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DISCRIMINATION-FREE INSURANCE PRICING

M. LINDHOLM, R. RICHMAN, A. TSANAKAS, M.V. WÜTHRICH

Abstract. We consider the following question: given information on individ-

ual policyholder characteristics, how can we ensure that insurance prices do

not discriminate with respect to protected characteristics, such as gender? We
address the issues of direct and indirect discrimination, the latter resulting

from implicit learning of protected characteristics from non-protected ones.

We provide rigorous mathematical definitions for direct and indirect discrimi-
nation, and we introduce a simple formula for discrimination-free pricing, that

avoids both direct and indirect discrimination. Our formula works in any

statistical model. We demonstrate its application on a health insurance ex-
ample, using a state-of-the-art generalized linear model and a neural network

regression model. An important conclusion is that discrimination-free pricing
in general requires collection of policyholders’ discriminatory characteristics,

posing potential challenges in relation to policyholder’s privacy concerns.

Keywords: Causal inference, differentiation, direct discrimination, discriminatory
covariates, indirect discrimination, individual policy characteristics, insurance pric-
ing, proxy discrimination.

1. Introduction

Motivation and context. We address the following fundamental question:
given information on individual policyholder characteristics, how can we calculate
insurance prices that do not discriminate with respect to protected characteristics,
such as gender? This is a pertinent question in the context of anti-discrimination
legislation; for instance, current EU law requires gender neutral insurance pricing,
see [10]. This question has become even more pronounced with to the emergence
of big data and associated developments in complex algorithmic models, since such
models may be able to infer discriminatory characteristics from other policyholder
features. For an overview on anti-discrimination laws we refer to [2], [23].

We aim at developing pricing formulas that are devoid of discrimination, while
the insurer is still able to differentiate between policyholders with respect to non-
protected characteristics. Here, by “discrimination” we mean the provision of in-
surance prices that differentiate between policyholders on the basis of (legally)
prohibited characteristics. For this, we assume that an insurer has access to pol-
icyholders’ data that can be split into discriminatory (e.g. gender, ethnicity) and
non-discriminatory characteristics (e.g. age, smoking habits). When we refer to
discriminatory characteristics, we are relying on legal and regulatory requirements,
such as those in the EU, which prohibit insurers from using certain characteristics
within their pricing framework. In such a legal context, the use of protected charac-
teristics amounts to illegal discrimination, thus creating an imperative for insurance
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pricing models to avoid using them. For example, within the EU, the council direc-
tive [10] provides definitions of direct and indirect discrimination, motivating our
technical arguments.

Direct discrimination can be easily understood and identified as the use of pro-
hibited characteristics as rating factors. Indirect discrimination presents more of a
challenge, because it can be thought of as the confluence of two distinct effects: (a)
the implicit ability to infer protected characteristics from other (legitimately used)
policyholder features and (b) a systematic disadvantage resulting for a group that
is protected by a non-discrimination provision [25]. These two concepts are interre-
lated but distinct, the former, also referred to as proxy discrimination, arises from
correlation between protected and unprotected characteristics; the latter, disparate
impact, from correlations between protected characteristics and actual insurance
prices – we refer to [11] for a detailed discussion from an actuarial perspective.
The pricing adjustment we propose explicitly addresses (a); however such an ad-
justment may be legally unnecessary if (b) is not additionally present. Both these
effects disappear when discriminatory characteristics are statistically independent
of non-discriminatory ones, though this observation does not imply that (a) and
(b) are mathematically or conceptually equivalent.

The development of ideas in this paper is drawn from an actuarial rather than
a legal perspective. We do not make any claim about their correspondence to legal
definitions of discrimination in particular jurisdictions and do not argue that the
pricing adjustment as proposed in this paper should be applied in all circumstances.
Our focus is to provide an explicit mathematical method to remove indirect dis-
crimination – if it happens to exist – from insurance pricing models. We begin our
arguments on the assumption that certain characteristics have been prohibited and
consider how pricing models can be adapted correspondingly. We say that:

• A pricing model avoids direct discrimination, if none of the discriminatory
features (characteristics) is used as a rating factor.
• A pricing model avoids indirect discrimination, if it avoids direct discrimi-

nation and, furthermore, the non-discriminatory features are used in a way
that does not allow implicit inference of discriminatory features from them.

To help clarify these concepts, we consider examples of directly and (potentially)
indirectly discriminatory rating factors. In many jurisdictions it is illegal to include
the race/ethnicity of a policyholder within a pricing model, meaning that direct
discrimination on the basis of race is illegal, even if race was (hypothetically) a good
predictor of propensity to claim. There are other rating factors which are highly
correlated with race, but which do not have much direct impact on the propensity
to claim. For example, a policyholder’s native language is highly correlated with
race in parts of the world where certain languages are spoken only by members of
a particular race, and including this rating factor within a pricing model will do
little but act as a proxy for race. Hence, including this rating factor may lead to
what we term indirect discrimination in this work.

Then, there are rating factors that may be both directly predictive of insurance
claims as well as act as proxies for discriminatory characteristics. For example,
using the presence of diabetes as a rating factor will be directly predictive of health
insurance costs, but since certain racial or ethnic groups may be predisposed to
develop diabetes, including diabetes as a rating factor may lead to this rating
factor acting as a proxy for race, potentially leading to indirect discrimination.
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Our aim in this paper is to develop a method that is capable of removing both
direct and indirect discrimination from pricing models, where these may exist, while
maintaining the predictive nature of variables that do not directly discriminate
against protected characteristics. Thus, we emphasize that by avoiding indirect
discrimination we do not mean to suggest removing all variables that may allow
implicit inference of discriminatory features from the model (e.g. diabetes), but
instead to ensure that these variables, while still remaining within the predictive
model, do not act as proxies for discriminatory characteristics.

Finally, we stress that when we talk about “inferring discriminatory features”,
we do not mean that an insurer has necessarily access to such data. Rather, such in-
ference, as we will show in the sequel, takes place implicitly, via correlation between
discriminatory and other features.

We illustrate indirect discrimination in the following example, and will come
back to this example in Section 2.2, below.

Example 1. Assume we have observed a health insurance product and obtained
the following claim counts (ni,j)i,j=0,1 and claim exposures (ei,j)i,j=0,1:

ni,j woman man row total

smoker 32 4 36

non-smoker 28 48 76

column total 60 52 112

ei,j woman man row total

smoker 133 24 157

non-smoker 131 301 432

column total 264 325 589

where i = 1 corresponds to “smoker” and j = 1 corresponds to “woman”. Based on
the above contingency tables we estimate the claim frequencies λi,j by the empirical

frequency λ̂i,j = ni,j/ei,j . Assume now that gender is considered a discriminatory
characteristic. In order to avoid direct discrimination, its explicit influence on the
calculated insurance price needs to be removed. The standard way of doing this is to

consider the aggregated estimators (row sums) λ̂i,• = ni,•/ei,• = (ni,0+ni,1)/(ei,0+
ei,1). This approach produces, e.g. for smokers,

λ̂1,• =
36

157
= 0.229.

The estimate λ̂1,• (and a premium for smokers based on it), thus, can be calculated
by completely ignoring policyholders’ gender information. But one can note that

an alternative representation of λ̂1,• is

λ̂1,• = λ̂1,1
e1,1

e1,1 + e1,0
+ λ̂1,0

e1,0
e1,1 + e1,0

= λ̂1,1P̂(woman | smoker) + λ̂1,0P̂(man | smoker),

where P̂ refers to the empirical distribution obtained from the data. Hence, the

estimate λ̂1,• not only contains information about the influence of smoking on pro-

ducing a claim, but via the conditional probabilities P̂(gender | smoking habits)
also about the propensity of smokers to be female or male. In our case, because
smoking habits substantially differ between genders (a smoker is a woman with
probability 133/157 = 85%, whereas a non-smoker is a woman with probability
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131/432 = 30%). It is indeed the case that the above approach exploits the corre-
lation between gender and smoking habits, which may give rise to indirect discrim-
ination against females in the case that claims frequencies for females are higher
than males, as they indeed are here; we come back to this in Example 8, below.

�

The numbers used in Example 1 are purely illustrative, though we note that the
proportion of female smokers has been greater compared to the male population
in e.g. Sweden during the 2000’s. A further discussion of implications of alterna-
tive statistical assumptions behind this example is given in Section 2.1, Remark
9. The example illustrates that avoiding direct discrimination, does not necessar-
ily entail also avoiding indirect discrimination. Consequently, just ignoring dis-
criminatory features in the calculation of insurance prices does not generally yield
discrimination-free prices. Hence, unawareness (or willful ignorance) of discrimi-
natory features is not a solution to the problem of calculating discrimination-free
insurance prices.

Finally, we are not arguing in this paper whether certain characteristics ought to
be prohibited from a legal or ethical perspective. Indeed, there are varying views
on this around the world; for example, gender is a permitted characteristic in insur-
ance pricing in many jurisdictions outside of the EU. Also, there are circumstances,
where apparently discriminatory characteristics may be used for pricing, if there is
a “legitimate aim”; in the context of EU law see e.g. Article 2(b) in [10]. Further-
more, we do not aim to address insurance market and economic implications that
may result from legally prohibiting the use of certain characteristics in insurance
pricing. An example of such issues is potential “reverse discrimination”, meaning
that pricing without using all policyholder characteristics may imply (unwanted)
cross-subsidies between groups of policyholders, with this in turn leading to adverse
selection and other undesirable side effects. Moreover, excluding some rating factors
from statistical models typically leads to a decrease of predictive performance.

Our contributions. First, we embed the ideas of direct and indirect discrim-
ination into a mathematical context. The ideas and principles we develop are
relevant to all situations where predictors are calculated on the basis of conditional
expected values and, hence, they are applicable in all fields where discrimination is
an important issue, e.g. also in customer credit rating. Second, we give a rigorous
probabilistic account of discrimination-free prices and their existence. We propose
a simple pricing formula that avoids both potential direct and indirect discrimina-
tion. This adjustment will always remove the potential for indirect discrimination
from prices, regardless of whether such indirect discrimination is present or not.
Furthermore, while the formula only uses non-discriminatory features as rating fac-
tors, it introduces an adjustment, which requires knowledge of policyholders’ dis-
criminatory features. Third, we justify discrimination-free prices using tools from
causal inference. Fourth, we identify bias in aggregate portfolio prices as an unin-
tended consequence of discrimination-free prices. While prices that can be written
as conditional expectations under the physical probability measure naturally lead
to an unbiased pricing system on a portfolio level, discrimination-free prices do
not generally have this property. Therefore, we propose methods for bias correc-
tion. The bias corrections rely on the overall portfolio risk being assessed using all
available characteristics, since it is only the step of allocating the overall price to
individual contracts that potential discrimination can occur. Fifth, we illustrate



DISCRIMINATION-FREE INSURANCE PRICING 5

how discrimination-free prices can be calculated in practice, using either machine
learning algorithms or standard statistical methods like generalized linear models
(GLMs).

Literature review. Although an issue of key relevance for insurance pricing,
until recently relatively little attention has been paid to the issue of discrimination-
free pricing within the actuarial literature. In a discussion of the implications of EU
gender legislation, Guillén [15] suggests that covariates highly correlated with gen-
der can be used as proxies by insurance companies, which from our perspective may
result in indirect discrimination. Focusing on the case of mortality pricing, Chen
and Vigna [6] criticize the industry practice of deriving unisex life tables by mixing
the life tables for each gender on the grounds that this does not respect the princi-
ples of actuarial fairness, which is to say that the total unisex premiums charged for
the portfolio are not equal to the total premiums charged using gender specific life
tables. They provide alternative approaches without this shortcoming; note that
our proposed discrimination-free prices reproduce the pricing formulas of Chen and
Vigna [6]. The implications of unisex pricing on insurer capital requirements in the
context of Solvency II are examined in Chen et al. [5], and an ALM approach to
unisex pricing is taken in Burszas et al. [4], where also the concept of “gender mix
risk” is discussed. Market implications of unisex tariffs are discussed in Sass and
Seifried [24], see also De Jong and Ferris [8] for a discussion of adverse selection
stemming from restrictions on risk classification. A recent wide-ranging discussion
of several issues connected with the topic of discrimination in insurance is found in
Frees and Huang [11], who also address the issue of indirect discrimination.

The issue of indirect discrimination occurring by ignoring discriminatory co-
variates has been discussed in Pope and Sydnor [22] and Kusner et al. [18]. The
procedure for discrimination-free pricing provided in Pope and Sydnor [22] is essen-
tially the same as in our proposal; this pricing rule is applied in the context of auto
insurance pricing by Aseervatham et al. [1]. However these authors do not provide
a probabilistic justification for the prices used nor do they address the critical issue
of a potential bias at portfolio level (and associated corrections).

We are aware of relatively few examples of causal inference applied within an in-
surance context. For renewals of insurance policies, some insurers seek to estimate
policyholder demand elasticity by randomly varying renewal prices for a subset of
policyholders (i.e. a form of randomized controlled trial is conducted) and estimat-
ing the impact on the probability of renewal. Once the demand elasticities have
been estimated, a profit maximizing pricing policy can be established in a practice
referred to as price optimization, see e.g. Krikler et al. [17]. Within that context,
Guelman and Guillén [14] apply methods from causal inference to estimate demand
elasticity functions from observational data collected by an insurer.

We emphasize that the issues discussed in this paper apply to many other in-
dustries; we refer to, e.g., Fuster et al. [13] where a credit rating application is
considered. Their study focuses on evaluating the differential impact of predic-
tion technologies on ethnic groups, rather than on a mathematical definition of
discrimination.

Organization of the paper. In Section 2 we discuss different kinds of insurance
prices, comprising the best-estimate price, which considers all available information,
the unawareness price, which avoids direct discrimination, and the discrimination-
free price, which avoids both direct and indirect discrimination, whenever the latter
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exists. In particular, Subsection 2.3 gives mathematical descriptions of direct and
indirect discrimination, which are based on a change of probability measure. Special
cases of discrimination-free prices can be interpreted in terms of causal inference;
this is discussed in Section 3. The bias that discrimination-free prices can induce at
portfolio level is discussed in Section 4, along with proposals for bias mitigation. In
Section 5 we describe the calculation of discrimination-free prices based on models
estimated from data. This is explored in more detail in Section 6, where a numerical
example is given, based on a synthetic health insurance portfolio. Concluding
remarks are collected in Section 7.

2. Discrimination-free pricing

2.1. Definition of discrimination-free prices. We denote by (Ω,F ,P) the un-
derlying probability space with physical probability measure P. For a given portfolio
of insurance policies, let D denote the vector of discriminatory covariates (charac-
teristics, features, explanatory variables) of a policyholder, and let X denote the
vector of non-discriminatory covariates. This split into X and D is exogenous, pro-
vided by, e.g., a legislator. Further, we assume that X and D are random vectors on
(Ω,F ,P); the randomness of these covariate vectors represents variations between
policyholders. A realization of (X,D) corresponds to choosing an insurance policy
at random from the portfolio; a policyholder profile with specific characteristics is
obtained by conditioning on X = x, D = d. For simplicity, we denote the mar-
ginal and conditional distributions of covariates under P by X ∼ P(x), D ∼ P(d)
and (D | X = x) ∼ P(d | x), respectively, thus, we use the same letter P for the
(conditional) distribution functions of X and D.

A policyholder claim is denoted by the random variable Y . The claim Y typically
depends on (but is not fully determined by) both the discriminatory covariates D
and the non-discriminatory ones X. Our aim is to price such a claim Y , with the
resulting price being free from direct as well as indirect discrimination (where this
exists), according to the arguments of Section 1. A technical description of these
concepts will be given in Section 2.3, below.

In the sequel, it will be useful to assume Y,X,D ∈ L2(Ω,F ,P). This assumption
is not crucial for defining discrimination-free prices, but it will allow us to give more
intuitive interpretations in terms of orthogonal projections and minimal distances.
Our notion of price will be based on conditional expectations of Y , when condi-
tioning on different subsets of covariates. We first introduce a number of different
prices that are important for the subsequent discussions and derivations.

Definition 2 (best-estimate price). The best-estimate price for Y w.r.t. (X,D) is
defined by

µ(X,D) := E[Y | X,D].

Remark 3.

(a) We call the price µ(X,D) “best-estimate” because it minimizes the L2-distance
of all (X,D)-measurable prices to Y , i.e. µ(X,D) is the orthogonal projection
of Y onto the sub-space generated by (X,D).

(b) In general, the best-estimate price is not discrimination-free, unless we are in
the special case of µ(X,D) = µ(X), implied by X being independent of D.

(c) The best-estimate price is unbiased w.r.t. Y , that is,

µ := E[Y ] = E [µ(X,D)] ;
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we use the tower property of conditional expectations, see Williams [26, Sec. 9.7].
Unbiasedness is important because it indicates that best-estimate prices achieve
on average the correct price level for the portfolio.

An initial attempt at achieving discrimination-free prices arises through simply
ignoring discriminatory covariates D.

Definition 4 (unawareness price). The unawareness price for Y w.r.t. X is defined
by

(1) µ(X) := E[Y | X].

Remark 5.

(a) As the price µ(X) does not depend explicitly on D, it avoids direct discrimi-
nation. However, the unawareness price may produce indirect discrimination,
as was discussed in Section 1; see also Kusner et al. [18]. Specifically, we can
write the unawareness price as

(2) µ(X) =

∫
d

µ(X,d) dP(d | X).

The potential for discrimination arises because the conditional probability P(d |
X) enables inference of discriminatory covariates D from non-discriminatory
ones X. We stress that discrimination here is indirect : while D is not directly
used in the pricing formula, it is potentially “proxied” by X, if statistical de-
pendence between D and X exists. This is precisely the situation discussed in
Section 1. Indirect discrimination is avoided in the special case when D and X
are independent, since then it holds that dP(d | X) = dP(d).

(b) The price µ(X) minimizes the L2-distance to Y based solely on X, i.e. it is the
best price w.r.t. information X. At the same time, the price µ(X) also mini-
mizes the L2-distance to µ(X,D), by a simple application of the Pythagorean
theorem. Note that

||µ(X)− µ(X,D)||22 = E[Var(µ(X,D) | X)],

which intuitively should decrease with increasing dependence between X and D.
Hence, the quality in the approximation of µ(X,D) using µ(X) should be good
if D essentially is a deterministic function of X, i.e., if the non-discriminatory
covariates X allow us to almost perfectly infer the discriminatory covariates D.

(c) The unawareness price is unbiased, since

µ = E[Y ] = E [µ(X)] .

We now propose a price that is free of both direct and indirect discrimination.

Definition 6 (discrimination-free price). A discrimination-free price for Y w.r.t.
X is defined by

h∗(X) :=

∫
d

µ(X,d) dP∗(d),(3)

where the distribution P∗(d) is defined on the same range as the marginal distribu-
tion of the discriminatory variables D ∼ P(d).

Remark 7.
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(a) The discrimination-free price (3) is obtained by averaging best-estimate prices
over discriminatory covariates, using a (potentially arbitrary) marginal distri-
bution P∗(d). The crucial step here is the imposed marginalization w.r.t. D,
rather than the specific choice of P∗(d) (which can be P∗(d) = P(d)). Given
that the price h∗(X) does not explicitly depend on D, it is obviously free from
direct discrimination. We argue that the averaging construction proposed in
(3) also removes all potential indirect discrimination. While (3) appears similar
to (2), there is a key difference: discrimination-free prices do not in any way
depend on the conditional distribution P(d | X) – hence they do not use any
inference of discriminatory covariates from non-discriminatory ones. This will
be further discussed in Section 2.3 and verified in the case study of Section 6.
In the special case of X and D being independent and P∗(d) = P(d), it follows
that h∗(X) = µ(X).

(b) Definition 6 is designed to remove the possible explanatory power that X may
have for D; it does not assume independence between X and D in the given
portfolio. This point will be made more precise in Section 2.3, and in Sec-
tion 2.4 we discuss existence of discrimination-free prices as well as alternative
interpretations of h∗(X).

(c) Definition 6 can also be motivated by arguments from causal inference. Specif-
ically, formulas like (3) are used to quantify the direct causal effect of X on
Y; we discuss this in more detail in Section 3, below. We stress that although
causal inference can in many situations serve as an alternative motivation of
discrimination-free prices, the reasoning behind our Definition 6 does not rely on
any causal assumptions. Further discussions of this are provided in Section 3.
Furthermore, formula (3) using the special choice P∗(d) = P(d) corresponds
precisely to the Partial Dependence Plot (PDP) introduced by Friedman [12],
see also Zhao and Hastie [27].

(d) Prices obtained using (3) will in general not be unbiased, since

(4) µ = E[Y ] 6= E[h∗(X)] =

∫
x,d

µ(x,d) dP∗(d)dP(x),

even for the special choice P∗(d) = P(d). This observation motivates portfolio
level price adjustments, which will be discussed in Section 4. We note that,
in actuarial practice, such a bias is not necessarily a problem, as insurers are
primarily interested in the relativities between different policyholders, which
can be used to differentiate a baseline premium of the overall portfolio costs to
individual policyholders. Still, a poor allocation principle may result in adverse
selection.

(e) Note that, given the potential arbitrariness of P∗, calculation of discrimination-
free prices only requires knowledge of the mapping (x,d) 7→ µ(x,d), where
µ(x,d) may be an (algorithmically derived implicit) regression function. Nev-
ertheless, as pointed out in the previous remark, if one aims to correct a poten-
tial bias of h∗(X), it is necessary to perform modeling and model calibration
under the “real-world” probability measure P.

(f) Given the construction (3), P∗(d) may be inferred from comparing best-estimate
prices µ(X,D) and observed discrimination-free prices h∗(X).

2.2. Choice of weighting distributions for discriminatory covariates. From
Definition 6 it follows that the distribution P∗(d) can be chosen rather freely. A
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simple choice is P∗(d) = P(d), that is, average in (3) w.r.t. the marginal distribution
of the discriminatory characteristics in the portfolio. This choice is supported by
causal inference arguments in Section 3. We denote this special case by:

h(X) :=

∫
d

µ(X,d) dP(d).(5)

We illustrate how h(X) is evaluated in the context of Example 1.

Example 8. In Example 1 we argued that aggregated estimators (row sums)

λ̂i,• are discriminatory because gender can be inferred from smoking habits. The
price h(X) removes this effect by replacing the conditional probability P(gender |
smoking habits) by P(gender). This implies that the frequency estimate for smokers

λ̂1,• is replaced by

λ̃1,• = λ̂1,1P̂(woman) + λ̂1,0P̂(man)

=
32

133
· 264

589
+

4

24
· 325

589
(6)

= 0.200 < 0.229 = λ̂1,•.

Similarly, for non-smokers

λ̃0,• = λ̂0,1P̂(woman) + λ̂0,0P̂(man) = 0.184.(7)

We demonstrate the potential portfolio bias that discrimination-free prices induce.
The total cost of the portfolio, under best-estimate prices, is equal to the observed
total claim of 112. For discrimination-free prices, the total cost is given by

λ̃1,•(e1,1 + e1,0) + λ̃0,•(e0,1 + e0,0) = 110.77 < 112.

This indicates that the discrimination-free price h(X) leads to an under-pricing of
the overall portfolio in the present situation.

Recall that there is some flexibility in the selection of P∗(d). In this simple exam-
ple, with D being a binary classification variable, we can directly choose P∗(woman)
and P∗(man) in a way that eliminates the portfolio bias. Specifically, we set

λ̃∗i,• = λ̂i,1P∗(woman) + λ̂i,0P∗(man), for i = 0, 1,

and require for the resulting overall portfolio price that it holds

λ̃∗1,•(e1,1 + e1,0) + λ̃∗0,•(e0,1 + e0,0) = 112.

The resulting choice is P∗(woman) = 48.3% > 44.8% = P(woman).
Finally, we note that in this example, switching to discrimination-free prices

leads to a reduction in the share of the portfolio costs covered by women. Women
cause 60/112 = 53.6% of the total costs which is exactly the share of the total costs
that women have to pay under best-estimate pricing (assuming that the prices
coincide with the claims caused). If we use the unawareness price by simply drop-
ping the gender variable, women cover 47.8% of the total costs. If we charge the
discrimination-free price (6)-(7), women cover 45.7% of all costs, thus, less than
under the unawareness price. This exactly reflects the potential for indirect dis-
crimination in the unawareness price: women have on average higher costs than
men, and the allocation of these excess costs is bigger to the sub-population where
women are more prevalent compared to the population distribution P(d), i.e. we
learn D from X through the portfolio distribution. �
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Remark 9. While in Examples 1 and 8 the potential indirect discrimination was
against women, one can easily swap the “woman” and “man” labels, so that such
indirect discrimination is against males. This indicates that the notion of discrim-
ination used here (as well as the proposed pricing adjustment) does not reflect (or
indeed seek to correct for) historical or current injustices. A more subtle impact
arises if, ceteris paribus, the frequency of smokers in the female population was ac-
tually lower than that for males. In such a case, unawareness prices would actually
understate the impact of smoking, as this would be “masked” by males’ otherwise
lower propensity to claim; on the contrary, discrimination-free prices would become
more sensitive with respect to the specific risk posed by smoking. This idea is
further developed in the detailed numerical example presented later in the paper;
see last paragraph of Section 6.1 and Figure 3.

Furthermore, it is useful to consider the extrema of discrimination-free prices.
Consider the following prices:

h(+)(X) := sup
P∗

∫
d

µ(X,d) dP∗(d),

h(−)(X) := inf
P∗

∫
d

µ(X,d) dP∗(d).

Here, h(+)(X) and h(−)(X) correspond to the essential supremum and infimum over
d in the range of D, respectively. Thus, for non-discriminatory covariates X = x,
this immediately gives us

h(−)(x) ≤ h∗(x), h(x), µ(x) ≤ h(+)(x).

Moreover, for the bias property we get the following relationship∫
x

h(−)(x) dP(x) ≤ E[h∗(X)], µ ≤
∫
x

h(+)(x) dP(x).

By definition h(+)(x) corresponds to the “worst” (or most “prudent”) price, and
has been discussed in the context of unisex pricing in Chen and Vigna [6].

As seen in Example 8, the discrimination-free price (3) is generally biased. An
alternative possibility for the choice of P∗(d) is to additionally require unbiasedness
in (4). In the simple case of a binary discriminatory covariate like gender in Example
8, this reduced to choosing a suitable P∗(woman). A more general construction of
unbiased prices via choices of P∗(d) is presented in Section 4.

A special case corresponds to an additive best-estimate price, in the sense that
µ(X,D) = µ1(X) + µ2(D). Then, the simple choice P∗(d) = P(d) is appealing, as
it provides an unbiased price. Note that

h(X) =

∫
d

µ1(X) dP(d) +

∫
d

µ2(d) dP(d) = µ1(X) + E[µ2(D)],

which implies

E[h(X)] = E[µ1(X)] + E[µ2(D)] = E[µ(X,D)] = µ.

2.3. Revisiting direct and indirect discrimination. In this section, following
the development of our ideas so far, we provide more technical definitions of prices
that avoid direct and indirect discrimination, where the latter may exist.
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Choose an arbitrary probability measure P∗ on the measurable space (Ω,F) such
that Y ∈ L1(Ω,F ,P∗). Choose a (sub-)vector Z of the covariates (X,D) and define
the (P∗,Z)-conditional-expectation price by

µ∗(Z) := E∗[Y | Z],

where E∗ denotes the expectation under P∗.

Definition 10. A price avoids direct discrimination, if it can be written as

µ∗(Z) = E∗[Y | Z],

where Z is σ(X)-measurable, and where the expectation is taken w.r.t. a probability
measure P∗ on (Ω,F) such that Y ∈ L1(Ω,F ,P∗).

Remark 11.

(a) Definition 10 says that a price avoids direct discrimination if it can be written
as a measurable function of the non-discriminatory covariates X. For Z =
X we receive maximal use of non-discriminatory information (relative to P∗),
therefore, we typically work with Z = X.

(b) The choice P∗ = P (and Z = X) provides the unawareness price µ(X) of
Definition 4 which, thus, avoids direct discrimination.

(c) Importantly, under the choice P∗ = P, the unawareness price µ(X) can be
calculated without explicit knowledge of µ(X,D) – hence it does not require
collection of discriminatory policyholder information. This also applies if we
need to estimate µ(X) from data, see (20) below.

Now, indirect discrimination can be defined.

Definition 12. A price µ∗(Z) that avoids direct discrimination is said to avoid
indirect discrimination if Z and D are independent under P∗.

Independence under P∗ effects the decoupling of discriminatory covariates from
non-discriminatory ones, for specific policyholders. Thus, according to Definition
12, a price that avoids indirect discrimination satisfies

(8) µ∗(Z) =

∫
d

µ∗(Z,d) dP∗(d | Z) =

∫
d

µ∗(Z,d) dP∗(d),

where µ∗(Z,d) = E∗[Y | Z,D = d].

Remark 13.

(a) From Definition 12, it is clear that avoiding indirect discrimination requires
avoiding direct discrimination. As indirect discrimination relates to covariates
in X acting as proxies for (elements of) D, it is not meaningful to talk about
indirect discrimination, when D is used directly in pricing.

(b) The independence in Definition 12 is an artifice of the introduced probability
measure P∗ under which insurance is priced and does not generally reflect the
actual observed dependence between X and D.

(c) For Z = X, the calculation that avoids indirect discrimination is based on the
knowledge of µ∗(X,D), see (8) – hence it requires collection of discriminatory
policyholder information. In fact, one of the most critical problems in practice
is that discriminatory information is often incomplete, e.g. about ethnicity,
which may result in indirect discrimination.
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(d) In statistical applications we usually use the conditional probability P(y | X,D)
to model a claim Y , given the covariates (X,D). The reason for this choice is
that Y , given (X,D), is observed under the real world measure P, which allows
for direct estimation of the regression function, see Section 5 below,

(x,d) 7→ µ(x,d).

We could choose the measure P∗ in a way that preserves the (causal) structure
of how the covariates impact the response, that is, let P∗(y | x,d) = P(y | x,d).
This then motivates the choice

dP∗(y,x,d) = dP(y | x,d) dP∗(x) dP∗(d),

for Z = X in Definition 12. In view of (8), this results in the discrimination-free
price

µ∗(X) =

∫
d

µ(X,d) dP∗(d | X) =

∫
d

µ(X,d) dP∗(d) = h∗(X).

Thus, the discrimination-free price of Definition 6 does neither allow for poten-
tial direct nor for indirect discrimination.

(e) Linking to Remark 7(e), in practice, we need to know (calibrate under) the
real world measure P in order to study unbiasedness w.r.t. µ = E[Y ]. Since
the actual portfolio that we hold is described by Z ∼ P(z), we need to average
discrimination-free prices µ∗(Z) w.r.t. the same population P(z) to see whether
we receive unbiasedness of discrimination-free prices on the actual portfolio.

2.4. Existence of discrimination-free prices. We have not yet discussed ex-
istence of discrimination-free prices according to Definition 6 and the possibility
of avoiding indirect discrimination according to Definition 12. This is done in the
present section.

We emphasize that properties of available data (and the related statistical mod-
els) play a crucial role in our considerations:

• Indirect discrimination may be the result of incomplete discriminatory in-
formation, see Remark 13(c).

• Indirect discrimination may be the result of nonexistent or insufficient in-
formation of certain parts of the population.

In this section we discuss the second item which can enter in different ways. A
first one is that not all parts of the population are equally well represented in
the development of the statistical model. For instance, there is research in image
recognition to discover malignant melanoma (skin cancer). If this research is mainly
based on images of people with light complexion, the corresponding model will likely
fail to discover malignant melanoma for people with dark complexion. This is a form
of discrimination resulting from insufficient data of certain parts of the population.
In our situation, this may result in poor best-estimate prices µ(X,D) for certain
covariate combinations. Note that the quality of the estimation of best-estimate
prices directly impacts discrimination-free prices.

In the current section we rather focus on non-existent data of certain parts of
the population. The meaning and implications of nonexistent data are going to
be discussed in more detail. We start with an example. Assume that the dis-
criminatory covariates D correspond to gender and the non-discriminatory ones X
to education. Education could be in the ordinal form “secondary school degree”,
“high school degree” or “university degree”, but information about education could
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also be received in the following categorical form “Catholic college degree”, “public
college degree” or “girls college degree”. Per definition the last label “girls college
degree” contains as only gender “female”. This implies that

P(X = girls college degree,D = man) = 0,

thus, the event A = {X = girls college degree,D = man} ∈ F is a null set
w.r.t. P. In many cases, we do not model responses Y on null sets. Therefore,
neither Y on A may be specified in our model nor the conditional expectation
µ(girls college degree,man) = E[Y | A] may be determined. But this implies that
we cannot evaluate the discrimination-free price

h∗(X) =

∫
d

µ(X,d) dP∗(d),

if P∗(d) has positive probability mass on both genders. In the current situa-
tion, the problem may be solved by setting P∗(D = woman) = 1 which gives
the discrimination-free price h∗(X) = µ(X,woman).

If the education information X has an additional level “boys college degree”,
the above solution will not work because we have a second P-null set B = {X =
boys college degree,D = woman} ∈ F which makes it impossible to choose a dis-
tribution P∗(d) such that the discrimination-free price h∗(X) is well-defined.

The simple solution to this problem is to drop the education information, that
is, choose a smaller covariate set. This is equivalent to choosing a true subset
Z of X in Definition 12. In practice, we often try to inter- or extrapolate the
model assumptions for Y . This is reasonable if unavailable information corresponds
to numerical variables (and responses have some smoothness in these covariates).
In certain cases it may also be justified for categorical variables by, for example,
postulating a multiplicative influence structure of covariates, say, women are x%
better than men regardless of the attended college. This is similar to a GLM
approach where gender may be reflected by a single parameter on the canonical
scale. In our situation such an assumption can be made, but it cannot be verified
because of a missing control group.

Proposition 14. Assume there exists a product measure P∗(x)P∗(d) on (Ω,F)
which is absolutely continuous w.r.t. the probability measure P(x,d) of the covari-
ates (X,D). Then, there exists a price µ∗(X) that avoids indirect discrimination.

Proof. Absolute continuity implies that every P(x,d)-null set is also a P∗(x)P∗(d)-
null set. Therefore, µ(X,D) is well-defined on all sets where (X,D) has positive
P∗(x)P∗(d)-probability mass. Since the latter is a product measure we can calcu-
late the discrimination-free price h∗(X) by integrating µ(X,d) over dP∗(d | X) =
dP∗(d), see also (8). This completes the proof. �

3. Causal inference and discrimination

The purpose of this section is to discuss the discrimination-free prices of Defini-
tion 6 in a causal inference setting. Discrimination-free prices given by Definition 6
hold without recourse to any causal relationships between variables. Nonetheless,
there is a nice motivation of discrimination-free pricing in a causal inference context
which provides additional insight. We give these arguments in a pedagogical and
somewhat informal way; for a rigorous treatment we refer to [16], [20], [21, Ch. 3.1].
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The starting point of causal inference is a hypothesis of variable relationships,
which may be described in terms of a directed graph G. The graph G consists of
a set of nodes corresponding to the different variables and directed edges – ‘arrows’
– indicating directions of potential influence between the variables. This informal
definition is most easily understood by an example such as the one given in Figure 1
(left), involving the variables (Y,X,D) introduced above in the context of insurance
pricing. The graph G in Figure 1 (left) is an example of a directed acyclic graph
(DAG), meaning that the graph does not contain any loops (for a precise definition,
see [21, Ch. 1.4]). Figure 1 (left) corresponds to a situation where the discriminatory
characteristics D may influence Y both directly, but also indirectly via X.

D

X Y

D

X = x Y

1

Figure 1. (left) Causal diagram described by G; (right) causal
diagram altered according to the intervention X = x.

Figure 1 (left) already captures a large number of realistic insurance pricing
situations. For instance, in view of Example 1, we may identify smoking habits
by X and the gender by the discriminatory factors D. Differences in smoking
habits between men and women can be expressed by a directed edge D→ X, while
intrinsic differences between men and women when it comes to health outcomes
are described by D → Y . Moreover, smoking in itself may cause health problems,
X→ Y , this is exactly expressed by the directed edges in Figure 1 (left).

Since the directed edges in the DAG G do not act fully deterministically, we
endow G with a probability measure P that describes the randomness involved.
Here, we consider a Markovian measure, which, colloquially speaking, means that
all nodes in Figure 1 (left) are complemented with independent noisy background
variables [21, Ch. 3.2.1]. In such a Markovian setting, let, for a general DAG
G, Z = (Z1, . . . , Zp) be the vector containing all variables (e.g. Z = (Y,X,D))
and let Vi denote the set of ‘parent’ variables of Zi (that have a directed edge
attached pointing directly to Zi). Furthermore, in this section, we denote by p(z)
the probability density or mass function of Z. Then, on the Markovian DAG it
holds that (see e.g. Theorem 1 in [20])

p(z1, . . . , zp) =
∏
i

p(zi | vi).(9)

In the simple example of Figure 1 (left), identity (9) leads to decomposition

p(y,x,d) = p(y | x,d) p(x | d) p(d),

which, of course, is nothing but Bayes’ rule.
With this modeling setup in place, one way to approach non-discriminatory

pricing is to ask the following:

Given that a policyholder has the set of characteristics X = x, what is the
expected value of Y , after removing all causal, direct or indirect, effects of
discriminatory covariates D?
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In the context of causal inference, to answer such a question, we need to carry
out a so-called intervention X = x. An intervention amounts to ‘fixing’ X to
the particular value x, which leads to impacts of X on Y only via directed edges
starting in X, and by removing all possible impacts on X from other variables.
That is, the intervention will be executed without any influence from states of the
other variables. This operation is illustrated on the right-hand side of Figure 1,
where we remove all directed edges to X and set the value of X to x. Removing
any potential edge from D to X allows us to consider only the (direct) causal effect
of setting X = x on Y . This operation is intrinsically different to conditioning.
When conditioning on X = x, the distribution of D is generally affected; but in the
modified graph on the right-hand side of Figure 1, changes in x do not influence D
and vice versa. This is precisely the desired effect of removing the implicit inference
of discriminatory covariates from non-discriminatory ones, in correspondence to
Remark 13(b). The above intervention of removing all directed edges to X and
of fixing X = x is denoted by the so-called do-operator “do(X = x)” in causal
inference [21, Ch. 3.2.1].

In order to formalize the intervention do(X = x), let G∗ denote the modified
DAG where all edges pointing to X have been removed, e.g. as on the right-hand
side of Figure 1. Next, we need to specify the probability measure operating on the
graph G∗, which will not be the conditional measure P(z | x). To that effect, let
X denote the indices in Z corresponding to X in a Markov DAG G, and let Z∗ be
the vector consisting of all Zi, i 6∈ X . Then, on G∗, using (9), pG∗ must satisfy:

pG∗(z∗,x) = pG∗(x)
∏
i 6∈X

pG∗(zi | vi),(10)

since, on G∗, the influence from parents of X has been removed. In particular, it
follows that

pG∗(z∗ | x) =
∏
i 6∈X

pG∗(zi | vi).

Furthermore, since G∗ is a modified version of G where only those edges pointing
to X have been removed, it holds that pG∗(zi | vi) = p(zi | vi), i /∈ X , that is, the
remaining causal relations have not been modified. Putting everything together,
we arrive at the following definition of do(X = x):

p(z∗ | do(X = x)) := pG∗(z∗ | x) =
∏
i6∈X

p(zi | vi),(11)

which is known as the truncated factorization formula, see e.g. Corollary 1 in [20].
Returning to our example, set Z∗ = (Y,D). From (11) it directly follows that

(since, in the modified graph G∗, D has no parents)

p(y,d | do(X = x)) = p(y | d,x)p(d).

After marginalizing over d, we then obtain the distribution of Y following the
intervention do(X = x):

(12) P(y | do(X = x)) =

∫
d

P(y | x,d) dP(d).

Finally, one can define a price that only takes into account the causal effect of X
on Y by considering E[Y | do(X = x)], where the expectation is calculated with
respect to P(y | do(X = x)). The next result is a direct consequence.
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Proposition 15. Consider the Markovian DAG (G,P) defined by the left-hand side
of Figure 1. It then holds that

E[Y | do(X = x)] =

∫
d

µ(x,d) dP(d) = h(x),

where h(x) was defined by (5).

Remark 16.

(a) Proposition 15 justifies the discrimination-free price h(X) of equation (5) under
specific Markovian DAG assumptions, motivating the choice P∗(d) = P(d) in
Definition 6. While we find the assumptions underlying Proposition 15 reason-
able in an insurance context, violating those assumptions will undermine the
causal interpretation of discrimination-free prices. Nonetheless, these assump-
tions are not needed in order for h(X) to produce discrimination-free prices,
in the spirit of Section 2.3, which ‘breaks’ the statistical dependence between
X and D. However, it is interesting to see that our discrimination-free pricing
framework exactly corresponds to the do-operator ‘do(X = x)’ in the causal
inference setting of Figure 1.

(b) It is possible to extend the covariate relations described by Figure 1 to more
general situations, for instance, by including unmeasured characteristics (latent
variable) U. For ways to deal with these more general situations we refer to
[21], [19, Ch. 3.2.2].

4. Attribution of total portfolio premium to individual policies

The difficulty that we still have to deal with is that, in general, a discrimination-
free price has a bias, see (4) and Example 8. This bias needs to be corrected because
otherwise the premium for the entire portfolio may not be at the appropriate level.
There is no canonical way of correcting for this potential bias; moreover, the re-
quirement that the bias correction should be discrimination-free excludes complex
cost allocation mechanisms.

The portfolio bias of the P∗-discrimination-free price is defined by

B∗ := µ− E[h∗(X)] = E[Y ]−
∫
x,d

µ(x,d) dP∗(d)dP(x).

Simple bias corrections arise from taking rather different positions. An egalitarian
position is taken by distributing the portfolio bias B∗ uniformly across the entire
portfolio, regardless of any non-discriminatory covariates X. This motivates the
uniformly adjusted P∗-discrimination-free price defined by

(13) π∗,u(X) := h∗(X) +B∗.

Moreover, if we do not consider any covariates (neither discriminatory nor non-
discriminatory ones) we are back in the situation of a homogeneous situation where
we charge the same (constant) premium µ to every policyholder. A drawback of
the uniformly adjusted price (13) is that it may result in negative prices for certain
covariate values X.

A different position is to allocate the bias B∗ by differentiating w.r.t. X in a
still discrimination-free fashion (avoiding any inference of D from X). A natural
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way is to allocate the total premium proportionally to h∗(X), resulting in the
proportionally adjusted P∗-discrimination-free price

(14) π∗,p(X) := h∗(X)
µ

µ−B∗
.

In the remainder of this section we discuss a more sophisticated approach which
chooses the distribution P∗(d) specifically such that the discrimination-free price
h∗(X) is unbiased, i.e. B∗ = 0. A simple illustration was given in Example 8. In
general, there will be many such distributions that may satisfy this condition, and
an additional criterion for choosing P∗(d) is needed.

A standard criterion is to chose the measure P∗, such that the distribution P∗(d)
is as close as possible to the physical distribution P(d), subject to the resulting
discrimination-free price h∗(X) being unbiased. To proceed, first note that, given
independence of (X,D) under P∗, it holds that

E[h∗(X)] = E∗[ζ(D)],

where ζ(t) = E[µ(X, t)]. When the relative entropy (Kullback–Leibler divergence)
is chosen to quantify distance between distributions, we work out P∗(d) as the
solution to the following problem:

(15) min
Q(d)

E
[

dQ(d)

dP(d)
log

(
dQ(d)

dP(d)

)]
, such that E∗[ζ(D)] = µ.

Following standard results (see [7], [3] for precise statement and conditions), the
solution takes the form:

P∗(d) = E
[
1{D≤d}

eβζ(D)

E[eβζ(D)]

]
,

where the parameter β is suitably chosen such that the constraint E∗[ζ(D)] = µ
is fulfilled. Note that, in view of Section 2.4, we need to assume existence of
distributions P∗(d) that fulfill the constraint in (15).

Hence, the premium for a policyholder with non-discriminatory covariates X = x
is defined by

(16) π∗,KL(x) := h∗(x) = E
[
µ(x,D)

eβζ(D)

E[eβζ(D)]

]
.

To ease the interpretation of this formula, let D = D be one-dimensional and
µ(x, d) ≥ 0 be increasing in d. Then, for β > 0, we have

π∗,KL(x) = E
[
µ(x, D)

eβζ(D)

E[eβζ(D)]

]
= E [µ(x, D)] + Cov

[
µ(x, D),

eβζ(D)

E[eβζ(D)]

]
≥ E [µ(x, D)] = h(x),

which corresponds to the situation where the choice P∗ = P would produce a
negative bias (under-pricing). The calculation of π∗,KL(x) assigns a higher premium
to policyholders with covariates X = x such that µ(x, D) is more volatile, as can
be seen in approximation (17) below. This represents policies for which lack of
information on discriminatory covariates matters more, in the sense that there is a
higher sensitivity to the uncertainty induced by not using the discriminatory factor
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D. One can thus view the bias correction in π∗,KL(x) as an implicit discrimination-
free risk load.

For β close to zero, a Taylor series expansion of π∗,KL(x) gives the approximation

h∗(x) ≈ E [µ(x,D)] + βCov [µ(x,D), ζ(D)](17)

= E [µ(x,D)] + β
√
Var[µ(x,D)]Var[ζ(D)] Corr [µ(x,D), ζ(D)] .

5. Estimated prices

All previous discussion and derivations of discrimination-free prices and indirect
discrimination were conducted under the assumption that the “true” probabilistic
model underlying the portfolio (Y,X,D) is known, represented by the physical
measure P. In practice, an estimated model is used because, typically, the data
generating mechanism is unknown.

Specifically, one starts from data

S = {(y1,x1,d1), . . . , (yn,xn,dn)},

assuming that (yi,xi,di) are i.i.d. realisations of (Y,X,D) ∼ P. As the data is
generated under P, we cannot estimate discrimination-free prices h∗(X) directly
under P∗. Instead, we need to estimate best-estimate prices first under P, and then
we can derive discrimination-free prices by averaging out d with respect to the
chosen distribution P∗(d).

Consequently, a regression model (in the broader sense) is chosen

(18) µ̂ : (x,d) 7→ µ̂(x,d) = µ̂(x,d;θ),

which typically differs from the (true) best-estimate price functional (x,d) 7→
µ(x,d), given in Definition 2, but which should mimic µ(x,d) in the best possible
way. One may specify a fixed functional form for µ̂ in (18) or, in a wider sense,
one can specify an algorithm that generates the mapping (18) from the data S. In
either case, µ̂ will still depend on unknown parameters θ that have to be estimated

from the data S (using a given objective function) yielding estimate θ̂ = θ̂(S).
The resulting S-calibrated regression function

(19) (x,d) 7→ µ̂(x,d; θ̂)

then provides the approximation to the best-estimate price functional (x,d) 7→
µ(x,d). Note that (19) provides an estimate of the best-estimate price and, ob-
viously, this estimate is, generally, discriminatory because it explicitly considers
the discriminatory covariate values d. Moreover, since we use the data S which
has been generated under the physical measure P, the regression function (19) also
needs to be understood under the physical measure P, we refer to Remark 13(d).

The unawareness price functional x 7→ µ(x) can be approximated in an analogous
manner by just dropping d in (18) and (19), resulting in an estimated regression
function

(20) x 7→ µ̄(x; ϑ̂),

where the functional forms µ̂ and µ̄ may differ as well as their parameters θ and

ϑ, respectively. We emphasize that typically µ̄(·; ϑ̂) may indirectly discriminate

w.r.t. d because in the estimation process of ϑ̂ we implicitly use covariate combina-
tions (xi,di) which (empirically) contain the dependencies P(d | x) that may allow
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for inference of D from X. The estimated unawareness price µ̄(x; ϑ̂) can also be
interpreted as an approximation to

E[µ̂(X,D; θ̂) | X = x;S],

using the tower property of conditional expectations argument for D (under the
physical measure P).

Typically, also P(d) is not known. Assuming D is discrete, P(d) can be es-
timated by the empirical probabilities nd/n (observed relative frequency of the
discriminatory covariate d in S). This generates the discrimination-free price

(21) ĥ(x) =
∑
d

µ̂(x,d; θ̂)
nd
n
,

where we use the estimated best-estimate price functional (19); if D is continuous,
we would use its empirical distribution function, which results in a discrete formula
similar to (21). The price (21) is discrimination-free in the sense of Definition 6, i.e.
the discrimination-free property is not affected by the fact that we work with an

estimated model. While potential estimation error may result in prices ĥ(x) that
are not very close to h(x), the property of non-discrimination is preserved within
the selected model; we explore this in more detail in Section 6. When choosing the
structure of the regression function µ̂ in (18), we should require existence of the
discrimination-free price (21) in the sense of Proposition 14.

Finally, we note that one may attempt, in the light of Section 3, to estimate a
graphical model (see e.g. [16]), which would provide discrimination-free prices in a
more direct way. However, we do not pursue this direction for two reasons. First,
because actuarial pricing models typically comprise a large number of covariates
(e.g. more than 50 is typical for direct motor insurance pricing), which could make
construction, estimation and validation of an appropriate graphical model challeng-
ing. Second, we do not make any claim about causality in the context of specific
actuarial applications; we merely note that our proposal is in line with concepts
from causal inference, if particular conditions are fulfilled.

6. Numerical illustration

6.1. Model and alternative pricing rules. We present a simple health insurance
example which demonstrates our approach of discrimination-free insurance pricing.
This example satisfies the causal relations of Figure 1 and, thus, it can also be
understood in a causal inference context.

Let D = D correspond to the single discriminatory characteristic “gender”, that
is, D ∈ {woman,man}. Furthermore, let X = (X1, X2)′, where X1 ∈ {15, . . . , 80}
denotes the age of the policyholder, and X2 ∈ {non-smoker, smoker}; below we
assume that smoking habits are gender related. We consider three different types
of health costs: birthing related health costs only affecting women between ages 20
and 40 (type 1), cancer related health costs with a higher frequency for smokers and
also for women (type 2), and health costs due to other disabilities (type 3). For
simplicity, we only consider claim counts, assuming deterministic claim costs for
the three different claim types. We assume independence between individuals, all
having the same exposure (= 1). Moreover, we assume that the claim counts for the
different claim types are described by independent Poisson GLMs with canonical
(i.e. log-) link function. The three different types of claims are governed by the
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following log-frequencies (regression functions):

log λ1(X, D) := α0 + α11{X1∈[20,40]}1{D=woman},(22)

log λ2(X, D) := β0 + β1X1 + β21{X2=smoker} + β31{D=woman},(23)

log λ3(X, D) := γ0 + γ1X1,(24)

based on the joint non-discriminatory and discriminatory covariates (X, D). The
deterministic claim costs of the different claim types are given by (c1, c2, c3) =
(0.5, 0.9, 0.1) for claims of type 1, type 2, and type 3, respectively.

The best-estimate price (considering all covariates) of Definition 2 is given by

µ(X, D) = c1λ1(X, D) + c2λ2(X, D) + c3λ3(X, D).

This best-estimate price is illustrated in Figure 2 for the parameter values (α0, α1) =
(−40, 38.5), (β0, β1, β2, β3) = (−2, 0.004, 0.1, 0.2), and (γ0, γ1) = (−2, 0.01). The
plots on the left-hand side of Figure 2 refer to smokers (X2 = smoker), while those
on the right-hand side to non-smokers (X2 = non-smoker). The solid black lines
give the best-estimate prices µ(X, D) for women and the solid red lines for men.
Obviously, by using D as a rating factor, these best-estimate prices discriminate
between genders.
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Figure 2. True model: (left) smokers and (right) non-smokers
with solid black and red lines giving the best-estimate prices for
women and men, respectively. The dotted orange lines show the
discrimination-free prices and the dotted blue lines show the un-
awareness prices.

Next, we calculate the discrimination-free price of Definition 6 for P∗(d) = P(d),
see (5), motivated by Proposition 15. It is given by

h(X) =
∑

d∈{woman, man}

(c1λ1(X, d) + c2λ2(X, d) + c3λ3(X, d)) P(D = d).

For the calculation of this discrimination-free price we need the gender proportions
within our population. We set P(D = woman) = 0.45. The orange dotted lines
in Figure 2 provide the resulting discrimination-free prices for smokers (left) and
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non-smokers (right). Note that these are identical for men and women, i.e. all price
differences can be described solely by different ages X1 and smoking habits X2,
irrespective of gender D. Moreover, the smoking habits do not reveal information
about the gender; note that in the exposition so far, it has not been necessary
to describe how smoking habits vary by gender, that is, interpreted in a causal
inference setting, we have not used any arrow D → X, see Section 3.

We compare this discrimination-free price to the unawareness price obtained by
simply dropping the gender covariate D from the calculations (Definition 4). Thus,
we calculate

µ(X) = c1E[λ1(X, D) | X] + c2E[λ2(X, D) | X] + c3E[λ3(X, D) | X].

The calculation of the unawareness price requires additional information about the
following conditional probabilities

(25) P(D = d | X = x) =
P(D = d,X = x)

P(X = x)
=

P(D = d,X2 = x2)

P(X2 = x2)
,

the last equality making the assumption that the age variable X1 is independent
from the random vector (X2, D). In addition, we set P(D = woman | X2 =
smoker) = 0.8 and P(X2 = smoker) = 0.3. The former assumption tells us that
smokers are more likely women; this is similar to Example 1. As a consequence,
X2 has explanatory power to predict the gender D, and the unawareness price may
therefore be indirectly discriminatory against women. These unawareness prices are
illustrated by the blue dotted lines in Figure 2. The blue dotted line lies above the
discrimination-free price (orange) for smokers (Figure 2, left) and below for non-
smokers (right). Thus, the unawareness price implicitly allocates a higher price to
women because smokers are more likely women in our example, or in other words,
the portfolio distribution allows us to infer the more likely gender from smoking
habits.

Since there is no particular reason to assume a population where the proportion of
smokers is greater amongst women, the potential for indirect gender discrimination
is easily verified by an alternative assumption, namely, that smokers are more likely
men, say, P(D = woman | X2 = smoker) = 0.2. The resulting prices are plotted
by the dotted green lines in Figure 3. We observe that unawareness prices for
smokers are below the discrimination-free ones (orange dotted line), with the reverse
holding for non-smokers. That is, in this case women may again be indirectly
discriminated against through their (non-)smoking habits, serving as a proxy for
the explanatory variable of gender. This scenario demonstrates that the adjustment
underlying discrimination-free prices does not undermine the direct causal impact
(in the sense of Section 3) of smoking on prices, given that under discrimination-
free prices the price for smokers increases, compared to unawareness prices. In
fact, when P(D = woman | X2 = smoker) = 0.2, unawareness prices “mask” the
impact of smoking. In other words, when smoking is allowed to act as a proxy for
gender, the sensitivity of prices to smoking reduces. This is because, for smokers,
the unawareness price includes the implicit inference that the policyholder is a man,
who, other things being equal, is less likely to claim than a woman.

The break-even point is P(D = woman | X2 = smoker) = 0.45 = P(D =
woman) because in this case D and X2 are independent, which prevents indirect
discrimination through the portfolio distribution, and the unawareness price and
the discrimination-free price are equal.
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Figure 3. True model: (left) smokers and (right) non-smokers
with solid black and red lines giving the best-estimate prices for
women and men, respectively. The dotted orange lines show the
discrimination-free prices and the dotted green lines show the un-
awareness prices, for an alternative assumption on P(D = woman |
smoker).

6.2. Application on estimated models. The previous discussion has been based
on the knowledge of the model generating the data. We now address the more re-
alistic situation where the model needs to be estimated. To this effect, we simulate
data from (X, D, Y ) ∼ P consistently with the given model assumptions, and sub-
sequently calibrate a neural network regression model to the simulated data.

Specifically, we choose a health insurance portfolio of size n = 100, 000, and
simulate claim counts from the Poisson GLMs (22), (23), and (24), with the choice
P(D = woman | X2 = smoker) = 0.8. An age distribution for X1 is also needed for
the simulation – the chosen probability weights are shown in Figure 4. We assume
that age X1 is independent from gender D and smoking habits X2, as in (25).

Listing 1. Simulated health insurance data.
1 ’data.frame ’: 100000 obs. of 6 variables:
2 $ N1: int 0 0 0 0 0 0 0 0 0 0 ...
3 $ N2: int 0 0 1 0 0 1 0 0 2 0 ...
4 $ N3: int 0 1 0 0 1 0 0 0 0 0 ...
5 $ X1: num 36 57 70 49 63 27 41 58 16 34 ...
6 $ X2: num 0 0 1 0 0 1 0 0 1 1 ...
7 $ D : num 0 1 1 0 0 1 0 0 1 1 ...

Listing 1 gives an excerpt of the simulated data. We have the three covariates
X1 (age), X2 (smoking habit) and D (gender) on lines 5-7, and lines 2-4 illustrate
the numbers of claims N1, N2 and N3, separated by claim types. The proportion
of women in this simulated data is 0.4505 which is close to the true value of P(D =
woman) = 0.45. Our first aim is to fit a regression model to this data, under the
assumptions that individual policies are independent, and that the different claim
types are independent and Poisson distributed. Beside this, we do not make any
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Figure 4. The age frequency used for both genders and smoking
habits to simulate the data.

structural assumption about the regression functions, but we try to infer them from
the data using neural networks. The independence assumption between the claim
counts N1, N2 and N3 motivates modeling them separately. Thus, we will fit three
different neural networks to model λ1, λ2 and λ3, respectively. As we do not use
any prior knowledge on the data generating process, we will feed all covariates
(X1, X2, D) to each of the three networks.

Listing 2. Neural network architecture used to infer λ1, λ2 and λ3.
1 Design <- layer_input(shape = c(3), dtype = ’float32 ’, name = ’Design ’)
2 #
3 Network = Design %>%
4 layer_dense(units=15, activation=’relu ’, name=’hidden1 ’) %>%
5 layer_dense(units=15, activation=’relu ’, name=’hidden2 ’) %>%
6 layer_dense(units=1, activation=’exponential ’, name=’Network ’)
7 #
8 model <- keras_model(inputs = c(Design), outputs = c(Network ))
9 model %>% compile(loss = ’poisson ’, optimizer = ’adam ’)

Listing 2 illustrates the chosen neural network architecture, using the R library
keras, with which the three regression functions (22)-(24) are estimated. We choose
neural networks of depth 2 having 15 neurons in both hidden layers, the rectified
linear unit (ReLU) activation function, and the canonical link under the Poisson
assumption. Moreover, we select the Poisson deviance loss as our objective function.
This network involves 316 weights that need to be calibrated. We train these weights
of the three networks over 1000 epochs on batches of size 20,000.

Figure 5 illustrates the estimates λ̂1(X, D), λ̂2(X, D) and λ̂3(X, D) of the three
regression functions (22), (23) and (24), respectively, obtained by fitting the three
neural networks. The left-hand side of that figure gives claim type 1 which is
birthing related. We see a rather accurate shape, with smoking habits correctly
ignored, and men not affected by these claims. Figure 5 (middle) gives the cancer
related frequencies. Also here we receive the same order w.r.t. gender and smoking
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Figure 5. Estimated regression functions λ̂1(X, D) (left),

λ̂2(X, D) (middle) and λ̂3(X, D) (right) using the neural network
architecture of Listing 2.

habits as in (23). Finally, the right-hand side illustrates all remaining claims. As,
by (24) claim frequencies should not depend on gender and smoking habits, the
variation between lines indicates that the regression model captures a spurious
effect.

Using these estimated frequencies, we calculate the estimated best-estimate price
(19)

µ̂(X, D; θ̂) = c1λ̂1(X, D) + c2λ̂2(X, D) + c3λ̂3(X, D),

and its discrimination-free counterpart (21)

ĥ(x) =
∑
d

µ̂(x, d; θ̂)
nd
n
,

with empirical proportions nwoman/n = 1 − nman/n = 0.4505. These prices are
illustrated in Figure 6: black lines give best-estimate prices for women, red lines for
men, and with the orange dotted lines showing the discrimination-free counterparts.
Comparing Figures 2 and 6 we conclude that the resulting true prices and estimated
prices are rather similar. Of course, by construction the resulting discrimination-
free price is gender neutral within the estimated model, and in our case close to the
theoretical one.

We indicate what happens if we drop the gender variable D from the very begin-
ning, i.e. if we train the networks only on the covariates X = (X1, X2) as considered
in (20). We choose exactly the same network architecture as in Listing 2 except
that we modify the input dimension on line 1 from 3 for (X, D) to 2 for X. This
network involves 301 weights that need to be trained. The resulting estimated re-

gression functions λ̂1(X), λ̂2(X) and λ̂3(X), ignoring gender information D, are
illustrated in Figure 7. The left-hand side shows that we can no longer distinguish
between gender, however, smokers are more heavily punished for birthing related
costs, which is an undesired indirect discrimination effect against women because
they are more often among the group of smokers (note that the y-scales in Figures
5 and 7 are the same). Finally, merging the different claim types provides the esti-
mated unawareness prices (when first dropping D) as illustrated by the blue dotted
lines in Figure 6, which can be compared with the blue dotted lines in Figure 2.
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Figure 6. Estimated neural network model: (left) smokers and
(right) non-smokers with solid black and red lines giving the best-
estimate prices for women and men, respectively. The dotted or-
ange lines show the discrimination-free prices and the dotted blue
lines show the unawareness prices.
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Figure 7. Estimated regression functions λ̂1(X) (left), λ̂2(X)

(middle) and λ̂3(X) (right) using neural networks and ignoring
the gender information D.

In our next analysis we illustrate that the (non-)discrimination property does
not depend on the quality of the regression model (18) chosen. We choose a poor
regression model (compared to the neural network above) by just assuming GLMs
for j = 1, 2, 3

(26) (x, d) 7→ log λ̂GLM
j (x, d) = θ

(j)
0 + θ

(j)
1 x1 + θ

(j)
2 1{x2=smoker} + θ

(j)
3 1{d=woman}.

This model will perform well for j = 2, 3, see (23)-(24), but it will perform poorly
for j = 1, see (22). This is because such a model has difficulties capturing the
highly non-linear birthing related effects, as seen in Figure 8 (left).

In Figure 9 we present the resulting best-estimate prices (black/red), unaware-
ness prices (blue), and discrimination-free prices (orange), as estimated using the
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Figure 8. GLM estimated regression functions λ̂GLM
1 (X, D)

(left), λ̂GLM
2 (X, D) (middle) and λ̂GLM

3 (X, D) (right).
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Figure 9. Estimated GLM: (left) smokers and (right) non-
smokers with solid black and red lines giving the best-estimate
prices for women and men, respectively. The dotted orange lines
show the discrimination-free prices and the dotted blue lines show
the unawareness prices.

GLM. The first observation is that the resulting prices are a poor approximation
to the true prices of Figure 2, the latter assuming full knowledge of the true model.
However, the general discrimination behavior is the same in both figures, namely,
that the unawareness price discriminates indirectly by learning the gender D from
smoking habits X2. This is illustrated by the relative positioning of blue and orange
dotted lines, with smokers more heavily charged for birthing related costs due to
the fact that smokers are more likely women.

In our last step, we consider the issue of correcting the bias introduced by
discrimination-free pricing. The average predicted cost per policyholder and the
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Figure 10. Bias-corrected discrimination-free prices ĥ∗(x)

against unadjusted discrimination-free prices ĥ(x).

average discrimination-free price are, respectively:

µ =
1

n

n∑
i=1

µ̂(xi, di; θ̂) = 0.2054

1

n

n∑
i=1

ĥ(xi; θ̂) = 0.2050.

Thus, we have a small negative bias of approximately 0.2% of µ. We correct for this
bias through an appropriate choice of P∗(D), as discussed in Section 4, yielding a
bias-corrected price

ĥ∗(x) =
∑
d

µ̂(x, d; θ̂)P∗(D = d).

As the discriminatory variable D has only two states, there is no need to use

the complex formula (16); by setting 1
n

∑n
i=1 ĥ

∗(xi) = µ, one can directly obtain
P∗(D = woman) = 0.4564, which is slightly higher than the empirical portfo-
lio proportion nwoman/n = 0.4505. In Figure 10, we display the bias-corrected

discrimination-free prices ĥ∗(x) against the unadjusted discrimination-free prices

ĥ(x). We see that bias correction does not lead to any substantial price distortion
in our example.

Remark. There is one issue that has not been considered so far, and which has
been mentioned in the EU legislation [9], footnote (1) to Article 2.2(14) – life and
health underwriting. Namely, we have implicitly assumed that the measurements
of the non-discriminatory covariates are independent of the discriminatory charac-
teristics. If we think of gender as a discriminatory covariate, this is not necessarily
the case because, for instance, the waist to hip ratios naturally live on different
scales for different genders, but they may still have the same impact on health
related questions. This implies that non-discriminatory covariates may need pre-
processing w.r.t. discriminatory ones, such that the resulting measurements for
different discriminatory characteristics are comparable.
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7. Concluding remarks

We conclude that the aim of this paper has been to provide:

(a) an actuarial formulation of discrimination-free prices;
(b) a demonstration that the omission of discriminatory information may lead to

indirect discrimination in prices;
(c) a proposal for a simple formula that generates discrimination-free prices which

works regardless of the choice of the underlying model;
(d) methods that ensure unbiasedness of discrimination-free prices at the portfolio

level (the same considerations apply when transforming an actuarial tariff into
a commercial one); and

(e) a discussion on the role of available data in obtaining discrimination-free prices.

The starting point to this paper has been an actuarial one. We have intentionally
avoided a discussion on “fairness”, and, consequently, how fairness may be mea-
sured. For more on these topics, we refer to Kusner et al. [18] and the references
therein. Moreover, we have also not commented on which factors should be viewed
as discriminatory – this is a societal decision that goes far beyond our actuarial
discussion, see e.g. Avraham et al. [2]. We (only) provide tools to implement such
decisions.

We mention important points that have not been studied in this paper and which
need further scientific research. First, discrimination-free pricing may have systemic
implications, be they adverse or beneficial. For example, gender neutral pricing of
motor insurance may result in cheaper premiums for more dangerous (male) drivers
and vice versa, with the resulting incentives leading to a deterioration of aggregate
driving behavior. On the other hand, removing gender from car insurance pricing,
arguably calls for including other covariates that better represent the risks being
priced – ultimately the driving behavior. This is something within reach using
telematics data, notwithstanding associated privacy concerns. Another example
relates to the use of post-code information, which often correlates with ethnicity.
Here, discrimination-free pricing can prevent further penalization of ethnic groups
that have suffered historical injustices. The role of insurance in engineering socially
beneficial outcomes is yet another discussion we cannot engage with in this paper.
Another point worth commenting is whether discrimination-free pricing negatively
impacts portfolio mixes (by adverse selection). Such impacts may result in a worse
risk landscape of the industry, higher capital demands and, likely, higher premiums
for the whole society.

An issue worth stressing once again is that, in order to be able to calculate
discrimination-free prices, one needs to have access to all discriminatory charac-
teristics – otherwise it is not possible to properly adjust for the influence of such
characteristics. When it comes to gender, the availability of such data may be
feasible, but if we wanted to adjust for, e.g., religious beliefs or sexual orientation,
such information is in general not readily available. Customers may perceive it
as peculiar and intrusive to be approached with questions concerning this type of
apparently irrelevant (and sensitive) information. A concrete example is discussed
in De Jong and Ferries [8], where sexual preference is discussed as a risk factor
relating to AIDS; the authors also highlight the danger of obtaining untruthful
answers to questions around sensitive information, undermining the reliability of
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collected data. More broadly, collecting data on prohibited characteristics, as well
as measuring their predictive power, could itself be legally contested [23].

A key position taken in the present paper concerns the role of the overall price
prediction at portfolio level. We have argued that the aggregate price for the
portfolio may be calculated using all available information, including discriminatory
covariates. Given this, it is the allocation of this overall cost that may introduce
discrimination, and the discrimination-free pricing may be thought of as generating
an allocation that avoids this. From this perspective we know from the start that the
allocation is biased w.r.t. the underlying (best-estimate) portfolio risk profile. It is,
hence, of interest to analyze how this biased risk profile will affect the performance
of the overall portfolio price prediction.

The argumentation used in the present paper has focused directly on how to
obtain a discrimination-free price. This has led us to a procedure which tells us
how to adjust the best-estimate price to arrive at a discrimination-free price. In
a statistical sense, this could be seen as a “discrimination-free point estimate”. A
different line of thought instead could be that we try to develop a full statistical
model that is discrimination-free, i.e. sacrificing predictive performance by appro-
priately disregarding direct and indirect discrimination, this would result in a full
statistical model that provides discrimination-free responses. An example of this
approach in a life insurance context are the gender neutral intensities discussed in
Chen and Vigna [6]. The main reason for considering prices directly is that we
believe that this approach is closer to actuarial thinking, and because maximal pre-
dictive accuracy is a desirable feature in risk management, i.e. we may use the full
model for risk management purposes, but charge insurance prices according to its
discrimination-free counterpart.
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