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Rule Base Structure and Influence of Existing Rules:    

An Initial Investigation 

Changhong Jiang, Changjing Shang and Qiang Shen 

Department of Computer Science, Aberystwyth University, UK 
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Abstract. Fuzzy rule interpolation (FRI) provides an interpretable decision 

while making inference with a sparse rule base. The common FRI theories pos-

tulate that more existing rules involved can derive better reasoning outcomes. 

However, certain empirical results show that a large number of rules involved 

may adversely lead to worsening outcomes. The objective of this work is to es-

tablish a mathematical mapping of the structural pattern of a given fuzzy rule 

base for use in FRI, such that the original rule base can be effectively described 

and analysed. The resulting mathematically mapped pattern helps to produce a 

theorem which determines the upper limit of the number of rules required to 

perform FRI. The experimental investigations carried out so far demonstrate 

that the number of required rules, which can result in the best interpolative out-

comes, obeys the theorem proposed by this work. 

Keywords: Fuzzy Rule Interpolation (FRI), Rule Base Structure, Mapping, 

Upper Limit of Rule Number. 

1 Introduction 

Fuzzy reasoning was first introduced by Zadeh [1] in 1965. Then, in 1973, an innova-

tive approximate reasoning method, termed Compositional Rule of Inference (CRI) 

was proposed by Zadeh [2], which has been used wildly since and which is still the 

most popular principled way to conduct approximate inference. In 1975, Mamdani 

and Assilian [3] applied CRI to the control of boilers and steam engines for the first 

time and obtained impressive results. Following that, Tsukamoto [4] improved the 

approach and presented a mathematical formulation for reasoning with rules involv-

ing multidimensional antecedents in 1979. In order to generalise Fuzzy Rule-Based 

Systems (FBRS) capable of addressing multidimensional problems, Sugeno and Tak-

agi [5] proposed a new tool via linear functional regression between antecedents and 

consequents in 1983, and subsequently extended it in 1985 [6]. 

In 1993, Koczy and Hirota [7] [8] proposed a linear fuzzy rule interpolation infer-

ence mechanism to solve the problem of fuzzy inference under the condition of hav-

ing a sparse fuzzy rule base. By introducing the use of Euclidean distance measures to 

describe the similarity degree of the fuzzy sets, when the inference premise falls on 

the gap between two rule antecedents in the rule base, a fuzzy conclusion can be 

mailto:cns@aber.ac.uk
mailto:qqs%7d@aber.ac.uk


computed using the linear interpolation principle. The notion of a sparse fuzzy rule 

base means that a given observation may not match any existing rule in the given rule 

base, that is, it is an incomplete knowledge base without covering the full problem 

domain concerned. Koczy and Hirota’s method (KH) plays a very important role in 

performing approximate inference for such situations. Since then, many significant 

developments have been made, presenting a diverse range of potentially effective 

fuzzy rule interpolation (FRI) tools.  

Particularly, Huang and Shen [9] proposed an FRI method (HS) based on the ex-

ploitation of the centre of gravity of fuzzy sets, resolving the convexity problem that 

previous techniques fail to deal with (to ensure that convex inputs lead to convex 

outputs). In order to address interpolation with fuzzy rules that involve complex poly-

gon, Gaussian or other bell-shaped fuzzy membership functions, they also proposed a 

method via scale and move transformations [10], which was then refined for practical 

use in 2008 [11]. This approach works by first creating a new rule from two nearest 

neighbouring rules, and then using scale and move transformations to derive the con-

clusion. However, these and indeed almost all common FRI methods suppose that the 

antecedent attributes of the rules are equally significant in the implementation of in-

terpolation, which can lead to inaccurate or even incorrect interpolative results.  

By combining feature selection techniques [12]-[14] a range of FRI methods have 

been put forward [15]-[17] to reflect the different levels of significance in different 

domain attributes or rules. For instance, Li et al. [18] proposed a feature ranking-

guided FRI mechanism using the HS method as its basis. This work has been general-

ised through enhancing two alternative representative FRI methods also. The resultant 

weighted FRI algorithms facilitate the individual attribute weights to be integrated 

throughout the corresponding procedures of the conventional unweighted methods. 

With systematical comparative evaluations over benchmark classification problems, it 

is empirically demonstrated that these weighted FRI algorithms work effectively and 

efficiently, using just two nearest neighbouring rules [19]. 

However, the aforementioned approaches to FRI work by always focusing on the 

existing rules individually. There does not exist any reasonable theory to describe and 

analyse the underlying FRI techniques, from the perspective of rule space structure 

and the distribution of the rules in the given rule base. Besides, there is an interesting 

observation, on the contradiction between the theories and experimental results, that 

involving more rules for interpolation may make the interpolated outcomes worse. 

Therefore, it is desirable to develop an appropriate mathematical model to describe 

the process of FRI, and to analyse the existing approaches in a mathematically rigor-

ous and systematic manner. This paper serves an initial attempt to establish such a 

generic theoretical FRI approach.  

The remainder of this paper is organised as follows. Section II reviews the relevant 

background of FRI in general and the transformation-based FRI (T-FRI) in particular, 

upon which to develop the proposed work. Section III describes the mathematical 

representation from the viewpoint of rule space structure. Section IV shows the results 

of experimental evaluation. Section V concludes the paper and points out issues for 

further research. 

 



 

2 Background 

For academic completeness, an outline of the key concepts that form the foundations 

for the present development is given here, covering the generic task of any FRI meth-

od and a specification of the Transformation-Based Fuzzy Rule Interpolation (T-FRI) 

mechanism. 

 

2.1 Generic Task of FRI 

Fuzzy Rule-Based Systems (FBRS) can each be essentially represented by two key 

elements： 

• A nonempty finite set of domain attributes 𝐷 = 𝐴 ∪ 𝐶 , where 𝐴 = {𝐴𝑗| 𝑗 =

1,2, … , 𝑚} represents the set of antecedent attributes and 𝐶 = {𝐶𝑗| 𝑗 = 1,2, … , 𝑚} 

stands for the consequent attribute. 

• A nonempty set of finite fuzzy rules 𝑅 = ⋃ {𝑟𝑖 : 𝐴𝑖  →  𝐶𝑖}
𝑛
𝑖=1 , where 𝑛 is the num-

ber of the fuzzy rules. 

In a conventional FRI method, a given rule 𝑟𝑖 ∈ 𝑅 can be described as follows: 

𝑟𝑖: If 𝑎1 is 𝐴𝑖
1 and 𝑎2 is 𝐴𝑖

2 and … and 𝑎𝑚 is 𝐴𝑖
𝑚 

     Then 𝑐 is 𝐶𝑖 

where 𝐴𝑖
𝑗
 represents the value of the antecedent attribute 𝑎𝑗 in the rule 𝑟𝑖 , and 𝐶𝑖 de-

notes the value of the consequent attribute 𝑐 in 𝑟𝑖 . 

FRI is a method for computing the consequent given a novel observation that does 

not match the antecedent of any rule within the rule base. This is generally imple-

mented through linear interpolative manipulation of certain rules in the rule base, 

guided by the observation. In other words, if there is an observation 𝑜∗ which can be 

generally expressed as: 

𝑜∗: 𝑎1 is 𝐴∗
1 and 𝑎2 is 𝐴∗

2 and … and 𝑎𝑚 is 𝐴∗
𝑚 

and which does not match any rule 𝑟𝑖 ∈ 𝑅, the aim of FRI is to construct a suitable 

consequent 𝐶∗ by linearly interpolating the consequents 𝐶𝑖 ∈ 𝐶 of a certain subset of 

the existing rules 𝑟𝑖 ∈ 𝑅 whose antecedents are closest to the observation, in an effort 

to derive the consequence of the given observation 𝑜∗. 

   

2.2 Transformation-Based FRI 

T-FRI [10] is arguably the most advanced and popular TFR method [20] that imple-

ments the generic task of FRI by four steps: 

1. Selection of Closest Rules 

This procedure searches for a certain number of rules that are the closest to the given 

(unmatched) observation. The distance between any two rules 𝑟𝑝 , 𝑟𝑞 ∈ 𝑅 (or observa-



tion 𝑜∗) is determined by computing the aggregated distances between every corre-

sponding values of the shared attributes between them. 

𝑑(𝑟𝑝 , 𝑟𝑞) =
1

√𝑚
√∑ 𝑑(𝐴𝑝

𝑗
, 𝐴𝑞

𝑗
)2𝑚

𝑗=1                                       (1) 

𝑑(𝐴𝑝
𝑗

, 𝐴𝑞
𝑗

) =
|𝑅𝑒𝑝(𝐴𝑝

𝑗
)− 𝑅𝑒𝑝(𝐴𝑞

𝑗
)|

𝑚𝑎𝑥𝐴𝑗
− 𝑚𝑖𝑛𝐴𝑗

                                          (2) 

where 𝑚𝑎𝑥𝐴𝑗
 and 𝑚𝑖𝑛𝐴𝑗

 denote the maximal and minimal value of the attribute 𝑎𝑗 

respectively, and the notation 𝑅𝑒𝑝(𝐴) is termed the representative value of the fuzzy 

set 𝐴. 𝑅𝑒𝑝(𝐴) captures the key information reflected by the overall location of 𝐴 in its 

domain and the geometric shape of 𝐴. Normally, for an arbitrary polygonal fuzzy set 

𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛), the representative value 𝑅𝑒𝑝(𝐴) is defined as 

𝑅𝑒𝑝(𝐴) = ∑ 𝜔𝑖
𝑛
𝑖=1 𝑎𝑖                                                (3) 

where 𝜔𝑖 denotes the weight assigned to the vertex 𝑎𝑖 per 𝑖. Therefore, the 𝑛 closest 

rules to 𝑜∗ can be identified as those rules leading to the 𝑛 smallest values of this 

distance measure between the representative value of the observation and that of the 

antecedent of a certain rule taken from the rule base.  

2. Construction of Intermediate Fuzzy Rule 

From the preceding procedure, 𝑛 closest rules to a given observation 𝑜∗ can be chosen 

which have the shorter distances than the rest of all the rules to 𝑜∗. From this, an in-

termediate fuzzy rule 𝑟′  can be constructed as the beginning of the transformation 

process.  

The constructed intermediate rule is described as follows: 

𝑟′: If 𝑎1 is 𝐴′
1 and 𝑎2 is 𝐴′

2 and … and 𝑎𝑚 is 𝐴′
𝑚 

   Then 𝑐 is 𝐶′ 

which is a weighted aggregation of the 𝑛 closest rules. Normally, the weight for every 

attribute is set as: 

𝜔𝑖
𝑗

=
1

1+𝑑(𝐴
𝑖
𝑗

,𝐴∗
𝑗

)
                                                     (4) 

3. Computation of Scale and Move Factors 

The goal of this step is to obtain the scale rate 𝑠𝐴𝑗
 and move ratio 𝑚𝐴𝑗

, so that the 

transformed shape and representative value of the intermediate fuzzy set 𝐴′
𝑗
 coincide 

with those of the observed value 𝐴∗
𝑗
. 

4. Scale and Move Transformation 

After calculating the necessary scale and move factors, the final step is using them 

(through linear mapping) to derive the required consequent of 𝐶∗ 

Note that in this initial investigation of producing a mathematically rigorous model 

for T-FRI, only Steps 1 and 2 as described above are of direct relevance (and hence, 

Steps 3 and 4 are just roughly described). More technical details regarding T-FRI can 

be checked in [10]. 



 

3 Rule Space Structure in T-FRI  

During this process of performing interpolative reasoning, all involved rules 𝑟𝑖 ∈ 𝑅 

are decided by Step 1 shown in Section 2.2, which are then treated individually. As 

each existing rule includes certain information in support of the construction of the 

intermediate rule, it seems that the more rules involved, the better result may be ob-

tained. In the present work, such hypothesis and observation are investigated theoreti-

cally. However, as experimental results already shown in [18][19], this is often not 

necessarily the case. 

3.1 Rule Space Mapping 

To analyse the structure of the rule space 𝑅 , mapping 𝑅  onto an isomorphic data 

space 𝑅𝐷 offers a natural approach. Motivated with this recognition of the potential of 

having such a mapping, let each rule 𝑟𝑖  or observation 𝑜∗ be mapped onto a hyper 

point with 𝑚 dimensions, i.e., 

𝑟𝑖{𝑎1, 𝑎2, … , 𝑎𝑚} ∈ 𝑅 → 𝑟𝐴𝑖
(𝐴𝑖

1, 𝐴𝑖
2, … , 𝐴𝑖

𝑚) ∈ 𝑅𝐷  

𝑜∗{𝑎1, 𝑎2, … , 𝑎𝑚} → 𝑜𝐴∗
(𝐴∗

1, 𝐴∗
2, … , 𝐴∗

𝑚) 

where 𝑎𝑗 represents the antecedent attribute in the rule 𝑟𝑖  and 𝐴𝑖
𝑗
 represents the value 

of 𝑎𝑗. Then, the mapping 𝑟𝑖 →  𝑟𝑖𝐷  and 𝑜∗ → 𝑜∗D can be shown correspondingly, as 

𝑟𝑖𝐷: If 𝑟𝑖{𝑎1, 𝑎2, … , 𝑎𝑚} → 𝑟𝐴𝑖
(𝐴𝑖

1, 𝐴𝑖
2, … , 𝐴𝑖

𝑚) 

       Then 𝑐 is 𝐶𝑖 

𝑜∗D: 𝑜∗{𝑎1, 𝑎2, … , 𝑎𝑚} → 𝑜𝐴∗
(𝐴∗

1, 𝐴∗
2, … , 𝐴∗

𝑚) 

Obviously, the two mappings are both bijections. Thus, the data space 𝑅𝐷 = {𝑟𝐴𝑖
| 𝑖 =

1,2, … , 𝑛} is an isomorphic space of the original rule space 𝑅.Consider a pair of rules 

𝑟𝑝 , 𝑟𝑞 ∈ 𝑅 (𝑟𝑝𝐷 , 𝑟𝑞𝐷 ∈ 𝑅𝐷  ), 

𝑑(𝑟𝑝𝐷 , 𝑟𝑞𝐷) = 𝛾𝑑 (𝑟𝐴𝑝
, 𝑟𝐴𝑞

) = 𝛾√∑ |𝑅𝑒𝑝(𝐴𝑝
𝑗

) −  𝑅𝑒𝑝(𝐴𝑞
𝑗

)|
2𝑚

𝑗=1
 

= 𝛾√∑ 𝑑(𝐴𝑝
𝑗

, 𝐴𝑞
𝑗

)2𝑚
𝑗=1 = 𝛾 𝑑(𝑟𝑝 , 𝑟𝑞)              (5) 

where 𝛾 is a constant defined by 𝑚, 𝑚𝑎𝑥𝐴𝑗
 and 𝑚𝑖𝑛𝐴𝑗

, according to Eqn. (1) and Eqn. 

(2), such that  

𝛾 =
1

√𝑚(𝑚𝑎𝑥𝐴𝑗
−𝑚𝑖𝑛𝐴𝑗

)
                                                   (6) 

Therefore, the distance measure between the two representations of an individual rule 

in the two spaces remains the same. This means that the 𝑛 rules to be selected for use 

in T-FRI within Step 1 are to be the same in both spaces. 



3.2 Rules with One Antecedent Attribute 

Consider the simplest circumstance first, where every hyper point 𝑟𝐴𝑖
 is only of one 

dimension. In this case, all points 𝑟𝐴𝑖
∈  𝑅𝐷  are distributed in a one-dimensional axis 

and can be represented as: 

𝑟𝐴𝑖
(𝐴𝑖) 

For simplicity, the hyper points 𝑟𝐴𝑖
∈  𝑅𝐷 are also interchangeably called rules below, 

because the data space 𝑅𝐷  is an isomorphic space of the original rule space 𝑅  as 

shown previously. 

As the intermediate rule is a weighted aggregation of the 𝑛 closest rules (as per 

Step 2 in Section 2.2), the intermediate rule 𝑟𝐴′
(𝐴′) can be denoted by 

𝑟𝐴′
(𝐴′) = ∑ 𝜔𝑖𝑟𝐴𝑖

(𝐴𝑖)
𝑛
𝑖=1                                           (7) 

where 𝜔𝑖 is the weight of the attribute and 0 ≤ 𝜔𝑖 ≤ 1. It is straightforward to envi-

sion that the intermediate rule 𝑟𝐴′
 always lies between the maximal selected rule 

max 𝑟𝐴𝑖
 (i.e., the selected one that is farthest to the observation) and the minimal se-

lected rule min 𝑟𝐴𝑖
 (i.e., the one nearest to the observation). Let 

𝑟𝐴′′
= ∑ 𝜔𝑖𝑟𝐴𝑖

𝑛+1
𝑖=1                                                 (8) 

𝑑(𝑟𝐴𝑛+1
, 𝑟𝐴′′

) = 𝐴𝑛+1 − ∑ 𝜔𝑖𝐴𝑖

𝑛+1

𝑖=1

= 𝐴𝑛+1 − ∑ 𝜔𝑖𝐴𝑖

𝑛

𝑖=1

− 𝜔𝑛+1𝐴𝑛+1 

= 𝑑(𝑟𝐴𝑛+1
, 𝑟𝐴′

) − 𝜔𝑛+1𝐴𝑛+1 < 𝑑(𝑟𝐴𝑛+1
, 𝑟𝐴′

)                        (9) 

Therefore, every selected rule 𝑟𝐴𝑖
 is to pull the intermediate rule 𝑟𝐴′

 towards itself. 

Thus, there are just two situations to address: 

• The distribution of hyper points is uniform. 

• The distribution of hyper points is uneven. In other words, there exist certain clus-

ters of such points. 

These two different circumstances are discussed separately below. 

For Uniform Space 

For a uniformly distributed hyper data space 𝑅𝐷, the distances between every pair of 

neighbouring rules are approximately same. Formally, consider such a rule base to-

gether with the observation 𝑜∗, the relationship of the 𝑛 closest rules 𝑟𝐴𝑖
, the interme-

diate rule 𝑟𝐴′
 and the observation 𝑜𝐴∗

 can now be shown as: 

min 𝑟𝐴𝑖
< ⋯ < 𝑟𝐴′

< ⋯ < 𝑜𝐴∗
< ⋯ < max 𝑟𝐴𝑖

 

or 

min 𝑟𝐴𝑖
< ⋯ < 𝑜𝐴∗

< ⋯ < 𝑟𝐴′
< ⋯ < max 𝑟𝐴𝑖

 

Thus, if the distribution of the rule base is uniform, two closest neighbouring rules are 

sufficient to compute an appropriate intermediate rule. From this, it can be readily 

derived that if there are the same number of rules chosen from both sides of the 

emerging intermediate rule 𝑟𝐴′
, the result will be approximately the same to the result 

that only two rules are chosen. This means that in this situation, the rules (except the 



 

two closest neighbouring rules) have limited contribution to the construction of the 

intermediate rule and hence, to the computation of the eventual interpolated result. 

An alternative derivation to the above can be obtained when the rule base is uni-

formly distributed. That is, if more neighbouring rules are chosen from one side of the 

observation than from the other, the intermediate rule will deviate from the neutrally 

appropriate position, biasing towards the side where more rules are selected. 

For Uneven Space 

For an uneven data space 𝑅𝐷, where the distances between every pair of neighbouring 

rules in the same cluster are much closer than those between pairs of rules taken from 

different clusters. If the observation 𝑜∗ falls into a cluster, the relationship of the 𝑛 

closest rules 𝑟𝐴𝑖
, the (emerging) intermediate rule 𝑟𝐴′

 and the observation 𝑜𝐴∗
 can then 

be dealt with in the same way as above, artificially treating that particular rule cluster 

as the given rule base.  

If however, 𝑜∗ dose not fall into any cluster, the relationship can be shown as: 

min 𝑟𝐴𝑖
< ⋯ < 𝑟𝐴′

< ⋯ < max 𝑟𝐴𝑖
< 𝑜𝐴∗

 

or 

𝑜𝐴∗
< min 𝑟𝐴𝑖

< ⋯ < 𝑟𝐴′
< ⋯ < max 𝑟𝐴𝑖

 

Thus, if the distribution of hyper points is uneven, two nearest neighbouring rules are 

also sufficient to produce an appropriate intermediate rule (as extrapolation rather 

than interpolation, of course). If there are too many rules having been chosen, one 

from each of the many nearest clusters, the intermediate rule 𝑟𝐴′
 may be too far away 

from max 𝑟𝐴𝑖
 (or min 𝑟𝐴𝑖

), causing it may be too far away from the observation 𝑜𝐴∗
to 

implement reasonable extrapolation.  

As a summary, for models involving rules that only have one antecedent attribute, 

given the hyper data space 𝑅𝐷 = {𝑟𝐴𝑖
(𝐴𝑖)| 𝑖 = 1,2, … , 𝑛}, selection of two closest 

neighbouring rules is sufficient to produce an appropriate intermediate rule. Employ-

ment of more rules may have limited contribution in the construction of the interme-

diate rule, or even cause the quality of the intermediate rule to decay. 

3.3 Rules with 𝒏 Antecedent Attributes 

Consider a specific case under this situation to start with: where all hyper points 𝑟𝐴𝑖
∈

 𝑅𝐷  have two dimensions. Thus, the hyper points can be denoted as: 

𝑟𝐴𝑖
(𝐴𝑖

1, 𝐴𝑖
2) 

Further, consider the most special circumstance, where every hyper point 𝑟𝐴𝑖
 is only 

concerned with one dimension, such that 

𝑟𝐴𝑖
∈ {𝑟𝐴𝑖

|(𝐴𝑖
1, 0) 𝑜𝑟 (0, 𝐴𝑖

2)} 

Under such assumptions, based on the summary presented in the preceding section, to 

create the intermediate rule 𝑟𝐴′
(𝑋, 𝑌), only two closet rules 𝑟𝐴𝛼

(𝐴𝛼
1 , 0) and 𝑟𝐴𝛽

(𝐴𝛽
1 , 0) 

are necessary in order to construct the dimension 𝐴′
1 of the intermediate rule 𝑟𝐴′

 there-

by obtaining 𝑟𝐴′
1(𝐴′

1, 0). Then, there should be one more closet rule 𝑟𝐴𝛾
(0, 𝐴𝛾

2) togeth-

er with 𝑟𝐴′
1(𝐴′

1, 0) to construct the other dimension 𝐴′
2 of 𝑟𝐴′

, obtaining 𝑟𝐴′
(𝐴′

1, 𝐴′
2) .  



Generalising the above, as illustrated in Fig. 1, it can be derived that three hyper 

points are sufficient to construct an appropriate intermediate rule with rules whose 

antecedent part is of two dimensions. Thus, expanding on this generalization further 

by induction, the following theorem holds: 

Theorem 1: For hyper points 𝑟𝐴𝑖
∈  𝑅𝐷 that have 𝑛 dimensions, no more than (𝑛 + 1) 

hyper points are required to construct an appropriate intermediate rule.  

Fig. 1.  Creation of an intermediate rule in a two-dimensional space. 

4 Experimental Evaluation 

This section presents a systematic experimental evaluation of the feature ranking-

guided T-FRI approach over a benchmark dataset, for the task of performing pattern 

classification, using rules in the mapped hyper point structure. Note that as weighted 

T-FRI assigns a weight to each antecedent attribute of the original (unweighted) rules, 

it makes the rule space structure different from the one otherwise resulting from the 

mapping of the original rule base.  

4.1 Experimental Setup 

The benchmark dataset is taken from Knowledge Extraction based on Evolutionary 

Learning (KEEL) dataset repository [21], whose details are summarised in Table I. 

Table 1. Dataset Used for Experimental Investigation  

Dataset Attributes # Classes # Instances # 

Phoneme 5 2 5404 

 

𝑟𝐴1
(𝐴1

1, 𝐴1
2) 

𝑟𝐴2
(𝐴2

1 , 𝐴2
2) 

𝑟𝐴3
(𝐴3

1 , 𝐴3
2) 

𝑟𝐴′
(𝐴′

1, 𝐴′
2) 

𝐴𝑖
2 

𝐴𝑖
1 



 

Triangular membership functions are used to represent the fuzzy sets of the ante-

cedent variables due to their popularity and simplicity. As the task at hand is to per-

form classification, the consequent variable always adopts a singleton fuzzy set (i.e., a 

crisp value) for its value. Generally, different variables have their own underlying 

domains. For simplicity, these domains are normalised to take a value from the com-

mon range of 0 to 1 (without optimisation), as illustrated in Fig. 2. 

 
 

Fig. 2. Membership functions defining the linguistic terms. 

Experiments are validated by 10-fold cross validation, repeated for 10 times. The 

feature scores for attribute weighting are derived from the five methods that are uti-

lised in the existing literature [19], where the rules are learned from data after fuzzifi-

cation [22]. Note that 20% of the learned rules are deliberately removed randomly, in 

order to make the resultant rule base sparse whilst having a ground-truth rule base that 

covers the entire problem domain to facilitate performance comparison. The classifi-

cation performance is assessed in terms of the average accuracy calculated over the 

process of 10x10-fold cross validation.  

4.2 Results and Discussion 

Table 2 shows the average classification accuracies with different numbers of closest 

rules involved, where the method Ori stands for the conventional unweighted T-FRI 

algorithm and the other five represent those weighted T-FRI methods with each im-

plemented using a different feature selection tool. The position of every highlighted 

figure indicates that by the use of what number (𝑛) of the closest neighbouring rules 

the best result is reached. From these results, it can be seen that increasing the number 

of the closest rules does not improve the performance significantly for any of the five 

weighted T-FRI methods. In fact, the performance even deteriorates as 𝑛 increases. In 

particular, according to Theorem 1, for the present problem, there are five antecedent 

attributes, thus six closest rules are all that is required to perform the interpolation, at 

most. Obviously, for weighted methods other than LS, all the results clearly obey 

Theorem 1. 

 



Table 2. Average Accuracy (%) vs. Number of Closest Rules Used for Interpolation 

Dataset Method Number of Closest Rules (n) 

  2 3 4 5 6 

Phoneme Ori 57.10 54.16 57.54 58.91 59.19 

 IG 67.33 64.93 63.45 64.63 65.08 

 Relief-F 64.78 62.89 62.91 63.71 63.82 

 LLCFS 64.59 61.56 60.99 60.65 61.02 

 LS 60.47 61.28 60.28 61.47 62.43 

    RSFS 61.67 61.34 61.76 61.82 60.39 

 

To have a closer examination of the results, Table 3 lists the individual weights 

that are learned by the different feature selection methods. Note that one or two ante-

cedent attributes may be given a weight of 0 when using certain methods, meaning 

that the number of informative attributes of a rule after feature-weighting may be less 

than that of its (unweighted) original. From this viewpoint, looking at Table 3 again, 

the results of the original T-FRI and four weighted T-FRI methods still obey Theorem 

1, but the one with LS used for feature weighting does not. This is summarised in 

Table 4. 

Table 3. Attribute Weights Using Different Ranking Schemes 

Method Antecedent Weights 

IG 0.2852 0.0792 0.0125 0.5724 0.0507 

Relief-F 0.1326 0.0414 0 0.7286 0.0973 

LLCFS 0.0001 0 0 0.7416 0.2583 

LS 0 0.4541 0.0988 0.1995 0.2476 

RSFS 0.0016 0.0016 0.0016 0.9938 0.0016 

 

A question may therefore, arise for the case where attribute weights are computed 

using LS; that is, why such a weighted method requires one more closest rule to per-

form interpolation (by ignoring the fact that the theorem is ultimately correct when 

considering the number of the original antecedent attributes involved). This is likely 

caused by a further approximation incurred during the process of computing the at-

tribute weights. Unlike the other feature selection methods employed, where the sym-

bolic linguistic terms representing the attribute values are directly used in feature 

evaluation and ranking. However, for LS, it is the representative value 𝑅𝑒𝑝(𝐴) of a 

fuzzy  𝐴 that is used. As such, this method inevitably leads to a certain amount of 

information loss, producing a zero weight for the first attribute incorrectly.  Nonethe-

less, as stated earlier, compared to the real number of the original rule antecedent 

attributes, Theorem 1 stands. 



 

Table 4. Number of Closest Rules Required vs. Theoretical Upper Limit 

5 Conclusion 

This paper has presented a completely new view to describe FRI and T-FRI. As the 

very first to such a structural approach to theoretically verifying fuzzy rule interpola-

tion, the paper has analysed the relationship between the 𝑛 closest rules 𝑟𝐴𝑖
, the inter-

mediate rule 𝑟𝐴′
 and the (unmatched) observation 𝑜𝐴∗

. The work has illustrated how 

these key concepts within an FRI algorithm may influence one another. It shows that 

the maximum number of the closest rules required is one more than that of the rule 

antecedent attributes. This offers a mathematically sound conclusion that helps ex-

plain the empirical observation that the use of more than two neighbouring rules does 

not necessarily lead to more accurate interpolated outcomes but instead, often produc-

es less accurate results.  

In this initial investigation, only one dataset is used for the present experimental 

verification, more systematic experimental studies would help to reinforce the promis-

ing results achieved. Further investigations also include: i) devising a potentially more 

efficient T-FRI method that is to be guided by the conclusion drawn above; ii) extend-

ing Theorem 1 from the static rule base to the dynamic rule conditions since many 

practical applications require a dynamic rule base to deal with the changing environ-

ment; iii) introducing new evaluation functions to assess the contribution of each 

attribute to the eventual interpolation outcome, so that the influence of every individ-

ual rule upon the consequent can be better identified and therefrom, the decision on 

which neighbouring rules to use can be more appropriately made.  
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