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Abstract. Research in dementia diagnosis typically involves a range of
data modalities and also, the use of cognitive assessments, aiming at the
development of approaches that are non-invasive, time-saving and eco-
nomical. Given the existing diversity of prevalent cognitive assessment
factors it is useful to assess and exploit the effectiveness of such cognitive
features, while working towards the establishment of a methodology for
making informed choice of such factors in practical use. As an initial ap-
proach, this paper employs the powerful Fuzzy-Rough Feature Selection
(FRFS) technique to support such an analysis, by varying the underlying
similarity functions and search strategies employed by FRFS. Evaluated
on a benchmark from the renowned Alzheimer’s Disease Neuroimaging
Initiative repository, experimental results demonstrate the significance
and predictive capabilities of different cognitive assessments in working
with a variety of popular classifiers.
Keywords: Dementia, cognitive measure, fuzzy-rough feature selection

1 Introduction

Dementia can be generally described as a condition that impairs the regular cog-
nitive functions of the brain affecting memory, language, behaviour and the abil-
ity to carry out day-to-day tasks [1]. Primarily affecting the senior age group, be-
tween 60% and 70% of dementia cases are currently attributed to the Alzheimer’s

? Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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Disease (AD) [1]. Although no complete medical cure to this disease is currently
possible, successful diagnosis at as early stage as possible would facilitate the
use of symptom-slowing medication and enable the derivation of care plans to
preserve as high a quality of life as possible [2]. Obviously, this has significant
implications for economies, healthcare services and the public.

Research in dementia diagnosis typically covers a variety of data modalities,
ranging from basic patient information (e.g., demographics and medical his-
tory), through cognitive measures that assesses cognitive functions (e.g., mem-
ory, learning and language), to neuroimaging and other biomarkers (e.g., mag-
netic resonance imaging (MRI) scans and cerebrospinal fluid (CSF)). However,
biomarkers such as CSF, which are normally obtained with the classical method
of lumbar puncture, are typically invasive and costly. The use of imaging also
tends to be expensive [3] and time-consuming (with waiting lists up to 18 weeks
in England [4]).

These observations have given rise to alternative considerations by the use
of cognitive assessments. The acquisition of cognitive assessments is generally
time-efficient, cost-saving and non-invasive, as it just involves a series of pen-
and-paper tests and questions. Each of such assessment carries a score, which
is interchangeably termed cognitive assessment factor or cognitive feature here-
after. Yet, among numerous cognitive assessments available, there is no global
standard for what assessments are more appropriate to be applied to patients, as
reflected by different practices observed in recent literature [5,6], while the sepa-
rate use of such assessment factors individually also tends to perform poorly. For
instance, when considering only the Mini-Mental State Examination (MMSE)
[7], one of the most widely used assessment features, a mere less than 70% ac-
curacy is attainable even with the powerful support vector machine and neural
networks employed as the classifier. Fortunately, the use of multiple assessment
factors has generally been shown to provide a good indicator of AD in a number
of case studies [6].

In recognition of the potential of cognitive assessments, for effectively di-
agnosing dementia while being non-invasive, time-saving and economical, this
paper investigates the significance of typical prevalent cognitive features. This
is motivated with an aim to eventually offer a methodological approach to in-
forming the choices of which assessments to be combined to work with powerful
machine learning tools. It is carried out in an effort to improve the conduct of
AD, inspired by the observation of recent advances in applying machine learning
for successful applications in the healthcare industry [8,9]. In particular, the pop-
ular Fuzzy-Rough Feature Selection (FRFS) technique [10] is adopted herein as
the basis upon which to perform such an investigation. Note that whilst having
found successes in numerous problem domains, it is for the first time that FRFS
is exploited in support of performing AD.

The core for the implementation of FRFS includes a similarity function and
a search mechanism that it employs. As an initial examination in this important
area, the exploration of the potential significance and predictive capabilities of
cognitive assessment factors is therefore conducted by designing schemes that
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focus on three similarity functions and two search strategies. In particular, the
work evaluates the potential effects these core functionalities of FRFS may have
on the resulting feature subsets (that best describe characteristics which may
be utilised to perform cognitive assessment-based AD). To be complete, a brief
outline of FRFS is presented in Section 2, with the problem case or dataset
concerned being specified in Section 3. Then, experimental results are discussed
and the conclusions drawn in Sections 4 and 5, respectively.

2 Fuzzy-rough Feature Selection for Significance Analysis

Fuzzy-Rough Feature Selection (FRFS) provides a means by which discrete
and/or real-valued noisy data can be effectively reduced without requiring ad-
ditional information such as thresholds or domain-dependent knowledge [11]. It
is a natural extension to the original rough set-based feature selection methods
([12]). Being complementary to rough sets that are concerned with indiscernibil-
ity, fuzzy sets are concerned with vagueness. With many recent studies drawing
conclusions about the complementary nature of the two methodologies [10], the
hybridisation of both theories has established itself a popular choice in develop-
ing practically effective feature selection algorithms. Particularly, a fuzzy-rough
set is defined by two fuzzy sets, i.e., a fuzzy lower approximation and a fuzzy
upper approximation, obtained by extending the corresponding crisp rough set
notions, resulting in greater flexibility in handling uncertainty by allowing mem-
bership of elements in the range [0,1] instead of being simply either absolute
certainty or not at all exclusively.

For the present application problem of AD, without losing generality, let
IS = (U,A) be an information system for the dementia data under study, where
U is a nonempty finite set of patients (the universe) and A is a nonempty finite
set of attributes such that a : U→ Va for every a ∈ A, with Va being the set of
values that the attribute a may take. Generally speaking, for decision systems,
A = {C ∪ D}, where C is the set of conditional predictors and D contains a
single attribute d standing for the decision variable that indicates the diagnostic
outcome. The following defines the fuzzy lower and upper approximations:

µRBX(xi) = inf
xj∈U

I(µRB
(xi, xj), µX(xj)) (1)

µRBX(xi) = sup
xj∈U

T (µRB
(xi, xj), µX(xj)), (2)

where X is the (fuzzy) concept being approximated, I is a fuzzy implicator, T
is a t-norm, and RB is the fuzzy similarity relation induced by the subset of
features B, and xi, xj ∈ X are two arbitrary patients in X. In particular,

µRB(xi,xj) = Ta∈B{µRa
(xi, xj)} (3)

where µRa
(xi, xj) is the degree to which the patients xi and xj are similar for a

certain feature a ∈ A.
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FRFS then employs a quality measure termed the fuzzy-rough dependence
function γB(Q) to gauge the dependency degree between two sets of attributes
B and Q, which is defined by:

γB(Q) =

∑
x∈U µPOSRB

(Q)(x)

|U|
. (4)

In this definition, the following concept of fuzzy positive region is introduced:

µPOSRB
(Q)(x) = sup

X∈U/Q
µRBX(x), (5)

which contains all patients of U that can be classified into classes of U/Q using
the information in B. Therefore, γB(Q) may be viewed as a measure of quality
for a given feature subset B ∈ C, with respect to the decision attribute {d} (or
more generally, the set of decision features D): 0 ≤ γB(Q) ≤ 1, with γ∅(D) = 0.
A fuzzy-rough reduct R can then be defined as a subset of features that preserves
the dependency degree of the entire data set, i.e., γR(D) = γC(D).

Much has been done in the literature in order to establish an efficient method
for the evaluation of γR(D) (or simply, γR({d}) for the problem at hand).
Amongst the different approaches is the popular hill climbing-based FRFS algo-
rithm termed fuzzy-rough QuickReduct [10], which follows the original QuickReduct
algorithm that is based on exploiting rough sets alone. The implementation of
FRFS typically adopts a forward search strategy by adding to the current can-
didate feature subset a feature that leads to the highest fuzzy-rough dependency
improvement. It terminates when the addition of any remaining feature does not
result in an increase in the dependency measure. Being able to pick up features
that always contribute most to the dependency, the forward approach is able to
directly identify the most informative features, which could therefore be used to
examine the significance of cognitive features. Instead of utilising forward search,
backward search may also be used, which starts with the full set of features and
iteratively removes a feature that does not affect the dependency measure until
all features are examined. Either way, FRFS is utilised to assess the significance
of cognitive features iteratively.

Note that the choice of a specific similarity relation µRa
(xi, xj), which mea-

sures the degree to which the patients xi and xj are deemed similar with respect
to a certain feature a ∈ A, may have a direct impact on the convergence rate of
the QuickReduct algorithm, hence affecting what feature subset is to be finally
selected and returned. Naturally, this will in turn, affect the discriminative capa-
bility of the selected features for use as the input to a predictive modelling algo-
rithm or model subsequently. In general, when defining a similarity relation, three
basic properties should be satisfied: (i) reflexivity iff xi ∈ U, µRa(xi, xi) = 1; (ii)
symmetry iff xi, xj ∈ U, µRa(xi, xj) = µRa(xj , xi); and (iii) T -transitivity iff
xi, xj , xk ∈ U, µRa

(xi, xj) ≤ T (µRa
(xi, xk), µRa

(xk, xj)), where T is a T-norm,
e.g., a mapping T (a, b) : [0, 1] × [0, 1] → [0, 1]. As many functional relations
exist satisfying these properties and hence, many can act as such a similarity
measure. It is therefore, of great importance to examine the effectiveness and
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robustness of any candidate similarity relations for the potential adoption in a
given application. In particular, the following three computationally simple, and
popular, similarity relations [10] (termed Sim-1, Sim-2, Sim-3, respectively) are
herein to be explored for the AD problem:

µRa
(xi, xj) = 1− |a(xi)− a(xj)|

amax − amin
(6)

µRa(xi, xj) = exp

(
− (a(xi)− a(xj))

2

2σ2
a

)
(7)

µRa
(xi, xj) = max

(
min

(
a(xj)− (a(xi)− σa)

a(xi)− (a(xi)− σa)
,

(a(xi) + σa)− a(xj)

(a(xi) + σa)− a(xi)

)
, 0

)
(8)

where σ2
a is the variance of the feature a, and a(xi) is the value of a for the

object xi.
In short, in adopting FRFS to aid in improving the performance of AD,

the aforementioned two search strategies and three similarity functions will be
explored below.

3 Benchmark Data Set

The benchmark data used in this study is obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) repository. In order to lessen the potential
impact from multiple data modalities such as imaging and other biological fea-
tures, only patient information and cognitive assessment factors are considered.
The patient information includes Age, Gender, level of education (Edu), ethnic-
ity (Eth), race and marital status, as well as medical history of 19 items. Each
of the 19 historical items is the answer to a binary question as to whether the
patient has any specific historical issue in relation to psychological and neurolog-
ical disorders, e.g., smoking, drugs, and alcohol abuse. Additionally, information
on whether there is any close family member suffering from dementia (Father,
Mother, Siblings) is included.

Seven popular cognitive assessment factors [13] are selected, including: Alzheimer’s
Disease Assessment Scale 13 (ADAS13) that adds onto the checks for con-
centration, planning and executive functions; Mini-Mental State Examination
(MMSE) that covers the aspects of orientation, registration, attention, recall
and language; Rey Auditory Verbal Learning Test (RAVLT) that is made up of
several verbal trials considering various levels of memory and learning, includ-
ing scores from the immediate (RAVLT imdt), learning (RAVLT learn), delayed
memory (RAVLT forget) and the percentage result (RAVLT perc forget); Func-
tional Assessment Questionnaire (FAQ), that measures the levels of ability to
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accomplish tasks beyond the basic day-to-day needs; Montreal Cognitive Assess-
ment (MoCA) that assesses the cognitive domains including short-term memory
recall, visuospatial abilities, language and abstract reasoning; and the means of
the Logical Memory – Immediate Recall (LIMM) and Logical Memory – Delayed
Recall (LDEL).

Table 1. Partial statistics on benchmark data set

Age Edu ADAS13 MMSE RAVLT imdt RAVLT learn RAVLT forget RAVLT perc forget LDEL FAQ MoCA LIMM

count 950 950 941 950 945 945 945 941 949 945 127 950

mean 74.68 15.57 17.59 26.96 33.43 3.88 4.29 60.62 6.17 4.54 24.20 8.61

std 7.10 3.00 9.04 2.60 11.60 2.67 2.39 34.59 5.15 6.31 2.89 4.71

min 54.4 4 1 18 0 -4 -5 -100 0 0 17 0

25% 70.6 13 10.67 25 25 2 3 33.33 2 0 23 5

50% 74.8 16 16.67 28 32 4 4 62.5 5 1 24 8

75% 79.8 18 23.33 29 41 6 6 100 9 7 26 12

max 90.9 20 54.67 30 69 12 13 100 22 30 30 22

In total, 950 instances are extracted from ADNI, involving 38 independent
features, with the decision variable d representing the diagnosis. In particular,
the value of d = 229 indicates the diagnostic outcome being clinically normal
(CN), 188 being Alzhermier’s disease (AD), 402 being Late Mild Cognitive Im-
pairment (LMCI), and 131 being Early Mild Cognitive Impairment (EMCI).
For illustration, Table 1 shows partial statistical information obtained from the
full set of domain variables involved. They generally take values from the the
range of 0 to 100, which makes domain normalisation unnecessary (that would
otherwise potentially damage the interpretability of the resulting models) [14].

Note that a number of variables or features have missing values in certain in-
stances (including ADAS13(9), RAVLT imdt(5), RAVLT learn(5), RAVLT forget(5),
RAVLT perc forget(9), LDEL(1), FAQ(5), and MoCA(823), where a bracketed
figure indicates the number of missing values regarding the variable concerned),
but those listed in Table 1 do not contain any missing values. The missing val-
ues associated with cognitive assessment factors reflect the real-world scenarios.
That is, owing to the availability of numerous cognitive assessment features while
lacking a universal agreement on the selection of which to use, only a certain
subset of assessments are conducted for most patients, tailored by their local
healthcare providers. Instead of directly filling missing values with the mean of
the relevant variable, which would ignore any variations exhibited in other vari-
ables across different patients, in this study missing values are filled up using the
standard k-Nearest Neighbours (kNN) algorithm. In so doing, each missing fea-
ture value is imputed with the mean of the values from its k (k = 3 empirically)
nearest neighbours that have a value for the feature concerned.

4 Experimental Investigation

This section forms a major focus of the present work, presenting results of exper-
imentally investigating how FRFS may contribute towards assessing the signifi-
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cance of cognitive assessment factors. Being the first study of the use of FRFS in
support of AD, it reports on the selection results of feature subsets with FRFS,
followed by an evaluation of how effective the selected subsets may be in helping
with effective AD (which is itself carried out subsequently with a certain machine
learning-based classifier).

4.1 Feature Subsets Returned by FRFS

Following the generic approach as presented in Section 2, applying FRFS to
the dataset will lead to a subset of features to be returned, depending on what
combination of the similarity function and search strategy is to be exploited.

Table 2. Feature subsets by forward search (features listed in order of being selected)

Similarity
Function

Feature Subset

Sim-1 (To-
tal = 24)

MoCA, LDEL, MMSE, Age, Edu, FAQ, RAVLT forget, LIMM,
RAVLT learn, ADAS13, RAVLT imdt, MH10GAST, MH16SMOK,
MH12RENA, MH9ENDO, MH13ALLE, FHQMOM, MH3HEAD,
MH2NEURL, MH7DERM, RAVLT perc forget, MH8MUSCL,
MH17MALI, MHPSYCH

Sim-2 (To-
tal = 20)

MoCA, LDEL, MMSE, Age, RAVLT forget, Edu, FAQ, RAVLT learn,
LIMM, RAVLT imdt, ADAS13, FHQMOM, MH3HEAD, MH10GAST,
MH2NEURL, MH13ALLE, RAVLT perc forget, MH4CARD, PTGEN-
DER, Eth

Sim-3 (To-
tal = 9)

MoCA, LDEL, MMSE, Age, Edu, RAVLT forget, FAQ, RAVLT learn,
RAVLT imdt

Table 2 lists the feature subsets obtained by searching in a forward manner,
with respect to the use of different similarity measures. This search mechanism
adds individual selected features, one at a time, on to the emerging feature
subset that currently contributes the most to the dependency measure. The use
of different similarity functions is expected to affect the selection of features
and how quickly the fuzzy-rough QuickReduct algorithm converges, leading to
eventual feature subsets of different sizes. In particular, Sim-3 only picks up
nine out of the 38 conditional attributes, whilst Sim-1 and Sim-2 selects 20
and 24 features, respectively. Interestingly, note that the use of either of these
three similarity functions results in the selection of exactly the same first four
features, i.e., MoCA, LDEL, MMSE and Age. In addition, of the nine features
selected by Sim-3, seven are cognitive assessment factors which form a subset
of those returned by Sim-1 or Sim-2. Both feature subsets returned via the
use of Sim-1 and Sim-2 include all available cognitive assessments, but they
differ in terms of certain selected features that reflect medical histories (variables
starting with ‘MH’ in the table). These results reflect the significance of cognitive
features, given their being selected by FRFS while leading to the most gains in
the dependency measure.

Similarly, Table 3 lists the feature subsets returned by FRFS through search-
ing backwards (which works by eliminating features iteratively that do not affect
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Table 3. Feature subsets by backward search (no order between features kept)

Similarity
Function

Feature Subset

Sim-1 (To-
tal = 26)

Age, Gender, Edu, Eth, PTMARRY, MHPSYCH, MH3HEAD, MH4CARD,
MH5RESP, MH7DERM, MH8MUSCL, MH9ENDO, MH11HEMA,
MH12RENA, MH13ALLE, MH16SMOK, MH17MALI, MH18SURG,
MH19OTHR, FHQMOM, FHQSIB, ADAS13, MMSE, RAVLT imdt,
RAVLT learn, LDEL

Sim-2 (To-
tal = 23)

Age, PTGENDER, Edu, PTMARRY, MHPSYCH, MH2NEURL,
MH3HEAD, MH4CARD, MH5RESP, MH7DERM, MH8MUSCL,
MH9ENDO, MH10GAST, MH11HEMA, MH12RENA, MH13ALLE,
MH14ALCH, MH16SMOK, MH17MALI, FHQMOM, FHQSIB, ADAS13,
RAVLT imdt

Sim-3 (To-
tal = 20)

Age, PTGENDER, Edu, PTRACCAT, MHPSYCH, MH2NEURL,
MH3HEAD, MH4CARD, MH5RESP, MH7DERM, MH8MUSCL,
MH9ENDO, MH10GAST, MH11HEMA, MH12RENA, MH13ALLE,
MH17MALI, MH18SURG, FHQMOM, FHQSIB

the overall dependency measure). Note that whilst the size of the selected fea-
ture subsets has increased slightly for cases where Sim-1 and Sim-2 are utilised,
as compared to the use of forward search, it has expanded the size of selected
subset significantly for Sim-3 from nine to 20. More importantly perhaps, the
features selected by Sim-1 and Sim-2 in this case only include four and two
cognitive assessment features respectively (which are all included in the subsets
obtained by forward search). This performance is a deterioratation from that
observed for the case using Sim-3, having none of the cognitive features included
(but has seven selected using forward search). Such a result is obtained in de-
spite of the fact that in implementation, cognitive assessment factors have been
deliberately positioned at the rear of the full feature set so that they become
the features to be first tested by the backwards approach. From these results,
it may be conjectured that the removal of a single cognitive feature may not
deteriorate the overall discrimination capability of an existing collection that
contains a majority of other features.

Summarising the results discussed above, the following observation can be
attained: Although feature subsets returned by backward search are computa-
tionally equivalent, in achieving the best dependency degree between the con-
ditional attributes and the decision attribute d, to those obtained by forward
search, the use of backward approach tends to keep non-cognitive features while
the use of forward approach tends to return cognitive features. This empirically
gained insight offers an opportunity to examine further the discriminative per-
formances of the selected feature subsets as input to the predictive models that
implement the task of AD, as to be reported next.

4.2 Performance Evaluation of Selected Feature Subsets for AD

In order to evaluate the effectiveness and robustness of the feature subsets re-
turned by FRFS (six different ones in the problem currently investigated), a
range of popular machine learning-based classification models are applied (which
are obtained from the WEKA machine learning toolkit [15]), including: the Naive
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Bayes (NB), the simple Logistic Regression (LR), the Multi-Layer Perceptron
(MLP), the K-Nearest Neighbours (K=3), the crisp classification rule learning
algorithm JRip, the Random Forest (RF), the C4.5 Decision Tree and the Sup-
port Vector Machine (SVM), all with their respective default parameter settings
as commonly adopted in the literature.

In the absence of testing data for performance evaluation, stratified tenfold
cross-validation (10-CV) is employed for result validation. In 10-CV, a given data
set is partitioned into ten subsets. Of the ten, nine subsets are used to carry
out training (to generate the required rule base for building the classification
system), and the remaining single subset is used as the testing data for assessing
the learned classifier’s performance. This process is randomly repeated for ten
times to lessen the impact of any random factors, with the results of the 10 ×
10 cross-validations averaged to produce the final outcome.

Table 4. Performance comparison on accuracy (%) and training time (s)

No FS Forward+Sim-1 Forward+Sim-2 Forward+Sim-3
Algorithms Accuracy Time Accuracy Time Accuracy Time Accuracy Time

NB 82.66 ± 3.91 0.01 82.06 ± 3.92 0 82.62 ± 3.94 0 83.63 ± 3.77 0
LR 82.67 ± 3.81 0.86 82 ± 3.86 0.6 82.33 ± 4.26 0.59 82.08 ± 3.94 0.53

MLP 76.11 ± 4.34 4.66 78.82 ± 3.98 2.28 82.8 ± 4.23 1.79 85.47 ± 4.18 0.73
IBK-3 48.32 ± 4.97 0 51.58 ± 4.93 0 60.49 ± 4.1 0 80.14 ± 3.91 0
JRip 89.39 ± 3.08 0.17 89.43 ± 3.17 0.11 89.42 ± 2.99 0.1 89.78 ± 3.02 0.06
RF 86.53 ± 3.75 0.08 87.72 ± 3.2 0.07 88.35 ± 3.21 0.06 89.4 ± 3.06 0.05

C4.5 88.88 ± 3.29 0.04 88.87 ± 3.12 0.03 88.46 ± 3.17 0.03 89.32 ± 3.44 0.01
SVM 79.98 ± 3.59 0.19 79.39 ± 3.81 0.11 80.01 ± 3.81 0.07 81.17 ± 3.83 0.02

Average 79.318 0.751 79.984 0.400 81.810 0.330 85.124 0.175

Table 4 presents the performance of employing different feature subsets re-
turned through forward search by FRFS. In comparison to the original bench-
mark that does not involve feature selection (FS), Sim-1 achieves four better and
four worse performances out of eight classifiers. Notably, results by Sim-2 and
Sim-3 beat the benchmark with six and seven better results, respectively. With
all three subsets achieving a better averaged performance over the benchmark,
these experimental studies clearly demonstrate the effectiveness of the use of
fuzzy-rough QuickReduct algorithm implemented with forward search. Interest-
ingly, both Sim-1 and Sim-2 have included all 10 cognitive assessment features.
The most impressive case is however, the one returned by Sim-3, which consists
of only nine features with seven of which being cognitive assessment factors; it
beats the benchmark with a large margin. These observations collectively reflect
the effectiveness of cognitive features in working with a variety of classifiers.

Showing a rather different trend, Table 5 presents the performance of features
subsets returned through backwards search. It can be seen that these feature
subsets significantly underperform in comparison to those attained by forward
search. Despite there are more features included in each of the selected subset
via the backward approach, fewer cognitive features are chosen. As such, the lack
of cognitive assessment factors has remarkably deteriorated the resulting clas-
sification performance. Particularly, Sim-3 has been the top performer amongst
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the alternatives with nine features when forward search is applied; now it only
performs slightly better than random guess with around 20 features (but none
of which are cognitive assessment factors).
Table 5. Performance comparison (cont’d) on accuracy (%) and training time (s)

No FS Backward+Sim-1 Backward+Sim-2 Backward+Sim-3
Algorithm Accuracy Time Accuracy Time Accuracy Time Accuracy Time

NB 82.66 ± 3.91 0.01 73.82 ± 4.24 0 62.68 ± 4.74 0 40.99 ± 3.76 0
LR 82.67 ± 3.81 0.86 78.75 ± 3.85 0.69 61.35 ± 4.16 0.54 42.44 ± 2.91 0.51

MLP 76.11 ± 4.34 4.66 71.27 ± 4.81 2.56 52.41 ± 5.03 2.08 36 ± 5.34 1.79
IBK-3 48.32 ± 4.97 0 46.22 ± 4.93 0 37.79 ± 4.4 0 33.98 ± 4 0
JRip 89.39 ± 3.08 0.17 83.31 ± 3.72 0.16 62.12 ± 4.5 0.19 42.52 ± 3.23 0.16
RF 86.53 ± 3.75 0.08 79.15 ± 3.61 0.08 60.25 ± 5.12 0.09 37.27 ± 4.56 0.1

C4.5 88.88 ± 3.29 0.04 82.2 ± 3.76 0.03 58 ± 4.84 0.04 34.43 ± 4.18 0.04
SVM 79.98 ± 3.59 0.19 75.34 ± 4.26 0.17 60.84 ± 4.75 0.21 42.32 ± 0.42 0.16

Average 79.318 0.751 73.758 0.461 56.930 0.394 38.744 0.345

Examining the results more closely, with just four cognitive features selected
using the similarity function Sim-1, better classification performance can be
achieved than using the subset returned by Sim-2 that involves just 2 cognitive
features, whilst the latter beats the use of those features selected through the
use of Sim-3 that does not include any cognitive features. Once again, these re-
sults demonstrate the effectiveness of cognitive features in offering discriminating
power in support of the diagnosis of AD. From the perspective of runtime over-
heads, it is not surprising to observe that the training time required is reduced
using a smaller feature subset, as consistently shown across all experiments. This
brings forward an additional benefit of utilising FRFS in assessing the signifi-
cance of cognitive assessment features.

Overall, the experimental investigations carried out so far demonstrate the
effectiveness and stability of FRFS, implemented with the forward searching ap-
proach. This conforms to the findings of applying it to other problem domains
(e.g., [16] for an engineering application), because it always aims to select the
most informative features first (albeit one at a time). However, for FRFS with
backward search, its working is not only affected by the order of the original
features listed, the sequential test and removal strategy applied does not guar-
antee most effective features to be retained in the final subset (even though the
resultant feature subset is able to achieve the equally best dependency measure
as that produced by the version with forward search). Very importantly, the
above experimental studies also highlight the ineffectiveness of those features
expressed in terms of medical histories and personal demographics. This may be
because such features are indicative of risk factors but not necessarily relating to
AD. However, the significance of cognitive assessment factors is clearly shown: A
feature subset of just nine factors selected contains seven cognitive ones, while it
leads to robust and consistent performance, with best results achieved for seven
out of eight learning classifiers examined.

5 Conclusion

In order to identify the significance of cognitive assessment factors in support
of performing dementia diagnosis, which are non-invasive, time-saving and eco-
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nomical, this paper has presented an initial exploring application of Fuzzy-Rough
Feature Selection, by varying the similarity functions and search strategies that
it may employ. It has been empirically shown that the use of different simi-
larity functions and/or search strategies will result in different feature subsets,
which in turn, may play different roles while working in conjunction with differ-
ent learning classifiers for dementia diagnosis. Particularly, experimental studies
have demonstrated the significance of using cognitive assessment features as in-
formative features for the decision-making tasks concerned.

Whilst promising, much can be done to further improve this work. For in-
stance, it would be interesting to examine in more details about the poten-
tial of involving multiple cognitive assessment factors in an effort to generate
a standardised assessment mechanism that would reinforce their discriminating
capability for practical use. Another significant piece of future work is to ex-
ploit advanced knowledge interpolation techniques [17], in an attempt to work
with missing values that commonly exist in many real-world problem domains,
including the problem of dementia diagnosis.
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