to perform better than the approaches suggested by
Soneson ey al. As mentioned in section 5.2, Salmon is designed with the specifics
and the error-model of short-read sequencing technology. Since the error model for
long-read technologies is different, Salmon is not effective when it comes to quan-
tification with long reads.

5.4.3 Gene-fusion detection

Another major objective of Aeron is to detect gene-fusion events using alignments
of long reads against gene-exon graphs. The gene-fusion detection algorithm was
developed and implemented by Mikko Rautiainen from the Algorithms for Computa-
tional Genomics group at Saarland University, Germany. Briefly, we align the reads
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Gene Level
Dataset Aeron | Minimap2 Salmon Salmon
p (Quasi-Mapping) | (Alignment-based)
K562 (2.7M) 0.836 0.704 0.706 0.700
NA12878 (25M) | 0.823 0.778 0.759 0.772
Transcript Level
Salmon Salmon
D A ini 2 . . .
ataset eron | Minimap (Quasi-Mapping) | (Alignment-based)
K562 (2.7M) 0.297 0.209 0.233 0.215
NA12878 (25M) | 0.276 0.233 0.257 0.221

TABLE 5.2: Alternate approaches for quantifying transcripts using long
reads. The table shows the spearman correlation between the expression es-
timates obtained using short reads (using salon) against expression estimates
obtained using Aeron(column 2), only minimap2 output(column 3), salmon
in quasi mapping mode with long reads as input (column 4) and salmon in
alignment-based mode on output generated from minimap2 (column 5).
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against the gene-exon graph. We consider reads which get partially aligned to differ-
ent genes. We define a pair of genes to support tentative-fusion if: 1) a read gets par-
tially aligned to both the genes and 2) the alignment end-point of the first part of the
read and the alignment starting point of the second part of the read is within 20bps
of each other. The fused sequence of both the genes forms the tentative-fusion se-
quence. A read may support multiple tentative-fusions. We then take the gene-exon
graphs of genes involved in a tentative-fusion and combine them to form a fusion-
graph. We add a temporary node between the two gene-exon graphs. We connect
all the bases of the first graph with this temporary node. Similarly, we connect the
temporary node is to all the bases of the second gene-exon graph. We generate a
fusion graph for each pair of genes participating in a tentative fusion. We then per-
form an end-to-end alignment of reads against the fusion graphs. If reads are not
able to align end-to-end to the fusion graph, then the fusion-graph and the corre-
sponding tentative-fusion are discarded. We term this step as the graph filtering step.
We then align the reads to the individual gene-exon graph of genes which are part of
the remaining tentative fusion. We define fusion score as the difference between the
scores obtained from fusion graph alignment and the gene-exon graph alignment.
We then filter out alignments whose fusion score is below a user-defined threshold.
A read can support only one tentative fusion. Hence when we remove an alignment,
we also remove the corresponding fusion graph. We term this step as fusion filtering
step. We then take the sequence of the alignment along the remaining fusion graph
as predicted fusion event.

Performance of fusion detection on simulated data

To test the performance of gene-fusion step of Aeron, we simulated fusion tran-
scripts of different lengths. Briefly, we randomly selected two different genes carved
out a sequence section of the length / from both the genes. We concatenated the
two sections to form a fusion gene of length 2/. We then took a random substring
from transripts belonging to each gene and the substrings were concatenated to form
a fusion transcripts. We then simulated reads from these fusion transcripts using
NanoSim and ran the fusion detection pipeline using the simulated reads.

We show the performance of the fusion detection step of Aeron in figure 5.10.
We can observe from the precision-recall curve (figure. 5.10a) that fusion of smaller
length are difficult to detect as the recall saturates at 15%. This might be due to
the high error rate of ONT technologies and short read-length generated from the
shorter fusion transcripts. This makes it difficult to map the entire reads back to
the transcripts. As the fusion length increases, we see an improvement in the recall
rate. We achieve a maximum recall rate of 95% for the fusion lengths between 700-
1000bps.

Next we wanted to check the number of simulated fusions we are able to recap-
ture using Aeron. For this we first simulated 450 fusion events for different sizes
and divided them into size ranges from 100bs-1000bps such that each size range has
50 simulated fusions. We then ran the Aeron pipeline on the simulated dataset. First
we considered all the tentative-fusions which were obtained after first step, i.e, af-
ter the partial alignment of reads to different genes (depicted as tentative in figure
5.10a). We see that this is able to predict more than 90% of the fusion events from
size range 600-100bps. However, we also obtained around 28,696 false positives. We
then filtered out fusion transcripts which couldn’t surpass the graph filtering step.
We observed a similar curve to the tentative fusion. However, the number of false
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positives was reduced to 49. Further, we filtered out all the fusion transcripts which
couldn’t pass the fusion score filter. Here, we could only recreate fusions which were
greater than 600bps in length. However, the number of false postives was drastically
reduced to 20 in the final step. We see that shorter fusions are not detected even in
the tentative fusion phase; this is most likely due to the high error rate preventing
the reads from getting aligned to the correct genes.

Performance of fusion detection on real data

So far, we saw the performance of Aeron’s fusion detection on a simulated dataset.
However, the simulated dataset does not capture some of the complexities of a real
gene-fusion event. Hence, we tested Aeron on the novel K562 and the NA12878
datasets. K562 is an important cancer cell line with some known fusion events. We
used the NA12878 dataset as a control since no known fusion event is present in this
cell line. The initial run of the pipeline resulted in 25 events in K562 and 24 events
in NA12878. However, these events involved mitochondrial genes and gene fused
with its pseudogenes. We also removed fusion events where alignment to one gene
was worse than alignment to the second gene. So far we were only aligning against
the Ensembl annotated transcripts. However, there might be a transcript ¢t not anno-
tated in Ensembl which is similar to the fusion transcript. The read might originate
from t. Hence, we aligned the fusion transcripts against NCBI’'s annotation (release
109) and removed all those predicted fusion transcripts aligned to a transcript from
NCBI's annotation. Finally, we were left with 8 events for K562 and 2 events for
NA12878.

Table 5.3 summarizes the fusion events obtained from Aeron. The predicted
events included the well know BCT-ABL event ([Kur+03]). Other events included
the HGB2-HGBI1 event which has a high read support ([Lee+10]). The predicted
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K562

Ensembl ID Gene Chromosome Ensembl ID Gene Chromosome Support
ENSG00000196565  HBG2 chrll ENSG00000213934 HBG1 chrll 89 reads
ENSG00000186716 BCR chr22 ENSG00000097007  ABL chr9 2 reads
ENSG00000257949  TEN1 chr17 ENSG00000250506 CDK3 chrl7 2 reads
ENSG00000204177 BMSI1P1 chr10 ENSG00000188234 AGAP4 chr10 2 reads
ENSG00000241553  ARPC4 chr3 ENSG00000214021 TTLL3 chr3 4 reads
ENSG00000198056  PRIM1 chr12 ENSG00000196531 NACA chr12 3 reads
ENSG00000198056 ~ PRIM1 chr12 ENSG00000196531 NACA chr12 3 reads
ENSG00000164867  NOS3 chr7 ENSG00000185345 PRKN chr6 2 reads

NA12878

Ensembl ID Gene Chromosome Ensembl ID Gene Chromosome Support
ENSG00000223361 FTH1P10 chr5 ENSG00000162734 PEA15 chrl 3 reads
ENSG00000172493  AFF1 chr4 ENSG00000162244 RPL29 chr3 2 reads

TABLE 5.3: Predicted fusion events for K562.The first 6 columns de-

scribe the two genes involved in the fusion. The column “Support”

counts the number of reads whose primary alignment covers the fu-
sion breakpoint and 150bp from both sides of it.

TEN1-CDK3 and BMS1P1-AGAP4 were read-through events reported earlier ([Pra+10;
Str+02]).

5.5 Discussion

Sequencing technologies like Oxford Nanopore and PacBio overcome several short-
comings of short-read technologies. They are producing reads which almost spans
the entire transcript length. Hence, there is a new interest in transcript quantification
and gene-fusion detection using only long reads. In this work, we propose Aeron, a
novel pipeline that quantifies transcripts and predicts gene-fusion events based on
an alignment of reads against a sequence graph. We used GraphAligner ([RMM19])
to align reads to the transcriptome and assigned reads to a transcript based on the
position of the alignment within the transcripts. We tested Aeron on two different
datasets and compared the results to expression estimates derived from alignments
using Minimap2 and found Aeron to be performing better. We found a high corre-
lation between estimates from Aeron and expression estimates from short-read data
(using salmon). The assignment of a read to a transcript was based on Minimap2
outputs was highly biased towards the primary alignments. As a result, the quan-
tification produced based on Minimap2 output tends to be sub-optimal. We also
show that Aeron does not depend on the sequencing protocol used to generate the
reads. This was evident from the high correlation between the Aeron runs on reads
generated from cDNA and the reads generated by native RNA.

However, the quantification step of Aeron still suffers from some drawbacks.
Mainly, the transcript level quantification is still not as accurate as of the gene-level
quantification. In other words, although we show improvement over existing meth-
ods, the assignment of many reads to the correct transcript of origin is still a chal-
lenge for Aeron. There might be many reasons for this behavior. We show in results
that the short transcripts hinder the performance of Aeron. Many transcripts in the
reference sequence were a shorter version of a longer transcript. If a read originating
from the shorter transcripts, is not long enough to cover the transcript, it becomes
difficult to map and assign the read back to the transcript. We mitigate this problem
at gene-level where we add up the expression estimates of all transcripts belonging
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to a gene. The short length of a read posses another hindrance towards accurate
transcript-level expression estimation. If an error-prone read is short, then it is diffi-
cult to map the read back to the transcriptome.

This brings our attention to the high error-rate in long-read sequencing technolo-
gies. We can encounter an error rate of 5%-7% in Oxford Nanopore which makes
aligning of reads extremely difficult. Hence, one can error correct the reads before
aligning and quantifying transcripts using them. Currently, there is no long-read
specific error correction method for transcriptomic sequences. Recently, [Lim+19]
studies the effect of using genomic long-read specific error correction methods on
transcriptomic data. They found that genomic methods are effective to a certain
extent. However, they affect the gene and isoform diversity which would harm
the quantification process. [RMM19] proposed an error correction application using
GraphAligner to align long reads against the de Bruijn graph generated from short
reads. However, this method has only been tested on genomic data. Also, this is a
hybrid method which requires short reads for its implementation.

We also propose a fusion detection algorithm using the alignments of long reads
against the sequence graph. We tested the approach on simulated data and the K562
dataset. We observed that the efficiency of the fusion detection approach depends
highly on the length of the fusion transcripts. Detecting the shorter fusion transcript
is still a challenge for Aeron which can be further looked into. The application of
Aeron on the K562 data resulted in the detection of known and novel gene-fusion
events. These events included the well known BCR-ABL1 and HGB2-HGB1 gene-
fusions. We realized that the gene-fusion approach still needed some curations to
weed out false positives which would be worked upon in the future.

In conclusion, we feel that Aeron would be of high interest amongst practition-
ers since long read transcriptomic technologies are catching fuel. With the improve-
ment in third-generation sequencing, the accuracy of our tool would also increase.
For instance, an improvement in base-calling would result in reduced error-rate.
This would improve the alighment of reads to the transcriptome resulting in better
quantification and gene-fusion detection. An accurate transcript quantification and
gene-fusion event detection can open a pandora of transcriptomic information that
could be used further to gain novel insights into the genomic landscape of a species.

5.5.1 Availability and Implementation

Aeron is an open source pipeline which is managed using SnakeMake. The modules
are written in python and the assembler is written in C++. It can be downloaded
via GitHub ((github.com/SchulzLab/Aeron). We tested the algorithm in Linux en-
vironment.

Aeron runs in three steps. In step 1, a reference transcriptome is given and Aeron
generates a gene-exon graph. The transcripts are mapped to the graph and the paths
traversed by each transcript are recorded. This step has to be performed only once
and the output can be reused for multiple read datasets. Step 2 consists of aligne-
ment of reads against the graph. Aeron then performs the quantification based on
the overlap between the paths followed by the read in the graph and the paths fol-
lowed by transcripts. In step 3, the alignment of reads against the graph is reanal-
ysed to predict possible gene fusion events.
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We direct the user to go through the readme file given with the tool to get a
detailed picture of the functioning of the algorithm.
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Chapter 6

Summary and Outlook

In this chapter, we revisit all the software and algorithms developed in the scope of
thesis. We try to address the limitations of each software and discuss the possible
improvements to enhance their functionality.

6.1 Read normalization (ORNA and ORNA-Q/K)

Optimized Read Normalization Algorithm (ORNA) is a software tool to normal-
ize the high coverage RNA-seq dataset. The goal of ORNA is to remove redun-
dant reads in an informed way without compromising on the k-mer information
contained in them. The software is open source and can be accessed via GitHub
(https://github.com/SchulzLab/ORNA).

Most of the de novo assemblers use k-mers from the reads to build a de Bruijn
graph. The assemblers consider k-mers as the nodes of the graph and connect them
based on the overlapping of sequences between two k-mers. They then generate
assemblies by traversing various paths in the graph. Hence, while normalizing the
data, it is important to preserve all k-mers from the original dataset. ORNA con-
siders read normalization as a Set Multi-Cover problem. The set of all k-mers from
the original dataset is considered as the universe. A minimum set of reads required
to cover each element of the universe a certain number of times (say f) is obtained
and termed as the normalized dataset. The assemblers rely on the relative difference
of abundance between neighboring node k-mers to perform graph simplification.
Hence, ORNA sets a different value of t for each k-mer based on the k-mers abun-
dance. Thus, it also retains the relative differences of abundances between neighbor-
ing node k-mers.

ORNA can be applied de novo to any RNA-seq dataset. It is computationally
convenient with linear run time which depends on the size of the dataset and the
read-length. We utilize the k-mer counting algorithm from the GATB library which
makes it memory and runtime efficient. In our evaluation, we show that ORNA re-
tains all k-mers from the original dataset. We compared the assembly performance of
ORNA with other normalization algorithms namely Diginorm and the inbuilt in sil-
ico normalization step of Trinity assembler (TIS). The effect of the retaining all the k-
mers is seen here the assemblies generated from ORNA reduced datasets have more
number of annotated transcripts as compared to the assemblies generated from Dig-
inorm and TIS reduced datasets. Also, the memory and runtime required by ORNA
are comparable to that of Diginorm and TIS. We also noticed that error correcting
the reads before normalization resulted in the removal of more number of reads. It
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also improved the quality of the assembly produced.

However, there is still scope for a major improvement here. The goal of any
normalization algorithm should be to achieve the same quality of assembly which
is obtained from an unreduced dataset. Although we noticed that assemblies from
ORNA reduced datasets are the closest to the assembly from unreduced data, it is
still unable to assemble some transcripts especially at a higher percentage of reduc-
tion. We hypothesized that a possible reason for this behavior might be the ordering
of reads in the input dataset. ORNA traverses the reads in the order in which it is
generated from the sequencer. Hence, a high-quality read which is generated to-
wards the end of a sequencing run might get discarded by ORNA. We implemented
this idea in the form of ORNA-Q/K which is given as an extension to ORNA. In this
approach, we score each read based on Phred scores of the bases in the read and the
abundance of k-mers present in the read. During the read selection procedure, we
give priority to reads having a high score. We aimed at maximizing the overall score
of the normalized dataset.

Indeed, this modification enabled us to capture some additional transcripts which
were missed earlier. But, at a higher percentage of reduction, the assembly quality
was still lower than the assembly produced from the unreduced dataset. We realized
that the assembly quality is highly dependent on the heuristics of the assembly algo-
rithm. Although most of the de-Novo assemblers begin by constructing a de-Bruijn,
they follow different approaches to generate assemblies from them. For instance,
Trinity uses only a single k-mer size to generate the assembly whereas algorithms,
such as Oases and TransABySS, generate multiple assemblies using different k-mer
sizes and merge them to obtain the final assembly. We felt that generalizing the
different heuristics followed by the assemblers and incorporating it into our nor-
malization algorithm is beyond the scope of this thesis.

One of the major hindrance for any transcriptomic analysis pipeline is the length
of the reads generated from the sequencers. The reads generated are not long enough
to cover the entire transcript. Hence to cover all the bases in a trancsriptome, prac-
titioners generally prefer to sequence deep. We feel that ORNA and ORNA-Q/K,
when integrated into an assembler, can enable assembly algorithms to efficient as-
semble these high coverage data. This would pave the way for many scientific
studies which would not have been possible earlier due to limited computational
resources. In our work, we propose one such application where we assemble a com-
bined RNA-seq dataset to detect biologically relevant long non-coding and protein
coding RNAs. ORNA and ORNA-Q/K can also be applied on metagenomics and
metatranscriptomic dataset. However, we have not tested this application as this is
beyond the scope of this thesis.

6.2 Streamlined de novo transcriptomic assembly

During the course of our analysis, we realised that there are many confounders
which make the RNA-seq analysis less straightforward. Such confounders included
sequencing errors, redundancy in the read dataset, repetitive sequences and vari-
ants. We understood the importance of error correction and normalizing the reads
before assembling them. These two steps drastically affect the quality of the final
assembly produced. Unfortunately, not many practitioners perform pre-processing



6.3. Long read specific transcript quantification and gene fusion detection 107

of data and hence end up with sub-optimal assembly. We developed an automated
pipeline named SOS which performs read error correction (using SEECER) and nor-
malization (using ORNA) before assembling them using a de Bruijn graph based
assembler. The assembler used in the pipeline were run with multiple k-mer values
and the resulting assemblies were merged together to form a single non-redundant
assembly. We used the k-mer selection algorithm KREATION to predict the k-mer
parameter for the assembler. The pipeline is open source and is available in GitHub
(https://github.com/SchulzLab/SOS). As mentioned before, an assembly algorithm
is a heuristic and is highly data specific. A single assembler cannot guarantee a high
quality assembly for multiple datasets. Hence, the user can replace the assembler by
just changing a few lines of codes in the pipeline. The pipeline ends with estimating
transcript level expression from the final assembly.

We tested the pipeline on three datasets of varying read length and coverage.
We ran the pipeline using four different state-of-art assemblers. In all the cases,
we found running the assembler using SOS resulted in better quality assembly as
compared to the default settings of the assembler. In terms of the computational
resource requirements, the memory and runtime required by SOS is larger than the
assemblers in their default settings. This is due to the additional step of error correc-
tion and normalization. The resource requirement, precisely computational mem-
ory and runtime, also increases due the assemblers being executed using multiple
k-mers. However, the improvement in the results far outweighs the additional re-
source requirements.

The SOS pipeline can be treated as a base structure and multiple other tools can
be integrated into the pipeline. Algorithms such as DESeq and CuffDiff can be con-
sidered to perform differential expression analysis. Similarly, algorithms such as
TrinityFusion and STAR-Fusion can be integrated to predict fusion events de-novo.
Although, it must be noted that the results obtained from such tools might not agree
with each other. Also, the parameters settings and the characteristics of the datasets
used might highly influence the results especially for genes and transcripts which
are expressed at low levels. Proper parameter selection of the algorithms based on
data characteristics is still a black box which can be explored in the future.

6.3 Long read specific transcript quantification and gene fu-
sion detection

As mentioned earlier, one of the major limitations of short-read sequencing is its in-
ability to accurately reconstruct full length transcripts. This problem proves a major
roadblock especially when studying complex species where a large percentage of
genes undergo alternate splicing. Technologies such as Oxford Nanopore and Pa-
cific Biosciences (PacBio), which were earlier used for genomic sequencing, are now
providing transcriptomic long reads which cover the entire transcript.

We developed a tool, AERON, to quantify transcript expression using reads from
Oxford Nanopore Technology (ONT). In the core, we generate a sequence graph
from the reference transcriptome and align the reads against the graph. Based on
the alignments, we estimate the expression of annotated transcripts. We also devel-
oped the first long read specific gene-fusion detection pipeline which is also based
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on the alignment of reads against the sequence graph. The pipeline is open source
and can be accessed via github (https:/ /github.com/SchulzLab/AERON).

We tested the quantification pipeline of AERON on two ONT datasets of vary-
ing coverage and read-length and the compared the estimates against expression
estimated obtained from the Minimap2 aligner. In both the cases, AERON is able
to accurately predict the expression at gene-level. However at transcript level, the
performance of AERON declines. This might be due to the high level of overlap be-
tween transcripts belonging to the same gene. If the reads originate from the over-
lapping regions, then it becomes difficult to assign them to the correct transcript.
Also, the reads might not get aligned to the correct transcript due to the high er-
ror rate generated from the sequencing technologies. However, the transcript level
expression estimates from AERON are still better than the expression estimates ob-
tained from the Minimap2 alignment. ONT sequencing can be performed on the
complementary DNA strand as well as directly on the RNA strand. The later pro-
cedure removes the dependence on the amplification process and hence the biases
produced in the abundance of cDNA due to PCR amplification is reduced. We tested
AERON on the datasets generated by both the procedures and found that the results
correlate with each other at gene as well as at transcript level. Hence, AERON is in-
dependent of the procedure used for sequencing. Regarding the gene-fusion detec-
tion, we tested the pipeline on the K562 dataset and predicted some experimentally
verified gene-fusion events. We also predicted some novel events which can be in-
vestigated further.

A major drawback of long-read technology, which also proved a hindrance in
our work, is the high error rate produced by the sequencers. Practitioners sometimes
augment the long-read analysis with short reads generated from the same sample to
reduce the effect of sequencing errors. Updates in sequencing technologies are pro-
ducing even longer reads which pass multiple times over a cDNA molecule which in
turn reduces the sequencing errors. These two updates would eventually improve
the accuracy of our quantification and gene-fusion detection. The sequence graph
used by AERON covers all the possible alternative splicing events in the species.
Hence in future, AERON can also be updated to assemble unannotated transcripts
containing annotated exons.

6.4 Outlook

Updates in sequencing technologies are revealing certain unknown complexities
of the transcriptome. Illuminas TrueSeq synthetic long-read technologies are one
such interesting advance, where the library preparation is multiplexed and restricted
to certain DNA molecules ([Til+15; Con+16]). These molecules are barcoded and
pooled back and bulk sequenced. The barcoding of molecules makes the assem-
bly procedure efficient and accurate. Earlier, we discussed the generation of long
reads from technologies such as Oxford Nanopore and PacBio. These technolo-
gies have enabled amplification-free, single-molecule sequencing of cDNA to re-
cover full-length transcripts without the necessity of the intermediate assembly step.
However, certain isoform detection pipelines detect unknown isoforms which needs
validation and classification. Scalability of long-read data analysis tools is another
major challenge faced by the scientific community ([Ama+20]). Tools which results
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in accurate analysis often take a lot of computational runtime which makes param-
eter optimization a cumbersome process. The scalability is also affected by the data
generation and its storage. Oxford Nanopore sequencing has the fastest turnaround
time. However, the results generated by the sequencers consume a lot of memory
which increases the IT costs for large projects ([WJH19]).

Besides, Single-cell RNA-seq (scRNA-seq) is becoming one of the most active
fields. Sequencers from companies such as 10x genomics can generate sequences
from a small amount of starting material generally coming from a single cell. With
the rapid progress in the field, more than 10,000 cells per sample can be sequenced
and analyzed. It is estimated that within the next five to ten years, transcripts from
more than 30 million to 100 million would be sequenced and analyzed ([HLD18]).
This would pave the way to classify and identify novel cell types which would
further expand our understanding of the heterogeneity of cell system. Currently,
scRNA-seq data are mapped to a reference genome and analyzed. 10x genomics
have their own in-house data analysis pipeline named CellRanger which aligns reads,
generates feature-barcode matrix and performs gene-expression analysis ([Zhe+17]).
Depending on the sequencing protocols, various other tools are also applied to scRNA-
seq data. Tools such as TraCeR and BraCer and used to reconstruct TCR and BCR
sequences respectively ([Stu+16; Lin+18]). Packages such as Seurat, SC3 and clus-
terExperiment are used for identification of highly variable genes, dimensionality
reduction and clustering of scRNA data ([But+18; Ris+18; Kis+17]). Certain bulk
RNA-seq analysis algorithms and pipelines, with tweaks, can also be used at dif-
ferent stages of the scRNA-seq analysis ([STM15]). Read mappers such as TopHat
and STAR aligners are constantly applied for generating gene-count matrices. Pack-
ages such as FastQC and Kraken are used for quality control. Softwares like RSEM
and DESeq?2 are generally used for differential expression analysis. As the scRNA-
seq analysis mainly depends on the reference sequence, there is little scope for new
transcript discovery using the current methodologies. It is expected that new meth-
ods would be developed in the future opening a pandora box of information on cell
physiology to systems biology.

Interesting times are ahead...
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