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Abstract—Cloud removal in optical remote sensing imagery is 

essential for many Earth observation applications. To recover the 

cloud obscured information, some preconditions must be satisfied. 

For example, the cloud must be semi-transparent or relationships 

between contaminated and cloud-free pixels must be assumed. Due 

to the inherent imaging geometry features in satellite remote 

sensing, it is impossible to observe the ground under the clouds 

directly; therefore, cloud removal algorithms are always not 

perfect owing to the loss of ground truth. Recently, the use of 

passenger aircraft as a platform for remote sensing has been 

proposed by some researchers and institutes, including Airbus and 

the Japan Aerospace Exploration Agency. Passenger aircraft have 

the advantages of short visitation frequency and low cost. 

Additionally, because passenger aircraft fly at lower altitudes 

compared to satellites, they can observe the ground under the 

clouds at an oblique viewing angle. In this study, we examine the 

possibility of creating cloud-free remote sensing data by stacking 

multi-angle images captured by passenger aircraft. To accomplish 

this, a processing framework is proposed, which includes four 

main steps: 1) multi-angle image acquisition from passenger 

aircraft, 2) cloud detection based on deep learning semantic 

segmentation models, 3) cloud removal by image stacking, and 4) 

image quality enhancement via haze removal. This method is 

intended to remove cloud contamination without the requirements 

of reference images and pre-determination of cloud types. The 

proposed method was tested in multiple case studies, wherein the 

resultant cloud- and haze-free orthophotos were visualized and 

quantitatively analyzed in various land cover type scenes. The 

results of the case studies demonstrated that the proposed method 

could generate high quality, cloud-free orthophotos. Therefore, we 

conclude that this framework has great potential for creating 

cloud-free remote sensing images when the cloud removal of 

satellite imagery is difficult or inaccurate. 

 
Index Terms—Cloud removal, deep learning, haze removal, 

multiple viewing angles, passenger aircraft, photogrammetry. 

 

I. INTRODUCTION 

ITH the rapid development of remote sensing technology 

in recent decades, optical remote sensing satellite images 

have been widely applied in various Earth observation 

 
 

activities, such as climate change assessment, land use and land 

cover identification, crop mapping, and change detection [1-5]. 

However, cloud coverage is problematic in the retrieval of 

surface or atmospheric parameters [6,7], feature extraction [8], 

and dynamic detection [9] from optical images, the spectral 

bands of which cover the visible and near-visible wavelengths 

[10]. With the dramatic increase in remote sensing data 

obtained from satellites, problematic cloud-contamination in 

optical remote sensing images has become more apparent. 

Approximately 67% of the Moderate Resolution Imaging 

Spectroradiometer images are affected by clouds [11]. Cloud 

coverage blocks the light and obscures the ground surface in 

remote sensing imagery; therefore, precise identification and 

removal of cloud coverage are essential for using remote 

sensing data. 

Many cloud removal methods for optical remote sensing data 

have been presented recently. Traditional methods can be 

divided into three major categories: multitemporal [12-14], 

multispectral [15-17], and spatial-based approaches [18-20]. 

Multitemporal approaches use temporal images with different 

acquisition dates to retrieve images without corrupted pixels to 

yield a CF image. Lin et al. [12] proposed a cloud removal 

method that uses multitemporal satellite images and 

information cloning, wherein cloudy areas are cloned from 

corresponding cloud-free (CF) areas based on a global 

optimization process and the Poisson equation. A non-negative 

matrix factorization and error correction method has been used 

to remove clouds using multitemporal remote sensing data from 

different sensors [14]. Additionally, Xu et al. [13] introduced a 

cloud removal method using sparse representation and 

multitemporal dictionary learning techniques. The above 

multitemporal approaches are the most prominent techniques in 

cloud removing. However, CF reference imagery is required for 

this type of methods, which complicates scene reconstruction 

due to rapidly changing surface conditions. Multispectral 

approaches are suitable for the removal of semi-transparent 

clouds and haze. A thin cloud removal approach based on 

multidirectional dual-tree complex wavelet transform and 
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transfer least square support vector regression was proposed in 

a previous study [15]. Xu et al. [16] developed a thin cloud 

removal method using signal transmission principles and 

spectral mixture analysis. These multispectral methods are 

applied for cloud removal and do not require additional 

imagery; However, they can only be applied to semi-transparent 

clouds that allows partly spectral transmission of the ground 

surface. Spatial-based techniques use the hypothetical 

relationship between contaminated and CF pixels based on 

spatial and geometric information. A cloud removal method 

based on similar pixel replacement driven by a spatiotemporal 

Markov random field model was previously introduced [18]. 

Meng et al. [20] applied a sparse-dictionary-learning-based 

adaptive patch inpainting method to remove cloud on high-

spatial-resolution remote sensing imagery. However, the 

spatial-based techniques require assuming the spatial 

relationship between neighboring pixels, which may not stand 

in many situations. Apart from the three types of traditional 

methods mentioned above, the deep-learning algorithms were 

recently introduced for cloud removal and show a good 

performance [21-24]. However, deep-learning methods require 

a large number of training samples and the performance may 

vary significantly in different images. 

Although many advanced algorithms are proposed to remove 

the cloud from satellite remote sensing images, the inherent 

limitations in satellite platform make the cloud removal is 

always challenging. Satellite are located at significantly high 

altitudes and the field of view (FOV) is mostly fixed, so the 

ground under cloud can hardly be directly observed due to the 

observing geometry. The inherent limitations are difficult to 

overcome by any cloud removal algorithms as they all require 

certain assumptions on the missing information. Recently, 

using passenger aircraft as the remote sensing platform has been 

proposed due to the large coverage area, short visitation 

frequency, and low cost [25-27]. Another merit from passenger 

aircraft is that it can overcome cloud interference due to their 

flight altitude and multi-viewing angles comparing with 

satellite. Figure 1 shows that in the image acquisition process, 

cloud interference increases with satellite platform altitude 

[28]. However, the passenger aircraft platform has multi-view 

angle observations and can therefore obtain CF surface 

information, unlike the satellite platform which are fully 

blocked from ground by the cloud.  

Successful earth observation applications using a passenger 

aircraft platform have been developed [29,30]. In a previous 

study [29], a Civil Aircraft for the Regular Investigation of the 

Atmosphere Based on an Instrument Container Project was 

used to monitor the atmosphere and was able to provide less 

costly, real-time meteorological information similar to 

traditional remote sensing platforms. Passenger aircraft 

observations have also been adopted for obtaining 

meteorological data. Recent research finds the COVID-19 

pandemic affect the weather forecast as the number of flying 

passenger aircraft reduced [30]. Several programs using 

passenger aircraft as remote sensing platforms have been 

instituted by different countries globally [31-33]. Ray20 uses 

the Airbus aircraft to build autonomous remote sensing systems 

over Europe and North America [31]. The Norwegian Research 

Centre conducted a project that used passenger aircraft 

equipped with high-resolution imaging systems for 

environmental monitoring. Additionally, a passenger aircraft 

used as an observation platform can increase safety and 

emergency response in the Arctic [32]. These results 

demonstrate that using passenger aircraft as a remote sensing 

platform has significant potential for earth observation 

activities in the future. 

 
Remote sensing has been routinely applied in emergency 

management such as forest fire detection and flood monitoring 

[34]. The fast acquisition of remote sensing data is extremely 

important for initiating effective response [35]. However, the 

satellite remote sensing imagery cannot provide timely data due 

to the relatively long revisit period and unpredicted weather 

condition. On the contrary, the low altitude and large number 

of commercial flight make it an ideal remote sensing platform 

for effective emergency response. In this study, a novel 

framework was developed to generate truly CF orthophotos 

from a set of time series photos taken with a smartphone camera 

onboard a passenger aircraft. The proposed method can remove 

cloud contamination without using information from other 

images captured in different dime. We implemented the 

proposed framework in four processing steps. First, a series of 

images were captured using passenger aircrafts as a platform. 

Second, deep learning models were adopted to detect clouds. 

Third, large-scale CF orthophotos were generated through a 

photogrammetric processing. Finally, the haze-free (HF) 

orthophotos were obtained using the dark channel prior (DCP) 

algorithm and histogram statistics. The structure of this study is 

as follows: Section 2 describes the proposed method in detail, 

Section 3 introduces the dataset, Section 4 describes the 

evaluation metrics, and Section 5 presents the results. 

Discussions and conclusions are given in Section 6 and Section 

7, respectively.  

II. METHODS 

The framework is composed by data acquisition and data 

processing. Details about the data acquisition mode using 

passenger aircraft as the remote sensing platform is presented 

 
Fig. 1.  Map showing cloud impact differences of the satellite and aircraft 

platforms. A1 is the cloud coverage area using a satellite platform and A2 is the 
CF area produced using the passenger aircraft platform. H1 is the altitude of the 

passenger aircraft platform. H2 and H3 are the cloud heights of the different 

clouds above the earth’s surface. H4 is the altitude of the satellite platform. F1 
and F2 are the fields of view of the satellite and passenger aircraft, respectively. 
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firstly in Section 2.1. Then the data processing is described, 

which are performed in three steps: 1) cloud detection using 

deep learning algorithms, 2) cloud removal from the photos and 

cloud masks using photogrammetry methods, and 3) haze 

removal from the orthophotos using image-enhanced methods 

(Fig. 2). In the first step, three semantic segmentation models 

are presented, including U-Net (Convolutional Networks for 

Biomedical Image Segmentation), feature pyramid network 

(FPN), and pyramid scene parsing network (PSPNet), which 

were trained and optimized to assign the appropriate cloud 

mask to the corresponding images. In the second step, the 

assigned masks and photos were integrated into the 

photogrammetry processing to generate a CF orthophoto. In the 

third step, the haze in the CF orthophoto was removed by using 

the developed haze removal method that combines DCP 

algorithm [36] and histogram statistic. 

 

A. Passenger Aircraft Data Acquisition 

This section briefly describes data acquisition using passenger 

aircraft as the platform. In typical passenger aircraft, window 

seats are available from which passengers can capture high-

quality pictures of the ground using handheld cameras (e.g., 

smartphone cameras). In order to obtain overlapping images 

with high quality, a passenger should take pictures from the 

window seat near the aircraft tail, as images may be blocked by 

the wings if passenger sit in the middle of the aircraft. 

Meanwhile, sky should be avoided in pictures taken. In this 

study, we sat in the penultimate window seat near the rear of 

the aircraft. The distance between the lens and the window was 

kept at about 6 cm. Too short distance may make the lens hard 

to focus, while too long distance would include the surrounding 

obstacles into the picture. Meanwhile, the lens was titled to 

approximately 60° against the window (Fig. 3). If the tilt angle 

is too small, there would be sky appear in raw pictures. 

Otherwise, the camera would be blocked by the windowsill. 

During the shooting, the passenger does not need to adjust the 

camera position. The look angle will change automatically as 

the aircraft pass the cloud, since the relative position between 

aircraft position and cloud keeps changing in the flight. 

 
Generally, to meet photogrammetric processing 

requirements, two essential rules must be implemented when 

capturing a picture. First, adjacent images with a certain degree 

of coverage (50%) must be taken to ensure that the pictures can 

be aligned successfully (Fig. 4). Second, a low incident is 

required to ensure that more ground details are captured in one 

picture, as well as to improve dense point matching. Side-look 

imaging geometry can be obtained when pictures are taken by 

passengers from both sides of the plane; however, the varying 

scales of the images are a defect in the oblique images [26,37]. 

To obtain high-quality images, the incidence angle should be 

controlled within a small range. The average FOV of a 

smartphone camera is approximately 60°. The minimum 

incidence angle can be adjusted to approximately half the FOV 

plus the inclination of the seat (approximately 3° measured 

from a Boeing 787-8 schematic) during a smooth flight. 

Generally, the altitude of commercial aircraft ranges between 9 

and 11 km, the stripe width is approximately 17 km based on 

the slant imaging geometry, and the ground resolution ranges 

between 3.3 and 6.6 m if there are 3000 image pixels along the 

width (Fig. 3). 

 
Fig. 2.  Flowchart of the orthophoto generation process consisting of cloud 
detection, cloud removal, and haze removal. 

 
Fig. 3.  Imaging geometry using a passenger aircraft as the platform. 
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B. Cloud Detection Model Architectures 

Many deep learning architectures based on semantic 

segmentation methods have recently been introduced, and some 

of which are used in satellite imagery [38,39]. Three 

representative methods with encoder-decoder structure, i.e. U-

Net, FPN, and PSPNet, were trained and tested in the proposed 

approach. The adopted models were pre-trained on the 

PASCAL VOC-2012 semantic segmentation dataset [40]. To 

compare the performance of the different methods objectively, 

three stages of the cloud detection process were investigated. 

First, the binary cross-entropy function was used to calculate 

the loss between the predicted and true cloud masks using the 

different methods. Second, the stochastic gradient descent was 

selected using momentum [41] as the optimizer in each 

method's training stage. Third, each method produced a model 

adapted from the ResNet-101 network [42]. 

U-Net, which is based on a fully convolutional neural 

network [43], is built on an encoder-decoder architecture that is 

comprised of a contracting path to capture context and a 

symmetric expanding path to enable accurate location. The two 

main features of the U-Net architecture are the U-shaped 

network structure and the skip connection. The U-shaped 

network structure consists of downsampling on the left and 

symmetric upsampling on the right. To obtain the feature map 

of the image, the encoder performs feature extraction, which 

consists of convolution and downsampling, and the fusion 

method used by the skip connection concatenates on the feature 

map channels. Finally, the feature map is restored to the original 

resolution of the corresponding cloud mask based on the 

downsampling and convolution of the decoder. 

The fully convolutional neural network has been further 

improved and is now known as the FPN [44], which extracts 

features at different scales to form a pyramidal hierarchy and 

efficiently uses the semantic information of the different scales 

in the FPN. The structure of the FPN can be summarized as 

feature extraction, upsampling, feature fusion, and multi-scale 

feature output. The input and output images of the FPN are 

feature maps of different scales. The FPN architecture is 

divided into bottom-up and top-down pathways. The bottom-up 

pathway is a feature encoder process using the ResNet-101 

network. The top-down pathway with upsampling and lateral 

connections builds high-level semantic feature maps at different 

scales using the corresponding cloud masks. 

The PSPNet architecture also contains an encoder and a 

decoder. Specifically, the encoder contains a pyramid pooling 

module and a convolutional neural network [45] backbone with 

dilated convolutions instead of the fully convolutional neural 

network. The dilated convolution layers can capture a more 

receptive field and the pyramid-pooling module is used for 

capturing the global context from an input image, which helps 

the PSPNet network to classify the pixels from the global 

information present in the image. After the encoder features of 

the image are extracted, the decoder takes the features and 

converts them into feature representations using upsampling 

and concatenation layers. Finally, the representation is fed into 

a convolutional layer to obtain the corresponding per-pixel 

cloud mask. 

C. Cloud Removal Model 

Considering the characteristics of the obtained images, such 

as the oblique acquisition angle and uneven illumination of the 

images caused by the different acquisition angles, a traditional 

photogrammetric method is not suitable for generating the 

orthophoto. However, the varied viewing angle geometry at 

which the cloudy and CF images of the same area are obtained 

is important because CF orthophoto generation is possible by 

combining these multi-angled photos (Fig. 6). To overcome 

obstacles such as the oblique acquisition angle and uneven 

illumination of the images, a processing procedure for CF 

orthophoto generation is proposed in this study, which consists 

of the following four steps: 

1) Camera position initialization 

Approximate camera positions are necessary for rapid 

conjugate point detection and georeferencing of the sparse point 

cloud. Additionally, the cloud masks detected in the images are 

not calculated during conjugate point detection. Because 

aircraft GPS information is obtained by commercial companies 

and publicized for flight tracking purposes, the flight GPS 

positions can be obtained from the flight tracking information. 

As passenger aircraft are relatively stable, we can use piecewise 

linear interpolation to obtain continuous GPS positions of a 

flight with an interval in seconds (Fig. 5). Specifically, the 

variable y here refers to altitude, longitude or latitude. 

Therefore, a linear interpolation of these three variables can be 

done respectively along the time dimension to obtain the 

corresponding GPS parameters at each second. The continuous 

GPS positions information as a reference, furtherly, coordinate 

information in pictures taken were extracted at the 

corresponding time. It is worth noting that by setting the 

interpolation value to the initial value of the camera position, 

the positioning error of the ground control points (GCPs) would 

be reduced in a further step. Our previous research has shown 

that the measurement accuracy of the GPS was roughly set to 

be about 10 times greater than that of the ground control points 

(GCPs), with a general ground sampling resolution of less than 

6m [26].  

 
Fig. 4.  Example of raw pictures captured by flight CZ3192 during the aircraft’s 
landing. (a) picture ID: IMG_20180805_130702. (b) picture ID: 

IMG_20180805_1307012. (c) picture ID: IMG_20180805_130722. (d) picture 

ID: IMG_20180805_130732. (e) picture ID: IMG_20180805_130737. The 
rectangles with red solid lines all have corresponding raw pictures, the green 

dashed rectangles without showing raw pictures. The base map includes the 

cloud-free orthoimage and vector map with geographic information. 
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2) Interior orientation parameters initialized from the 

exchangeable image file header 

In addition to the camera positioning information, internal 

positioning parameters such as focal length and sensor size are 

required to facilitate conjugate point searching. The interior 

camera orientation parameters are further refined in Step 3. 

3) Structure from motion (SfM) processing 

SfM is a 3D reconstruction algorithm based on the initialized 

GPS information and interior orientation parameters [46]. SfM 

processing can be performed by many aerial photogrammetry 

software programs (e.g., Agisoft Metashape, Pix4d, Menci 

APS, and MicMac). On comparing the performances of these 

software in processing a large number of images, the results 

showed that Metashape provides acceptable accuracy and 

satisfactory computational performance with graphics 

processing unit acceleration. 

4) Orthophoto mosaic generation 

A dense point cloud can be generated when the SfM stage is 

completed. Meanwhile, a digital surface model can be obtained 

based on the regular interpolation of the point cloud. The input 

photos are orthorectified to orthophotos using the individual 

camera positions and digital surface model. To generate mosaic 

CF orthophotos, several strategies can be used, including 

averaging the values of all pixels from the individual photos, 

taking pixels from the photo observations closest to the normal 

direction, and using frequency domain approach. The 

coordinate system for the mosaic orthophoto can be set 

arbitrarily as required. 

 

D. Haze Removal Model 

Haze is a common characteristic in remote optical sensing 

images. Commercial aircraft typically fly between 9 and 11 km 

above the surface; therefore, objects observed at this height will 

be obstructed by different cloud types such as cumulus, 

altocumulus, and stratus, and haze generally occurs with certain 

cloud types. If haze is treated as a cloud to generate a larger 

number of cloud masks, a large portion of the resultant 

orthophoto will be missing. In this study, to obtain a complete 

orthophoto, a haze mask was not used as a cloud mask in the 

cloud detection process. Instead, a haze removal method was 

developed that combined the DCP algorithm and histogram 

statistics based on the characteristics of the orthophoto. The 

primary reason for employing this method is to use the DCP 

algorithm to remove haze from the orthophoto and then use the 

histogram statistics to restore the color of the HF orthophoto. 

The DCP algorithm [34] indicated that at least one color 

channel has very low intensity or approaches 0 for some pixels 

in most of the non-sky patches of the image. This algorithm can 

be divided into three steps. First, the dark channel is calculated 

(a) 

 
(b) 

 
Fig. 5.  (a) Schematic of 1-D piecewise linear interpolation along time. 
(b) Piecewise linear interpolation of the discrete aircraft positions 

downloaded from FlightAware. Green points are the original flight 

tracking points with position information, and red line is the flight 
CZ3192 trace interpolated from original flight tracking points. 

 

 

 
Fig. 6.  Cloud removal performed using images produced by multiple viewing 

angles (a) diagram illustrating how time-series images are obtained and (b) The 
multi-view oblique images and the orthophoto after cloud removal. 
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and the atmospheric light intensity is estimated. Subsequently, 

a refined transmission function with soft matting is obtained. 

Finally, the atmospheric light intensity is calculated. The HF 

image can be reconstructed based on the unknown values 

calculated. To restore the color of the orthophoto, the histogram 

method was used to enhance the HF orthophoto quality. 

III. EXPERIMENTAL DATA 

We collected a set of cloudy images from three flights (Table 

I). Their image capturing methods are similar. Therefore, we 

took flight 1 as an example for data acquisition description. It 

is a flight from China Southern Airlines  (CZ3192) which took 

off from Beijing International Airport (Code: PKX) at 10:23 

AM local time and lands at Shenzhen Baoan International 

Airport (Code: SZX) at 13:20 PM on August 5, 2018. The 

aircraft used for the flight is the Airbus A330, which is a 

medium-size, wide-body aircraft, capable to continuously fly 

13,450km with 247 passengers. The aircraft has 58.82 m length 

and 17.39 m height. Fig. 3 shows the flight trace information of 

the flight and the location of pictures taken by the camera on 

the that trace. We started to collect data at altitude of about 4700 

m. Flight information above was obtained from FlightAware 

website (https://zh.flightaware.com/). Pictures were acquired 

with iPhone X camera from 13:07 PM to 13:08 PM local time. 

Taking adjacent pictures with too long interval would produce 

inconsistent orthoimage. To ensure that cloud and aircraft have 

not moved too much to be far apart, each picture were taken at 

five-second intervals, and a total of ten cloudy pictures with a 

high overlapping rate were acquired (Fig. 7). Each raw picture 

is composed of three channels of red, green, and blue, with a 

size of 4032 x 3024, and has time information about moment of 

capture. 

 
The experimental data were divided into two parts. The first 

part was used for training and validation based on deep learning 

methods for clouds detection. Based on the passenger aircraft 

platforms, we have collected a set of cloudy images during two 

years (from 2018 to 2019) by taking into account weather 

conditions, type of clouds, as well as characteristics in ground 

objects, depending on available images, We randomly divided 

32 images into two data sets, 20 images for training and 12 

images for validation. The cloud mask labeling procedure was 

performed using 32 images following three steps. First, the 

cloudy image was stretched into a proper visual contrast using 

Adobe Photoshop. Subsequently, the magic wand tool was used 

to mark the cloudy locations in the image. Finally, a manually 

labeled reference mask was generated by assigning the cloud 

and CF pixel values of 0 and 255, respectively [47]. To expedite 

training process, both training images and corresponding cloud 

masks were divided into multiple non-overlapping 500 x 500 

patches, then 3788 image patches and 3788 mask patches were 

input into a cloud detection model network. The testing dataset 

was also processed in the same way to extract 2552 patches 

from images and masks respectively.  

 
The second part of the dataset was used to predict cloud 

masks and generate the corresponding orthophotos. To evaluate 

the quality of orthophotos generated under different 

environmental conditions, the prediction dataset from three 

representative scenes was selected based on cloud type, haze 

density, and vegetation coverage, and images for two of the 

scenes were captured during flight CZ6591 on June 23, 2019. 

During this flight, a set of 17 time-series images of Shenzhen 

City (herein referred to as scene1) and a set of 12 images of 

Huizhou City (herein referred to as scene2) were taken at a 5 s 

time interval between adjacent images. During flight CZ3192 

on August 5, 2018, a set of 10 time-series images were taken of 

Guangzhou City (herein referred to as scene3). Evaluating the 

quality of the CF orthophotos based on the various cloud types 

present at the time they were taken facilitated an understanding 

of the effect of cloud characteristics on CF orthophotos. Haze 

is frequently found in remote sensing images; therefore, haze 

density was considered during this evaluation, which 

contributed to obtaining comprehensive cloud removal 

knowledge in a specific scene. The spectral feature is one of the 

most important features of cloud detection [48]. The normalized 

green–red difference index (NGRDI), with values ranging 

between -1 and 1, was selected as the spectral feature [49] in 

this study because the image channels only had RGB bands. 

Then the vegetation cover density can be calculated by 

combining dimidiate [50] pixel model and NGRDI, the 

vegetation cover density and NGRDI are defined as follows: 
𝑁𝐺𝑅𝐷𝐼 = [Green DN − Red DN]/[Green DN + Red DN]                   (1) 

Where the DN represents a digital number in each pixel, Green 

DN and Red DN represent DN in green channel and red 

TABLE I 

FLIGHT INFORMATION.  

Flights 

No. 

Flight 

route 

Date Time Images in 

dataset 1 

Images in 

dataset 2 

CZ3192 BJ-SZ  20180805 10:08-

12:59 

10 10 

HU7703 BJ-SZ 20190808 08:10-

11:35 

10 12 

CZ6591 SZ-NB 20190623 09:00-

10:29 

12 17 

 

 
Fig. 7.  The flight information for flight CZ3192 (from FlightAware). 
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channel, respectively. If the denominator is 0, the 

corresponding value of NGRDI is set as 0. 
   𝐹 =  [𝑁𝐺𝑅𝐷𝐼 −  𝑁𝐺𝑅𝐷𝐼𝑠𝑜𝑖𝑙] / [𝑁𝐺𝑅𝐷𝐼𝑣𝑒𝑔 –  𝑁𝐺𝑅𝐷𝐼𝑠𝑜𝑖𝑙 ]                   (2) 

Where the F represents the vegetation cover density, 

NGRDIsoil and NGRDIveg represent the vegetation index 

when the vegetation density is 0% and 100%, respectively. If 

the denominator is 0, the corresponding value of F is set as 0. 

   According to the literature [50], the representative scenes 

were classified into four categories: bare soil areas (BSA), low-

level vegetation cover (LVC), medium-level vegetation cover 

(MVC), and high-level vegetation cover (HVC) with F 

thresholds of (0, 10%), (10%, 25%), (25%, 50%) and (50%, 

100% ), respectively. Scene1, scene2, and scene3 had F values 

of 13.8%, 27.6%, and 56.7% and were therefore classified as 

LVC, HVC, and MVC, respectively. 

IV. EVALUATION METRICS 

To evaluate the performance of the cloud detection results 

and image quality after haze removal objectively, different 

quantitative indicators were selected. 

Because the cloud masks obtained via U-Net, FPN, and 

PSPNet used different datasets, the predicted masks were 

compared against the corresponding ground truth masks and 

classified as "cloud" (positive) or "clear" (negative). The 

datasets were evaluated quantitatively based on the metrics of 

accuracy, recall, precision, F-score, and Jaccard index. 

Accuracy is defined as the percentage of accurately predicted 

masks in the total sample, which can be used as an indicator for 

evaluating the accuracy of different models. However, accuracy 

is not an objective indicator to evaluate the performance of 

models when the data types are unbalanced. Precision is defined 

as the number of classified clouds that were literally clouds. 

Recall is defined as the number of cloud pixels that were 

classified. The F-score provides insight into the optimum 

balance between recall and precision, and the Jaccard index is 

a measure of the similarity between the truth masks and 

predicted masks [51-53]. These five metrics are calculated as 

follows: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ (𝑡𝑝𝑖

𝑀
𝑖=1 +𝑡𝑛𝑖)

∑ (𝑡𝑝𝑖+𝑡𝑛𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖)𝑀
𝑖=1

                                                   (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑡𝑝𝑖

𝑀
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑝𝑖)𝑀
𝑖=1

                                                                            (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑡𝑝𝑖

𝑀
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑛𝑖)𝑀
𝑖=1

                                                                                        (5) 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2

𝑅𝑒𝑐𝑎𝑙𝑙−1+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
                                                                    (6) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =  
∑ 𝑡𝑝𝑖

𝑀
𝑖=1

∑ (𝑡𝑝𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖)𝑀
𝑖=1

                                                               (7) 

where tp, tn, fp, and fn are the numbers of true positive, true 

negative, false positive, and false negative pixels in each test 

image, respectively, and M denotes the total number of images 

in each test dataset. 

In this study, two full-reference metrics [54] and no-

reference image quality assessment (IQA) models were used to 

fully evaluate the HF orthophotos. The full-reference metrics 

used were the peak signal-to-noise ratio (PSNR) and structural 

similarity (SSIM). The PSNR is calculated by the error of the 

corresponding pixels, and a large PSNR value indicates small 

distortion [55,56]. The SSIM is used to measure image 

similarity based on brightness, contrast, and structure [57], and 

a large SSIM value indicates less image distortion. The no-

reference image evaluation method was the blind/referenceless 

image spatial quality evaluator (BRISQUE) in which the mean 

subtracted contrast normalized coefficients, and neighborhood 

coefficients are fitted with the generalized and asymmetric 

generalized Gaussian distribution models, and then the image 

quality is evaluated using these model parameters [58]. The two 

full-reference IQA metrics are defined as follows: 

PSNR = 10𝑙𝑜𝑔10
255

√|𝑥𝑖𝑛−𝑥𝑜𝑢𝑡 |2
                                                                       (8) 

Where 𝑥𝑖𝑛  and 𝑥𝑜𝑢𝑡  represent the HF and dehazed images, 

respectively. 

SSIM𝑥𝑖𝑛 , 𝑥𝑜𝑢𝑡 =
(2𝜇𝑥𝑖𝑛

𝜇𝑥𝑜𝑢𝑡
+ 𝜃1)(2𝜎𝑥𝑖𝑛𝑥𝑜𝑢𝑡 

+ 𝜃2)

(𝜇𝑥𝑖𝑛
2 + 𝜇𝑥𝑜𝑢𝑡

2 + 𝜃1 )(𝜎𝑥𝑖𝑛
2 + 𝜎𝑥𝑜𝑢𝑡

2 + 𝜃2)
                                             (9) 

Where 𝜇𝑥𝑖𝑛
 and 𝜇𝑥𝑜𝑢𝑡

are the averages of 𝑥𝑖𝑛  and 𝑥𝑜𝑢𝑡 , 

respectively;   𝜎𝑥𝑖𝑛
2  is the variance of 𝑥𝑖𝑛. 𝜎𝑥𝑜𝑢𝑡

2 is the variance of 

𝑥𝑜𝑢𝑡 . 𝜎𝑥𝑖𝑛𝑥𝑜𝑢𝑡 
is the covariance with 𝑥𝑖𝑛  and 𝑥𝑜𝑢𝑡;; 𝜃1  and 𝜃2 

are constants used to avoid system instability caused by a 

denominator of 0. 

V. RESULTS 

A. Cloud Detection Results 

The quantitative accuracy evaluation results of cloud 

detection are presented in Table II, and the qualitative 

evaluation of the cloud masks generated based on various cloud 

detection methods is presented in Fig. 8. 

Among the three ground vegetation cover types, the 

evaluation indices of the three cloud detection models were 

highest with MVC. According to the results in Fig. 8a, the 

strong contrast between the clouds and the surrounding objects 

shows that in certain areas, thick regularly shaped clouds 

completely occluded ground objects, making it easy for the 

model to mask the clouds. Additionally, the haze densities in 

the sky were low. These environmental factors provided good 

conditions for the cloud detection model architectures to learn 

local and global features from the MVC image. Table 1 shows 

that all the cloud detection models performed well in each 

evaluation index, with PSPNet achieving the highest accuracy, 

recall, F-score, and Jaccard values and U-Net achieving the 

highest precision value (96.71%). For the same evaluation 

index, the difference between the results of the methods was 

less than 0.3%, which means all the methods had high cloud 

detection accuracy in MVC. 

 

TABLE III 

EVALUATION RESULTS FOR THE CLOUD DETECTION METHODS OF PERCENT 

ACCURACY OF PREDICTED DATA FOR THE THREE SCENES.  

Dataset 

(no. 

scenes) 

Method Overall 

acc. 

Recall Precision F-

score 

Jaccard 

MVC (10 

images) 

U-Net 98.87 97.48 96.71 97.09 94.44 

FPN 98.84 97.57 96.49 97.02 94.32 

PSPNet 98.89 97.74 96.58 97.15 94.56 

LVC (17 

images) 

U-Net 97.80 94.08 95.25 94.65 90.14 

FPN 97.81 94.19 95.17 94.67 90.17 

PSPNet 97.67 93.81 94.89 94.34 89.61 
HVC (12 

images) 

U-Net 94.66 91.71 92.29 92.00 85.51 

FPN 94.97 91.96 92.92 92.43 86.24 

PSPNet 95.17 91.51 93.87 92.62 86.56 

Bold values denote the highest accuracy for each scene among the different 

cloud detection methods. 
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Fig. 8b shows that the LVC scene is primarily covered by 

urban areas, has minimal vegetation, and the radiation 

intensities of some of the buildings and clouds are similar; 

therefore, the contrast between them is poor. Additionally, the 

cloud boundaries are blurred, and the thin cloud cover is 

fragmented. These environmental factors create difficulties for 

cloud detection models to differentiate between clouds and 

ground objects in the extraction of global and local features. 

The haze density in the sky, however, is the lowest among the 

three scenes, which contributes positively to training the model 

architecture. In the LVC scene, FPN achieved the highest 

values for each evaluation index, except precision, which was 

only 95.17%. The highest precision value of 92.25% was 

achieved by U-Net. Notably, the difference in the calculation 

results of the various methods was less than 0.5% when 

comparing the same evaluation index, indicating that the three 

cloud detection models showed good consistency with regard 

to the various accuracy evaluation results. 

Most areas in the HVC scene (Fig. 8c) were covered by 

natural vegetation, except for the river basin, and the high-

density vegetation contributed to a strong contrast between 

ground objects and clouds, which is conducive to accurate 

cloud detection. However, haze densities were high, which 

reduced the contrast between the clouds and other features, and 

there were a large number of fragmented clouds, which caused 

difficulties in determining the thin cloud boundaries. 

Additionally, several pixels containing both ground objects and 

extremely thin clouds were semi-transparent. These 

environmental factors are extremely unfavorable for thin cloud 

detection. PSPNet achieved the highest accuracy, recall, F-

score, and Jaccard values, and FPN achieved the highest 

precision of 91.96%. Based on these results, the cloud detection 

accuracy was the lowest for the HVC case, and the differences 

in evaluation index values between the three methods were 

greater than 1%, which shows that the performance of the three 

methods was not stable compared to the performance of the 

LVC and MVC scenes. 

B. CF Orthophoto Results 

To obtain a better understanding of the spatial visualization 

of the HF orthophotos using the different cloud detection 

methods, orthophotos of the MVC, LVC, and HVC scenes were 

used for subjective visual evaluation (Fig. 9). 

In the MVC scene, most of the cloud boundaries were 

distinct, and the contrast between ground objects and clouds 

was evident (Fig. 8a). These factors are favorable for the 

extraction of cloud features using deep-learning-based cloud 

detection methods; therefore, highly accurate cloud mask 

results were generated by the three cloud detection methods, 

and the evaluation results were similar (Table Ⅰ ). The 

quantitative results were consistent with what can be observed, 

although a few thin clouds remained in the orthophotos (yellow 

circles in Fig. 9a) because they were difficult to separate from 

the surrounding objects. Moreover, some pixels containing both 

clouds and ground objects were semi-transparent. The 

generated orthophoto would contain fewer thin clouds if the 

semi-transparent pixels had been classified as non-clouds for 

the training and testing procedures of the cloud detection 

methods. If the semi-transparent pixels had been classified as 

clouds, the orthophoto would return no values in these areas. To 

obtain a comprehensive orthophoto, some semi-transparent 

pixels had to be classified as non-clouds in this study. 

 
For the LVC scene, the high reflectivity of buildings reduced 

the contrast between the clouds and ground objects and blurred 

some thin cloud boundaries (Fig. 8b). The cloud detection 

accuracy was lower than the MVC scene, and the results of 

PSPNet were not as accurate as other cloud detection methods 

(Table 1). The differences between the methods are evident 

from the visual differences in the orthophoto subset (yellow 

circles in Fig. 9b). A few blurry thin clouds found in the subset 

are associated with PSPNet, which classified many semi-

transparent pixels as non-clouds (Fig. 8b). Therefore, the U-Net 

and FPN cloud detection results, which were similar, were 

better than the PSPNet results because they classified the same 

subset area as no-cloud. This indicates the high accuracy of the 

cloud detection results, which was consistent with the visual 

orthophotos without clouds in the LVC scene. 

The HVC scene had the highest haze densities compared with 

other scenes, and the cloud fragmentation was the highest and 

had many semi-transparent pixels (Fig. 8c). These specific 

factors are detrimental to accurately capturing cloud features; 

hence, the performances of the models were the lowest among 

the scenes (Table Ⅰ). The high incidence of semi-transparent 

pixels increased the uncertainty when matching feature points 

between two adjacent images, and due to the high haze density, 

the visual performance of the HVC orthophoto was worse than 

those of the MVC and LVC orthophotos (Fig. 9). There were 

significant differences in the quantitative evaluation metrics 

produced by the three cloud detection methods and PSPNet 

 
Fig. 8.  Examples of cloud and cloud mask detection results using the three 

cloud detection methods on the three different scenes (a) MVC, (b) LVC, and 
(c) HVC. 
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performed better than U-Net and FPN. Additionally, the visual 

performance of the orthophoto subset (yellow circles in Fig. 9c) 

could not be easily distinguished by the cloud detection 

methods. 

 

C. HF Orthophoto Quality Assessments 

In this section, to evaluate the image quality of HF 

orthophotos objectively and comprehensively, HF and CF 

orthophoto subsets (obtained via the haze and cloud removal 

methods, respectively) of the MVC, LVC, and HVC scenes, 

using the different cloud detection methods, were compared. 

The results are presented in Fig. 10, and the corresponding 

quantitative results comparing the three described IQA metrics 

are shown in Table Ⅱ. 

 
The visual examples of the three scenes show that the details 

of the HF orthophoto subset are more refined and display 

ground objects more clearly. No significant differences in the 

HF results could be observed between the different cloud 

detection methods. The results of the CF orthophoto subset are 

consistent with those of the HF results. By comparing the 

different scenes, better image quality enhancement occurred in 

the HVC scene compared with the other two scenes. 

The visual results are consistent with the statistical results, 

where all the IQA metrics values are similar for the same scene. 

For the PSNR and SSIM metrics, the MVC orthophoto subset 

yielded the best results, which indicates that the CF and HF data 

are the closest and have the lowest haze densities. The PSNR 

and SSIM results were better in the LVC scene than the HVC 

scene, indicating that the haze densities in the LVC scene were 

lower than those in the HVC scene, which concurs with the 

visual results between these scenes (Fig. 10). Obvious 

differences in the PSNR and SSIM metrics existed between the 

PSPNet results and the U-Net and FPN results. This is attributed 

to fewer thin clouds in the orthophoto subset generated by 

PSPNet in the LVC scene. According to the no-reference IQA 

results, the MVC data yielded the best BRISQUE results that 

were similar to the corresponding HVC results, while the 

statistical results of the LVC were the worst. Because the 

BRISQUE was used to generate the HF orthophoto without 

reference to the CF orthophoto, the shapes of the ground objects 

 
Fig. 9.  Qualitative comparison of CF orthophotos generated by different 
cloud detection methods for various scenes (a) MVC, (b) LVC, and (c) HVC. 

The cloudy and corresponding CF locations are indicated by yellow circles. 

 

 
Fig. 10.  Qualitative comparison of the CF and HF orthophoto results obtained 
by the cloud and haze removal methods, respectively, of the MVC, LVC, and 

HVC scenes using the different cloud detection methods. The cloud removal 

results using (a) U-Net, (b) FPN, and (c) PSPNet and the haze removal results 
using (d) U-Net, (e) FPN, and (f) PSPNet. 
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were simple and regular with few color distortions in the MCV 

areas and, the BRISQUE had excellent performance. In the 

LVC scene, the buildings made feature extraction difficult, the 

generated orthophoto was slightly distorted, and a large number 

of shadows were present in the scene. Consequently, the 

BRISQUE result was worse for the LVC scene than those for 

the other scenes. 

 
 

VI. DISCUSSION 

We found that cloud detection performance of deep learning-

based methods is significantly influenced by dataset size, and 

environmental conditions (e.g., cloud characteristics, haze 

densities and types of ground objects). Three deep learning 

models were used to detect clouds with the same dataset. It was 

challenging for us to obtain large contaminated datasets with 

clouds under various scenes in a short time. Therefore, the small 

dataset in this study may limit the capacity of deep learning 

models to learn global and local features in the image. Besides, 

we found a cloud detection model has different detection 

accuracy in different scenes, which may be directly related to 

environmental conditions. Previous studies have also presented 

that the same model may perform well for thick clouds [37,51] 

but relatively worse for a scene with snow cover on the ground 

[59]. However, these environmental factors interference for 

cloud detection tasks are inevitable. With the development of 

deep learning technology and the increase of dataset size, these 

issues would also be solved to a certain extent. 

The quality of the generated CF orthophoto was affected by 

two factors, including the cloud detection accuracy and the 

environmental conditions (e.g., haze densities). Firstly, a 

satisfactory cloud detection accuracy is critical for cloud 

removal. Specifically, if there are some cloud pixels 

misclassified into non-cloud during the cloud detection process, 

they may act as feature points in the photogrammetry 

processing and appear in the final CF orthophoto. It is the 

reason why some thin clouds remain in the orthophoto (Fig. 8). 

However, if the non-cloud pixels were incorrectly classified as 

cloud pixels, the orthophoto may have data missing over there 

due to the lack of ground objects information. Secondly, the 

performance of cloud removal also depends on the 

environmental conditions. In scene with intensive haze 

densities, the accuracy of feature point matching in overlapping 

images would be reduced. However, the feature matching is a 

key step in the photogrammetric processing for generating 

orthophotos [60]. The inaccurate feature matching would 

induce slight distortion in ground objects and destroy the image 

quality. Therefore, an accurate cloud detection and appropriate 

environmental conditions is necessary for generating high-

quality CF orthophotos. 

 In the haze removal, the combined method of DCP and 

histogram statistics was used to enhance the orthophoto 

qualities. The details in the HF orthophoto was significantly 

improved comparing with the CF orthophoto. The quality of the 

final HF orthophoto is also related to the cloud detection 

accuracy and environmental conditions. Evaluated by the IQA 

metrics, we found obvious differences existed in the final HF 

orthophotos with different cloud detection model and different 

scenes. By comparing the cloud detection accuracy Table II and 

the image quality evaluation statistical result Table III, it can be 

seen that the cloud mask detection accuracy is consistent with 

IQA metrics results for the same scene. We concluded that the 

image quality in the HF orthophoto has been significantly 

improved comparing with the CF orthophoto. 

 Furthermore, to clarify the advantages of cloud removal 

using passenger aircraft as platforms in cloudy weather, we 

created a visualized map based on a Landsat 8 scene and 

obtained two CF orthophotos from flight CZ6591, wherein the 

Landsat 8 scene overlaid the orthophotos (Fig. 11a). Clouds in 

the Landsat 8 scene completely covered the LVC and 

surrounding areas (Fig. 11b). Under these conditions, the 

contaminated area cannot be reconstructed using spatial-based 

and multispectral approaches. Spatial-based methods require a 

hypothetical relationship between cloudy and CF pixels 

[18,19], and multispectral methods require semi-transparent 

cloud or haze conditions [15,17]. Landsat 8 images only 

covered half of the HVC areas. Such conditions limit the use of 

spatial-based and multispectral methods, as well as 

multitemporal approaches with a reference CF image [13]. This 

is because additional CF images are taken from the same 

satellite at the same position and recovered after at least 1 revisit 

period. It is difficult to meet the requirements necessary to 

perform quality dynamic monitoring of the Earth’s surface 

activities. Deep-learning-based cloud removal approaches 

[22,23] have large uncertainties during the learning process if a 

satellite image is completely contaminated by clouds; therefore, 

only using cloud removal algorithms on fully contaminated 

satellite images obtained by optical sensors on remote sensing 

platforms cannot generate truly CF images. 

TABLE IIII QUANTITATIVE COMPARISON OF DIFFERENT SCENES AND MODELS 

BY IQA METRICS.  

Scenes  
Methods PSNR SSIM BRISQUE 

    MVC 

U-Net 25.569 0.951 30.012 

FPN 25.388 0.939 30.023 

PSPNet 25.621 0.962 30.437 

LVC  

U-Net 18.122 0.826 35.481 

FPN 18.297 0.889 35.053 

PSPNet 15.146 0.688 37.142 

HVC 

U-Net 15.195 0.859 31.782 

FPN 15.241 0.865 31.182 

PSPNet 15.460 0.890 31.039 

The bold values denote the highest IQA metrics. 
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However, there are also some inevitable limitations and 

challenges in the proposed method. Compared to professional 

digital aerial cameras, consumer-grade cameras have smaller 

sensor sizes and produce images of relatively lower quality; It 

is difficult to obtain the corresponding orientation and 

positioning parameters from pictures taken based on aircraft 

platforms; As far as the oblique observation direction is 

concerned, there are some defects in the acquired images, such 

as inconsistent scale, the presence of obstacles, and the 

existence of invisible areas; Due to the complexity of cloud 

types and environmental factors, there were still some errors in 

the detection of clouds. The factors above would have different 

degrees of influence on the quality of the generated CF 

orthophotos. The potential applications may be affected to some 

degree due to these limitations: 1) For quantitative remote 

sensing applications, the final orthoimages may not meet the 

requirement for precise parameter inversion; 2) The 

inconsistent quality require more attentions to be paid during 

the data processing. In future work, we can integrate high-

quality satellite image to refine the geometry and radiation 

quality, and therefore partly overcome these limitations. 

In addition, the size of observed area from an individual flight 

is much smaller than satellite. Fortunately, more than 100,000 

flights per day worldwide provide the possibility of observing 

large-scale area based on passenger aircrafts. In order to 

estimate the area that can be covered by global flights per day, 

trends in the number of global flights were analyzed based on 

the flight tracking statistics data from Flightradar24 

(https://www.flightradar24.com/). Civil aviation routes connect 

about 200 countries and regions and 1,700 airports (Fig. 12a). 

The overall trend for the average number of flights operating 

per day worldwide in 2019 was relatively stable, all above 

100,000 daily flights (Fig. 12b). We can find a significant 

downward trend in the number of daily flights worldwide 

starting in April 2020 due to the global spread of the COVID-

19. Nevertheless, the average number of daily flights for the 

whole year was still about 10,000. According to the study by 

Wang et al. (2020), assuming an average speed of 900 km/h and 

a strip width of 34 km, with 8,000 aircraft flying over our heads 

every moment, the area covered per day is 5.8750 x 109 km2, 

which is close to the size of the Earth's surface [26]. In fact, 

there are many areas that cannot be covered by flights, which 

can be complemented by satellite imagery, and to a certain 

extent, the two observation methods can complement each other 

very well. 

 
With the coverage of more flight routes around the world, a 

larger-scale earth observation based on passenger aircraft 

platforms can be even more realistic. This work can be further 

refined in future by considering the time-series images under 

various scenes, including cloud coverage at different altitudes, 

clouds mixed with snow, cloud shadows, as well as Sun 

patterns, e.g., day/night. After collecting more data, we can 

integrate state-of-the-art deep learning-based cloud detection 

models with advanced photogrammetry and computer vision 

techniques to create high-quality HF orthophotos in multiple 

scenes. 

 

VII. CONCLUSION 

Optical satellites are inevitably hindered by clouds when 

obtaining remote sensing images. All cloud removal methods 

require certain assumptions on blocked pixels, as there is hardly 

direct observation over there from satellite. The cloud coverage 

in satellite imagery is associated with the altitude and FOV of 

the satellite platform. The extent of cloud contamination in 

satellite imagery is more evident as the satellite’s altitude 

increases. Additionally, the optical sensor on the satellite 

platform captures the surface information at the same angle due 

to its fixed FOV, causing information located in the same place 

to be always contaminated by clouds in sequential remote 

sensing images. Therefore, generating a truly CF image from a 

fully contaminated image is difficult using only cloud removal 

approaches. 

Compared with the FOV and altitude limitations of the 

satellite platform, the passenger aircraft platform has the 

 
Fig. 11.  Two orthophotos from flight CZ6591 and the overlaid Landsat 8 
scene taken on the same day. Zoom images of the (a) LVC and (b) HVC areas. 

 

(a) 

 
(b) 

 
Fig. 12. (a) Global flying aircrafts distribution at 7:20 on 2021-02-17. Blue 

pins denote the airport locations. (b) Total number of flights tracked by 
Flightradar24, per day (UTC time), 2019 vs 2020 vs 2021.  
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advantages of suitable altitude and multi-viewing angles to 

capture ground-visible images in cloudy conditions. In this 

study, a framework was presented to generate a CF orthophoto 

using passenger aircraft as the remote sensing platform. The 

proposed method can combine images from multiple viewing 

angles and remove cloud contamination without distinguishing 

cloud types or the need for a reference image. This study 

presented the cloud removal results from three representative 

scenes using the proposed framework, which considered cloud 

type, haze density, and vegetation coverage. The clouds in the 

orthophotos of the different scenes were all effectively 

removed. The image quality of the CF orthophotos was highly 

associated with the accuracy of detected cloud masks, which 

were significantly influenced by cloud characteristics, haze 

density, and image contrast. However, we found there were no 

obvious differences among the three cloud detection methods 

(U-Net, FPN, and PSPNet) in detecting cloud. By including the 

haze removal step, the quality of the CF orthophotos are 

significantly improved. Our study demonstrates that the 

framework can create high quality, and truly CF orthophotos. It 

can be used to generate rapid and uncontaminated remote 

sensing product in some particular applications like emergency 

response and disaster monitoring. 
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