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1 Abbreviations 
 
53BP1  Tumor Protein P53-Binding Protein 

alt-NHEJ alternative-NHEJ 

ASF-1a Anti-silencing factor 1 a 

ATM  ataxia-telangiectasia mutated 

ATR  ataxia telangiectasia and Rad3-related protein 

BCA  bicinchoninic acid 

BER  base excision repair 

BLM  Bloom syndrome protein 

bp  base pairs 

BRCA2 BRCA2 DNA repair associated 

BrdU  Bromodeoxyuridine / 5-bromo-2'-deoxyuridine 

BSA  bovine serum albumin 

CCL2  C-C Motif Chemokine Ligand 2 

cDNA  complementary DNA 

Cer-XLF Cernunnos-X4-like factor 

ChIP-seq Chromatin Immunoprecipitation DNA-Sequencing 

CHK1  checkpoint kinase 1 

CHK2  checkpoint kinase 2 

CRB2  Crumbs Cell Polarity Complex Component 2 

CSF2  Colony Stimulating Factor 2 

CtIP  C-terminal-binding protein interacting protein 

Ct  cycle threshold 

CT  computer tomography 

CXCL8 chemokine (C-X-C motif) ligand 8 

DH2O  distilled water 

DAB  3,3'-diaminobenzidine 

DAPI  4′,6-diamidino-2-phenylindole 

DC  dendritic cells 

DETC  dendritic epidermal T cells 

DDR  DNA damage response 

DMSA  7,12-dimethylbenz(a)-anthracene 

DMSO  Dimethylsulfoxide 

DNA   Deoxyribonucleic acid 

DNA-PK DNA-dependent protein kinase 

DNA-SCARS DNA segments with chromatin alterations reinforcing senescence 

dox  doxycycline 
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ETO  etoposide 

EtOH  ethanol 

EDTA  Ethylenediaminetetraacetic acid 

ELISA  enzyme-linked immunosorbent assay 

EXO1  exonuclease 1 

FCS  fetal calf serum 

g  gravitational force 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GROalpha growth regulated oncogene-alpha 

Gt  goat 

Gm-csf Granulocyte-macrophage colony-stimulating factor 

Gy Gray 

H2A.J   Histone H2A variant J 

H3K9ac H3 acetylated at lysine 9 

H3K9me3 H3 trimethylated at lysine 9 

H3K36me3 H3 trimethylated at lysine 36 

HIRA  histone repressor A 

HCL  hydrochloric acid 

HGF  hepatocyte growth factor 

HGPS  Hutchinson-Gilford Progeria Syndrome 

HP1  heterochromatin protein 1 

HR  homologous recombination 

γH2AX  Histone H2A.X phosphorylated at Serine 139 

IFM  immunofluorescence microscopy 

IFNγ  interferon gamma 

IGFBP-7 Insulin-like growth factor-binding protein 7 

IL1β  interleukin 1 beta 

IL6  interleukin 6 

IL8  interleukin 8 

IL12  interleukin 12 

ILC  innate lymphoid cells 

IVC  individually ventilated cage 

IP10  Interferon gamma-induced protein 10 

IR  ionizing radiation 

IRIF  irradiation–induced foci 

KAP 1  KAP-associated protein 1 

KD   TERT/ptet-on-sh3-H2AFJ insert 

Ku70 X-ray repair cross-complementing protein 6 
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Ku80 X-ray repair cross-complementing protein 5 

LAD  lamine-associated domains 

LET  linear energy transfer 

LMB1  lamine B1 

mAB  monoclonal antibody 

MAP  mitogen-activated protein 

MCP1  Monocyte chemoattractant protein 1 

MDC1  Mediator of DNA damage checkpoint protein 1 

Mdn  median 

MEM  minimum essential medium 

MIP1α  acrophage inflammatory protein 1-alpha 

mGy  milligray 

MgCl  magnesium chloride 

MMR   mismatch repair 

MRE11 meiotic recombination 11 homolog 

Ms  mouse 

MV  megavolt 

nm  nanometers 

N2  nitrogen 

NaCl  sodium chloride 

NET  nuclear envelope transmembrane proteins 

NF-κB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NBS1  Nijmegen breakage syndrome protein 1 

NHEJ   non-homologous end joininig 

NER  nucleotide excision repair 

NT  WI-38hTERT/ptet-on-sh-NoTarget insert 

OIS  oncogene-induced senescence 

p16INK4a cyclin dependent kinase inhibitor 2A 

P21  cyclin-dependent kinase inhibitor 1 

p38MAPK p38 mitogen-activated protein kinases 

PARP  Poly (ADP-ribose) polymerase 

PBS  phosphate buffered saline 

PES  polyethersulfone 

PFA  paraformaldehyde 

PIKK  phosphoinositide 3-kinase (PI3K)-related 

PLA  proximity ligation assay 

PML-NB promyelocytic leukemia protein nuclear bodies 

PTM  post-translational modification 
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p53  tumor protein 53 

Rab  rabbit 

RAD50 ATP-binding cassette–ATPase 

RBE  relative biological effectiveness 

RC  replication coupled 

RFP  red fluorescent protein 

RNA  ribonucleic acid 

RNF 8  Ring Finger Protein 8 

RNF168 Ring Finger Protein 168 

ROS  reactive oxygen species 

RPA  replication protein A 

RPMI  Roswell Park Memorial Institute medium 

RS  replicative senescence 

RT  room temperautre 

RT-qPCR quantitative reverse transcription polymerase chain reaction 

SA-β-gal senescence-associated beta galactosidase 

SAHF  senescence-associated heterochromatin foci 

SASP  senescence-associated secretory phenotype 

SEM  standard error of mean 

SIPS  stress-induced premature senescence 

ssDNA  single strand DNA 

SSA  single strand annealing  

SSBR  single strand break repair 

TEM  transmission electron microscope 

TERT  Telomerase reverse transcriptase 

TGFβ1  Transforming growth factor beta 

TNFα  Tumor necrosis factor alpha 

Topo II  DNA Topoisomerase II 

XRCC4 X-ray repair cross-complementing protein
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2 Summary/ Zusammenfassung 
 
Elucidating the role of histone variant H2A.J following ionizing radiation 

 

Senescence is a stress-induced state in which cells cease proliferation whilst remaining 

metabolically active. While it is a noteworthy tumour suppressor mechanism, accumulation 

of senescent cells in aged tissue or tissue damaged through toxins such as ionizing radiation 

(IR), it has been implicated as a one of the nine hallmark ageing mechanisms, as well as, 

inducing premature ageing and promoting neoplastic growth. The limited study of novel 

histone variant H2A.J, has uncovered accumulation of H2A.J in etoposide (ETO)-induced 

and oncogene-induced senescence (OIS). Additionally, it plays a functional role in induction 

of the inflammatory senescence-associated secretory phenotype, a major effector of ageing 

and cancer. Whilst the DNA-damaging properties of radiotherapy aid in tumour growth 

control, healthy tissue is inevitably exposed to low doses of irradiation with side-effects 

including inflammation and radiation–induced senescence. This study therefore seeks to 

elucidate a possible role of H2A.J association with irradiation-induced senescence, DNA-

damage repair and senescence-associated secretory phenotype.  

 

H2A.J knock-down WI-38 lung fibroblasts and No-Target WI-38 lung fibroblasts containing 

unaltered H2A.J expression were irradiated and compared. Immunofluorescence 

microscopy (IFM) examinations were applied to determine H2A.J accumulation in response 

to IR, DNA-damage repair efficiency, senescence induction, proliferative arrest, senescence-

associated heterochromatin foci (SAHF) formation and DNA-segments with chromatin 

alterations reinforcing senescence (DNA-SCARS) formation. Transmission electron 

microscopy (TEM) was applied to gain further insight into senescence-associated chromatin 

changes and H2A.J localisation in respect to SAHF and DNA-SCARS. Furthermore, 

ultrastructure of DNA-SCARS was examined at the nanoscale using TEM. The senescence-

associated secretory phenotype (SASP) following radiation was investigated using enzyme-

linked immunosorbent assay (ELISA), performed on conditioned medium, and quantitative 

reverse transcription polymerase chain reaction (RT-qPCR), performed on isolated RNA.   

Additionally, aged- and ex vivo irradiated human epidermal biopsies were evaluated for DNA-

damage foci and H2A.J accumulation using IFM. In vivo immunofluorescence microscopy 

examinations of 20x 0.1Gy irradiated murine epidermis was also completed to gain insight 

into the long term accumulation of H2A.J following low-dose fractionated radiation. 

 

In vitro studies revealed H2A.J accumulates in a dose-dependent manner with lower doses 

resulting in transient accumulation and higher doses inducing senescence, leading to long-

term H2A.J positivity. H2A.J did not influence repair capacity following IR. Knock-down of 
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H2A.J did not affect senescence induction, proliferative arrest, or SAHF formation. It did, 

however, effect ultrastructure of DNA-SCARS, thereby potentially explaining the altered 

SASP revealed by ELISA and RT-qPCR. Human epidermal biopsy examinations revealed 

increased H2A.J in aged epidermis together with increasing presence of DNA-damage foci. 

In vivo murine epidermis showed increased H2A.J accumulation up to 6 months post-IR at a 

level similar to 18 month old aged mice. 

 

This work provides a baseline insight into H2A.J accumulation following IR revealing potential 

insight into its influence on IR-induced SASP regulation. Additionally, indications arose for 

the application of H2A.J as a potential biomarker of senescent cells in culture, as well as, in 

human epidermal biopsies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 Summary/ Zusammenfassung 
 

7 
 

Die Bedeutung der Histonvariants H2A.J nach ionisierender Strahlung 

 

Seneszenz beschreibt einen durch Stress induzierten zellulären Zustand, indem keine 

Proliferation stattfindet, die Zelle aber trotz allem metabolisch aktiv bleibt. Während 

Seneszenz damit in erster Linie einen effizienten Tumorsuppressions-Mechanismus 

darstellt, unterstützt die Akkumulation seneszenter Zellen in gealtertem oder bestrahltem 

Gewebe frühzeitige Alterung und das Tumorwachstum. Eine aktuelle Studie der 

Histonvariante H2A.J zeigt die Akkumulation von H2A.J im Rahmen einer Etoposid- und 

Onkogen-induzierten Seneszenz. Weiterhin bestätigte sich ein Zusammenhang zwischen 

H2A.J und der Induktion des Seneszenz-assoziiertem sekretorischem Phänotyps (SASP), 

einem Haupteffektor von Alterung und Krebs. In der Radiotherapie macht man sich die DNA-

schädigenden Eigenschaften von ionisierender Strahlung zur gezielten Kontrolle des 

Tumorwachstums zu Nutze, wobei auch gesundes Gewebe in Tumornähe mit niedrigen 

Strahlendosen belastet wird. Dies kann möglicherweise Nebenwirkungen, wie Inflammation 

und strahlen induzierte Seneszenz, zur Folge haben. Im Rahmen dieser Dissertation sollen 

mögliche Zusammenhänge zwischen H2A.J und strahlen induzierter Seneszenz, der DNA-

Schadensantwort sowie dem SASP untersucht werden.  

Mithilfe von WI-38 Lungenfibroblasten, die zum einen eine unveränderte Expression von 

H2A.J durch Einbringung einer „No-Target“-Leerkassette und zum anderen einen H2A.J 

Knock-down aufweisen, wurden Unterschiede nach Bestrahlung eruiert. Unter Anwendung 

immunfluoreszenzmikroskopischer Analysen wurde die Akkumulation von H2A.J, die 

Effizienz der DNA-Reparatur, die Proliferation, die Seneszenz-assoziierten 

heterochromatischen Foci (SAHF) und die Entstehung von DNA- Segments with chromatin 

alterations reinforcing senescence (DNA-SCARS) untersucht. Anhand des 

Transmissionselektronenmikroskops (TEM) wurden zudem weitere Einblicke in die 

Lokalisation von H2A.J im Kontext von SAHF und DNA-SCARS gewährt. Zusätzlich wurde 

mittels TEM die Ultrastruktur und Entstehung von DNA-SCARS bestimmt. Der 

strahleninduzierte SASP wurde mithilfe eines ELISA im Zellüberstand gemessen und die 

Expression, der involvierten Gene, an Hand von RT-qPCR analysiert. Weiterhin wurden 

durch IFM-Analysen DNA-Reparaturfoci und die H2A.J Akkumulation in gealterter und ex 

vivo bestrahlter humaner Epidermis bestimmt. Abschließend wurde die Langzeit-

Akkumulation von H2A.J in niedrig-dosis-exponierter muriner Epidermis untersucht. 

In vitro Untersuchungen ergaben eine dosisabhängige Akkumulation von H2A.J nach 

Bestrahlung mit einer vorübergehenden H2A.J-Zunahme nach niedrigen Dosen und einer 

induzierten Seneszenz mit bleibender H2A.J-Expression nach hohen Dosen. Es zeigte sich 

zudem, dass die Effizienz der DNA-Schadensreparatur nach Bestrahlung nicht durch H2A.J 

beeinflusst wurde und dass der Knock-down von H2A.J keine Auswirkung auf die 
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Seneszenzinduktion, den Proliferationsarrest und die SAHF Entwicklung hat. Im Gegensatz 

dazu beeinflusste der H2A.J knock-down die Ultrastruktur der DNA-SCARS; was eine 

potentielle Erklärung für den verminderten SASP darstellen könnte, der mithilfe von ELISA 

und RT-qPCR nachgewiesen wurde. Untersuchungen an humaner Epidermis zeigten zudem 

eine Zunahme von H2A.J analog zu einem erhöhten Aufkommen an DNA-Reparaturfoci mit 

zunehmendem Alter und nach Bestrahlung. Die Analyse niedrig-dosis-exponierter muriner 

Epidermis wies selbst 6 Monate nach Ende der Bestrahlung eine zunehmende Akkumulation 

von H2A.J auf, die dem Level einer 18 Monate alten Maus entsprachen. 

Diese Untersuchungen dienen als Grundlage um Zusammenhänge zwischen der 

Akkumulation von H2A.J und Bestrahlung zu erforschen und zeigen eine H2A.J-abhängige 

Induktion des SASP nach Bestrahlung. Schließlich zeigte sich, dass H2A.J als Biomarker für 

seneszenten Zellen in vitro und in der humanen Epidermis potentiell genutzt werden kann.
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3 Introduction 

 Ionizing radiation and its effects 

The first case of radiotherapy, or radiation therapy, can be traced back to 1896 when Emil 

Grubbe used X-rays to treat a patient suffering from breast cancer. Worryingly, this was only 

one year after Wilhelm Röntgen first discovered X-rays and the physical properties, and more 

importantly, the biological effects of radiation, were not yet known (Underwood, 1945). The 

term radiation can be described as emission of energy in the form of electromagnetic waves 

or moving subatomic particles through empty space. Radiation, in which the energy 

transported is immense enough to cause creation of positively or negatively charged particles 

from neutral atoms, is termed ionizing radiation (IR). IR is characterized into electromagnetic 

and particulate radiation. X-rays and γ-radiation are both forms of electromagnetic radiation 

in which energy is transferred in waves (or photons). Particulate radiation, on the other hand, 

involves transfer of energy through atomic or subatomic particles which possess both energy 

and mass and so transfer kinetic energy onto electrons with which they collide. Particulate 

radiation includes α radiation (consisting of α particles), β radiation (consisting of electrons 

or positrons), heavy-ion radiation and neutron radiation.  Each type of IR has a specific linear 

energy transfer (LET) which refers to the amount of energy deposited along the beam 

trajectory within a material per unit distance. X-rays and γ-radiation are sparsely ionizing 

forms of IR  (low LET) whereas protons and heavy charged particles are examples of densely 

IR (high LET).  

 

𝐿𝐸𝑇 =
𝑑𝐸

𝑑𝑥
=

𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑖𝑚𝑝𝑎𝑟𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝑒𝑉)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑔 𝑚𝑒𝑑𝑖𝑢𝑚 (µ𝑚)
 

The relative biological effectiveness (RBE) increases with increasing LET, however, it also 

depends on the amount of energy absorbed per unit mass, which in turn, is linked to the 

exposed cell- or tissue type (Podgorsak, 2005). This is known as the dose and is measured 

in Gray (Gy) (S.M. Seltzer, 2011).  

𝐷 (𝐺𝑦) =
𝐸

𝑚
 

 

When a cell is irradiated, the effect of radiation is divided into three phases; the physical 

phase referring to interaction between IR and atoms within tissue, the chemical phase in 

which energized or ionized atoms react, and the biological phase wherein enzymatic 

reactions begin repair of damage generated throughout the chemical phase. The main aim 

of radiation therapy is induction of cell death through DNA damage of tumor cells, achieved 

through direct and indirect means (Figure 1) (Goodhead 1994). Direct action occurs through 

interaction between radiation and atoms of the DNA molecule itself, inducing atomic 
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excitation or ionization, triggering a chain of physical and chemical reactions which eventually 

lead to biological damage of the DNA molecule. 

 

Figure 1. DNA damage by radiation through the direct and indirect effect. 
Schematic representation IR-induced DNA damage mechanisms. (A) The direct effect occurs when an electron 
released through IR directly damages DNA. (B) The indirect effect occurs when free radicals, produced through 
IR interactions with other molecules, diffuse through the cell and damage the DNA molecule. 
 

For instance, secondary electrons released through ionization, break the covalent bonds of 

the DNA backbone resulting in single- or double strand breaks. High LET particles mainly 

work through direct effect. The indirect effect of radiation occurs when free radicals, produced 

through interaction with other atoms and molecules within the cell, diffuse through the cell 

and thus damage the target. The cell consists primarily of water (80%) thus, most free 

radicals created are short lived, but extremely reactive water ions (H2O+), which in turn react 

with further water molecules creating a hydroxyl radical ( OH) and a hydronium ion (H3O+).  

 
𝐻2𝑂 →  𝐻2𝑂+ + 𝑒− (𝑖𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛) 

𝐻2𝑂+ + 𝐻2𝑂 → 𝐻3𝑂 + 𝑂𝐻 ∙ 
 

Additional Hydroxy radicals may also be released through the homolysis of water molecules: 

 
𝐻2𝑂 → 𝐻 ∙  + 𝑂𝐻 ∙ (𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔) 

These highly reactive free radicals may only diffuse across a short distance, however, it is 

sufficient to reach the critical target and cause significant biological damage. Approximately 

60-70% of damage caused by low LET radiation is a consequence of the indirect effect. 
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 DNA damage response (DDR) 

IR-induced DNA damage can manifest itself in numerous ways including base modifications, 

loss of bases, sugar backbone alterations, DNA-DNA crosslinking, DNA-protein crosslinking, 

bulky lesions, single strand breaks (SSB), and the most detrimental, double strand breaks 

(DSB) (Shibata, Jeggo, 2019). A 1Gy X-Ray irradiation produces approximately 1000-2000 

base modifications, 800-1600 sugar molecule modifications, 500-1000 SSB, 150 DNA-

protein crosslinks, and 50 DSBs and bulky lesions. Maintenance of DNA integrity throughout 

the cell cycle is paramount to cell survival, therefore, DNA damage sensing and repair 

pathways have evolved collectively known as the DNA-damage response (DDR). The DNA 

damage response not only encompasses sensing of DNA damage, but pathways are also 

triggered following IR-induced DNA damage, and include base excision repair, nucleotide 

excision repair, mismatch repair and single strand break repair. Although SSBs and base 

loses are most frequent, they have little consequence on cell survival as they are rapidly and 

efficiently repaired.  Conversely, repair of DSBs is exceedingly complex and error prone. It 

can be achieved through numerous pathways including non-homologous end joining (NHEJ) 

(which can occur at any point during the cell cycle), homologous recombination (HR) (limited 

to late S- and G2 phase), alternative-NHEJ and single strand annealing (Bennardo et al., 

2008; Liu, Huang, 2014; San Filippo et al., 2008). A single unrepaired or misrepaired DSB in 

a specific gene region could be enough to influence cell fate through chromosome breaks at 

essential genes (Shiloh, Lehmann, 2004; van Gent et al., 2001). 

 

 DNA damage response signaling cascade 
 
The DDR is a complex signal cascade comprising of DNA-damage sensors, transducers and 

effectors whose activation influences DNA-damage repair mechanisms, cell fate and cell-

cycle checkpoint activation (Figure 2). DNA-damage is recognized, a DNA repair cascade is 

activated, and a pause in cell-cycle is mediated to facilitate repair. Cell cycle checkpoints 

prevent progression into the next cell cycle phase and occur between G1/S phase (G1/S 

checkpoint), within S phase (intra-S checkpoint), transitioning from G2 phase to mitosis 

(G2/M checkpoint) and within mitosis (intra-M checkpoint) (Barnum, O'Connell, 2014). 

Should DNA-damage be too extensive, cells may undergo cell death (apoptosis) or exit the 

cell cycle permanently (senescence) thereby avoiding propagation of possible mutated cells, 

reducing the risk of cancer and other age-related diseases. The initial DNA-damage 

response is triggered through localization of DNA-lesion specific DNA-damage sensor 

proteins such as PARP 1/2 and Ku70/80 directly to site of damage (Zhou, Elledge, 2000). 

Consequent signal cascade activation results in recruitment of factors to DNA damage sites 

whose exact order and timing is thought to influence choice of repair options and cell cycle-

arrest. Four primary mediators of the DDR are phosphoinositide 3-kinase-related kinases 
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(PIKKs), DNA-dependent protein kinase (DNA-PK), ataxia-telangiectasia mutated (ATM) and 

ataxia telangiectasia and Rad3-related protein (ATR) (Figure 2) (Gottlieb, Jackson, 1993; 

Matsuoka et al., 2007).   

 

  

Figure 2. DNA damage signalling cascade via PIKKs in humans. 
Schematic representation of DDR signalling pathway initiation with respect to varying DNA structures including 
SSBs and DSBs. ATR is recruited to RPA-coated single strand DNA, whereas, ATM and DNA-PKcs associate 
with free ends formed through DSBs. These apical kinases localize to respective DNA structures and trigger a 
signalling cascade directly, or through adaptor proteins that mediate phosphorylation from apical kinases to 
downstream checkpoint kinases. Diagram adapted from Lanz et al (Lanz et al., 2019). 
 
 

Checkpoint adapter proteins are utilized to mediate ATM and ATR phosphorylation transfer 

to checkpoint effector kinases.  ATR primarily relies on Claspin to mediate Checkpoint kinase 

1 (CHK1) activation whereas ATM uses Mediator of DNA damage checkpoint protein 1 

(MDC1) and Tumor Protein P53-Binding Protein (53BP1) for Checkpoint kinase 2 (CHK2) 

activation (Goldberg et al., 2003; Kumagai, Dunphy, 2000; Peng, Chen, 2003; Stewart et al., 

2003; Wu et al., 2008). Within minutes of DSB induction, histone H2A.X is phosphorylated 

at Serine 139,  MDC1 binds to this phosphorylated H2A.X (γH2A.X), and MDC1 is 

phosphorylated by ATM thereby supporting CHK2 activation (Goldberg et al., 2003; Rogakou 

et al., 1999; Rogakou et al., 1998; Stewart et al., 2003; Stucki et al., 2005; Wu et al., 2008). 

This MDC1 phosphorylation, together with Ring Finger Protein 8 (RNF8) and Ring Finger 

Protein 168 (RNF168) ligase recruitment, results in H2A ubiquitination which is directly 

recognized by 53BP1 (Hustedt, Durocher, 2016). Direct interaction occurs between 53BP1 

and CHK2, however, the main mechanism of CHK2 regulation by 53BP1 is thought to be 

more complex as CHK2 and 53BP1 interaction decreases rapidly post-IR and does not 

stabilize (Wang et al., 2002). ATM-mediated phosphorylation is also linked to suppression of 
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DNA-end resectioning within DNA-damage repair, highlighting the complexity and interplay 

of proteins within the DNA damage response as a whole (Bothmer et al., 2011; Ferrari et al., 

2015). Incidentally, recruitment of early repair mediators γH2A.X and 53BP1 can be 

visualized as distinct foci using microscopy techniques and are often used as reliable 

markers for DSB identification (Paull et al., 2000; Wang et al., 2002).  

 

 Homologous recombination (HR) 
 
Homologous recombination is an elegant and error free DSB repair solution, in which the 

sister chromatid is used as a template to restore the damaged chromatin (Figure 3) 

(Betermier et al., 2014; Sonoda et al., 2006). Therefore, it primarily occurs in S and G2 phase 

when the sister chromatid becomes available. The MRN complex consisting of meiotic 

recombination 11 homolog 1 (MRE11), ATP-binding cassette–ATPase (RAD50), and 

phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1), is one of the first 

responders at the DSB site, where it is involved in cell-cycle checkpoint signaling and repair 

protein recruitment (Maser et al., 1997; Nelms et al., 1998). Free 5’ ssDNA ends at DSBs 

are resected to expose the 3’ ssDNA ends through C-terminal-binding protein interacting 

protein (CtIP), exonuclease 1 (EXO1), Bloom syndrome protein (BLM), DNA2 

nuclease/helicase, and numerous other chromatin remodeling factors (Mimitou, Symington, 

2009; Symington et al., 2014). Exposed 3’ ssDNA ends are rapidly bound by replication 

protein A (RPA) to hinder degradation and remove secondary structure of ends (Haruta et 

al., 2006; San Filippo et al., 2008; Sung, 1997). Mediator proteins such as breast cancer type 

2 susceptibility protein (BRCA2) then mitigate replacement of ssDNA-binding proteins with 

Rad51 family of DNA recombinases, resulting in the formation of filamentous presynaptic 

complexes required for homologous strand search (Bianco et al., 1998; Chen et al., 2015; 

Haruta et al., 2006; New et al., 1998; San Filippo et al., 2006; Shinohara, Ogawa, 1998; 

Symington, 2002; Yang et al., 2005b). Once the homologous donor strand has been located, 

presynaptic complexes catalyze strand invasion resulting in formation of an intermediated D-

loop, and pairing of ssDNA with homologous donor strand (Solinger, Heyer, 2001). The 3’ 

ssDNA end acts as a primer for DNA polymerase, which begins repair of damaged ends with 

use of template donor strand and ligation of newly synthesized ends creates Holliday 

junctions (Haber et al., 2004; Holliday, 2007). Subsequent resolution of Holliday junctions 

through DNA strand cleavage produces either crossover or non-crossover products (Shah 

Punatar et al., 2017). 
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 Non-homologous end-joining (NHEJ) 

 
When a DSB occurs and NHEJ is initiated, the  last 3-4 base pairs (bp) of the free DNA ends 

become encircled with, and bound to, the  ku70/80 (X-ray repair cross-complementing 

protein 6/ X-ray repair cross-complimenting protein 5) heterodimer ring forming a ku/DNA 

complex. (Figure 3) (Walker et al., 2001). One side of the ring protects one side of the DNA-

double helix by forming a cradle around it, while the other side is more open, presumably to 

allow access for further repair proteins (Jackson, 2002). As with other DNA repair processes, 

NHEJ requires a nuclease, polymerase and ligase for completion.  

 

 
Figure 3. Schematic representation of homologous recombination (left) and non-homologous end-
joining (right) DNA DSB repair pathways.  

 

Due to the complex and flexible nature of NHEJ, the ku/DNA complex can recruit these in 

any order (Lieber, 2008; Ma et al., 2004). If DNA ends are undamaged and complementary, 

the X-ray repair cross-complementing protein 4 (XRCC4), which upon recruitment forms a 

complex with Cernunnos-X4-like factor (Cer-XLF), holds DNA ends in close proximity while 

XRCC4-associated DNA ligase IV reattaches the two ends (Reynolds et al., 2012). However, 

in most cases free ends require further processing, which is why the ku heterodimer recruits 

DNA-PK and through its binding activates its catalytic subunit (DNA-PKcs), forming the DNA-

PK holoenzyme (Smith, Jackson, 1999). It is postulated that this complex holds the free ends 

in close proximity to aid re-ligation and prevent degradation, as well as, participation in other 

recombinant events. So far, this complex has only been found in vertebrates and is thought 
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to aid in overcoming repressive chromatin effects associated with higher eukaryotes 

(DeFazio et al., 2002; Jackson, 2002; Weterings et al., 2003). Subsequently, the 

endonuclease Artemis is recruitment and phosphorylated, formatting the DNA-PKcs/Artemis 

complex and enabling endonucleaic cutting of an array of damaged DNA overhangs (Ma et 

al., 2005; Yannone et al., 2008). Acting in concert with XRCC4 and Cer-XLF, DNA-Ligase IV 

can then flexibly re-ligate the various forms of free DNA ends (Gu et al., 2007a; Gu et al., 

2007b).  The effectiveness of DNA-damage repair is not only influenced by the nature of the 

damage and the repair process applied, but is also by the chromatin context in which it occurs 

(Dinant et al., 2008; Hauer, Gasser, 2017). 

 

 Chromatin architecture  

Chromatin, simply put, is the combination of DNA and specific packaging proteins whose 

unique interactions allow meters of genetic material to be compacted into a µm sized cell 

nucleus. The average human genome is over 3 billion bp in length and the elementary 

repeating unit of chromatin, known as a nucleosome, consists of 147 bp of DNA wrapped 

around an octamer of core histone proteins 1.65 times in a left-handed super helix. This 

octamer core is comprised of two of H2A, H2B, H3 and H4 histone molecules (Kornberg, 

1974; Luger et al., 1997). Each nucleosome is coupled to the next by linker DNA of varying 

lengths, and this level of chromatin packaging is known as the 10-nm beads-on-a-string array 

(Woodcock et al., 1976). Chromatin is further condensed by linker histone H1, and additional 

chromatin chaperones pulling together individual nucleosomes creating the 30nm fiber, 

which in turn, folds into loops averaging 300nm in length (Tremethick, 2007). Subsequent 

packing and folding of 300nm loops ensues, resulting in 250nm-wide fibers. Tight curling of 

these fibers eventually result in the highly compact mitotic chromosome. Chromatin is a 

dynamic structure constantly rearranging, decompacting and recompacting to facilitate the 

diverse states a cell finds itself in, and the processes it undergoes, including replication, 

transcription and DNA repair. This chromatin remodeling is achieved through incorporation 

of additional histones, linker histones, switching of canonical histones with non-canonical 

core histone variants and post-translational modifications of histone tails (Henikoff, Smith, 

2015; Marzluff, Duronio, 2002). 

 

 Histones and their post-translational modifications 
 
Histones are highly conserved in eukaryotic cells and, although each of the four core histones 

show low sequence homology, they each contain the structural motif known as the histone 

fold (Arents, Moudrianakis, 1995). The histone fold, comprised of three α-helices joined by 

two loops, facilitates formation of the handshake motif. This refers to the heterodimeric 
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interactions formed among core histones within the nucleosome (one H3-H4 tetramer and 

two H2A-H2B dimers) aiding nucleosome stability (Arents and Moudrianakis 1995). 

Additionally, each histone possesses an N-terminal tail protruding from the nucleosome that 

influences nucleosome stability, as well as, effecting degree of chromatin fiber condensation 

and chromatin dynamics (Ausio, Dong et al. 1989, de la Barre, Angelov et al. 2001, Ferreira, 

Somers et al. 2007, Kan, Lu et al. 2007, Sperling and Grunstein 2009). Histone tails are rich 

in basic amino acids and subject to a vast array of post- translational modifications (PTMs) 

including acetylation, methylation, phosphorylation, terminal tail. They extend from the center 

of the nucleosome and are involved in nucleosomal translocation by chromatin remodelers 

and other protein interactions effecting chromatin conformation (Vogler, Huber et al. 2010). 

Histone PTMs are an element of the "histone code", referring to the process in which 

chromatin conformation is brought about through enzymatically evoked chemical changes of 

histones, thus contributing to genomic transcription regulation (Strahl and Allis 2000).  

 

 

Figure 4. Basic mechanisms utilising covalent histone modifications.  
Schematic depiction of cis and trans mechanisms using covalent histone modifications. N terminal histone tails 
within unmodified nucleosomes may contain high numbers of positive charges due to Lysine and Arginine 
residues resulting in 'charge shielding'. Close association between N terminal tails and negatively charged DNA 
may thus be permitted resulting in compaction of chromatin. (A) Cis mechanisms function by changing 
electrostatic interactions, and thus altering intra- and inter nucleosomal contacts. The example shows acetylation 
of H4 Lysine residues, in particular K16. Acetylation neutralizes positive charges of Lysine residues leading to 
decondensed 'OPEN' chromatin structure facilitating transcriptional activation. (B)Trans mechanisms function 
indirectly, acting in conjunction with non-histone effector proteins ('readers') who identify and bind specific histone 
modifications causing downstream functional consequences. The example depicts heterochromatin protein 1 
(HP1) binding to the repressive histone mark methylated K9 on histone H3 N terminal tail. HP1 binding facilitates 
heterochromatin formation leading to the 'CLOSED' chromatin formation associated with gene silencing. Diagram 
adapted from Wang et al (Wang et al., 2007).  
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A primary example being the heterochromatin-associated H3 trimethylated at lysine 9  

(H3K9me3), which constitutively forms domains of tightly packed repressive chromatin 

preventing binding of transcription factors. Conversely, H3 acetylated at lysine 9 (H3K9ac) is 

strongly linked to active gene promoters (Karmodiya, Krebs et al. 2012, Ninova, Fejes Toth 

et al. 2019). These covalent modifications are generalized into two categories; ‘cis’ and ‘trans’ 

based on their mode of function (Figure 4) (Kouzarides 2007). In cis mechanisms, alterations 

of steric or charge interactions result in altered intra- and inter nucleosomal contacts. Trans 

mechanisms on the other hand employ non-histone ‘readers’ which bind to specific histone 

modifications and thus influence functionality (Wang, Allis et al. 2007). 

 

 Histone variants 
 

A further influential factor in chromatin architecture is the presence of histone variants. The 

majority of histones are synthesized during S-phase (canonical), in which preexisting 

histones are dispersed and newly synthesized histones are quickly deposited behind the 

replication fork in the remaining gaps (Krude 1999). Unlike canonical histones, non-canonical 

histone variants can replace S-phase histones in a replication-independent manner resulting 

in differentiated chromatin states (Henikoff and Smith 2015). Oftentimes, histone variants 

distinguish themselves from their core counterparts by minor variations in amino acid 

sequence, however, these are sufficient to cause a substantial shift in chromatin architecture. 

Possible alteration or elimination of PTM-patterns accompanying switching of canonical to 

non-canonical histones, for example, shows drastic effects on chromatin architecture and 

highlights that histone switching could conceivably reprogram epigenetic states normally 

associated with histones and their modifications (Henikoff, Smith, 2015). Aside from 

structural differences, core histones also differentiate in their tendency to variegate, which is 

thought to be due to their different localizations within the nucleosome being susceptible to 

varying evolutionary forces. In humans, H2A and H3 have shown the highest propensity to 

diverge whereas H2B and H4 show dramatically lower paralog numbers with only one known 

isotype of H4 (Hake, Allis, 2006; Long et al., 2019; Macadangdang et al., 2014; Postberg et 

al., 2010).  

 

 H2A.J, a novel histone variant 
 
The focus of this work is the histone variant H2A.J, a minimally studied variant only found in 

mammals. H2A.J is differentiated from all other H2A species through an Alanine-Valine 

substitution at position 11 and through the presence of an SQK motif at the C-terminus (Supp. 

1) (Contrepois et al., 2017). In humans, the H2afj gene is located on chromosome 12 near a 

gene for H4. It has two known isoforms, isoform-1 resulting from splicing of 2 introns and 

isoform-2 which does not require splicing of introns (Ota et al., 2004; Strausberg et al., 2002). 
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There are numerous gene copies throughout the genome for replication-coupled histones 

(RC) such as H4, for which there are 14, and they are usually found in clusters comprising 

various RC histone genes. For this reason the proximity of H2afj is an interesting point as it, 

like many histone variants, is replication independent (Lopez et al., 2012; Nishida et al., 2005) 

and the first paper investigating H2A.J on a protein level by Contrepois et al. found that H2A.J 

accumulates in replicate and ETO-induced senescence (Contrepois et al., 2017). The 

function of H2A.J is yet unknown, however, it is known to promote inflammatory gene 

expression in ETO-induced senescence (Contrepois et al., 2017). The mechanism through 

which H2A.J function is yet to be elucidated, as biochemical and structural analysis of H2A.J-

containing nucleosome showed only that the thermal stability of the H2A.J-H2B dimer is 

slightly higher than the canonical H2A-H2B dimer (Tanaka et al., 2020). Enhanced thermal 

stability is thought to be due to the increased hydrophobicity of H2A.J, as a result of the 

Alanine-Valine substitution at position 11 (Tanaka et al., 2020). The C-terminal SQ motif did 

not have a functional effect on the thermal stability, however, it is essential for the function 

of H2A.J in promoting inflammatory gene expression (Contrepois et al., 2017; Tanaka et al., 

2020).  

 

 Senescence 

Senescence describes a stress-response state in which cells undergo an irreversible 

proliferation arrest while maintaining metabolic viability (Munoz-Espin, Serrano, 2014).  

Numerous positive functions have been identified for senescence including tumor-

suppression, embryonic development and wound healing (Demaria et al., 2014). 

Contradictorily, it has been labeled as a fundamental ageing mechanism, contributing to 

ageing itself, as well as, age-related diseases and cancer development (Childs et al., 2014; 

Chinta et al., 2015; Lee, Schmitt, 2019). Thus defining senescence as an antagonistically 

pleiotropic function in which its consequence depends on biological context.  

 

 Replicative senescence 
 
There are numerous types of senescence characterized through their induction processes 

including replicative senescence, developmental senescence, oncogene-induced 

senescence, and DNA-damage-induced senescence (d'Adda di Fagagna, 2008; Hayflick, 

Moorhead, 1961; Muñoz-Espín et al., 2013; Serrano et al., 1997). Furthermore, senescence 

can be broadly divided into two forms: programmed (replicative and developmental) 

senescence and premature senescence. Replicative or cellular senescence, as it is now 

known, was first described in the 1960s by Hayflick & Moorhead after observing the limited 

replicative capacity of cultured diploid fibroblasts. This later became known as the 'Hayflick 
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Limit' (Hayflick, Moorhead, 1961). Replicative senescence (RS) is induced through telomeric 

erosion. With each cell division, the protective repetitive DNA sequences at the ends of 

chromosomes that comprise telomeres, become shorter and shorter. This is due to the 

unidirectionality in which DNA polymerase moves along each strand and the use of RNA-

based primers which, by binding to the DNA in their primer function, inevitably block 

replication of that specific DNA sequence (Bodnar et al., 1998; Lendvay et al., 1996). 

Eventually, telomeres become critically shortened triggering prolonged DDR resulting in 

upregulation of cell cycle progression inhibitors causing senescence-associated growth 

arrest (d'Adda di Fagagna et al., 2003).  

 

 Developmental senescence 
 
Developmental senescence plays an essential role in mammalian embryonic development 

and is induced by a separate pathway to replicative senescence in a P21-dependent manner 

(Banito, Lowe, 2013). P21, or Cyclin-Dependent Kinase Inhibitor 1, functions as a regulator 

of cell cycle progression at G1 (Waldman et al., 1995; Xiong et al., 1993). The significance 

of programmed senescence was demonstrated in mice, where down-regulation of P21 lead 

to reduction of programmed senescence resulting in severe developmental defects (Munoz-

Espin et al., 2013). It is hypothesized that following programmed senescence at different 

embryonic locations, macrophages invade said tissue, clear senescent cells and thus 

promote tissue remodeling (Muñoz-Espín et al., 2013).  

 

 Oncogene-induced senescence 
 
Oncogene-induced senescence (OIS) and DNA damage-induced senescence both fall into 

the category of stress-induced premature senescence (SIPS). Oncogene-induced 

senescence may be initiated following hyper-activation of oncogenes including B-raf, K-ras, 

NF1 and PTEN, which has been shown both in vitro and in vivo (Chen et al., 2005; Courtois-

Cox et al., 2006; Dankort et al., 2007; Michaloglou et al., 2005; Sarkisian et al., 2007). OIS 

is regulated by a complex signaling network which varies depending on the genetic 

mutation/oncogene-upregulation and on the tissue in which it occurs. Although they may use 

varying intermediaries, one common feature which can be found in OIS however is that all 

signaling functions through tumor suppressors Rb and tumor protein 53 (p53) (Courtois-Cox 

et al., 2008).  

 

 DNA damage-induced senescence 
 

DNA damage-induced senescence may be caused by exogenic factors such as 

genotoxic/cytotoxic drugs, large presences of reactive oxygen species (ROS) and IR (Chen 
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et al., 1995; Lee et al., 1999; Macip et al., 2002).  The senescence-associated growth arrest, 

in this case, is maintained by p53 whose activation is upheld by a protracted DDR associated 

with DNA damage-induced senescence. The transient proliferative arrest seen in acute DDR 

is mediated through p21, one of p53s most important targets (Rodriguez, Meuth, 2006). 

Extended cell cycle arrest however, ultimately leads to cyclin-dependent kinase inhibitor 

p16INK4a upregulation triggering transcriptional regulator Rb activation (Stein et al., 1999), and 

resulting in senescence-associated permanent cell cycle arrest (Childs et al., 2014). IR-

induced senescence has shown upregulation of genes associated with DNA repair, cell-cycle 

control and cell proliferation, including p53 and p16, all of which play an essential role in 

modulating IR-induced senescence (Iliakis, 1997; Iliakis et al., 2003; Kim et al., 2014). The 

mechanism determining whether a cell undergoes apoptosis or enters senescence following 

DNA damage of a certain magnitude is unknown. It is postulated that this choice depends on 

factors such as cell type, nature of the DNA damage, duration of DNA-damaging agent 

exposure and intensity (d'Adda di Fagagna, 2008). 

 

 Characteristics of senescent cells 

Apart from permanent exit of the cell cycle, senescent cells undergo substantial changes 

including enlarged and flattened morphology, increased lysosomal activity, chromatin 

rearrangements in the form of senescence-associated heterochromatin foci (SAHF) and 

DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS), as well as, 

an altered inflammatory phenotype known as the senescence-associated secretory 

phenotype (SASP). 

 

 Senescence-associated secretory phenotype (SASP) 
 
The SASP is a specific inflammatory secretory phenotype displayed by most senescent cells 

encompassing a vast array of signaling factors such as chemokines, interleukins, growth 

factors, as well as, secreted proteases and secreted insoluble proteins/extracellular matrix 

components. However, few common factors are shared between cell types. Mode of 

senescence induction can also influence increase fold of secretion and which SASP factors 

are included (Freund et al., 2010). It is thought to function as a beacon to innate immune 

cells which migrate into tissue and clear present senescent cells, thus leading to tissue 

regeneration and reestablishment of function (Krizhanovsky et al., 2008; Sagiv et al., 2013). 

Additionally, it functions in the reinforcement of the senescence-associated growth arrest 

through a feedback loop including SASP factors such as Insulin-like growth factor-binding 

protein 7 (IGFBP-7), growth regulated oncogene-alpha (GROalpha/CXCL1), interleukin 6 (IL-

6) and interleukin 8 (IL-8) (Acosta et al., 2008; Kuilman et al., 2008; Wajapeyee et al., 2008; 
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Yang et al., 2006). The SASP, however, can also have deleterious effects on surrounding 

cells by inducing cell-surface receptor activation and corresponding signal transduction 

pathways, thus promoting numerous pathologies. For one, it is considered a type of chronic 

inflammation. It has been implicated in contributing to the rise in inflammatory factors 

associated with ageing (termed 'inflammaging') and other age-associated diseases such as 

atherosclerosis (Franceschi, Campisi, 2014; Minamino et al., 2003). Strikingly, a propensity 

of SASP factors in the promotion of epithelial cell growth, both of premalignant and malignant 

cells, has been observed in numerous tissues and cells. These include mammary epithelial 

cells (Coppe et al., 2008; Krtolica et al., 2001; Parrinello et al., 2005) and prostate tumor 

xenografts (Yang et al., 2005a), as well as, in emergence of cancer stem-like cells in Multiple 

Myeloma (Cahu et al., 2012). Factors included in the SASP such as hepatocyte growth factor 

(HGF), IL-6 and IL-8 have also been verified to promote cancer cell invasiveness in culture 

(Birchmeier et al., 2003; Coppe et al., 2008; Ohuchida et al., 2004). Interestingly, knock-

down of H2A.J in ETO-induced senescence has been shown to mitigate SASP in lung 

fibroblasts (Contrepois et al., 2017). The mechanisms of which however, are yet unknown. 

SASP induction is a highly complex mechanism. As with senescence itself, SASP 

manifestation depends on numerous factors including cell type and mode of senescence 

induction. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) signaling 

is crucial to SASP induction and its activation is initiated through the DDR response in an 

ATM dependent manner and, synergistically, through p38 mitogen-activated protein kinases 

(p38MAPK) functioning in a DDR-independent manner (Chien et al., 2011; Crescenzi et al., 

2011; Freund et al., 2011; Rodier et al., 2009; Rovillain et al., 2011; Salminen et al., 2012). 

 

 DNA segments with chromatin alterations reinforcing senescence (DNA-
SCARS) 

 
As with an acute DDR (up to 24-48h post DNA-damage induction), DNA damage-induced 

senescent cells also display cytologically detectable nuclear foci containing 53BP1 and 

γH2AX, however, these foci are found to be fewer in number and larger in size. Additionally, 

these persisting DNA damage foci have undergone successive changes distinguishing them 

from actively repairing DNA damage sites, not only in structure but also in function. Thus, 

they have been termed DNA-SCARS (Rodier et al., 2011a).  Disparities include ssDNA 

absence, no RPA70 and RAD51 repair proteins, decreased 53BP1 solubility, prolonged 

presence of activated p53 and CHK2, and promyelocytic leukemia protein nuclear bodies 

(PML-NB) association. DNA-SCARS are required for senescence-associated growth arrest 

and their de-stabilization through γH2AX depletion resulted senescence-associated growth 

arrest reversal after senescence-inducing 10Gy IR exposure (Rodier et al., 2009; Rodier et 

al., 2011a). DNA-SCARS de-stabilization through γH2AX deficiency also resulted in 
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reduction of SASP associated IL-6 secretion suggesting DNA-SCARS are critical in 

maintenance of senescent phenotypes (Rodier et al., 2011a). 

 

 Senescence-associated heterochromatin foci (SAHF) and nuclear 
lamina 

 
Senescent cells undergo additional large structural changes with regards to morphology, 

chromatin organization and nuclear lamina structure. The major reorganization which 

chromatin undergoes upon entry into senescence is the formation of SAHF which can be 

identified microscopically as 4′,6-diamidino-2-phenylindole (DAPI) -dense punctate DNA foci 

(Narita et al., 2003b). SAHF possess a distinct structure featuring a heterochromatin core 

enriched in H3K9me3, surrounded by a layer of facultative heterochromatin marker 

H3K27me3 enriched chromatin. SAHF are distinct from constitutive heterochromatin regions 

such as centromeres and telomeres (Funayama et al., 2006; Narita et al., 2003b; Zhang et 

al., 2007) (Chandra et al., 2012). Presence of extra heterochromatin markers such as 

heterochromatin protein 1 (HP1) and macroH2A are common (Narita et al., 2003b; Zhang et 

al., 2005). Each SAHF consists of one condensed chromosome (Funayama et al., 2006; 

Zhang et al., 2007) and thus can contain several proliferation-promoting genes thought to be 

contained within the transcriptionally-silent heterochromatin core. This mechanism is thought 

to repress the expression of these genes and thereby SAHF reinforce senescence-

associated growth arrest (Adams, 2007). Additionally, SAHF reinforce senescence-

associated growth arrest as they contain E2F target gene promotors, whose suppression is 

a crucial step in growth arrest maintenance and they do not contain any active transcription 

which further supports their role in assisting cell cycle exit in senescence (Narita et al., 

2003b).  The outermost layer is rich in histone H3 lysine 36 trimethylated (H3K36me3) marks, 

identifying the transcriptionally active regions (Chandra et al., 2012) thought to harbor the 

SASP genes (Freund et al., 2010). Dependence of SAHF on the p53-Rb and p16INK4a-Rb 

pathways has been well described and now focus on the role of chromatin-associated 

components such as histone variants, histone chaperones and PML-NBs is increasing.  

Studies conducting Chromatin Immunoprecipitation DNA-Sequencing (ChIP-seq) analysis of 

chromosome wide H3K9me3 and H3K27me3 levels following OIS induction only showed 

moderate changes in these histone marks whereas chromatin bound HP1 was significantly 

increased (Chandra et al., 2012; Salama et al., 2014). HP1 binds to H3K9me3, thus data 

suggest a spatial rearrangement of existing heterochromatin into clusters of regions with 

similar modifications rather than a large scale redistribution of histone modifications 

(Chandra et al., 2012; Chandra, Narita, 2013). Various effectors of SAHF formation have 

been identified including HP1, Histone repressor A (HIRA), Anti-silencing factor 1 a (ASF1a), 

Rb-E2F complexes, histone H3.3 and RB phosphatase, all of which congregate at PML-NBs 
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prior to SAHF formation (Adams, 2007; Corpet et al., 2014; Narita et al., 2003b; Salama et 

al., 2014; Vernier et al., 2011; Zhang et al., 2007; Zhang et al., 2005). 

 

Closely linked to SAHF formation is the decline of the nuclear lamina with senescence. The 

nuclear lamina is a complex structural network consisting mainly of filament proteins A- and 

B-type lamins (Gruenbaum, Foisner, 2015), running along the inside of the nuclear envelope, 

forming a scaffold linked to chromatin structure maintenance and genome organization. 

Lamins interact directly or indirectly with a variety of nuclear envelope transmembrane 

proteins (NETs)  which link them to the inner nuclear membrane (Schirmer, Foisner, 2007). 

Well defined (sub)megabase-sized chromatin domains rich in repressive marks known as 

lamine-associated domains (LADs) have been uncovered following genome-wide mapping 

(Guelen et al., 2013; Pickersgill et al., 2006). Interestingly, it has not only been shown that 

lamine B1 expression is reduced in senescence (Dreesen et al., 2013a; Freund et al., 2012b; 

Shah et al., 2013; Shimi et al., 2011), but that in senescent cells, lamine B1 is reduced at 

LADs and preferentially at the H3K9me3-rich LAD centers (Chandra et al., 2015; Sadaie et 

al., 2013), thus, supporting the theory that a large-scale spatial reorganization of repressive-

histone marked regions takes place to form SAHFs. 

 

 Clinical implications of senescence 

Despite senescence having positive implications in tumor-suppression, wound healing and 

development, it is now recognized as one of nine hallmarks of ageing mechanisms (genomic 

instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-

sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered 

intercellular communication) (Lopez-Otin et al., 2013), thus increasingly gathering interest as 

an area of study in the last 20 years. It has been linked to chronic age-associated illnesses 

such as Alzheimer’s disease, atherosclerosis, osteoarthritis, osteoporosis and Parkinson’s 

disease (Bussian et al., 2018; Childs et al., 2016; Chinta et al., 2018; Farr et al., 2017; Jeon 

et al., 2017; Musi et al., 2018). Markedly, senescence accumulation has also been implicated 

in pre-malignant lesion formation in lung, lymphoma, pancreas, prostate and pancreas (Braig 

et al., 2005; Chen et al., 2005; Collado et al., 2005; Lazzerini Denchi et al., 2005; Michaloglou 

et al., 2005). Increase in senescent cells with age is not only due to higher levels of DNA-

damage and replicative senescence frequency, but also due to impaired immunosurveillance 

and immunoclearance of senescent cells (Ovadya et al., 2018). Additionally, widely used 

treatments such as radiotherapy and prolonged chemotherapy have been shown to induce 

premature senescence, promote tumor recurrence and metastasis (Demaria et al., 2017; 

Tabasso et al., 2019; Zacarias-Fluck et al., 2015). Radiotherapy-induced senesence has 

been recognized as a critical mechanism in cerebral glioblastoma relapse by inducing 
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formation of multinucleated cells and reactivating these (Kaur et al., 2015).  Additionally, 

radiotherapy-induced senescence has been implicated in radiation-induced fibrosis, 

pulmonary fibrosis, skin fibrosis and ulceration (He et al., 2019; Wang et al., 2019). 

Application of senolytics, small molecules that target senescent cells and induce apoptosis, 

have been proposed as possible therapies alongside traditional cancer therapies, some of 

which have already proven effective in mice showing treatment-induced senescence (Chang 

et al., 2016; Demaria et al., 2017) . 

 

 Ageing and senescence in the epidermis 

The skin is an ideal model to study senescence and ageing, as it presents senescence due 

to normal physiological ageing of the organism, as well as, premature senescence induced 

by intrinsic/extrinsic factors such as UV radiation, pollution and ROS (Farage et al., 2008, 

2013; Kammeyer, Luiten, 2015; Landau, 2007; Waldera Lupa et al., 2015). Its accessibility 

also plays a key role in application for ageing studies. The skin is the body’s first line of 

defense acting as a physical barrier to external damaging factors and as a protective layer 

to underlying tissues. 

 

Figure 5. Structure of murine and human skin. 
(A) Schematic representation of murine skin showing decreased thickness (~25µm) and increased hair follicle 
abundance in comparison to human skin. Murine skin also contains Vγ5+ dendritic epidermal T cells (DETC) and 
γδ T cells absent from human epidermis. (B) Schematic representation of human skin showing much greater 
thickness of skin in general (~100µm) but also of the epidermis which compared to the 2-3 cell layers of murine 
skin comprises of 5-10 to layers dependent on organismal age (Zomer, Trentin, 2018). Both human and murine 
skin also contain immune cell types including Langerhans, other dermal dendritic cells (Dermal DCs), CD8+ T 
cells, CD4+ T cells, macrophages, mast cells and innate lymphoid cells (ILCs).  Diagram taken from Pasparakis 
et al., 2014 (Pasparakis et al., 2014).  
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Both human and murine skin are composed of the epidermis, the outer most layer, and the 

dermis which contain the same cell layers, however, human skin greatly differs in thickness 

and cell abundance  (Figure 5) (Pasparakis et al., 2014). Skin biopsy examinations of this 

study focused mainly on the epidermis which primarily consists of keratinocytes in various 

stages of differentiation, melanocytes, Langerhans cells, and Merkel cells (Abraham, 

Mathew, 2019; Banchereau, Steinman, 1998; Cichorek et al., 2013; Wickert, Visscher, 2006) 

Keratinocytes begin in the stratum basale and differentiate up through the stratum spinosum, 

the stratum granulosum and finally transform into the corneocytes that comprise the stratum 

corneum (Wickert, Visscher, 2006). Melanocytes occur at intervals within the stratum basale 

secreting melanin to a network of cells in their vicinity (Cichorek et al., 2013), Langerhans 

cells are antigen-presenting epidermal dendritic cells found throughout the epidermis 

(Banchereau, Steinman, 1998), and Merkel cells also localize to the stratum basale 

functioning in neuro-endocrine and mechanoreceptor responses (Abraham, Mathew, 2019). 

Senescent cells accumulate in the skin in an age-dependent manner and the consequential 

SASP is implicated as a crucial effector in skin ageing and skin cancer (Dimri et al., 1995; 

Ghosh, Capell, 2016; Munoz-Espin, Serrano, 2014; Waldera Lupa et al., 2015).  Intriguingly, 

H2A.J positive cells has been shown to accumulate in ageing human epidermis, aged murine 

epidermis, and murine hair follicles, which house the main stem cell population of the skin 

(Contrepois et al., 2017; Lavker et al., 2003).  Pre-neoplastic lesions induced by the 

carcinogen 7,12-dimethylbenz(a)-anthracene (DMSA) also showed increased H2A.J and 

P16INK4a levels in murine epidermisPapilloma cells were negative for both H2A.J and 

P16INK4a, however, the papilloma-adjacent skin showed H2A.J and P16INK4a positive cells 

(Contrepois et al., 2017).  
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4 Aim of work 
 
Radiotherapy is an irreplaceable tool in cancer treatment, however its DNA-damaging 

properties may be accompanied by an array of short- and long-term side effects such as 

inflammation and fibrosis. The aim of this work is to investigate a possible connection 

between the novel histone variant, H2A.J, ionizing radiation and radiation-induced 

senescence. To date it has only been shown that H2A.J accumulates in the murine epidermis 

following low dose fractionation of 50x 0.1Gy, 72h post irradiation. Here we utilise a mainly 

in vitro approach working with H2A.J knock-down WI-38 lung fibroblast to gain further insights 

into the accumulation kinetics, longevity, DNA-damage response influence, gene expression 

and chromatin structure consequences of H2A.J incorporation following ionizing radiation.
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5 Materials and methods 
 

 Materials and devices 

The following section covers all materials and devices utilized in the completion of this 
project. 
 

 Chemicals and reagents 

 
Table 1: Chemicals and reagents 
 

Chemical/reagent Supplier/Manufacturer 

2-propanol Thermo Fisher, Waltham , MA, USA 

Absolute Ethanol Sigma-Aldrich, St. Louis, MO, USA 

Acetic Acid Sigma-Aldrich, St. Louis, MO, USA 

Ammonium persulphate Thermo Fisher, Waltham , MA, USA 

Aqua sterile water B.Braun, Melsungen, Germany 

Aurion Blocking Solution Aurion, Wageningen, Netherlands 

Boric acid Sigma-Aldrich, St. Louis, MO, USA 

BSA GE Healthcare, Rimbach, German 

BSA-c ™ 10% Aurion, Wageningen, Netherlands 

Chloroform Fluka, Fuchs, Switzerland 

Citric acid Merck, Kenilworth, NJ, USA 

Dako Faramount aqueous mounting 

medium 
Agilent, Waldbronn, Germany 

Dako REAL target retrieval solution (S2031) Agilent, Waldbronn, Germany 

Dako REAL target retrieval solution (S1699) Agilent, Waldbronn, Germany 

Dimethylsulfoxide Carl Roth, Karlsruhe, Germany 

DNA loading dye Thermo Fisher, Waltham , MA, USA 

Doxycycline hydrochloride Sigma-Aldrich, St. Louis, MO, USA 

Duolink® In Situ Detection Reagents Green 

(DUO92014) 
Sigma-Aldrich, St. Louis, MO, USA 

Duolink® In Situ PLA® Probe Anti-Rabbit 

PLUS (DUO92002) 
Sigma-Aldrich, St. Louis, MO, USA 

Duolink® In Situ PLA® Probe Anti-Mouse 

MINUS 

 

Sigma-Aldrich, St. Louis, MO, USA 
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Chemical/reagent Supplier/Manufacturer 

Duolink® In Situ Mounting Medium with 

DAPI (DUO82040) 
Sigma-Aldrich, St. Louis, MO, USA 

Duolink® In Situ Wash Buffers, 

Fluorescence (DUO82049) 
Sigma-Aldrich, St. Louis, MO, USA 

EDTA Carl Roth, Karlsruhe, Germany 

Ethidium bromide Merck, Kenilworth, NJ, USA 

Etoposide Sigma-Aldrich, St. Louis, MO, USA 

Fetal bovine serum Sigma-Aldrich, St. Louis, MO, USA 

Paraformaldehyde 32% solution Science Services, Munich, Germany 

Glutaraldehyde 50% solution Science Services, Munich, Germany 

Glycerol Carl Roth, Karlsruhe, Germany 

Glycine Carl Roth, Karlsruhe, Germany 

Immersion oil for microscopy Merck, Kenilworth, NJ, USA 

Isopropanol 70% Hedinger, Stuttgart, Germany 

Isotonic sodium chloride solution for 

injecting 
B.Braun, Melsungen, Germany 

L-Glutamine Sigma-Aldrich, St. Louis, MO, USA 

LR-White accelerator Agar Scientific, Essex, UK 

LR- White resin Plano, Wetzlar, Germany 

N,N-Dimethylformamide Sigma-Aldrich, St. Louis, MO, USA 

Magnesium chloride hexahydrate pure Applichem, Darmstadt, Germany 

Methanol Merck, Kenilworth, NJ, USA 

Methylene Blue Sigma-Aldrich, St. Louis, MO, USA 

Minimum Essential Medium non-essential 

amino acids 
Sigma-Aldrich, St. Louis, MO, USA 

Minimum Essential Medium, no glutamine, 

no phenol red  
Thermo Fisher, Waltham , MA, USA 

Multi-analyte ELISArray Human Mix-n-

Match kit 

Qiagen, Hilden, Germany 

 

Paraformaldehyde Sigma-Aldrich, St. Louis, MO, USA 

Paraplast paraffin Carl Roth, Karlsruhe, Germany 

Penicillin/Streptomycin Merck, Kenilworth, NJ, USA 
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Chemical/reagent Supplier/Manufacturer 

pH 4.0 buffer solution Hanna Instruments, Vöhringen, Germany 

pH 7.0 buffer solution Hanna Instruments, Vöhringen, Germany 

pH 10.0 buffer solution Hanna Instruments, Vöhringen, Germany 

Phosphate Buffered Saline, pH7.2-7.4 University chemist 

Pioloform BM18 Plano, Wetzlar, Germany 

Potassium ferricyanide Sigma-Aldrich, St. Louis, MO, USA 

Potassium ferrocyanide Sigma-Aldrich, St. Louis, MO, USA 

QuantiTect reverse transcription kit Qiagen, Hilden, Germany 

QuantiTect SYBR Green PCR kit Qiagen, Hilden, Germany 

Rapid Gold BCA protein assay kit Thermo Fisher, Waltham , MA, USA 

Rompun 2% Bayer, Leverkusen, Germany 

Roti® Immunoblock 10x Carl Roth, Karlsruhe, Germany 

Roti® PVDF membrane, poresize: 0.45µm Carl Roth, Karlsruhe, Germany 

RT-PCR grade water Invitrogen, Carlsbad, CA, USA 

SIGMAFAST 3,3’-Diaminobenzidine tablets Sigma-Aldrich, St. Louis, MO, USA 

Sodium borate Sigma-Aldrich, St. Louis, MO, USA 

Sodium chloride Carl Roth, Karlsruhe, Germany 

Sodium Pyruvate Sigma-Aldrich, St. Louis, MO, USA 

Sudan Black B Sigma-Aldrich, St. Louis, MO, USA 

Triton™ X-100 Carl Roth, Karlsruhe, Germany 

Trizol reagent Invitrogen, Carlsbad,, CA, USA 

Trypsin/EDTA solution 10% Merck, Kenilworth, NJ, USA 

Tween®20 Carl Roth, Karlsruhe, Germany 

Uranylacetate Merck, Kenilworth, NJ, USA 

Urostamin 

(ketaminhydrochloride 100mg/ml) 
Serumwerk, Bernburg, Germany 

Vectastain peroxidase standard PK-4000 Vector Laboratories, Peterborough, UK 

Vectashield® Hard-set mounting medium 

with DAPI 
Vector Laboratories, Peterborough, UK 

X-Gal Biochemica Applichem, Darmstadt, Germany 

Xylol Hedinger, Stuttgart, Germany 
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 Solutions and buffers 
 
Table 2: Solutions for cell culture 
 

Cell culture 

Doxycycline (DOX) solution 1mg/ml DOX in ethanol 

 

Sterile filter. 

Store at -20oC 

Etoposide (ETO) solution 20mM ETO in DMSO 

 

Store at 4oC 

MEM medium for WI-38 culture  Minimum Essential Medium, no glutamine, 

no phenol red 

10% FBS 

1mM sodium pyruvate 

2mM L-glutamine 

0.1mM NEAAs 

1% Penicillin/Streptomycin 

 

When applicable: 

20µM ETO and/or 1µg/ml DOX 

Trypsin Diluted 10 fold in dH2O. 

 

Store at 4oC 
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Table 3: Solutions and bufffers for immunofluorescence 
 

Immunofluorescence microscopy 

Paraformaldehyde (PFA) fixation solution 4% PFA dissolved in PBS at 60oC 

pH 6.4 

 

Store in suitable aliquots at -20oC 

Sodium azide preservation solution 0.4% BSA                    

0.02 sodium azide  

in 500ml PBS 

 

Store at 4oC 

Triton permeabilisation solution 0.5% Triton-X-100 in 50ml PBS 

 

Store at 4oC 

Tween wash solution 0.1% Tween-20 in 500ml PBS 

 

Store at 4oC 

Sudan Black solution 0.01% Sudan Black B in 70% Ethanol 

Filter before use. 

 

Make fresh each time. 

DNA acid denaturation solution 2 M HCl in dH2O 

 

Store at RT 

BrdU Tween/BSA/PBS wash solution 0.1% Tween, 1% BSA in 500ml PBS. 

 

Store at 4oC 
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Table 4: Solutions and buffers for transmission electron microscopy 
 

Transmission electron microscopy 

Fixation solution 2% PFA 

0.05% glutaraldehyde  

in PBS 

 

Make fresh each time. 

Incubation buffer 0.1% BSA-c in PBS 

pH7.4 

 

Store at -20oC in suitable aliquots. 

Pioloform coating solution 1.2% Pioloform dissolved in pure chloroform 

under constant stirring 

 

Store at room temperature. 

Post-fixation solution 2% glutaraldehyde in PBS. 

 

Make fresh each time. 

Richardson’s  Blue solution Stock 1: 1% Azure II in dH2O 

Stock: 2 Methylene Blue in sodium borate. 

 

Mix 1:1 and pass through 22m filter. 

 

Store at room temperature. 

Uranylacetate 2% uranylacetate in ultra-pure H2O 

 

Store in suitable aliquots at -20oC. 
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Table 5: Solutions and buffers for immunohistochemistry 
 

Immunohistochemistry 

Antigen retrieval buffer Dilute antigen retrieval buffer 1:10 in dH2O 

 

Can be used up to 3x if cooled and stored at 

4oC after each use. 

Blocking buffer Dilute Roti® Immunoblock 1:10 in dH2O 

 

Store at room temperature for several 

months. 

BSA wash solution 1% BSA in 500ml PBS 

 

Store at 4oC for 1 month. 

BSA blocking solution 4% BSA in 5ml PBS 

 

Store at 4oC for 2 weeks. 

Citrate buffer 40mM citric acid 

150mM NaCl 

2mM MgCl*6H2O in dH2O 

pH to 6.0 

 

Store at 4oC for 6 months. 

Permeabilisation solution 0.2% Triton-X-100 in PBS 

 

Make fresh each time. 

Potassium ferricyanide  100mM potassium ferricyanide in PBS 

 

Store in dark at 4oC. 

Potassium ferrocyanide 100mM potassium ferrocyanide in PBS 

 

Store in dark at 4oC. 

Senescence-associated  

-galactosidase (SA--gal) 

fixation solution 

2% PFA 

0.2% glutaraldehyde 

in PBS 

Make fresh each time.  
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Immunohistochemistry 

 

SA-β-gal stock solution 

 

1mg/ml X-Gal powder in 

Dimethylformamide 

 

Store at -20oC for up to 6 months. 

SA-β-gal staining solution To make 5ml: 

 

4.6ml citrate buffer 

100µl X-Gal stock solution 

250µl 100mM potassium ferricyanide  

250µl 100mM potassium ferrocyanide  

 

Light sensitive. 

Make fresh each time. 

 

 
 
Table 6: Solutions for murine perfusion 
 

Perfusion 

Anesthetic 
120µg ketamine/g bodyweight 

16µg Rompun/g bodyweight 

Flush solution 1% Heparin in PBS 

Fixation solution 
See “Paraformaldehyde fixation solution” 

above. 

 

 
 
 

Table 7: Human skin biopsy culture 
 

Human epidermal samples- ex-vivo irradiated 

RPMI medium RPMI 1640 

10% FCS 

2% Penicillin/Streptomycin 

  



5 Materials and  methods 
 

35 
 

 Antibodies 

 
Table 8: Antibodies and dilutions for various technical applications 
 

Antibody Host 
Product 

no. 

Supplier/ 

manufacturer 
IFM  IHC    TEM  

 

                 Primary antibodies 

Anti-53BP1 Ms Mab3804 Merck 

Millipore,  

1:500 1:500 1:5000 

Anti-53BP1 Rab IHC-0001 Bethyl, 

Montgomery, 

TX, USA 

1:5000 - - 

 

Anti-BrdU Rat OBT-0030 Bio-Rad 

Laboratories, 

Munich, 

Germany 

1:200 - - 

Anti-H2A.J Rab N/A Produced by 

Carl Mann 

1:1000 1:200 1:200 

Anti-H3K9me3 Rab 

(pAb) 

ab8898 Abcam, 

Cambridge, 

UK 

1:500 - 1:200 

Anti-H3K27me3 Ms 

(mAb) 

ab6002 Abcam, 

Cambridge, 

UK 

1:200 - 1:400 

Anti-ki67 Rat 14-5698-82 Thermo Fisher, 

Waltham , MA, 

USA 

1:600 - - 

Anti-lamine B1 Ms 

(mAb) 

66095-1-Ig Proteintech, 

Manchester, 

UK 

1:1000 - 1:300 

Anti-p21 Rb Ab212247 Abcam, 

Cambridge, 

UK 

1:700 - - 
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Antibody Host 
Product 

no. 

Supplier/ 

manufacturer 
IFM  IHC    TEM  

Anti-PML Ms SC-966 Santa Cruz, 

Dallas,TX,USA  

 

1:500 - 1:400 

Secondary antibodies 

Alexa Fluor 488nm 

anti-rabbit 

Gt A11034 Invitrogen, 

Carlsbad, CA, 

USA 

1:1000 1:1000 - 

Alexa Fluor 488nm 

anti-mouse 

Gt A11001 Invitrogen, 

Carlsbad, CA, 

USA 

1:1000 1:1000 - 

Alexa Fluor 568nm 

anti-rabbit 

Gt A11036 Invitrogen, 

Carlsbad, CA, 

USA 

1:1000 1:1000 - 

Alexa Fluor 568nm 

anti-mouse 

Gt A11031 Invitrogen, 

Carlsbad, CA, 

USA 

1:1000 1:1000 - 

Alexa Fluor 568nm 

anti-mouse (IgM) 

Gt A21043 Invitrogen, 

Carlsbad, CA, 

USA 

1:1000 1:1000 - 

6nm Gold-labelled  

anti-rabbit 

Gt 806.011 Aurion, 

Wageningen, 

Netherlands 

- - 1:30 

10nm Gold-labelled  

anti-rabbit 

Gt 810.011 Aurion, 

Wageningen, 

Netherlands 

- - 1:30 

6nm Gold-labelled  

anti-mouse 

Gt 806.022 Aurion, 

Wageningen, 

Netherlands 

- - 1:30 

10nm Gold-labelled  

anti-mouse 

Gt 810.022 Aurion, 

Wageningen, 

Netherlands 

- - 1:30 
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Antibody Host 
Product 

no. 

Supplier/ 

manufacturer 
IFM  IHC    TEM  

Goat-anti rat IgG2a 

FITC coupled 

Gt A110-109F Bethyl, 

Montgomery, 

TX, USA 

 

1:400 - - 

Immunoglobulins/ 

biotinylated  

anti-rabbit 

Gt E0432 Agilent, 

Waldbronn, 

Germany 

- 1:400 - 

 
 
 

  PCR Primers 

 
Table 9: PCR primers and corresponding annealing temperatures 
 

Primer Sequence (5’→3’) 
Annealing  

temp. (oC) 

CCL2 F   CAGCCAGATGCAATCAATGCC 

R    TGGAATCCTGAACCCACTTCT   

 52 

CSF2 F   TCCTGAACCTGAGTAGAGACAC 

R   TGCTGCTTGTAGTGGCTGG 

52 

IL6 F   ACTCACCTCTTCAGAACGAATTG 

R   CCATCTTTGGAAGGTTCAGGTTG 

52 

CXCL8 F   TTTTGCCAAGGAGTGCTAAAGA 

R   AACCCTCTGCACCCAGTTTTC 

52 

GAPDH F   ATGGGGAAGGTGAAGGTCG 

R   GGGGTCATTGATGGCAACAATA 

52 
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 Consumables 

 
Table 10: Consumables 
 

Consumable Supplier/manufacturer 

BD Microlance™ 3 (26G, 0.5“, 

0.45x13mm) BD Biosciences, Heidelberg, Germany 

Cell culture multiwall plates (6 wells) Greiner Bio-one, Kremsmünster, Austria 

Cell Saver pipette tips (200µl) Biozym, Hessisch-Oldendorf, Germany 

Cellstar® Cell culture flasks (75cm2)  Greiner Bio-one, Kremsmünster, Austria 

Centrifuge tubes, non-pyrogenic (15ml) Sarstedt, Nümbrecht, Germany 

Centrifuge tubes, non-pyrogenic (50ml) Greiner Bio-one, Kremsmünster, Austria 

Coverslips #1 (⌀12mm) Thermo Fisher Scientific, Waltham , MA, 

USA 

Coverslips 24x60mm, strength 1 

 

Meidte, Burgdorf, Germany 

Filter discs, grade 292 (∅ 90mm,87g/m2) Sartorius, Göttingen, Germany 

Gelantine capsules (size 4) Plano, Wetzlar, Germany 

Histobond® microscope slides 

(76x26x1mm) Marienfeld, Lauda-Königshofen, Germany 

Histosette I tissue embedding cassette Neo Lab, Heidelberg, Germany 

Injekt ® single use injections (1ml, 10ml) B.Braun, Melsungen, Germany 

LightCycler® capillaries (20µl) GeneOn, Ludwigshafen am Rhein, 

Germany 

Light duty one-ply tissue wipes 

(11.4x20.0cm) VWR, Darmstadt, Germany 

MicroAmp® optical 96-well reaction plate Applied biosystems, Foster City, CA, USA 

MicroAmp™ optical adhesive film kit Applied biosystems, Foster City, CA, USA 

Microscope slides Superfrost® 76x25mm Carl Roth, Karlsruhe, Germany 

Microtome blade A35 Feather Safety Razor, Osaka, Japan 

Microtome blade N35 Feather Safety Razor, Osaka, Japan 

Nickel grids (2x1mm slit) Plano, Wetzlar, Germany 

Parafilm® Bemis, Neenah, WI, USA 
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Consumable Supplier/manufacturer 

Petri dishes (145/20mm)  Greiner Bio-one, Kremsmünster, Austria 

PES sterile syringe filters (⌀35mm, 

0.45µm) 

Thermo Fisher Scientific, Waltham , MA, 

USA 

Pipette tips (10µl, 200µl,1000µl) Sarstedt, Nümbrecht, Germany 

Razor blades Plano, Wetzlar, Germany 

Safelock® centrifuge tubes (1.5ml, 0.5ml) Eppendorf, Hamburg, Germany 

SafeSeal Professional filter pipette tips 

(10µl, 200µl, 1000µl) 

Biozym, Hessisch-Oldendorf, Germany 

Safety-multifly®-set (25Gx0.75“  

0.5x19mm) 

Sarstedt, Nümbrecht, Germany 

Serological pipettes 

 (5ml, 10ml, 25ml) 

Sarstedt, Nümbrecht, Germany 

Standard pipette tips 

 (10µl, 200µl, 1000µl) 

Sarstedt, Nümbrecht, Germany 

Sterile surgical blades #11 B.Braun, Melsungen, Germany 

Superfrost® microscope slides (76x25mm) Carl Roth, Karlsruhe, Germany 

Weighing pans Carl Roth, Karlsruhe, Germany 

 
 
 

 Devices and instruments 

 
Table 11: Devices and instruments 
 

Device/instrument Supplier/manufacturer 

Arpege 170 N2 Tank VWR, Darmstadt, Germany 

Artiste linear accelerator Siemens Meidcal Solutions, CA , USA 

Balance BL3100 Sartorius, Göttingen, Germany 

Centrifuge 5810R  Eppendorf, Hamburg, Germany 

DiATOME diamond knife (3.5mm length, 

45 angle) 

DiATOME AG, Biel, Switzerland 

Dissection tools (scissors, scalpel, 

foreceps) 

C. Bruno Bayha GmbH, Tuttlingen, 

Germany 

Freezer (-80C) Thermo Fisher, Waltham , MA, USA 
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Device/instrument Supplier/manufacturer 

Freezer (-20C) Bosch, Gerlingen, Germany 

Fridge (4oC) Bosch, Gerlingen, Germany 

Grid filming apparatus Bespoke design by University of Saarland 

Heating chamber Binder, Tuttlingen, Germany 

HERAsafe™  biological safety cabinet Thermo Fisher, Waltham , MA, USA 

Ice machine  Scotsman, Illinois, USA 

pH meter pH526 WTW, Weilheim, Germany 

Pipetus  akku Hirschmann Laboratories, Eberstadt, 

Germany 

Pipettes ( P10, P200, P1000) Eppendorf, Hamburg, Germany 

Plexiglass cylinder  Bespoke design by University of Saarland 

Plexiglass plate Bespoke design by University of Saarland  

Precision balance Sartorius, Göttingen, Germany 

LightCycler  Roche, Basel, Switzerland 

Manual microtome RM2235 Leica, Wetzlar, Germany 

Microcentrifuge Heraeus Biofuge fresco Heraeus, Hanau, Germany 

Micropipettes 

(P10, P200, P1000) 

Gilson Inc., Middelton, WI, USA 

Microwave Panasonic, Osaka, Japan 

Multichannel pipette S-12 Brand, Wertheim, Germany 

Nanodrop 2000c Thermo Fisher, Waltham , MA, USA 

Neubauer Counting Chamber Marienfeld, Lauda-Königshofen, Germany 

Nikon Eclipse  

TS100 light microscope 

Nikon Instruments Europe BV, Amsterdam, 

The Netherlands 

Nikon Eclipse NI-E microscope  Nikon Instruments Europe BV, Amsterdam, 

The Netherlands 

Shaker S4 ELMI Ltd., Riga, Latvia 

Shandon Exclesior ES  

tissue processor 

Thermo Fisher, Waltham , MA, USA 

Stuart hotplate stirrer Biocote, Coventry, UK 
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Device/instrument Supplier/manufacturer 

Tecnai Brown  

Transmission Electron microscope 

FEI, Oregon, USA 

Thermoshaker HLC MHR23 Ditabis, Pforzheim, Germany 

Tissue-tek TEC 5 embedding station Sakura, Alphen aan den Rijn, Netherlands 

Ultramicrotome Ultracut S Leica, Wetzlar, Germany 

VI05 250i CO2 incubator Heraeus, Hanau, Germany 

Vortexgenie 2 Scientific Industries, Bohemia, NY, USA 

Waterbath GFL, Burgwedel, Germany 

 
 
Table 12: Image and data analysis software 
 

Software Creator/distributor 

Analysis TEM image acquisition software  FEI, Oregon, USA 

GraphPad GraphPad Software, San Diego, CA, USA 

Microsoft Office Microsoft Corporation, Redmond, WA, USA 

NIS Elements Basic Research  Nikon Instruments Europe BV, Amsterdam, 

The Netherlands 

Origin 2015G 64bit OriginLab Corporation, Northampton, MA, 

USA 

Photoshop CS3 Adobe, San Jose, CA, USA 
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 Methods 

The following sections cover all methods used in the acquisition of data for this project. 
 

 Cell culture 

All in vitro experiments were completed using the following lung fibroblast cell lines: WI-38, 

WI-38hTERT/ptet-on-sh-NoTarget (NT) and WI-38hTERT/ptet-on-sh3-H2AFJ (KD). These 

cell lines were kindly supplied by Prof. Dr. Carl Mann and produced as per established 

protocol by Contrepois et al (Contrepois et al., 2017). General culture methods described 

below were equal for all cell lines and completed under sterile conditions. Cell lines were 

received in frozen vials containing approximately 3-5 million cells in DMSO freezing medium. 

To take cells into culture, the contents of the vials were quickly defrosted at 37oC and 

transferred to 15ml tube. To prevent possible deleterious osmotic effects associated with 

rapid dilution of DMSO freezing medium, the complete growth medium at 37oC was added 

dropwise over several minutes. Following 4min. centrifugation at 500g, supernatant was 

removed and cell pellet resuspended in 10ml growth medium. Cell suspension was then 

transferred to T75 culture flask and cells were grown at 37oC, 5% CO2, 5% O2.  Once 

confluency was reached, cells were split 1:1 into new T75 flasks. This was achieved by 

removing medium, washing cells 1x in PBS and incubating in 3ml Trypsin for 2min at 37oC. 

10ml of 37oC medium was added to neutralize Trypsin and cell suspension transferred into 

15ml tube which was centrifuged at 500g for 4min. Supernatant was removed, cells 

resuspended in fresh medium and divided amongst flasks containing additional fresh 

medium. 

 

5.2.1.1 Induction of insert expression 

In the case of WI-38-NT and –KD, expression of red fluorescent protein, KD and NT 

cassettes, respectively was achieved by the addition of 1µg/ml of doxycycline to growth 

medium 1 week prior to irradiation, ETO exposure or control acquisition. Doxycycline 

treatment was continued following IR until cells were harvested. 

 

5.2.1.2 Cell monolayers 

Once cells had reached 90% confluency, adherent cells were detached by first removing 

excess medium with 2x PBS washes followed by a 2min. incubation with 1xTrypsin at 37oC. 

Cell suspension was then diluted with 10ml growth medium and centrifuged at 500g for 4min. 

Supernatant was removed and cells re-suspended in fresh growth medium. 6-well plates 

were prepared by placing two circular glass coverslips into each well. Using Cell-saver tips, 

150µl of cell suspension was gently dispensed onto each coverslip taking care to maintain 
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the surface tension. Cells were left to settle and adhere for 30min, after which 3ml of growth 

medium was added to each well and cells incubated as above. Experiments were carried out 

once 90% confluency was reached. 

 
 

 Monolayer irradiation  

Irradiation with varying doses (low-LET, 6-MV photons, 2Gy/min) was performed at the 

Department of Radiation Oncology, Saarland University (Homburg/Saar, Germany) using 

Artiste™ (Siemens, Munich, Germany) linear accelerator.  The radiation plan was calculated 

using Pinnacle planning software in which the position of the coverslips, the height of the 6-

well plates and the placement of a 1cm thick Plexiglas plate on top of the 6- well plate, was 

taken into consideration to ensure optimum doses delivery to the cell monolayer. For RT-

qPCR and Western blot cells were directly irradiated in T75 flasks on top of two 1cm Plexiglas 

plates (Figure 6). Cells were placed back into incubator and fixed/harvested once the desired 

time point after radiation had been reached as per protocol specific method below. 

 

 
Figure 6. Dose distribution calculated using Pinnacle software. 
Example of Pinnacle interface where CT images were used to calculate dose distribution for cell irradiation in T75 
flasks. 
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 Etoposide exposure 

Etoposide is an anti-cancer drug that targets DNA Topoisomerase II (Topo II), a DNA 

replication enzyme, which aids the unwinding and recoiling of the DNA double-helix through 

temporary, deliberate DSBs. (Montecucco et al., 2015). ETO forms a complex with TopoII 

and DNA and thus causes deleterious DNA DSBs by preventing the re-ligation of DNA 

strands as intended (Pommier et al., 2010). ETO solution was added to growth medium in a 

final concentration of 20µM. When samples were exposed for the desired time (24h, 1w, 2w) 

medium was removed and samples fixated as per protocol specific method below (5.2.4.1). 

 

 

 Immunofluorescence microscopy (IFM) 

Visualization, localization and quantification of proteins of interest was achieved through 

indirect  immunofluorescent labelling of fixated cells viewed under a fluorescence microscope 

which was fitted with a high-intensity mercury arc lamp for illumination and wavelength filters 

allowing for specific excitation of fluorophores coupled to secondary antibodies. 

 

5.2.4.1 Sample fixation 

When the specific time point after IR or of continuous ETO exposure was reached, the 

medium was removed from 6-well plates and the circular coverslips bearing cell monolayers 

were gently rinsed twice with PBS. Remaining PBS was removed and replaced by PFA 

fixation solution for 5 min. Samples were rinsed with PBS and stored in sodium azide solution 

at 4oC for a maximum of 4 weeks. 

 

5.2.4.2 IFM Staining 

Samples stored in sodium azide required an additional wash step of three 10min washes 

with PBS to remove excess storage solution. Fresh samples could proceed directly to the 

permeabilisation step which encompassed a 5min incubation period with 0.5% Triton-X-100 

under slight rocking to ensure even distribution and permeabilisation. This was followed by 

a 10min wash with wash solution containing 0.1% Tween. At this stage samples were 

blocked with blocking solution for 1h at RT prior to being incubated with primary antibody 

overnight at 4oC. Excess antibody was then removed through 3x 10min washes and the 

secondary antibody added on top of coverslips for 1h at RT. This was subsequently followed 

by three additional 10min washes with wash solution. In case of a double stain, the protocol 

above for primary and secondary incubation was repeated however the primary antibody 

was incubated either 37oC or RT for only 1h.  The temperature at which antibody was 
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incubated was previously optimized and adjusted accordingly for each antibody used. The 

final step was to rinse the samples with PBS for 5min and mount in hard set mounting 

medium containing DAPI to stain the DNA allowing the identification of cell nuclei. 

 

5.2.4.3 Data acquisition through light microscopy 

For the dose response curve (non-IR control, 0.1Gy, 1Gy, 2Gy, 10Gy; 24 h post-IR) of H2A.J, 

cells were counted until a minimum of 50 H2A.J positive cells were obtained. For the 2Gy 

kinetic, 20Gy kinetic (non-IR control, 0.5h, 5h, 24h, and  48h post-IR) and long term 

accumulation (1w and 2w post-IR) of H2A.J and 53BP1 was quantified by counting a 

minimum of 200 cells per condition and noting H2A.J positivity, as well as, 53BP1 foci/cell 

and H2A.J/53BP1 double-positivity. Three technical replicates were completed for each 

condition and cell line. 

 

 

 Senescence-associated beta galactosidase (SA--gal) 

 
It has been shown that senescent cells show a distinct β-galactosidase activity which can be 

measured at pH6 and thus distinguishes it from acidic β-galactosidase activity found in all 

cells at pH4. This senescence-associated β-galactosidase (SA-β-gal) activity is due to an 

increase in the presence of the lysosomal enzyme itself and has become a widely accepted 

marker for senescent cells. 

 

5.2.5.1 Sample fixation and staining 

Cells were prepared in monolayers as described above and staining commenced following 

either IR or ETO exposure, as well as, in non-irradiated/non-exposed controls. Medium was 

removed from the samples and all remaining traces removed by gently washing twice with 

PBS. Cells were then fixed for 5min using SA-β-gal fixation solution. Once cells were fixed 

and washed 2x 10min with PBS, SA-β-gal staining solution was added and incubated 

overnight, taking care to avoid exposure to light. Staining solution was removed, samples 

washed twice for 10min with PBS, and incubated with methanol for 30sec. Cover slips were 

then placed at an angle against the well walls and left to dry. Permeabilisation of cells was 

achieved through a 5min incubation with permeabilisation solution. Following two 10min 

washes with BSA wash solution, the samples were blocked with BSA blocking solution for 

1h at RT. Samples were then transferred to a humidity chamber and incubated with anti-

H2A.J antibody in BSA blocking solution overnight at 4oC. The following day, the samples 

were washed twice for 10min with BSA wash solution and subsequently incubated with an 

immunoglobulins/biotinylated secondary antibody suspended in BSA blocking solution for 1h 
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at RT. After a further two 10min washes with PBS only, the samples were incubated with 

ABC complex (Prepared as per manufacturer’s instructions) for 30min at RT in the humidity 

chamber. Any remaining ABC complex was thoroughly rinsed off using a further three 10min 

PBS washes, after which the DAB agents (Prepared as per manufacturer’s instructions) were 

added on top of the samples for 30min at RT. The samples then underwent two quick 5min 

washes with PBS after which excess liquid was removed using tissue paper and finally 

mounted on glass slides using aqueous mounting medium. 

 

5.2.5.2 Data acquisition through light microscopy  

Using a light microscope, 200 cells were quantified for each condition where H2A.J- and SA-

β-gal positivity was noted for each marker. Three technical replicates were completed for 

each condition and cell line. 

 

 

 BrdU labelling 

To test the stability of senescence-associated growth arrest, as well as, the stability of the 

DNA-SCARS, cells were labelled with Bromodeoxyuridine (5-bromo-2'-deoxyuridine/BrdU), 

a thymidine analog incorporated into DNA during DNA synthesis. Proliferating non-irradiated 

cells served as control group to senescent cells (20Gy; 2w). Cells were pulsed with 10µmol/L 

BrdU in culture medium for 24h prior to fixation. Removal of medium was followed by two 

quick 5sec washes and three 2min washes with PBS. Fixation and permeabilisation followed 

as per section 5.2.4.1, followed by 3x 5min PBS washes and one dH2O rinse. DNA 

denaturation was completed through a 1h incubation in 2M HCl at RT succeeded by 3x 5min 

PBS washes and 2h RT incubation with primary anti-BrdU antibody in 0.1% Tween,1 % BSA 

in PBS. After 3x 5min washes of Tween/BSA/PBS, samples were incubated with 

fluorescence-coupled anti-rat secondary antibody in Tween/BSA/PBS for 2h at RT. 3x 5min 

washes with PBS preceded coverslip mounting with hard-set mounting medium containing 

DAPI. 

 

 

 Proximity ligation assay 
 
Duolink® Proximity ligation assay (PLA) system was used detect co-localizations of H2A.J 

and 53BP1. This system detects co-localizations between molecules that lie a maximum 

distance of 40nm apart. Once primary antibodies of desired targets have bound, samples 

are incubated with specific secondary antibodies coupled with oligonucleotides (PLA 

probes). If proteins are close enough together hybridizing connector oligos join the PLA 
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probes and a closed circle DNA template is formed with ligase. The PLA probe acts as a 

primer for DNA polymerase and the circle DNA as a template for rolling-circle amplification. 

Concatemeric sequences are generated which remain tethered to the PLA probes resulting 

in an amplified signal which allows for localization due to its tethering.  Complementary 

detection oligos coupled to fluorochromes then hybridize to complementary sequences within 

the amplicon resulting in discrete spots detectable through IFM. Samples were prepared and 

fixed as for standard IFM. PLA foci for 50 cells were quantified. Three technical replicates 

were completed for each condition and cell line. 

 

 
Figure 7. Schematic representation of proximity ligation assay mode of action.  
Taken from www.sigmaaldrich.com. 

 
 
 

 Transmission Electron Microscopy  
 
Please note all credit for sectioning, staining and TEM data acquisition of monolayer cells 

belongs to Dr. rer. med. Yvonne Lorat who kindly granted permission for use of raw data and 

images. 

 

5.2.8.1 Monolayer fixation and embedding                                                                                                                                                             

Cells were prepared as described as above per section 5.2.1 and 5.2.2. Cells were gently 

washed once with PBS and fixed by means of a 2h incubation period with TEM fixation 

solution. Three 10min washes with PBS were succeeded by dehydration of the samples, 

achieved through 5min immersions in increasing concentrations of alcohol (30%, 50%, 70%, 

95%, 100%, and 100%) at RT. A fresh 6-well plate was then lined with Parafilm® to avoid 

adhesion of glass to the well floor and coverslips were transferred across and incubated in 

1:2 EtOH: LR white solution for 30min at RT. This was followed by two consecutive 1h 
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incubations in pure LR white at RT with subsequent overnight immersion in LR white at 4oC. 

LR white was again refreshed the next day and a further 1h immersion completed. 

Meanwhile, a 50ml tube of LR white was placed at 50oC without the lid to allow for the 

evaporation of any gases/bubbles from the resin. Next, the gelatin capsules to hold the 

samples were prepared by placing a small drop of LR white accelerator onto a glass slide 

and placing the opening of the capsule face down into the accelerator for 1h which allowed 

the accelerator to move up the inside of the capsule through capillary action. Once 

completed, the capsule was filled with the previously de-gassed LR white at 50oC, 

simultaneously mixing with the accelerator in the process. Coverslips were set onto the rim 

of the capsules with the cell monolayer touching the resin. With the coverslip held in place,  

the entire construct was inverted and placed onto a layer of Parafilm®. These were then 

incubated at 50oC for 24h to allow the LR white resin to set. Samples were left to cool once 

removed from incubator. At this stage the cell monolayer was infiltrated with resin and had 

bonded with the resin in the capsules. The coverslips were removed from the capsules by 

placing constructs in -80oC for 10min and when removed, the capsules were quickly snapped 

off, thereby leaving the cell monolayer patched onto the bottom of the resin in the capsule. 

 

5.2.8.2 Filming of nickel grids 

The first step in this process was to create a pioloform film which would later be used to coat 

the nickel grids. A bespoke cylinder was placed on top of a conical flask and filled with 

chloroform which was left to sit for 30sec.  The chloroform was then drained and decanted 

into its original container. Next, the cylinder was filled with pioloform and the sides of the 

cylinder tapped to remove any air bubbles which may disrupt the formation of the film. A 

glass slide, which was previously been cleaned to remove any dirt and lipids, was then placed 

into the pioloform for 1min. The pioloform was then allowed to slowly drain off, the slide was 

removed and set in a coverslide holder to dry. A glass bowl was filled with distilled water to 

the rim and any dust or lint removed from the water’s surface with a glass wand. This was 

completed under a plastic hood to avoid any further particles contaminating the surface. The 

coated slides were then dipped into the water, the edges of the pioloform film scored with a 

razor blade and the slide slowly lowered into the water at a slight angle allowing the film to 

detach from the slide and glide onto the water surface. Using a set of tweezers, nickel grids 

were placed onto the film with the matt side down. The grid-covered film was removed by 

placing the backing paper of a section of Parafilm® on top and then lifting both out and 

simultaneously inverting both so that the grid and film lay on top of the backing paper. These 

were placed in a petri dish, covered and allowed to dry. When needed individual coated grids 

could then be lifted off using ultra fine forceps. 
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5.2.8.3 Ultrathin sample sectioning 

The gelatin capsule was firstly secure in the sample holder of the ultra-microtome. Using the 

light microscope and a razorblade, 1mm of the gelatin capsule was removed from the outside 

of the embedded sample to allow better access to the monolayer of cells located at the very 

end of the resin tube. The sample was then placed in the horizontal arm of the microtome at 

a minimal angle to the diamond knife. This was to ensure that only a small section of the 

monolayer was removed when cutting and not the entire face of the sample. Sections with a 

thickness of approximately 85nm were sliced off the sample and floated on water as they left 

the diamond blade. Sections of optimum thickness were then fished from the water’s surface 

with pioloform coated grids ensuring they were placed on the center of the pioloform film 

while doing so. The grid was touched to filter paper to remove any excess water and placed 

in a grid box.  Suitability of the sections for TEM analysis could be determined by their color 

as 50-90nm thick sections are silver to light gold in color and are clearly distinguishable. To 

check whether cells were present in the sections one such section was lifted off the surface 

using a wire loop and placed onto a glass slide. This was placed onto a hot plate at 50oC and 

once excess water had evaporated, was stained with Richardson’s stain for 30sec. Excess 

stain was rinsed off with dH2O and slide once again dried on hot plate. Any cells present 

showed a monochromatic stain and could be identified under a light microscope. 

 
5.2.8.4 Immunogold protein labelling 

 This labelling technique is based on the same indirect labelling technique used in 

immunofluorescence however in this instance the secondary antibodies are coupled with 

gold beads of various sizes instead of fluorescing particles. The high electron density of the 

gold beads causes greater electron scatter which, when visualized, can be seen as very 

dense, dark spots. All labelling steps were performed in a humidity chamber in which 30µl of 

each solution was spotted onto a taut section of Parafilm®. Grids were always placed face 

down on top of each solution droplet where they floated for the duration of the incubation. 

Firstly, the samples were blocked through a 20min incubation with BSA-c™ solution followed 

by 2x 5min wash steps in incubation buffer. Primary antibodies were diluted in incubation 

buffer and sample incubation ensued overnight at 4oC. Following 6x 5min washes, secondary 

antibody incubation commenced for a duration of 1.5h at RT with 6nm or 10nm gold particle-

conjugated secondary antibodies. 6x 5min washes with incubation buffer were then 

succeeded by 3x 5min washes in PBS. Labelling process was concluded with post fixation 

achieved through a 30min incubation with 2% glutaraldehyde in PBS, followed by 3x 5min 

washes in dH2O. 

 



5 Materials and  methods 
 

50 
 

5.2.8.5 Contrasting ultra-thin sections 

The contrast achieved in the electron microscope depends on the electron density of the 

samples and as biological samples are mainly composed of low electron density elements 

(C, O, N) they require additional staining to increase the contrast. This is usually achieved 

through the use of heavy metals, in this case, uranyl acetate in which uranyl ions 

preferentially bind to the nucleic acid phosphate groups of DNA, as well as, to proteins and 

lipids with sialic acid carboxyl groups (Erenpreisa, 1981). The immunogold-labelled grids 

were incubated for 5min on a 30µl uranyl acetate droplet and then in dH2O for 5min. Excess 

liquid was removed by touching grid to filter paper and returning to grid box to dry completely 

before visualization in transmission electron microscope. 

 

5.2.8.6 TEM analysis of immunogold-labelled proteins 

A Tecnai Biotwin™ transmission electron microscope (FEI, Eindhoven, Netherlands) was 

employed for visual analysis. For quantification, single beads and bead clusters were 

counted in 25 random nuclear sections. Additionally, chromatin localization (hetero-

/euchromatin) was also noted. Hetero- and euchromatin was defined through varying gray 

scale presented by each chromatin state.  

 

 

 ELISA 

To detect the SASP of cells, a multi-analyte ELISA was performed on conditioned medium.  

A custom Multi-Analyte ELISArray™ Kit was commissioned to detect IL1β, IL6, IL8, IL12, 

IFNγ, TNFα, Gm-csf, MIP-1α, MCP1, TGFβ1, IP10 and GRoα respectively. Conditioned 

medium was prepared as per protocol described by F. Rodier (Rodier, 2013) as follows: For 

each condition (non-IR, 20Gy; 2 weeks) and cell line (NT, KD) to be examined 750,000 cells 

were seeded in a T75 culture flask and grown to 90% confluency. 20Gy irradiated samples 

were cultured for 2w after IR exposure and 24h before the 2 week time point was reached, 

growth medium was removed, cells washed 3x with warm PBS and 6ml FBS-free medium 

was added. This change in medium was also implemented for non-irradiated cells once they 

had reached 90% confluency. Following the 24h culture with serum-free medium, the 

conditioned medium was removed and transferred to a 15ml tube and kept on ice. Cells were 

trypsinated (see section 5.2.1) and counted so conditioned medium concentration could be 

adjusted to cells/ml and all samples would be run at equal concentration. Conditioned 

medium was then centrifuged at 300g for 5min to remove any cell debris, supernatant 

removed and filtered through a 0.45µm syringe filter. Conditioned medium was aliquoted and 

frozen at -80oC until SASP could be measured. ELISA was run as per manufacturer’s 



5 Materials and  methods 
 

51 
 

instructions. The concentration of all samples was adjusted to that of the sample with the 

lowest concentration (3.23x105 cells/ml).  Preliminary results showed that the concentration 

of MCP1 in NT 20Gy;2w post-IR sample was above the linear range of the assay and 

therefore was diluted 40-fold to 10,000 cells/ml resulting in an absorbance reading within the 

linear assay range. A minimum of two technical replicates was performed for each sample 

and each analyte. 

 

 

 Reverse transcription quantitative PCR (RT-qPCR) 

For RT-qPCR, NT and KD were cultured as described in sections 5.2.1 and 5.2.1.1 in T75 

culture flasks. Once cells had reached 90% confluency they were either irradiated (20Gy;2w) 

or used as non-irradiated controls. 

 

5.2.10.1 RNA extraction 

Once desired time point/condition was reached, growth medium was removed, cells were 

trypsinated and centrifuged at 500g for 4min. Supernatant was removed and pellet 

resuspended in 1.5ml Trizol™ and the lysate pipetted up and down several times to 

homogenize. A 5min incubation was undergone to allow complete dissociation of the 

nucleoproteins complex after which 0.3 ml chloroform was added and incubated for 2-3min. 

Samples were centrifuged for 15min at 12,000g at 4oC, which resulted in separation of the 

mixture into three phases. The colorless aqueous uppermost phase contained the RNA and 

was thus removed and transferred to a fresh tube, taking extreme care to avoid transferring 

any of the interphase or organic layer. Next, 0.75ml of isopropanol was added to the aqueous 

phase and incubated for 10min followed by 10min centrifugation at 12,000g at 4oC. 

Supernatant was removed and the white gel-like pellet containing the total RNA precipitate 

was resuspended in 1.5 ml 75% ethanol. Sample was vortexed briefly and centrifuged for 

5min at 7,500g at 4oC. Supernatant was discarded and pellet allowed to air dry for 5min. 

Subsequently, pellet was resuspended in 50µl RNase-free water and incubated at 60oC for 

15min. RNA concentration and purity was assessed using NanoDrop™ spectrophotometer. 

An A260/A280nm ratio of  ̴ 2 was considered pure. 

 

5.2.10.2 Complementary DNA (cDNA)  synthesis 

As a real-time two-step RT-qPCR method was used, the RNA was first transcribed into 

complimentary DNA (cDNA) using the QuantiTect® Reverse Transcription kit as per 

manufacturer’s instructions. This allowed for cDNA synthesis with integral removal of 

genomic DNA contamination.  A blank reaction was also completed simultaneously to ensure 
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no contamination was present in the kit itself. DNA concentration and purity was assessed 

using NanoDrop™ spectrophotometer. An A260/A280nm ratio of  ̴ 1.8 was considered pure. 

 

5.2.10.3 Quantitative two-step RT-PCR 

The PCR reaction mixture was set up as per manufacturer’s instructions of the QuantiTect® 

SYBR® Green PCR kit, adding everything but the cDNA. 18µl of master mix was pipetted 

into a 96-well plate followed by 2µl of diluted cDNA to complete the reaction mixture. The 

plate was covered with optical adhesive film, vortexed briefly to ensure thorough mixing and 

centrifuged for 1min to provide a bubble-free solution. The plate was placed into the real-

time PCR instrument and run under the program detailed in Table 14. 

 

 

Table 13: PCR reaction setup 
 

Component Volume/reaction 

QuantiTect® Master Mix 10µl 

Primer A 1µl (final conc. 0.5µM) 

Primer B 1µl (final conc. 0.5µM) 

RNase-free water Variable 

cDNA Variable (1µg/reaction) 

Total reaction volume 20µl 
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Table 14: Real-Time PCR instrument run settings 
 

Step  Target 
Temp (oC) 

Incubation 
time 

Temp. 
transition 
rate 
(oC/s) 

Secondary 
target temp. 
(oC) 

Step 
size 
(oC) 

Step 
delay 
(cycles) 

Acquisition 
mode 

Denaturation 94 15min 20 0 0.0 0 NONE 

Amplification 94 
Variable* 
72 

15 sec 
30 sec 
45 sec 

20 
20 
20 

0 
0 
0 

0.0 
0.0 
0.0 

0 
0 
0 

NONE 
NONE 
SINGLE 

Melting curve 80 
40 
95 

0 
15 sec 
0 

20 
20 
0,3 

0 
0 
0 

0.0 
0.0 
0.0 

0 
0 
0 

NONE 
NONE 
STEP and 
HOLD 

Cooling 40 10 sec 20 0 0.0 0 NONE 

        

Analysis mode: Quantification 

Cycles: 40 

* See Table 9 for annealing temp. of individual primers 

 
 
 

5.2.10.4 Data analysis 

Fold change in gene expression was calculated using the Delta-Delta Ct Method (2-ΔΔCt) 

(Livak, Schmittgen, 2001) with GAPDH as the housekeeping gene and non-irradiated NT 

samples as control.  
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 Murine epidermis 
 
Please note all credit for fractionated irradiation, sample collection and sample embedding 

of murine tissue belongs to Zoé Schmal who undertook these experiments as part of her 

doctoral thesis. The thesis of Ms. Schmal focused solely on the hippocampus of these mice, 

however, to avoid unneccessary sacrifice of mice, all organs were collected for potential 

future studies. The skin samples which were acquired at this time point were examined in 

this study. Studies were approved by Medical Sciences Animal Care and Use Committee of 

Saarland University (approval under application number: 05/2014 and 35/2016). 

 

5.2.11.1 Sample acquisition 

C57BL/6 strain (C57BL/6NCrl) mice were obtained from Charles River Laboratories, 

Sulzfeld, Germany. All mice were housed in groups of 3 to 6 animals in IVC cages under 

standard laboratory conditions (22°C ±2, 55% ±10 humidity, 12h : 12h light/dark cycle, ad 

libitum feeding conditions). Fractionated irradiation began when mice reached maturity at 8 

weeks old. Mice were placed in bespoke Plexiglas cylinder and covered by a 1.5cm thick 

tissue-equivalent plastic material which improved dose homogeneity. To execute a whole 

body radiation, the cylinder was then placed under the linear accelerator and the following 

conditions applied:  radiation field size: 30cm × 30cm; collimator angle 0°; gantry angle 0°; 

source surface distance (SSD): 208cm (0.1Gy); beam energy: 6-MV photons; dose-rate: 

2Gy/min. Tomography-based, three-dimensional dose calculations were performed using 

Pinnacle™ planning system and a thermoluminescent dosimeter was employed to confirm a 

reliable and uniform dose delivery. Mice were exposed to 0.1Gy every 24h from Monday to 

Friday over the course of 4 weeks. 72h after the final dose was applied, mice were 

anesthetized intraperitoneally, and a section of dorsal skin removed, rolled into a tight coil to 

increase surface area, as well as, improve ease of handling, and placed in 4% PFA overnight 

at RT. Subsequently, mice underwent perfusion which resulted in termination and allowed 

for the collection of the remaining organs for further studies. Once samples were fixed, they 

were transferred into tissue processing embedding cassettes and rinsed in H2O. Cassettes 

were then placed in automatic tissue embedder programmed to run overnight. Briefly, as 

paraffin is hydrophobic, tissues were firstly dehydrated through a number of incubations in 

ethanol (70%, 80%, 90%, 95%, absolute, absolute for 65min each) followed by three 

incubations in Xylol (55min x2, 80min) in which the Xylol displaced the ethanol and also 

removed fat which acts as a barrier to paraffin infiltration. Samples were then infiltrated with 

melted paraffin through a 1h incubation at 58oC. Cassettes were now transferred to an 

embedding station where they were placed in fresh liquid paraffin. A metal mold was then 

placed onto a heat plate and a small drop of wax added. The cassette was opened, the lid 

removed and the sample placed into the mold ensuring correct orientation of sample to 
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achieve desired “plane of section”. The sample was held in place and the mold moved onto 

a cooling plate (-4oC) causing the wax to set and the sample to remain fixed. The cassette 

was placed on top of the mold, lifted off the cooling block and filled to the brim with liquid 

paraffin and left to solidify on cooling plate. Once completely cooled, the mold was removed 

and the resulting cassette with protruding sample-containing paraffin block was complete. 

5.2.11.2 IFM staining 

Firstly, tissue sectioning was required. Tissue cassettes were placed at -20oC for approx. 2h 

prior to sectioning. Cassettes were fixed in the microtome and 4µm thick sections removed 

from the front of each sample. As the blade sliced the sample, the sections were floated on 

top of the water held in the bath adjacent to the blade. Using a glass slide, one section at a 

time was fished out. With the glass slide held at an angle, the section was floated on top of 

H2O at 56oC causing the paraffin to soften and allowing the section to be pulled flat and fixed 

onto the glass slide.  Samples were then de-paraffinated by 3x 7min immersions in Xylol. 

Re-hydration of tissue was achieved by passing through an alcohol row of decreasing 

concentration for 3min in each (absolute, 96%, 90%, 80%, 70%) ending in dH2O. The cross-

links formed during fixation may mask the antigenic sites in a sample therefore they were 

broken through a 60min incubation in antigen retrieval buffer in a water bath at 95oC. The 

dish containing slides and antigen retrieval buffer, was removed from the water bath and left 

to cool for 20min. To reduce background or unspecific staining, samples were blocked with 

Immunoblock for 1h at RT. This was done by taking the slides out of the cooled citrate buffer, 

tapping off excess liquid onto lint-free paper and pipetting 100µl blocking solution onto slide. 

A coverslide was gently placed over the liquid ensuring no air bubbles formed and the entire 

sample was covered. Slides were then placed in a humidity chamber. All subsequent 

incubations for antibodies as well as DAPI staining were completed in this manner also. 

Following blocking, samples were incubated overnight at 4oC with primary antibody in 

Immunoblock. Coverslide was removed by quickly flicking it off and the slide was placed in a 

slide rack and immersed in PBS in a glass staining dish. Slides were washed on a magnetic 

stirrer for 3x 10min followed by 1h RT incubation with fluorescent-coupled secondary 

antibody in the dark. Excess secondary antibody was removed through further 3x 10min 

washes in the dark. If a double stain was required, primary and secondary antibody 

incubation, and wash steps were repeated as above ensuring a different species was used 

for the second primary antibody. Coverslip was then mounted on top of samples using hard-

set mounting medium containing DAPI. Samples were left at 4oC overnight to allow complete 

setting of mounting medium. 
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5.2.11.3 Data acquisition  

For the quantification of H2A.J positive cells in the murine epidermis, 500 cells were counted 

per tissue section noting the H2A.J-positivity of each. This was completed for three biological 

replicates as well as three technical replicates. Each irradiated sample was compared to a 

non-irradiated, age-matched control. 

 

 

 Human epidermis 
 
Please note that the credit for obtaining the skin samples for the following experiments 

belongs to Dr.rer.med. Caroline Bäumert. The irradiation and embedding of ex-vivo irradiated 

series was completed in collaboration whereas the aged human skin samples were gathered 

and processed by Dr. Bäumert alone. Protocol procedures were approved by the local ethics 

committee (“Ethikkommission der Ärztekammer des Saarlandes”, ethical approval 

application number: 226/16) and all donors provided written, informed consent. 

 

5.2.12.1 Collection of human skin biopsies 

Following signed patient consent, skin samples with a minimum surface area of 25mm2 were 

removed from abdominal area of patients of varying ages during elective surgery.  Exclusion 

criteria included systemic illnesses, rheumatism, autoimmune diseases, and Grade 5 renal 

failure (determined by Chronic Kidney Disease Epidemiology Collaboration equation). 

Samples should originate from the abdominal area due to low sun exposure associated with 

this location. Samples were placed in 15ml tube containing 37oC RPMI medium as soon as 

they were removed from patient and transported back to the laboratory in an insulated box 

containing heat pads. To avoid incomplete fixation of samples, any subcutaneous fat was 

removed from samples and fixation occurred through a 24h incubation in 4% PFA solution 

at RT. All steps following fixation were completed as described for murine skin above. 

5.2.12.2 Ex-vivo irradiation of human skin biopsies 

Once skin sample was received it was sectioned into 8 pieces and divided amongst two 6-

well plates containing medium. One 6-well plate was irradiated with 10Gy, the other, sham 

irradiated to act as a non-irradiated control. Samples were fixated 0.5h, 5h, 24h and 48h after 

irradiation along with a non-irradiated control for each time point. 
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5.2.12.3 IFM staining 

IFM staining was completed as described in 5.2.11.2  for murine epidermis. 

5.2.12.4 Data acquisition  

When examining aged human skin, three biological replicates were examined from each age 

group; 20-30 years old, 31-60 years old and >60 years old. Two technical replicates were 

performed for each sample. As age-associated foci are not as abundant as IR-induced foci 

and widely scattered, quantification continued until at least 30 foci-positive cells or 1000 cells 

in total were captured. H2A.J positivity and H2A.J/53BP1 positivity was noted for all captured 

cells, as well as, foci numbers/cell. Ex-vivo irradiated samples and their non-irradiated 

controls were taken from one patient. Three technical replicates were performed for each 

non-irradiated control and time point post-IR (non-IR; 0.5h, 5h, 24h, 48h. 10Gy IR; 0.5h, 5h, 

24h, 48h post-IR). As IR-induced 53BP1 foci are much more numerable and frequent than 

age-associated 53BP1 foci, quantification continued until at least 30 foci-positive cells and 

250 cells in total were captured. H2A.J positivity and H2A.J/53BP1 positivity was noted for 

all captured cells as well as foci numbers/cell. 

 

 Statistical analysis 

Statistical analysis was performed using GraphPad and Origin 2015G 64bit Software. Data 

sets were analysed for normal distribution using Shapiro-Wilk. Normally distributed data sets 

were subsequently analysed using unpaired two-tailed Student’s t-test (equal variances 

under F-test), Welch’s t-test (unequal variances under F-test) or ANOVA. Non-parametric 

data was analysed for statistical significance using two-tailed Mann-Whitney U test. Normally 

distributed data was displayed as Mean plus standard error whereas non-parametric data 

was displayed as box-plot containing Median with upper and lower Quartiles were applicable. 

A p<0.05 was considered statistically significant, p<0.01 as highly significant and p<0.001 as 

extremely statistically significant. 
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6 Results 
 

 H2A.J accumulates following 2Gy irradiation 

To gain insight into H2A.J accumulation following a therapeutic dose fraction, WI-38 (WT) 

and NT fibroblasts were irradiated with 2Gy, fixed at various time points following IR, in which 

active DNA damage repair is ongoing, and stained for IFM. Samples were labelled with 

H2A.J, whose accumulation could be monitored in context of DNA-damage repair through a 

double stain with 53BP1 (Figure 8A). Quantification of 53BP1 foci revealed, that both WT 

and NT fibroblasts, displayed typical DNA damage repair kinetics in which the highest foci 

numbers were observed shortly after irradiation (0.5h; WT: ~25 ±1.1 foci/cell, NT: ~23 ±0.7 

foci/cell) and continuously declined thereafter until 48h post-IR (48h; WT: ~3 ±0.3 foci/cell, 

NT: ~2 ±0.04 foci/cell) (Figure 8B). In comparison, H2A.J displayed a delayed accumulation 

in response to DNA damage (Figure 8C). For both WT and NT fibroblasts, significantly 

increased numbers of H2A.J positive cells were noted for almost all time points after IR 

(except WT; 0.5h) compared to the non-irradiated controls (non-IR; WT:12.4 ±1.2%, NT:10.5 

±1.2%). In contrast to 53BP1 foci however, H2A.J positive cells initially increased following 

IR reaching a maximum 24h post-IR (24h; WT: 26.6 ±0.3%, NT: 26.9 ±1.6%) after which 

numbers began to decline (48h; WT: 21.6 ±1.8%, NT: 21.2 ±1.3%). Although 53BP1 

demonstrated minor but statistically significant differences between cell lines 24h and 48h 

following IR (24h; WT ~4 ±0.2 foci/cell, NT ~3 ±0.2 foci/cell, 48h; WT ~3 ±0.3 foci/cell, NT ~2 

± 0.04 foci/cell) this disparity in DNA-damage levels did not affect the levels of H2A.J positive 

cells, with both WT and NT fibroblasts showing comparable accumulation patterns following 

a single dose of 2Gy irradiation. Additionally, both WT and NT cells were used in this 

experiment to compare the repair capacity and H2A.J accumulation patterns in wild type WI-

38 to genetically modified WI-38-NT. Thus it was ensured that the „No-Target“  insert did not 

affect the cells negatively and going forward WI-38-NT cells could be used in all subsequent 

experiments. 
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Figure 8. H2A.J accumulation following 2Gy irradiation.   
(A) IFM micrographs of non-irradiated control and 2Gy irradiated WT and NT fibroblasts stained for H2A.J and 
53BP1. (B) Quantification of 53BP1 foci in non-irradiated control and 2Gy irradiated WT and NT fibroblasts. (C) 
Quantification of H2A.J positive cells in non-irradiated control and 2Gy irradiated WT and NT fibroblasts. Data is 
presented as mean of 3 technical replicates ± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** 
(p<0.001). 
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 H2A.J accumulation is dose dependent 

Following the observation that H2A.J accumulated following a single exposure to 2Gy and 

the highest levels were found 24h post-IR, a further in depth dose response study was 

completed in which WT fibroblasts were irradiated with varying doses ranging from 

comparatively low to high (0.1Gy, 1Gy, 2Gy, 10Gy) and examined 24h post-IR (Figure 9). 

Notably, 24h after irradiation, H2A.J-positive cells increased significantly following each  

dose compared to non-irradiated control. Even after the lowest dose of 0.1Gy, a rise from 

13.9 ±0.8% non-IR to 16 ±0.72% H2A.J-positive cells was detected. Additionally, the higher 

the dose, the greater the increase in H2A.J-positive cells (0.1Gy; 16 ±0.72%, 1Gy; 27.7 

±2.9%, 2Gy; 29.6 ±0.7%, 10Gy; 40 ±3.3%) . 

 

 

Figure 9. H2A.J accumulation following various doses  
IFM images and quantification of H2A.J positive cells in WI-38 fibroblasts 24 h after IR with varying doses. Data 
is presented as mean of 3 technical replicates ± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** 
(p<0.001). 

 
 

 Higher doses result in altered H2A.J kinetics 

Subsequently, a repair kinetic combined with H2A.J was completed in NT fibroblasts to 

investigate the effect of different doses on the kinetics of H2A.J accumulation (Figure 10). 

Exposure to 10Gy and 20Gy caused significantly greater amounts of DNA damage for all 

time points post-IR. 20Gy consistently generated the highest levels of DNA damage, with the 

maximum at 0.5h post-IR (36 ±0.9 foci/cell) and the minimum at 48h post-IR (9.3 ±0.9 

foci/cell). 2Gy and 10Gy had similar peaks at 0.5h (23 ±0.7 foci/cell, 24 ±1.0 foci/cell 

respectively), however, repair was less efficient after 10Gy, where persistent foci levels at 

48h post-IR reached 4 ±0.4 foci/cell compared to 2Gy with only 2 ±0.04 foci/cell. The effect 

of varying DNA-damage levels and persistent DNA damage foci 48h post-IR was reflected 

in H2A.J positive cells. 10Gy and 20Gy IR showed significantly higher values of H2A.J 

positive cells at all-time points following IR compared to values after 2Gy IR, which 

corresponds to what was observed in the previous section. However, additionally, while 

H2A.J positive cells declined by 48h after 2Gy (21.1 ±2.8%) compared to the peak at 24h 

(26.9 ±1.6%), abundance of H2A.J positive cells after 10- and 20Gy continued to rise from 

24h to 48h post IR (10Gy;24h: 32.6 ±2.1%, 10Gy;48h: 34.1 ±1.8% , 20Gy;24h: 33.6 ±2.8%, 

20Gy;48h: 44.1 ±4.1%). 
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Figure 10. Effect of varying doses on H2A.J accumulation kinetics 
(A) IFM micrograph and quantification of 53BP1 foci in NT fibroblasts irradiated with 2Gy, 10Gy and 20Gy 
compared to non-irradiated controls. (B) IFM micrograph and quantification of H2A.J positive cells in NT 
fibroblasts irradiated with 2Gy, 10Gy and 20Gy compared to non-irradiated controls. Data is presented as mean 
of 3 technical replicates ± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001). 
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 H2A.J has no effect on DSB repair capacity  

The next logical step after demonstrating the pivotal role which DNA-damage has on the 

induction and accumulation of H2A.J was to investigate whether H2A.J, like γH2A.X, 

influences DNA damage repair response. KD and NT fibroblasts were irradiated with 20Gy 

and their repair kinetics compared. Figure 11A and B clearly demonstrate that H2A.J 

knockdown was effective. The repair kinetics of both cell lines, whether they contain H2A.J 

or not, follow the same progression with no significant difference in values between the two 

at any time point except 48h post-IR. Here we see a statistically significant difference in the 

two cell lines in 53BP1 foci numbers 48h post-IR (NT: 9.3 ±0.9 foci/cell, KD: 6.9 ±0.2 foci/cell). 

 

 

Figure 11. Investigation of H2A.J on repair capacity of fibroblasts following 20Gy irradiation. 
(A) IFM micrographs of NT and KD fibroblasts following 20Gy irradiation stained for 53BP1 and H2A.J. (B) 
Quantification of H2A.J positive cell accumulation in NT and KD fibroblasts following 20Gy IR compared to non-
irradiated control. (C) Quantification of acute 53BP1 foci in NT and KD fibroblasts following 20Gy IR compared to 
non-irradiated control. Data is presented as mean of 3 technical replicates ± SEM. Significant statistical difference 
* (p <0.05), ** (p<0.01), *** (p<0.001). 
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 Long-term H2A.J accumulation following irradiation  

To this point only acute H2A.J accumulation had been examined, in which it was seen that 

following high doses of IR (10- and 20Gy), H2A.J positive cells increased up to 48h post-IR. 

The question now arose how this progressed at later time points. NT and KD fibroblasts were 

irradiated with 20Gy, a dose known to induce premature senescence, and cultured for a 

further 2 weeks post-IR. Figure 12 clearly shows that in NT fibroblasts, H2A.J-positive cells 

increase more than 10-fold from the non-IR control (7.73.1%) to 2w post-IR (84.2 3.5%), 

whereas, the knock-down fibroblasts display negligible accumulation of positive cells at any 

time point ranging from 0.8 0.7% in non-IR control to 6.7 1.7% in irradiated samples. To 

elucidate the link between H2A.J and DNA-damage further, the number of 53BP1-positive 

cells was also quantified revealing a ≈ 8-fold increase in 53BP1-positive cells in both cell 

lines 2w post-IR (NT: 11.7 5.3% to 81.8 1.9%, KD: 8.8 5.3%  to 79.3 4.1%) (Figure 12B). 

The importance of DNA-damage in H2A.J accumulation was also supported in a separate 

experiment where NT and KD cells were exposed to the DNA-damaging chemotherapy drug 

ETO (ETO) for 1w and 2w (Figure 12C).  

 

 
Figure 12. Long-term accumulation of H2A.J following 20Gy irradiation or continuous ETO exposure. 
(A) IFM micrograph of 53BP1-foci and H2A.J in NT and KD fibroblasts following 20Gy irradiation 1w and 2w after 
exposure, as well as NT and KD fibroblasts after continuous ETO exposure over 2w compared to non-
irradiated/non-ETO exposed control. (B) Quantification of H2A.J- and 53BP1-positive cell accumulation in NT and 
KD fibroblasts following 20Gy IR, 1w and 2w following irradiation compared to non-irradiated controls. (C) 
Quantification of H2A.J- and 53BP1-positive cell accumulation in NT and KD fibroblasts following 1w and 2w 
continuous ETO exposure compared to non-exposed controls. Data is presented as median, maximum and 
minimum of 3 technical replicates. Significant statistical difference * (p <0.05). 
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Both NT and KD fibroblasts showed ~12 fold ETO induced increase in 53BP1-positive cells 

(NT: 5.3 2.4% to 67.8 4.1%, KD: 5.6  1.4% to 63.5 2.5%) with no significant difference 

between cell lines (Fig. 8C). NT cells showed a significant ~15-fold increase in H2A.J-positive 

cells following ETO exposure with the maximum being reached after 2w ETO exposure (non-

IR; 4.6 1%, 1w; 60.5 8%, 2w; 69.5 5.5%). As expected, H2A.J KD fibroblasts again 

showed negligible numbers of H2A.J positive cells (non-IR; 0.9 0.6%, 1w; 4.3 1%, 2w; 

3.4% 1).  

 

 H2A.J in radiation-induced premature senescence 

SA-β-gal staining is widely accepted as a biomarker for senescent cells and indicates 

increased activity of lysosomal acid β-galactosidase at pH6. To determine whether H2A.J is 

essential to senescence induction, NT and KD cells were stained for SA-β-gal and H2A.J 

following a senescence-inducing dose of 20Gy and a maximum of 2w in culture post-IR. 

Analysis showed (Figure 13B and C) both NT- and H2A.J knock-down KD cells stained SA-

β-gal positive with a ~3 to 4-fold rise just 24h post-IR. The greatest increase in SA-β-gal 

positive cells was seen 1w- (NT: 90.7 ±3.1%; KD: 94.7 ±2.6%) and 2w (NT: 92.6 ±3.3%; KD: 

96.3 ±1.6%) post-IR. No significant difference was observed between NT and KD cell lines 

for SA-β-gal. Notably, in NT fibroblasts, almost all cells which stained positive for H2A.J were 

positive for SA-β-gal (H2A.J/ SA-β-gal; 24h: 37.5 ±2.9% /32.5 ±%, 1w: 90.7 ±5.7% /90.8 

±3.1%, 2w: 94.2 ±1.7% /92.6 ±3.3%). NT and KD cells exposed to ETO again showed very 

similar progressions for both H2A.J and SA-β-gal (Figure 13A and C). To support SA-β-gal 

data and further determine the senescent state of our irradiated cell population, additional 

senescence markers in the form of p21 and ki67 were evaluated in non-IR NT and KD 

fibroblasts and those exposed to 20Gy;2w post-IR (Figure 13D and E). Cyclin/cyclin-

dependent kinase (CDK) complexes that mediate cell cycle progression can be inhibited by 

p21 in senescent cells and thus it can be used as an additional senescence marker.  

Quantification of p21 positive cells in both NT and KD fibroblasts revealed non-IR probes 

contained negligible amounts of p21 positive cells  (NT: 1.1 ±0.6%, KD: 0.45 ±0.2%), 

however, these values rose dramatically two weeks post 20Gy IR (NT: 75.2 ±6.4%, KD: 75.3 

±5.5%) (Figure 13D). Both NT and KD fibroblasts showed no significant differences in p21 

positive cell values. Another senescence characteristic is permanent proliferative arrest 

which can be assessed by staining for a proliferation marker such as ki67 (Figure 13E).  Non-

IR semi-confluent WT and NT fibroblasts showed high ki67 values ranging from 61.7±8.1% 

in NT fibroblasts and 66 ±4.7% in KD fibroblasts. Two weeks after 20Gy irradiation however, 

these values had dropped dramatically to 1.6 ±0.6% (NT) and 1.3 ±0.6% (KD) respectively. 
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As with previous senescence markers, both NT and KD fibroblasts displayed no significant 

divergence in proliferation rates and both showed a dramatic decrease following 20Gy;2w. 

 

 
Figure 13. Long-term accumulation of SA-β-gal/H2A.J following 20Gy irradiation or continuous ETO 
exposure. 
(A) Representative images of IHC staining for SA-β-gal/H2A.J in NT and KD fibroblasts following 20Gy irradiation 
or continuous 20µM ETO exposure compared to non-treated controls. (B) Quantification of SA-β-gal- and H2A.J-
positive cell accumulation in NT and KD cells following 20Gy IR, 24h, 1w and 2w post-IR compared to non-
irradiated controls. (C) Quantification of SA-β-gal- and H2A.J-positive cell accumulation in NT and KD fibroblasts 
following 24h, 1w and 2w continuous ETO exposure compared to non-exposed controls. Data is presented as 
mean of 3 technical replicates ± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001). 
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 Effect of H2A.J on nuclear lamina decline in IR-induced 
senescence  

WI-38 fibroblasts in radiation-induced senescence have been shown to display 

morphological changes which greatly differentiate from their proliferating counterpart, 

including the breakdown of the nuclear lamina. Amongst others, lamine B1 declines in the 

nuclear lamina when cells are in senescence, having a knock on effect on the chromatin 

organization. Figure 14 demonstrates the decline of the nuclear lamina in murine and human 

epidermis with age, as well as, in WI-38 fibroblasts which have entered replicative 

senescence. Of note is the observation that H2A.J positive cells correlate with a declined 

lamine B1 signal.  

 

 
Figure 14. Lamine B1 decline in various tissues and cell lines with age. 
(A) IFM images of lamine B1 (green) and H2A.J (red) in the epidermis of young (18 days old), adult (8 weeks old) 
and old (18 months old) mice. Boxed regions highlight examples of particularly strong lamine B1 decline 
corresponding with H2A.J positivity. (B) IFM images of lamine B1 (green) and H2A.J (red) in young (17 year old) 
and aged (54 year old) human epidermis. Boxed regions highlight examples of particularly strong lamine B1 
decline corresponding with H2A.J positivity. (C) IFM images of lamine B1 (red) and H2A.J (green) WI-38 
fibroblasts following varying population doublings. PD65 cells have reached replicative senescence and show a 
strong lamine B1 decline together with a stark H2A.J accumulation.  

 



6 Results 
 

67 
 

Following this observation, NT and KD fibroblasts were studied to discover whether H2A.J 

knock-down had an effect on the nuclear lamina and its senescence-associated decline. 

Lamine B1 fluorescent intensity was measured per cell and normalized to individual DAPI 

fluorescent intensities (Figure 15). As expected, non-IR NT and KD fibroblasts showed the 

highest levels of lamine B1. Mann-Whitney-U test indicated that normalized intensity of NT 

cells (Mdn=0.80) was significantly higher than in KD fibroblasts (Mdn=0.68), U=108452, 

p=<0.0001. Both cell lines displayed a significant decrease 2w post-IR (20Gy). Lamine B1 

fluorescence in NT fibroblasts decreased from a median of 0.80 to 0.42 (U=12812, 

p=<0.0001). In KD fibroblasts a decrease from median 0.68 to 0.33 was observed (U=12277, 

p=<0.0001). As with the non-IR controls, 20Gy irradiated NT lamine B1 values (Mdn=0.42) 

were higher than KD values (Mdn=0.33) U=86569, p=<0.0001, 2w post-IR. 

 

 

  
Figure 15. Lamine B1 decline in NT and KD fibroblasts following 20Gy irradiation  
(A) IFM micrograph of lamine B1 in NT and KD fibroblasts following 20Gy;2w and compared to non-IR controls. 
(B) Box plot representing quantification of normalised fluorescence intensity of lamine B1 in NT and KD fibroblasts 
20Gy;2w compared to non-IR controls. Data are shown as box plot with median, upper/lower quartiles and 
minimum/maximum values, n= 200 cells measured in each of 3 technical replicates. 
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 H2A.J and senescence-associated heterochromatin foci formation 

Senescence-associated heterochromatin foci can be quantified using DAPI staining alone. 

Non-senescent cells show a homogenous DAPI signal representing the less compact 

chromatin associated with this state.  In a senescent cell, altered chromatin can be visualized 

in the form of DAPI-dense SAHF. Additionally, the SAHF core is known to be H3K9me3 rich 

and their peripheries high in H3K27me3, both of which are associated with heterochromatin.  

 

 
Figure 16. Senescence associated heterochromatin foci in presence and absence of H2A.J 
(A) Representative IFM images showing DAPI-stained DNA and H3K9me3/k27me3 rearrangement in non-
senescent versus radiation-induced senescent NT and sh3 fibroblasts. (B) Representative TEM images showing 
uranylacetate contrasted chromatin labelled with H3K9me3/K27me3 in non-senescent versus radiation-induced 
senescent NT and sh3 fibroblasts. Enlarged insets show gold-beads distinguishable by their size (6- and 10nm) 
overlaid with colors to aid visualization (H3K9me3; red, H3K27me3; green). TEM staining, images and analysis 
provided by Dr.rer.med.Y.Lorat. 
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Figure 16A demonstrates the change in both DNA-staining DAPI and heterochromatin-

associated H3K9me3 and H3K27me3 from a non-IR control to an IR-induced senescent cell 

(20Gy;2w). It is evident that WI-38 fibroblasts formed SAHF irrespective of the presence of 

H2A.J. Figure 16B displays representative images of TEM analysis whose high-resolution 

enables visualization of chromatin itself. The chromatin rearrangements seen in the nucleus 

overview correlate with those seen in IFM. Sections were stained for H3K9me3 and 

H3k27me3 and labelled with gold beads enabling visualization of DAPI dense SAHF cores 

seen in IFM surrounded by H3K27me3. IFM and TEM analysis revealed no difference in the 

structure of the SAHF, however, an additional experiment was required to determine the 

frequency of SAHF positive cells, as not all cells, form SAHF in senescence. SAHF positive 

cells were quantified in NT and KD fibroblasts at 20Gy;2w and in non-irradiated controls 

(Figure 17A).  

 

 
Figure 17. Effect of H2A.J on nuclear morphology of NT and KD fibroblasts in IR-induced senescence. 
(A) Quantification of SAHF-positive NT and KD fibroblasts 2w post-IR (20Gy) radiation compared to non-IR 
controls. Data is shown as mean of 3 technical replicates ±SEM. (B) Measurement of nuclear area (µm2) of NT 
and KD fibroblasts 2w after 20Gy irradiation compared to non-IR controls. Data are shown as box plot with 
median, upper/lower quartiles and minimum/maximum values, n=3 technical replicates. Significant statistical 
difference * (p <0.05), ** (p<0.01), *** (p<0.001). 

 
 
In non-IR NT and KD fibroblasts no SAHF-positive cells could be detected. A significant 

increase in SAHF-positive cells could be seen in both cell lines from non-IR fibroblasts (NT: 

0%, KD: 0%) to 20Gy;2w post-IR (NT: 69.5 ±3.7%, KD: 70.8%). When comparing both cell 

lines under identical conditions however the data was not significantly different. Nuclei of 

senescent fibroblasts not only undergo a major overhaul in chromatin structure, they also 

become enlarged and flattened. Investigation of this phenomenon in senescent NT and KD 

fibroblasts was assessed by measuring the area of nuclei in non-irradiated and 20Gy 

irradiated fibroblasts 2w post-IR (Figure 17B). In NT fibroblasts the median nuclear area lay 

at 149.2µm2 which significantly increased to 297.6µm2 in irradiated samples (20Gy;2w) 

U=7012, p=<0.0001. The median area of non-irradiated KD nuclei lay at 163.9µm2 increasing 

to 312.9µm2 (U=9649, p=<0.0001) 2w post-IR (20Gy). Further statistical analysis between 

NT and KD fibroblasts revealed that KD cells in non- irradiated samples had a significantly 

larger nuclear area (Mdn=163.9µm2) compared to their NT counterpart (Mdn=149.2µm2) 
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U=112911, p=<0.0001. Evaluation by Mann-Whitney-U of the irradiated samples (20Gy;2w) 

revealed the same was also true where KD nuclear area (Mdn=312.9µm2) was significantly 

larger than radiated NT fibroblasts (Mdn=297.6µm2; U=160148, p=0.0009). 

 

 Senescence-associated secretory phenotype (SASP) 

As senescence is a heterogenic state and varies depending on induction method, the effect 

of high radiation dose on SASP was investigated in the presence and absence of H2A.J.  

 

 

Figure 18. SASP analysis in following 20Gy irradiation 
 (A) ELISA analysis of SASP factors in conditioned medium of non-IR and 20Gy;2w IR NT and KD fibroblasts 
showing variation in SASP levels of senescence cells versus non-IR control cells and the effect of H2A.J absence 
on SASP profile. (B) RT-qPCR analysis of SASP gene expression in non-IR and 20Gy;2w IR NT and KD cells 
and the effect of H2A.J absence on SASP gene expression. Data is presented as mean of 3 technical replicates 
± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001). # indicates 40-fold dilution of 
conditioned medium required to ensure results lay within linear range of assay. 

 
 
ELISA was used to quantify relative increase of IL6, IL8, Gm-csf and MCP1 in IR-induced 

senescent NT and KD fibroblasts compared to non-irradiated controls (Figure 18A). IL1β, 

IL12, IFNγ, TNFα, MIP-1α, TGFβ1, IP10 and GRoα were also tested but levels were not 

detectable by ELISA.  NT cells showed an increase in absorbance for all four factors in 

irradiated fibroblasts (20Gy;2w) compared to non-IR controls. Absorbance for IL6 rose ~21-

fold, IL8 rose ~149-fold and Gm-csf rose from 0 to 0.04 ±0.007 (p=0.02) respectively.  MCP1 

levels in IR fibroblasts where so high that samples had to be diluted 40-fold to ensure 

absorbance lay within linear range of assay. Despite dilution, MCP1 levels still showed a 

significant increase compared to non-IR NT fibroblasts (non-IR; 0.05 ±0.02, 20Gy;2w; 0.67 
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±0.08, p=0.0019). KD cells showed no such dramatic increases and SASP factors were 

severely reduced in irradiated KD fibroblasts compared to NT fibroblasts (IL6: ~2-fold 

decrease, IL8: ~8-fold decrease, Gm-csf: ~42-fold decrease, MCP1: 22-fold decrease). 

Additionally, the equivalent SASP gene expression profiles of these fibroblasts were also 

analyzed. A significant expression fold change was observed in NT fibroblasts following IR 

compared to non-IR controls (IL6; 21.04 ±3.9 fold, p=0.03, CXCL8; 16.5 ±4.11 fold, p=0.01, 

CSF2; 12.8 fold ±1.6, p=0.002, CCL2; 32.3 fold ±6.7, p=0.04). 

 

 DNA-SCARS identification 

Formation and stability of DNA-SCARS has been linked to SASP expression. Therefore NT 

and KD fibroblasts were investigated in relation to DNA-SCARS formation and abundance. 

Firstly, however, presence of DNA-SCARS had to be determined and validated through 

numerous experiments. Similar to active DNA-repair foci, DNA-SCARS also contain 53BP1 

and γH2A.X, uniquely however, PML-NB are always found in close proximity to DNA-

SCARS. An IFM double stain of 53BP1 and PML distinguished the 53BP1 foci which were 

observed at later time points (1w and 2w) post-IR from acute DNA damage repair foci seen 

up to 24h post-IR (Figure 19).  

 

 
Figure 19. DNA-SCARS determination using IFM. 
(A) Representative IFM images of 53BP1 and PML in non-IR and 20Gy irradiated NT fibroblasts 5h, 24h and 2w 
following exposure. Red boxes show magnified section highlighting presence and absence of co-localization 
between 53BP1 and PML under varying conditions. (B) Quantification of IR-induced 53BP1 foci which co-
localized with PML in 20Gy irradiated NT and KD fibroblasts 5h, 24h and 2w following exposure.  (C) 
Quantification of PML-NB in non-irradiated and 20Gy irradiated NT and KD fibroblasts 5h, 24h and 2w following 
exposure. Data is presented as mean of 3 technical replicates ± SEM. B shows statistical significance compared 
to 5h time point in which acute, active repair is underway and C shows statistical significance of irradiated controls 
at varying time points following exposure compared to non-irradiated control. Significant statistical difference * (p 
<0.05), ** (p<0.01), *** (p<0.001).  
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Although the number of 53BP1 foci is extremely high 5h post-IR (Figure 19A) only very few 

(NT; 12.7 ±1.4%, KD; 14.8 ±2.4%) of 53BP1 foci co-localize with PML-NBs (Figure 19 B). As 

acute repair takes place and foci number decline (24h post-IR), a shift occurs resulting in a 

significant increase in 53BP1/PML-NB co-localization (NT; 78.9 ±7.8%, KD; 76.6 ±14.1%). 

The greatest co-localization increase is seen when cells are senescent 2 weeks after 20Gy 

IR (NT; 88.3 ±5.1%, KD; 93.5 ±2.4%).  A large number of PML-NB are present under non-IR 

conditions, however, the amount of PML-NBs are known to increase in response to stress. 

This rise in PML-NB was also evident in NT and KD fibroblasts following 20Gy IR (Figure 

19C). Non-irradiated samples had a base level of 9.1 ±1.5 PML-NB per cell in NT fibroblasts 

and 12.6 ±2.2 PML-NB per cell in KD fibroblasts. A steady progression was observed post-

IR in NT fibroblasts (5h; 17.1 ±1.1, 24h; 16.2 ±1.5, 2w; 25.8 ±3.4) and KD fibroblasts (5h; 

15.1 ±1.3, 24h; 15.9 ±0.9, 2w; 28.3 ±3.4) respectively, with no difference in PML-NB 

accumulation levels between the two cell lines (Figure 19C).  

 

TEM was used to view DNA-SCARS in the chromatin context (Figure 20B). DNA-SCARS 

where found to lie at the periphery of SAHF and a maximum distance of 0.75µm from the 

attributed SAHF. As was indicated by IFM analysis of 53BP1/PML and in sync with 

publications, PML is to be found adjacent to the 53BP1 foci. Inversely however, not all PML-

NB amass around 53BP1 foci (Figure 20 B2 and B4). Through TEM, PML-only foci could 

clearly be distinguished from DNA-SCARS not only through 53BP1 absence but also by their 

chromatin structure. DNA-SCARS were found at the periphery of SAHF, whereas PML-only 

foci were located at the edge of much smaller and denser heterochromatin foci whose 

function is yet unknown (Figure 20 B1-4). Taken together, IFM and TEM data validate that 

persistent 53BP1 foci observed in NT and KD cells at 20Gy;2w are in fact DNA-SCARS. 
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Figure 20. DNA-SCARS visualisation and localisation in chromatin context using IFM and TEM. 
(A) IFM micrographs demonstrating localisation between PML and 53BP1 in NT and KD fibroblasts following 
20Gy;24h and 2w after exposure. (B) TEM micrograph of gold-labelled PML and 53BP1 at varying magnifications 
in NT and KD fibroblasts following 20Gy;2w. Gold beads have been overlaid with colour to aid visualization (PML; 
red, 53BP1; green). B1, 2, 3 and 4 show variances between PML/53BP1 foci and PML-only foci in chromatin 
context. B5 and 6 highlight localisation of PML/53BP1 foci localisation in relation to SAHF. Red circle shows 
maximum distance at which these PML/53BP1 foci were found from centre of SAHF. TEM staining, images and 
analysis provided by Dr.rer.med. Y.Lorat. 
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 DNA-SCARS stability  

Depletion of γH2A.X has been found to effect stability of DNA-SCARS resulting in an altered 

SASP. To investigate whether H2A.J has an effect on DNA-SCARS stability, both non-

irradiated and 20Gy irradiated NT and KD fibroblasts where pulse-labelled with BrdU for 24h 

prior to fixation (Figure 21). Both NT and KD fibroblasts showed high levels of BrdU positive 

cells due to proliferation during 24h pulse labelling (NT; 52.83 ±9.5%, KD; 52.6 ±2.1%) 

period. 2w post 20Gy IR however, cells were in senescence and no pan-nuclear BrdU 

incorporation was expected due to senescence-associated growth arrest. If, however, 

destabilization of DNA-SCARS was present, punctate BrdU incorporation would be 

expected. Knock-down of H2A.J however did not have an effect on DNA-SCARS stability as 

no punctate BrdU staining was observed in either NT or KD fibroblasts and only a negligible 

amount of BrdU positive cells were detected overall (NT; 1.08 ±0.1%, KD; 1.2  ±0.2%). 

 

 
Figure 21. DNA-SCARS stability following H2A.J knock-down. 
(A) Representative IFM images BrdU pulse-labelled NT and KD fibroblasts 2w post 20Gy IR compared to non-
irradiated controls. (B) Quantification of BrdU positive NT and KD fibroblasts 2w following 20Gy IR compared to 
non-irradiated controls. Data is presented as mean of 3 technical replicates ± SEM. Significant statistical 
difference * (p <0.05), ** (p<0.01), *** (p<0.001). 

 
 

 H2A.J preferentially localizes to DNA-SCARS 

To further investigate potential H2A.J influence on DNA-SCARS, a proximity ligation assay 

was performed between 53BP1 and H2A.J to observe possible co-localization between these 

two proteins within DNA-SCARS in non-IR and 20Gy irradiated NT and KD fibroblasts (Figure 

22). Foci are only present when anti-53BP1 and anti-H2A.J primary antibodies lie within 

40nm of one another. Non-irradiated NT fibroblasts showed a baseline level of 5.9 ±1.6 

foci/cell which rose significantly to 15.7 ±0.5 foci/cell 2w post-IR (20Gy). 20Gy radiated H2A.J 

knock-down cells showed minimal co-localization of 1.3 ±0.2 foci/cell. versus 20Gy 

irradiation-induced senescent NT and KD fibroblasts.  
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Figure 22. Proximity ligation assay between H2A.J and 53BP1 
IFM micrograph and quantification of PLA foci between H2A.J and 53BP1 in non-IR NT fibroblasts compared to 
20Gy;2w irradiated NT and KD fibroblasts. Data is presented as mean of 3 technical replicates ± SEM. Significant 
statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001). 
 
 

Consequently, NT and KD fibroblasts were analyzed using TEM to gain further insight into 

H2A.J localization to DNA-SCARS and its accumulation in the context of chromatin. Figure 

23 highlights distribution patterns of gold-labelled H2A.J and 53BP1 in non-irradiated NT 

fibroblasts and 20Gy;2w post-IR NT and KD fibroblasts. 

 
 

 

Figure 23. TEM analysis of H2A.J and 53BP1 in DNA-SCARS. 
Row 2 shows magnified sections from nuclei in row 1 where gold-labelled 53BP1 and H2A.J were overlaid with 
colors to aid visualization (53BP1 red, H2A.J green). Row 3 shows magnified sections from row 2 displaying the 
original state of the gold beads. In both row 2 and 3 co-localization between H2A.J and 53BP1 is highlighted in 
yellow. TEM staining, images and analysis provided by Dr.rer.med. Y.Lorat. 
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H2A.J gold beads were quantified and their localization examined in the context of chromatin, 

SAHF and DNA-SCARS. Figure 24A clearly supports previous IFM data (Figure 12A and B) 

in which a marked increase in H2A.J can be seen 2w following 20Gy radiation. A highly 

significant ~20-fold increase of H2A.J beads from non-IR control to 2w post 20Gy-IR was 

observed in NT fibroblasts. Comparing NT to H2A.J KD cell lines revealed a significantly 

higher amount of H2A.J beads in non-IR NT fibroblasts (5.5 ±0.3 beads/section) than non-

IR KD fibroblasts (0.5 beads/section ±0.1, p<0.0001). The difference of H2A.J beads in 

irradiated samples was even starker (NT; 117.2 ±7.7 beads/section KD; 1 ±0.1 bead/section). 

H2A.J beads were further classified into their localization within chromatin, as well as, their 

co-localization with 53BP1 (pan-nuclear, within DNA-SCARS, within DNA-SCARS and co-

localizing with 53BP1) (Figure 24B). This revealed that H2A.J found in non-IR NT and KD 

cells, as well as 20Gy;2w post-IR KD cells, was only found within pan-nuclear regions and 

not within DNA-SCARS. (Figure 19B). Senescent NT cells (20Gy;2w) also showed increased 

pan-nuclear H2A.J accumulation however the majority of H2A.J (~58%) was located within 

DNA-SCARS. This is extremely noteworthy as DNA-SCARS were measured found to occupy 

only around 3% of nuclear section area. Additionally, ~92,9% of the H2A.J found in DNA-

SCARS co-localized with 53BP1. H2A.J bead localization was further categorized and the 

size of the bead clusters captured with reference to their localization (Figure 24C). H2A.J 

beads within DNA-SCARS where most commonly found in large clusters (between 4 and 13 

beads) whereas pan-nuclear H2A.J beads, regardless of cell type or irradiation status, were 

overwhelmingly found as single beads. Analysis of all H2A.J beads within DNA-SCARS 

(with- or without 53BP1 co-localization) supported this observation with ~94% of clusters 

containing 3 beads or more and ~65% of clusters containing 5 beads or more (Figure 24C). 

Cluster size prevalence in IR NT fibroblasts was found to be significantly, highly significantly 

or  extremely significantly greater than the equivalent cluster size prevalence in IR KD 

fibroblasts for all cluster sizes apart from 10, 12, and 13 bead clusters. 
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Figure 24. TEM quantification and localization analysis of H2A.J in the context of DNA-SCARS in non-IR 
and 20Gy;2w IR NT and KD fibroblasts. 
(A) Quantification of total H2A.J beads/section (B) H2A.J beads classified into chromatin localization based on 
pan-nuclear H2A.J, H2A.J only located within DNA-SCARS and H2A.J co-localizing with 53BP1 within DNA-
SCARS. (C) Bead cluster analysis of H2A.J in context of chromatin localization based on pan-nuclear H2A.J, 
H2A.J only located within DNA-SCARS and H2A.J co-localizing with 53BP1 within DNA-SCARS. (D) Prevalence 
of H2A.J cluster sizes with DNA-SCARS. Data in A and B presented as mean of H2A.J-labelling gold bead 
quantification within 25 nuclear sections ± SEM. Data in C and D shown as box plot with median, upper/lower 
quartiles and minimum/maximum values, n=25 nuclear sections. Significant statistical difference * (p <0.05), ** 
(p<0.01), *** (p<0.001). TEM staining and raw data provided by Dr.rer.med. Y.Lorat. 

 

 53BP1 accumulation in chromatin context. 

The structure of DNA-SCARS was further investigated in the form of 53BP1 foci 

quantification and area measurements to determine whether the absence of H2A.J has 

potential structural effects on DNA-SCARS which are not significant for DNA-SCARS 

stability. The quantity of 53BP1 foci was determined in non-IR NT and KD fibroblasts and 

compared to 20Gy IR equivalents 2w after exposure (Figure 25A and B). For both NT and 

KD fibroblasts a significant increase in DNA-SCARS/cell (marked by 53BP1) was seen. In 

NT fibroblasts, DNA-SCARS increased significantly from 0.1 ±0.005 foci/cell to 5.3 ±0.1 

foci/cell (p=0.0010) 2w post-IR (20Gy). In KD fibroblasts DNA-SCARS increased significantly 

from 0.07 ±0.006 foci/cell to 6.5 ±0.5 foci/cell (p=0.0051). In irradiated samples, KD fibroblast 
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showed higher numbers of DNA-SCARS than NT fibroblasts, however, this was not shown 

to be a statistically significant difference. Additionally, the area of each of the 53BP1 foci was 

also measured revealing an increase in both NT and KD fibroblasts from 24h to 2w post-IR 

(Figure 25A and C). NT fibroblasts showed significant growth in median foci area of 0.250µm2 

to 0.551µm2 (U=116367, p<0.0001). KD fibroblasts showed significant growth of median foci 

area of 0.247µm2 to 0.460µm2, (U=131027, p<0.0001). Notably, a significant difference in 

foci area was observed between NT and KD fibroblasts 2w after 20Gy IR (NT; 

mdn=0.551µm2, KD; mdn=0.460µm2, U=162559, p=0.0037).  

 

 
 
Figure 25. IFM examination of DNA-SCARS formation with respect to 53BP1 accumulation in NT and KD 
fibroblasts following 20Gy irradiation.  
(A) IFM micrograph of 53BP1 foci within DNA-SCARS in non-irradiated controls and 20Gy irradiated NT and KD 
fibroblasts 24h and 2w after exposure. (B) Quantification of 53BP1 within DNA-SCARS in non-irradiated controls 
and 20Gy irradiated NT and KD fibroblasts 2w after exposure. Data is presented as mean 3 technical replicates 
± SEM.  (C) Area measurements of 53BP1 foci within DNA-SCARS in 20Gy irradiated NT and KD fibroblasts 24h 
and 2w after exposure. Data is presented as box plot with median, upper/lower quartiles and minimum/maximum 
values, n=3. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001). 

 
 
Subsequently, the higher resolution of the TEM was used to further investigate the difference 

observed in the IFM analysis and 53BP1 was examined in the same fashion as previously 

shown for H2A.J (Figure 23 and Figure 24) in respect to DNA-SCARS localization and 

accumulation in chromatin context. Figure 26A displays the overall 53BP1 beads per section 

in non-irradiated NT and KD fibroblasts compared to 20Gy;2w post-IR fibroblasts. NT 

fibroblasts show a ~10-fold rise in 53BP1 beads from non-irradiated fibroblasts (4.5 ±0.3 

beads/section) to 20Gy irradiated fibroblasts 2w post-IR (44.68 ±4.4 beads/section, 

p<0.0001). 
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Figure 26. TEM quantification and localization analysis of 53BP1 in the context of DNA-SCARS and H2A.J 
in non-IR and 20Gy;2w IR NT and KD fibroblasts. 
(A) Quantification of total 53BP1 beads/section (B) 53BP1 beads classified into chromatin localization based on 
pan-nuclear 53BP1, 53BP1 only located within DNA-SCARS and 53BP1 co-localizing with H2A.J within DNA-
SCARS. (C) Bead cluster analysis of 53BP1 in context of chromatin localization based on pan-nuclear 53BP1, 
53BP1 only located within DNA-SCARS and 53BP1 co-localizing with H2A.J within DNA-SCARS. D) Prevalence 
of 53BP1 cluster sizes within DNA-SCARS. Data in A and B presented as mean of 53BP1-labelling gold bead 
quantification within 25 nuclear sections ± SEM. Data in C and D shown as box plot with median, upper/lower 
quartiles and minimum/maximum values, n=25 nuclear sections. Significant statistical difference * (p <0.05), ** 
(p<0.01), *** (p<0.001). TEM staining and raw data provided by Dr.rer.med. Y.Lorat. 
 
 

KD fibroblast show an even greater fold increase of ~13-fold in non-irradiated compared to 

20Gy irradiated fibroblasts 2w post-IR (64.6 ±5.4 beads/section, p<0.0001). The 53BP1 level 

in non-irradiated samples shows no significant difference between NT and KD cell lines, 

however, the 53BP1 level in irradiated KD fibroblasts is significantly higher than that in 

irradiated NT cells (NT; 44.68 ±4.4 beads/section, KD; 64.6 ±5.4 beads/section, p=0.0063). 

With regards to 53BP1 distribution (Figure 26B), as with H2A.J, 100% of 53BP1 in non-

irradiated samples is pan-nuclear. Similarly, the majority of 53BP1 found in irradiated 

senescent fibroblasts accumulates in DNA-SCARS (NT; ~80% KD; ~95%). The cluster 

accumulation pattern of 53BP1 beads (Figure 26C) again mirrors that of H2A.J, with pan-

nuclear 53BP1 being prevalently single beads and DNA-SCARS-associated beads being 
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mostly in larger cluster between 3-8 beads per cluster, however, results indicate a disparity 

between NT and KD cell lines after irradiation. This disparity was further accentuated when 

regarding cluster size prevalence of 53BP1 beads within DNA-SCARS (Figure 26D). In 

irradiated NT fibroblasts approximately 27% of clusters fall in the categories of 1-2 beads per 

cluster. In irradiated KD fibroblasts, however, this prevalence more than doubles with the 

majority of clusters sized between  1-2 beads per cluster (~59%). Comparing the different 

cluster sizes shows a significantly larger percentage of 1 bead (NT; mdn=0.0%, KD; 

mdn=20.7%, U=98, p<0.0001) and 2 bead (NT; mdn=14.3%, KD; mdn=38.2%, U=127.5, 

p=0.0002) cluster in KD versus NT cells. The inverse can be seen in larger cluster sizes, 

where the majority of 53BP1 beads for NT fibroblasts are present in clusters of 3 or more 

beads (NT: ~73%, KD; ~41%). Statistically significant prevalence of larger 53BP1 can be 

seen for clusters containing 3 beads (NT; mdn=37.5%, KD; mdn=18.9%, U=77, p<0.0001), 

4 beads (NT; mdn=16.7%, KD; mdn=11.8%, U=196.5, p<0.023) and 7 beads (NT; mdn=0%, 

KD; mdn=0%, U=200, p=0.0016). 

 

 H2A.J accumulates in human epidermis during skin ageing 

To this point all experiments have been done in vitro to gain a mechanistic insight into the 

workings of H2A.J on a cellular level. Given the nature of cellular senescence and its potential 

effects on the surrounding tissue environment, foundational in vivo experiments were also 

undertaken to help investigate potential biological relevance of H2A.J accumulation. H2A.J 

positive cells and 53BP1 positive cells were quantified in the human epidermis (Figure 27). 

No significant increase in age-associated 53BP1 foci was observed between the youngest 

age-group (20-30 years; 4.5 ±0.5% 53BP1 positive cells) to the middle age group (31-60 

years; 4.41 ±0.5% 53BP1 positive cells) however a slight increase could be seen in 

53BP1/H2A.J double-positive cells (20-30 years; 3.08 ±0.3% double positive cells, 31-60 

years; 3.75 ±0.4% double positive cells) with increasing age. Significant increase in 53BP1 

positive cells however were observed when comparing the two younger age groups to 61-90 

year old age group where 53BP1 positive cells increased up to 13.3 ±1.2% and double-

positive cells to 10.63 ±1.1%. H2A.J cells increased consistently with age with a significant 

increase in H2A.J positive cells being observed from 20-30 years old (12.65 ±0.7% H2A.J 

positive cells) to 31-60 year old (33.4% ±2.7 H2A.J positive cells)  age groups (p=0.0004). 

Similar H2A.J positive cells increased further from 31-60 year old (33.4% ±2.7 H2A.J positive 

cells) to 61-90 year old age group (p=0.0013). 
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Figure 27. H2A.J accumulation in ageing human skin with increasing 53BP1 
(A) IFM micrograph of human skin in varying age categories stained with 53BP1 and H2A.J. (B) Quantification of 
age-associated 53BP1 foci-positive cells in human epidermis. (C) Quantification of age-associated H2A.J 
accumulation in human epidermis. Data is presented as mean of 3 biological replicates and 2 technical replicates 
± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001) compared to 20-30 year age group 
unless otherwise indicated. 

 

 H2A.J in accumulates in human epidermis following ex vivo 
irradiation 

10Gy ex vivo irradiation was undertaken on biopsies of human epidermis to determine 

whether premature H2A.J can be induced in tissue, as well as, in vitro cell culture (Figure 

28). IR-induced DNA damage foci marked by 53BP1 were quantified at various time points 

following irradiation and compared to non-irradiated samples from the same patient which 

were fixated simultaneously. DNA damage repair proceeded as expected with the greatest 

amount of 53BP1 foci present at the earliest time point post-IR (0.5h; 3.1 ±0.3 foci/cell) and 

continuously decreasing with increasing time post-IR (5h; 2.4 ±0.1 foci/cell, 24h; 2.2 ±0.2 

foci/cell, 48h; 1.03 ±0.2 foci/cell). Statistically significant reduction in 53BP1 foci was seen 

between 0.5h and 24h post-IR (p=0.045), as well as, between 0.5h and 48h post-IR 

(p=0.0043). Irradiated samples displayed higher 53BP1 foci values for all time points post-

IR, with highly significant values seen at 0.5h (10Gy; 3.1 ± 0.3 foci/cell, non-IR; 0.16 ± 0.02 

foci/cell, p=0.0098), 5h (10Gy; 2.4 ±0.1 foci/cell, non-IR; 0.3 ±0.1 foci/cell, p<0.0001) and 

24h (10Gy; 2.2 ±0.2 foci/cell, non-IR; 0.5 ±0.1 foci/cell, p=0.0018). 48h post-IR the number 
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of 53BP1 foci was still higher than in non-IR samples (10Gy; 1.03 ±0.2 foci/cell, non-IR; 0.6 

±0.2 foci/cell), however, the difference was not statistically significant. IR-induced H2A.J 

accumulation was assessed by quantifying H2A.J positive cells at the same time points and 

conditions (Figure 28C). H2A.J positive cells increased for all time points post-IR in 

comparison to non-irradiated samples with significant differences observed at 0.5h (10Gy; 

63 ± 0.7%, non-IR; 52 ±3.7%, p=0.040) and 48h (10Gy; 74 ±0.8%, non-IR; 60 ±0.8%, 

p=0.0004). A statistically significant increase in H2A.J positive cells was also observed  

between 10Gy; 0.5h and 10Gy; 48h (0.5h; 63 ± 0.7%, 48h; 74 ±0.8%, p=0.0006),  with 48h 

showing the overall highest level of H2A.J positive cells of all conditions and time points. 

 

 

Figure 28. 53BP1 and H2A.J accumulation in 10Gy ex-vivo irradiated human epidermis 
(A) IFM micrograph of 61 year old human epidermis stained for 53BP1 (green) and H2A.J (red) in non-irradiated 
sample and in 10Gy irradiated sample 0.5h and 24h following exposure. Green boxes mark magnified areas to 
highlight 53BP1 foci. (B) Quantification of 53BP1 foci in 61 year old human epidermis following 10Gy ex-vivo 
irradiation 0.5h, 5h, 24h, and 48h post-IR compared to a non-irradiated control sample fixated at the same time 
point. (C) Quantification of H2A.J positive cells in 61- year old human epidermis following 10Gy ex-vivo radiation 
0.5h, 5h, 24h, and 48h post-IR compared to a non-irradiated control. Data is presented as mean of 3 technical 
replicates ± SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001) compared to 0.5h time 
point of matching condition unless otherwise indicated. 
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 Long term effects of low-dose fractionated radiation on H2A.J 
accumulation in murine interfollicular epidermis. 

Following the results of singular high dose on H2A.J accumulation in human epidermis, 

fractionated irradiation with low doses (0.1Gy) was examined in vivo in murine interfollicular 

epidermis comparing H2A.J positive cells in 20x 0.1Gy IR mice to non-irradiated age-

matched control, as well as, aged 18 month old mice (Figure 29).  

 

 
Figure 29. Short- and long term H2A.J accumulation in interfollicular murine epidermis following 
fractionated 0.1Gy low-dose IR. 
IFM micrograph and quantification of H2A.J positive cells (green) in adult interfollicular murine epidermis 72h, 
1m, 3m and 6m following completion of 20x 0.1Gy fractionated radiation compared non-irradiated age-matched 
controls and 18 month old aged mouse. Data shown as mean of 3 biological replicates and 4 technical replicates 
±SEM. Significant statistical difference * (p <0.05), ** (p<0.01), *** (p<0.001) compared to age-matched control. 
 
 

Low-dose fractionated IR caused increased H2A.J positivity 72h (IR; 34 ±1.4%, non-IR; 22 

±1.6%, p<0.0001), 3 months (IR; 30 ± 1.3%, non-IR; 21% ±1.5, p=0.0002) and 6 months (IR; 

34 ±1.8%, non-IR; 24 ± 1.3%, p= 0.0002) post-IR. The exceptional time point was 1 month 

post-IR where no statistically significant different was observed in H2A.J positive cells (IR; 

22 ±1.1%, non-IR; 20 ±1.1%) and the increase in H2A.J positive cells, in general, was the 

lowest of all time points post-IR. As previously observed by Contrepois et al, H2A.J positive 

cells were also seen to rise with age. No great difference was seen between the ages of 2 

months (22 ±1.6%), 3 months (20 ±1.1%) and 6 months (21 ±1.5%) of age. A slight, if non-

statistically significant increase in H2A.J positive cells was observed at 9 months of age (24 
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±1.8%). 18 month old mice showed the greatest amount of H2A.J positive cells, which was 

significantly higher still than 9 month old (18 month old; 32 ±2.2%, 9 month old; 24 ±1.8%, 

p=0.0075). Notably, all irradiated samples except 1 month post-IR showed similarly high, if 

not higher (72h and 6 months post-IR), values in H2A.J positive cells compared to 18 month 

old aged mice. 
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7 Discussion  
 
As a novel histone variant, limited publications exist examining H2A.J on a protein level. The 

first major breakthrough came in an observation that H2A.J accumulates in replicative- and 

ETO-induced senescence (Contrepois et al., 2017). ETO, a widely used chemotherapy drug, 

acts by binding to topo II/DNA complex at replication forks preventing DNA strand re-ligation 

leading to formation of DSBs (Chen et al., 2013; Pommier et al., 2010). However, unlike the 

radiomimetic drug bleomycin or topoisomerase II inhibitor ICRF-193, ETO has an additional, 

functional influence on the organization of replication proteins at replication loci during S-

phase (Rossi et al., 2006). This appended reorganization results in dispersion of replication 

factories, formation of large RPA-positive nuclear foci and altered phosphorylation patterns 

of replication proteins (Montecucco et al., 2001; Rossi et al., 2002) thus highlighting that 

formation, structure and consequences of all DSBs are far from identical. The most 

detrimental and therapeutically relevant consequence of IR is the formation of DSBs, with 

1Gy X-ray creating 16-40 DSBs per cell (Ward, 1988). Although DSB repair following IR has 

been thoroughly studied and documented, new elements are continuously coming to light. 

Therefore, following the observation that H2A.J accumulates in vitro following exposure to 

the DSB-inducing agent, ETO, and indications that H2A.J accumulates in vivo in murine 

epidermis/hair follicle following 50 fractions of 0.1Gy irradiation (Contrepois et al., 2017), we 

set to further elucidate the role of H2A.J following DSB-inducing ionizing radiation. 

 Acute H2A.J accumulation following irradiation 

Using a onetime standard dose of 2Gy, the effect of IR on H2A.J was observed in a timeframe 

where acute DNA damage response occurs and is completed (section 6.1). 53BP1 was 

utilised as a marker for IR-induced DSBs and showed classic repair kinetics with a rapid 

response directly after exposure and continuous DNA-damage foci decline visible by 5h post-

IR (Bekker-Jensen et al., 2005). In contrast, H2A.J accumulation steadily rose after exposure 

and peaked 24h post-IR with ~26% of both WT and NT fibroblasts positive for pan-nuclear 

H2A.J staining. Thus acute H2A.J accumulation appears to be a delayed response to IR 

compared to the swift initiation of DDR (Luijsterburg et al., 2010). This gradual increase could 

be due to H2A.J playing a potential role in the transient cell cycle arrest associated with an 

actively repairing-DDR. The decline of H2A.J 48h post-IR further supports this interpretation 

as at this time point, cells with successfully repaired DNA-damage would be re-entering the 

cell cycle thereby reducing the percentage of H2A.J positive cells (Jackson, Bartek, 2009). 

Regardless of the function of H2A.J, accretion of positive cells was proven to be dose-

dependent 24h post-IR with the highest dose causing the highest level of H2A.J positive 

fibroblasts. Additionally, varying doses evoked altered aggregation kinetics. Markedly, 

following high doses (10Gy and 20Gy), H2A.J accumulation continued to rise 48h post -IR 
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instead of declining as with a relatively low dose (2Gy). A prolonged DDR after higher doses, 

reflected through greater 53BP1 foci levels 24- and 48h post-IR, may be causally linked to 

continuing H2A.J increase. If DDR signalling persists after IR, a shift occurs in which cell-

cycle inhibitor expression rises and p16INK4a is upregulated with a downstream consequence 

of senescence-associated permanent growth arrest (Campisi, d'Adda di Fagagna, 2007; 

d'Adda di Fagagna, 2008; Fumagalli et al., 2012; Kim et al., 2014). As H2A.J accumulation 

persists and increases 48h post high dose IR, in which there is evidence of prolonged DDR 

signalling, it could be postulated that H2A.J may potentially play a role in, or be a 

consequence of, this shift from acute to persistent DDR signalling.  

 

 H2A.J does not play a crucial role in DSB repair by NHEJ 

As previously discussed, accessibility of DNA damage, and thus efficiency and swiftness of 

DNA damage repair is, in part, dictated by surrounding chromatin structure. The hallmark 

covalent histone modification associated with DSB repair is phosphorylation of histone H2AX 

at serine 139 by ATR, ATM and DNA-PKcs (Falck et al., 2005; O'Driscoll et al., 2003; 

Rogakou et al., 1998). H2AX is incorporated into 5-25% of histone octamers and 

phosphorylation in response to IR reaches across megabases, visible as microscopic 

ionizing radiation-induced foci (IRIF) (Rogakou et al., 1999), suggesting large scale 

chromatin remodelling around the DSBs. Other chromatin remodelling activities have also 

been linked to DSB repair including cell-cycle signalling involvement of H4K20 and H3K79 

methylation through 53BP1/CRB2 (DNA repair protein crb2) recruitment to IRIF (Botuyan et 

al., 2006; Du et al., 2006; Huyen et al., 2004; Kim et al., 2006; Sanders et al., 2004) and 

release of heterochromatin-associated KAP-associated protein 1 (KAP1) from compacted 

chromatin areas surrounding DSBs (Goodarzi et al., 2008). Therefore, considering all of the 

above and observations of acute H2A.J accumulation post-IR, the next logical step was to 

examine whether H2A.J had an effect on DSB repair following IR (section 6.4). NT and H2A.J 

knock-down KD fibroblasts irradiated with 20Gy showed similar repair efficiencies for all time 

points except 48h post-IR. At this time point NT cells showed slightly higher 53BP1 foci levels 

than KD cells, however, it can be argued that at 48h post-20Gy IR we are no longer moving 

within the realm of acute DDR but traversing into persisting DDR foci. In conclusion, it could 

be said that H2A.J does not function in a similar fashion to γH2AX and does not play a pivotal 

role in acute DSB repair following high IR doses. γH2AX is important for cell-cycle checkpoint 

signalling following low doses but is nonessential following higher IR doses (Celeste et al., 

2002; Fernandez-Capetillo et al., 2002). Taken together with observations regarding altered 

H2A.J kinetics following higher doses, it could be postulated that H2A.J takes over from 
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γH2AX with regards to cell cycle signalling in the case of high DSB levels with potential 

formation of persistent DSBs. 

 

 Long-term H2A.J accumulation following 20Gy IR 

Pursuing H2A.J accumulation past time points of acute DDR to 1w and 2w post-IR revealed 

a continuous increase of H2A.J positive cells in NT fibroblasts coupled with persistent DNA 

damage foci-positive cells marked by 53BP1. KD cells revealed drastically diminished H2A.J 

positivity, however, with similar levels of 53BP1 positive cells. Post-IR H2A.J increase did 

not seem toxin specific as ETO exposure also induced increase in H2A.J positive cells. 

However, overall H2A.J and 53BP1 levels were lower compared to IR. This could potentially 

be due to the different mechanisms through which IR and ETO induce DNA damage (Chan, 

2006; Chen et al., 2013; Montecucco et al., 2001; Pommier et al., 2010; Prise, O'Sullivan, 

2009; Rossi et al., 2006; Rossi et al., 2002), however, additional targeted experiments would 

need to be performed to establish this. 

 

 H2A.J accumulates in IR-induced senescent fibroblasts but is not 
required for senescence induction or growth arrest 

Persisting DDR foci, as observed above, can persist over years in culture and have been 

linked to stable cellular senescence, as well as IR-induced senescence (Aratani et al., 2018; 

Fumagalli et al., 2014; Sedelnikova et al., 2004). Additionally, higher IR doses (10-20Gy) are 

known to induce senescence in WI-38 fibroblasts specifically (Noren Hooten, Evans, 2017). 

Senescent state of NT and KD fibroblasts 2w post-20Gy IR was confirmed through SA--gal 

staining (Dimri et al., 1995), p21 accumulation (Yosef et al., 2017) and ki67 downregulation 

(Lawless et al., 2010). In the same population, H2A.J/SA--gal double-staining confirmed 

that H2A.J-positve cells corresponded to SA--gal positivity, and thus, H2A.J seems to 

accumulate in IR-induced senescent WI-38 fibroblasts.  SA--gal, p21 and ki67 were also 

evaluated for KD cells but no discernable different was found with knock-down of H2A.J. 

Therefore, it stands to reason, that H2A.J accumulates in IR-induced senescent cells but is 

not essential for its induction.  Additionally, H2A.J is not required for senescence-associated 

growth arrest as demonstrated by the proliferation marker ki67 as well as BrdU incorporation 

levels in both NT and KD fibroblasts. 
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 Senescence-associated lamina decline  

Decline of the lamina protein, lamine B1, is a well-documented senescent cell characteristic, 

which can also be used as a biomarker for senescence in vitro and in vivo (Dreesen et al., 

2013b; Freund et al., 2012a; Wang et al., 2017). Regarding lamine B1 decline 

in replicative senescence associated with ageing, the connection between senescence and 

H2A.J was further supported. WI-38 WT fibroblasts, induced into replicative senescence 

through continuous culture, revealed a reduction in lamine B1 signal corresponding with 

increased H2A.J signal. This inverse relationship could also be demonstrated in young 

versus aged murine and human epidermis samples. Further in vitro studies with NT 

fibroblasts in IR-induced senescence revealed a similar negative relationship between 

lamine B1 decline and H2A.J positivity. However, H2A.J KD fibroblasts displayed a similar 

decline in lamine B1 signal intensity in non-IR versus IR-induced senescent KD fibroblasts. 

Nevertheless, DAPI-normalized signal intensities for lamine B1 unveiled significantly higher 

lamine B1 values in NT fibroblast in both non-IR controls and IR samples compared to KD 

cells. At this point it is to be noted, for the purpose of scientific integrity, this observation 

would need to be supported by further methods such as RT-qPCR and Western Blot. For 

discussions sake however, if this decrease in lamine B1 levels was in fact further validated, 

another avenue of investigation could be opened into H2A.J, the nuclear lamina, and its 

effect on the chromatin rearrangement associated with senescence. Hutchinson-Gilford 

Progeria Syndrome (HGPS) is a fatal premature ageing syndrome in children caused by a 

mutation in the lamin A/C gene (De Sandre-Giovannoli et al., 2003; Eriksson et al., 2003) 

which also exhibits decrease levels of lamine B1 (Clements et al., 2019). HGPS fibroblasts 

and keratinocytes display reduced H3K9me3 heterochromatin marks and do not form SAHF 

(Scaffidi, Misteli, 2006; Shumaker et al., 2006) even though they enter replicative 

senescence much earlier than WT counterparts (Cao et al., 2011). Additionally, nuclear 

lamina defects have been linked to inflammatory phenotype regulation to which, incidentally, 

H2A.J has also been associated with during ETO-induced senescence (Contrepois et al., 

2017; Kristiani et al., 2020). 

 

 SAHF formation and nuclear enlargement 

Despite the disparity of lamine B1 levels in NT and KD fibroblasts, H2A.J knock-down did not 

perturb SAHF formation in IR-induced senescence. SAHF were identified as large DAPI-

dense globules within the nucleus and double-staining with H3K9me3/H3K27me3 confirmed 

that these corresponded to the heterochromatin cores of SAHF (Narita et al., 2003a). SAHF 

were also clearly identifiable utilising TEM and at this resolution no discernible difference in 

SAHF structure was identifiable either. Simultaneously, nuclear area was also measured 
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demonstrating IR-induced senescence-associated nuclear enlargement in both NT and KD 

fibroblasts, with KD fibroblasts demonstrating significantly larger nuclear areas. The causal 

and functional significance of this observation in relation to H2A.J however is difficult to 

assess, as the literature on senescence-associated nuclear/cellular enlargement is limited 

despite it being cited as one of the main characteristics of senescent cells.  Early studies of 

WI-38 fibroblasts observed that increased size resulted in decreased replicative potential 

(Bemiller, Miller, 1979; Mitsui, Schneider, 1976), which was later argued as a possible 

mechanism fundamental to senescence (Angello et al., 1989). In vivo, increased cell size 

was also associated with senescence (Biran et al., 2017). Senescence-associated cell 

swelling is known to activate cell signalling through mechano transduction and the closely 

related nuclear swelling has also been linked to cytoskeletal networks (Gruenbaum et al., 

2005). Additionally, it has been shown that induced nuclear swelling can alter gene 

expression (Dahl et al., 2005) and that senescence-associated nuclear swelling is mediated 

by mitogen-activated protein (MAP) kinases (Kobayashi et al., 2008). These MAP kinase 

signalling pathways could be a possible mechanism through which H2A.J effects nuclear 

morphology. However, MAP kinase signalling pathways are complex, interlinked and function 

across all levels of cellular mechanisms rendering it difficult to hypothesise how a lack of 

H2A.J could elicit an effect. Chromatin alteration through knock-down of H2A.J could 

influence MAP kinase target proteins, regulators  and translocation factors to name but  a 

few, all of which could have a knock-on effect on the normal regulation of senescence-

associated nuclear swelling (Kobayashi et al., 2008; Zou et al., 2019). 

 

 H2A.J promotes inflammatory gene expression in IR-induced 
senescence. 

The SASP is a complex and diverse phenotype influenced by cell type and senescence-

inducing stimuli. Focus was placed on four SASP factors which showed the highest fold 

change in secreted protein levels in WI-38 fibroblasts in replicative senescence, OIS, high-

dose X-ray induced senescence and bleomycin treatment-induced senescence (Acosta et 

al., 2008; Bavik et al., 2006; Coppé et al., 2008; Freund et al., 2010; Liu, Hornsby, 2007; 

Rodier et al., 2009). An increased abundance of RNA encoding IL6, CXCL8, CSF2 and CCL2 

in IR-induced senescent NT fibroblasts compared to proliferating counterparts was 

demonstrated corresponding to previous publications using WT WI-38 (Coppé et al., 2008; 

Rodier et al., 2009).  H2A.J knock-down abolished RNA abundance for these SASP factors 

in IR-induced senescent cells. Effect of down regulation on cytokine secretion was assessed 

through targeted cytokine measurements in conditioned media, and demonstrated a severe 

impact of H2A.J knock-down induced SASP RNA depletion on IL6, CXCL8 (IL8), GM-CSF 

(CSF2) and MCP1 (CCL2) secretion. Taken together, these observations align with those of 
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the ETO-induced senescence studies conducted by Contrepois et al. They suggest that 

H2A.J accumulates in DNA damage-induced senescent cells regardless of inducing toxin 

and H2A.J involvement occurs downstream of the DDR and not at earlier stages of initiation.  

 

 H2A.J preferentially localizes to IR-induced DNA-SCARS 

An altered SASP, in particular down-regulated IL6, has been shown to not only effect 

paracrine signaling and autocrine senescence-phenotype maintenance, but also effects 

SAHF formation within OIS fibroblasts (Kuilman et al., 2008). Although the overall formation 

of SAHF was not visibly effected by H2A.J knockdown we speculated on a potential 

connection between H2A.J and another structural component of senescent cells; DNA-

SCARS (Rodier et al., 2011a). DNA-SCARS do not co-localize directly with PML-NBs, as 

with γH2A.X and 53BP1 for example, but are found in close proximity to one another (Rodier 

et al., 2011b; Schultz et al., 2000). In accordance with previous publications, 53BP1 and 

PML-NB association increased by 24h post 20Gy IR in NT and KD fibroblasts, with H2A.J 

not influencing this association. By 2w post-IR, levels of 53BP1/PML-NB association lay 

above 80% for all 53BP1 foci, identifying these persistent 53BP1 foci as DNA-SCARS. PML-

NBs can be both constitutive, as well as, transient and are known to increase in number in 

response to IR-induced DNA-damage (Carbone et al., 2002). NT and KD PML-NB numbers 

rose significantly following 20Gy IR with the highest values reached in senescent cells 2w 

post-IR. Therefore, H2A.J depletion did not seem to effect stress-response function of PML-

NBs post-IR. These observations are also in line with previous results (ki67, SA-β-gal, p21), 

as PML is implicated in regulation of cell-cycle arrest and senescence induction (Carbone et 

al., 2002; Ferbeyre et al., 2000), neither of which were effected by H2A.J knock-down. 

 
While the association between DNA-SCARS and PML-NB may not be influenced by H2A.J, 

structural significance of H2A.J in DNA-SCARS formation has yet to be investigated. Another 

H2A variant, histone H2A.X, is a structurally essential component for DNA-SCARS enforcing 

their stability, therefore a potential role for H2A.J may also be plausible. Reduced DNA-

SCARS stability due to H2A.X depletion, altered IR-induced senescence-associated growth 

arrest, as well as, down regulating expression of SASP member, IL-6 (Rodier et al., 2011b). 

Similar effects on SASP were also proven following H2A.J knock-down, with exception of 

growth arrest. The most efficient method for investigating functionality of H2A.J in DNA-

SCARS stability, was application of a 24h BrdU pulse on NT and KD fibroblasts 2w post-

20Gy IR, to determine DNA synthesis level. Unlike H2A.X however, H2A.J did not seem to 

play a critical role in DNA-SCARS stability, as no increase in BrdU incorporation was 

witnessed in KD fibroblasts versus NT fibroblasts in IR-induced senescent cells.  
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Although γH2A.X can be clearly visualized as foci in DNA-SCARS, H2A.J association with 

DNA-SCARS was more difficult to examine, as IFM staining manifests as a pan-nuclear 

signal. This obstacle was overcome with implementation of a proximity ligation assay 

between H2A.J and 53BP1 marking DNA-SCARS. A baseline level of ~6 PLA foci was 

observed in non-IR NT fibroblasts likely due to low-level H2A.J present in non-senescent 

cells (Contrepois et al., 2017)  coincidentally reacting with 53BP1, responsible for diffuse IFM 

signal in non-treated cells which later rearranges to IR-induced 53BP1 foci (Bekker-Jensen 

et al., 2005; Schultz et al., 2000).  

 
The high resolution of TEM was utilized by Dr.rer.med. Yvonne Lorat to further investigate 

association between H2A.J and DNA-SCARS by quantifying H2A.J labelled with gold beads 

in relation to DNA-SCARS, and within the chromatin context. Data analysis revealed bead 

numbers which supported previous observations verifying low-level H2A.J presence in non-

IR controls and a drastic increase 2w after 20Gy irradiation. A new insight into H2A.J 

distribution was gained with regards to localization. Double-staining for H2A.J and 53BP1 

not only supported the results of PLA, showing that H2A.J localizes to DNA-SCARS, but also 

highlighted that in IR-induced senescent NT fibroblasts, the majority of H2A.J is found within 

DNA-SCARS and the remaining fraction is scattered throughout the nucleus. Therefore the 

majority of H2A.J localized to a minimal area occupied by DNA-SCARS (~3%). An additional 

indication that H2A.J may play a significant role in DNA-SCARS functionality or formation is 

reflected in the bead cluster analysis. Pan nuclear H2A.J was found to present itself mostly 

as single beads whereas DNA-SCARS-associated H2A.J predominantly formed larger 

clusters ranging between 4 and 13 beads per cluster. This abundance of H2A.J may 

therefore induce chromatin alterations ultimately influencing structure and functionality of 

DNA-SCARS such as those seen in SASP analysis. The preferential localization of H2A.J 

may also explain why we see continual increase of H2A.J 24h-48h post-IR following high 

doses. The H2A.J may be accumulating at DNA-SCARS when the shift from acute DDR foci 

to DNA-SCARS occurred, which is reflected in PML-NB association with 53BP1. 

 

 H2A.J impacts 53BP1 accumulation at DNA-SCARS 

Amongst others, DNA-SCARS contain activated ATM, activated CHK2, MDC1 (d'Adda di 

Fagagna, 2008; Herbig et al., 2004; Rodier et al., 2009; Rodier et al., 2011a). H2A.X 

depletion effected the downstream assembly of CHK2 and MDC1 at DNA-SCARS, thereby 

influencing the senescence-induced growth arrest (Rodier et al., 2011a), but did not affect 

53BP1, another major component of DNA-SCARS. Formation of DNA-SCARS also did not 

depend on ATM, ATR, Artemis, BLM, NBS1 or PML-NBs (Rodier et al., 2011a). IFM 

investigations revealed that senescent H2A.J KD fibroblasts presented higher numbers of 
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DNA-SCARS but with reduced area compared to senescent NT counterparts. Additionally, 

TEM analysis revealed higher number overall of 53BP1 gold beads in senescent KD 

fibroblasts compared to senescent NT fibroblasts. The higher resolution of TEM also 

supported the crude measurement data of IFM and revealed that 53BP1 accumulated in 

DNA-SCARS in smaller, but more numerous, bead clusters in senescent KD cells versus NT 

cells. Therefore it could be postulated that H2A.J may have an influence on the ultra-structure 

of DNA-SCARS, which in turn, influences the SASP. Perturbed 53BP1 accumulation could 

affect downstream DDR mediator kinase CHK2, inversely H2A.J knock-down could also 

influence upstream kinases such as ATM or DNA-damage sensor NBS1, all of which are 

known to be essential for regular SASP induction (Rodier et al., 2009; Rodier et al., 2011a).  

 

 Potential mechanistic consequences of H2A.J incorporation at 
DNA-SCARS 

To date, only two papers have been published investigating H2A.J at protein level 

(Contrepois et al., 2017; Tanaka et al., 2020), thus conceiving a theory of how its 

incorporation effects SASP expression is challenging. Targeted ChIP experiments only 

added to this difficulty by revealing that H2A.J is not differentially deposited at promoters of 

genes regulated by H2A.J versus those who are not effected by its knock-down (Contrepois 

et al., 2017). Additionally, ChIP-seq experiments revealed that H2A.J was not deposited at 

discrete genomic locations and its distribution closely mirrored that of canonical H2A in 

senescent cells (Contrepois et al., 2017). Preferential accumulation of H2A.J at DNA-SCARS 

demonstrated in this study, gives a primary indication of potential mechanism of influence 

pointing to a spatiotemporal significance of H2A.J deposition and a potential interaction 

between other H2A.J containing nucleosomes or other nucleosomes in general. ChIP-Seq 

revealed additional cross-correlation peaks for di-,tri- and tetra-nucleosomes compared to 

H2A, revealing that H2A.J protected cross-linked chromatin from sonication (Contrepois et 

al., 2017). Studies into the biochemical properties of the H2A.J-containing nucleosome 

versus H2A-containing nucleosome also revealed an increased thermostability of the H2A.J 

nucleosome, however, the functional significance of this is yet unknown (Tanaka et al., 2020). 

Taken together, one could postulate that an abundance of H2A.J localized to one specific 

region creates the functional affect associated with its deposition in senescent cells.  

 

While the C-terminal tail may not be significant in the thermostability of the H2A.J 

nucleosome, it is essential for SASP induction and the presence of the SQ binding motif 

further supports this (Contrepois et al., 2017; Tanaka et al., 2020).  H2A.J-induced chromatin 

alterations may thus be influenced by transaction factor binding to the C-terminal. 

Alternatively, chromatin rearrangement could result from cis or trans actions of PTMs of the 



7 Discussion 
 

93 
 

C-terminal tail. Little is known about PTMs of H2A.J, but, unpublished data (Carl Mann) has 

shown phosphorylation of H2A.J at Serine 123 following extremely high doses of 50Gy. 

Potential C-terminal PTMs could then initiate a causal sequence on PTMs of histone tails in 

an intra- or internucleosomal manner (Kouzarides, 2007). Additionally, the valine/alanine 

substitution at position 11 unique to H2A.J could also act as a binding site for transaction 

factors in turn influencing gene expression. 

 
The alternated 53BP1 accumulation at DNA-SCARS mediated through H2A.J could 

potentially stem from chromatin alterations which block/hinder classic 53BP1 binding. The 

center of 53BP1 contains a nuclear localization signal and tandem Tudor domains facilitating 

binding to constitutive histone modification H4K20me2 (Botuyan et al., 2006; Huyen et al., 

2004). Additionally, an ubiquitin-dependent recruitment motif is present that recognizes DNA-

damage-induced H2A(X) ubiquitinylation at Lysine 15 (H2A(X)K15Ub), marking 53BP1 as a 

histone modification reader (Fradet-Turcotte et al., 2013; Mattiroli et al., 2012). This 

sequence of events has been demonstrated in acute DNA damage. Larger 53BP1 foci 

observed in DNA-SCARS may require additional chromatin rearrangement facilitated by 

H2A.J to allow for greater accumulation and proximal binding of 53BP1 and other DNA-

damage repair proteins to DNA-SCARS.  Additionally, upon histone binding, 53BP1 is 

hypothesized to act as a potential cross linker between adjacent nucleosomes resulting in 

further knock-on conformational changes (Fradet-Turcotte et al., 2013). Distortion of 

chromatin alterations induced by incorrect 53BP1 binding may thus lead to disruptions in 

binding/activation of downstream SASP-signaling pathway as observed in H2A.J knock-

down fibroblasts. 

 

 Biological relevance of H2A.J 

It has been observed that H2A.J accumulates in a tissue specific, age-dependent manner in 

brain, liver, kidney and in the epidermis of mice and humans (Contrepois et al., 2017). 

Investigation of aged human epidermis showed that H2A.J accumulation increased with 

increasing 53BP1 in an age-dependent manner. Remarkably, although H2A.J levels in 31-

60 year old was almost twice as high as those observed in 20-30 year olds, 53BP1 levels 

had not risen in the same fashion. A potential explanation for these results could be the age 

category itself and the sex of the patients from which the samples were derived. While 

estrogen levels drop in both men and women with age, women experience a much steeper 

and earlier drop in estrogen levels when they undergo menopause (Labrie et al., 1997). 

Estrogen, in turn, has been shown to increase telomerase activity, thus reducing telomere 

shortening, and prevent senescence in vitro in leukocytes, endothelial progenitor cells and 

vascular smooth muscle cells (Aviv et al., 2006; Imanishi et al., 2005; Ling et al., 2006). In 
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this particular study, 3 biological replicates were obtained, 2 of which were females, both of 

which at menopausal age, linked to a rapid drop in estrogen and premature skin ageing 

compared to their male counterparts. Therefore, to assess the link between H2A.J and DNA 

damage in vitro it would be prudent to divide the 31-60 year old category into smaller groups 

(i.e. 31 to 40-, 41 to 50-,51 to 60 years of age) and take into account the sex of the patients 

also. In contrast to the younger two age groups however, 53BP1 foci increased significantly 

from 61-90 years of age although this age group showed the same female to male ratio as 

31-60 year old group. This discrepancy, however, shows H2A.J as a potential biomarker for 

skin ageing as, in vivo, it does not accumulate solely in unison with 53BP1 levels between 

31-60 years old, but may potentially mark ageing cells afflicted by other ageing mechanisms 

such as loss of proteiostasis, mitochondrial dysfunction or altered intercellular 

communication (Lopez-Otin et al., 2013).  

 

10Gy ex vivo irradiation of human skin has shown that DNA-damage-inducing IR results in 

accumulation of H2A.J in the human epidermis at levels greater than those seen in age-

dependent H2A.J accumulation. Even in vivo studies of murine epidermis fractionally 

irradiated with low doses of 20x 0.1Gy to mimic non-targeted doses facing surrounding tissue 

during radiotherapy, showed increased H2A.J accumulation with lasting impacts up to 6 

months post-IR, matching the levels seen in aged murine interfollicular epidermis. The SASP 

microenvironment created by increased senescent cells within tissue has long since been 

implicated as a critical effector within skin ageing, tumour suppression and progression 

(Campisi et al., 2011; Ghosh, Capell, 2016; Saleh et al., 2019). A critical question in this 

instance would be whether this in vivo accumulation is accompanied by the SASP we 

demonstrated in in vitro studies of irradiated lung fibroblasts, and, if so, can it be abated 

through H2A.J knock-down?  Of course the SASP could be modulated through senolytics 

which block senescence entirely or remove senescent cells completely, however this could 

impair critical effects of senescence such as wound healing following tumour surgeory, 

chemotherapy or radiotherapy. (Demaria et al., 2014). H2A.J could thus be a potential target 

to reduce radiotherapy-induced senescent side effects by aborating SASP in a less disruptive 

manner than senolytics. 

 

 Conclusion 

This study was the first of its kind into H2A.J following radiation and revealed radiation-

induced H2A.J accumulation whose magnitude and persistence were both dose-dependent. 

The most notable consequence of H2A.J incorporation was seen in the SASP signalling, 

which was almost completely abolished with H2A.J knock-down. As SASP regulation is 
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reliant on DNA-SCARS formation, the increased H2A.J incorporation at these DNA-SCARS 

seemed all the more significant and the H2A.J-induced chromatin alterations effected 53BP1 

accumulation at DNA-SCARS. This alteration in the ultrastructure DNA-SCARS due to H2A.J 

knock-down, may be the first indications as to how H2A.J is involved in the SASP expression. 

Elucidation of the role of histone variant H2A.J following irradiation has only just begun and 

this study serves as a foundation to future studies to further clarify its function and 

mechanisms of action. 

 

 Outlook 

As H2A.J is poorly studied, there are boundless possibilities for future studies. To begin with 

a distinction would have to be made between acute, transient H2A.J accumulation and 

chronic, long-term H2A.J accumulation following IR. The impact of acute H2A.J accumulation 

is not yet known and the reason why some cells become H2A.J positive and others do not 

could be investigated. Additionally the effects of cell cycle phase on acute H2A.J 

accumulation could be investigated together with BrdU pulse-labelling to document whether 

H2A.J positive cells re-enter cell cycle progression or are halted until H2A.J is reduced.  

 

As H2A.J is a major effector in SASP induction and, as the SASP is associated with most of 

the detrimental effects of senescent, this would be critical to investigate further. Future 

studies could focus on the pathway through which H2A.J effects SASP. Evaluations of 

upstream and downstream 53BP1 binding partners/effectors could pinpoint at which stage 

of the pathway H2A.J becomes relevant. Additionally, samples of NT, KD and H2A.J over 

expressing cells have been generated and will be analysed by Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq), which generates a library of open or 

accessible chromatin that can then be sequenced by qPCR or next generation sequencing. 

Mod-Spec®, applied to analyse whether H2A.J has an effect on prevalent histone 

modifications throughout the cell, is another high-throughput analysis currently under 

consideration as a future method. The same set of samples has also been sent for Mass 

Spectrometry analysis in co-operation with the laboratory of Simone Moertl at the Helmholtz 

center in Munich. All of these analysis will provide invaluable data which will aid in focusing 

future projects.  Bystander senescence-induced by other cells following radiation has also 

been documented and it would be interesting to observe how the reduced SASP in H2A.J 

knock-down fibroblasts impacts neighboring cells. 

 

Of unfathomable value are the H2A.J knock out mice which have been generated and gifted 

by Carl Mann. Here every organ offers another possibility with the question of how H2A.J 

accumulates in each organ. Also, what is the nature of the SASP in these mice? If it is 
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reduced, as with in vitro studies, what effect does this have on ageing and radiation-induced 

senescence. Would H2A.J knock out mice have altered radiosensitivty, reduced 

inflammation, quicker recovery or lower tumor re-growth rate? Contrarily, would these mice 

have higher senescent cell population due to reduced immuneclearance mitigated through 

an altered SASP? Focusing on the skin, it would be prudent to focus on the stem cells 

throughout age and after radiation, as these are also effected negatively by senescent cell 

accumulation and SASP.  As senescence also plays a role in would healing and embryonic 

development, it would be prudent to characterize these mice in comparison to WT to gain 

insights into the role of H2A.J in development and wound healing. 

The potential for H2A.J as a target for a radiotherapy-adjuvant drug target is upheld 

throughout this study. However, we are only just at the very beginning of understanding this 

histone variant and development of such a drug, if possible, lies in the distant future.  
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