
Aberystwyth University

The divergence-free condition in axisymmetric MHD models
Taroyan, Youra; Hovhannisyan, Gro; Sumner, Chloe

Published in:
Monthly Notices of the Royal Astronomical Society Letters

DOI:
10.1093/mnrasl/slab076

Publication date:
2021

Citation for published version (APA):
Taroyan, Y., Hovhannisyan, G., & Sumner, C. (Accepted/In press). The divergence-free condition in
axisymmetric MHD models. Monthly Notices of the Royal Astronomical Society Letters.
https://doi.org/10.1093/mnrasl/slab076

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

https://doi.org/10.1093/mnrasl/slab076
https://pure.aber.ac.uk/portal/en/persons/youra-taroyan(8f812241-4000-488a-b308-c6d51dd89c7a).html
https://pure.aber.ac.uk/portal/en/persons/chloe-sumner(ab7d3c91-72e5-4fe2-b3b2-c615ac665171).html
https://pure.aber.ac.uk/portal/en/publications/the-divergencefree-condition-in-axisymmetric-mhd-models(050c9444-9835-4521-9c0e-261ab6857be6).html
https://pure.aber.ac.uk/portal/en/publications/the-divergencefree-condition-in-axisymmetric-mhd-models(050c9444-9835-4521-9c0e-261ab6857be6).html
https://doi.org/10.1093/mnrasl/slab076


MNRAS 000, 1–6 (2021) Preprint 1 July 2021 Compiled using MNRAS LATEX style file v3.0
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ABSTRACT
Axisymmetric magnetohydrodynamic (MHD) models are useful in studies of magnetised winds and nonlinear Alfvén waves
in solar and stellar atmospheres. We demonstrate that a condition often used in these models for the determination of a nearly
vertical magnetic field is applicable to a radial field instead. A general divergence-free condition in curvilinear coordinates
is self-consistently derived and used to obtain the correct condition for the variation of a nearly vertical magnetic field. The
obtained general divergence-free condition along with the transfield equation complete the set of MHD equations in curvilinear
coordinates for axisymmetric motions and could be useful in studies of magnetised stellar winds and nonlinear Alfvén waves.
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1 INTRODUCTION

The evolution of Alfvén waves or twists in solar and stellar atmo-
spheres is usually described by the magnetohydrodynamic (MHD)
equations for axisymmetric motions. The 1.5 dimensional (1.5D)
time-dependent equations characterising the evolution of the Alfvén
waves or twists along a given magnetic field line were derived by
Hollweg et al. (1982) using curvilinear orthogonal coordinates. An
important effect captured by the 1.5D MHD model is nonlinear cou-
pling and the transfer of energy from Alfvén waves to other MHD
waves, which then dissipate rapidly since they steepen to form shocks
(see, for example, Hollweg et al. 1982; Williams & Taroyan 2018).
The 1.5D MHD model has been adopted by different authors to
investigate the role of Alfvén waves in solar atmospheric heating
and spicule dynamics (Hollweg 1992; Moriyasu et al. 2004), coronal
rain (Antolin et al. 2010), wind acceleration (Kudoh&Shibata 1999),
parametric decay instabilities (Shoda et al. 2018), andMdwarf stellar
winds (Sakaue & Shibata 2021).
Since the seminal work by Weber & Davis (1967), many studies

have examined different aspects of magnetic stellar winds and as-
trophysical jets. The launching mechanism, the propagation, and the
extraction of angular momentum bywinds and jets from rotating stel-
lar objects are often described in curvilinear orthogonal coordinates
(Okamoto 1975; Sakurai 1985; Heyvaerts & Norman 1989, 2003;
Cui & Yuan 2020). The governing equations can be derived from
Hollweg’s equations in the time-independent limit. An additional
transfield equation is used to provide the shape of field lines that are
determined by the forces acting in the transverse direction.
An important condition for both time-dependent and time-

independent models is the divergence free condition that allows the
determination of the magnetic field. In stellar wind studies, the ax-
isymmetric magnetic field is usually represented in terms of the
field-stream function and the divergence-free condition is expressed
in spherical or in cylindrical coordinates.
In studies of time-dependent axisymmetric motions or Alfvén

waves, a divergence free condition in curvilinear coordinates is ap-

plied to field lines that remain close to the axis of symmetry. The
condition was derived by Hollweg et al. (1982) and is based on
general considerations of flux conservation. The aim of the present
letter is the derivation of a self-consistent divergence-free condition
in curvilinear coordinates. The consequences and applications of the
obtained result to some special cases are discussed. The derived con-
dition is different from those used in previous studies that were based
on general considerations of flux conservation.

2 EQUATIONS

Consider the ideal MHD equations of mass continuity, momentum,
and induction:
md

mC
+ ∇ · (dV) = 0 (1)

mV
mC
+ (V · ∇)V + ∇?

d
+ ∇Φ + ∇(�

2)
8cd

=
(B · ∇)B

4cd
, (2)

mB
mC

= ∇ × (V × B) (3)

∇ · B = 0, (4)

The last equation represents the divergence-free condition for the
magnetic field. In cylindrical coordinates, (A, i, I), the axisymmetric
motions are characterised by the condition m/mi = 0. To be consis-
tent with Hollweg et al. (1982), we also assume time-independence
of �A and �I : m�A /mC = m�I/mC = 0.

We also take the local curvilinear coordinates (0, i, B), where s is
the distance measured along the poloidal field line, 0 is the distance
perpendicular to the poloidal field line, i is the azimuthal angle
measured around the rotation axis.

The magnetic field B may be decomposed either into cylindrical
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2 Y. Taroyan et al.

components, (�A , �i , �I) or into toroidal and poloidal components,
(0, �i , �B), where �B denotes the poloidal field and there is no
component in the transverse 0 direction. The same applies to the
velocity. Contopoulos (1996) considered a more general case where
the poloidal flow is not parallel to the poloidal magnetic field.
We introduce the directional derivatives that relate the two coor-

dinate systems:

m

mB
=
mA

mB

m

mA
+ mI
mB

m

mI
(5)

along the poloidal field, and

m

m0
=
mA

m0

m

mA
+ mI
m0

m

mI
(6)

in the transverse direction.
The equations of field lines, A = A (0, B), I = I(0, B), are obtained

by solving:

mA

mB
= − mI

m0
=
�A

�B
= sin \, (7)

mI

mB
=
mA

m0
=
�I

�B
= cos \, (8)

where \ denotes the angle between the poloidal field and the sym-
metry axis (Figure 1).
The adopted approach leads to an interchange of the dependent

and the independent variables. A similar approach has been applied
to static plasmas in a Cartesian geometry: Fiedler & Cally (1990)
and Cally (1991) developed semi-inverse and fully inverse methods
in which one or both Cartesian coordinates are dependent variables
and are solved for as functions of 0 and B.

3 RESULTS

Using the relationships presented in the previous section we derive
the governing equations for the axisymmetric motions:

m

mC

(
d

�B

)
+ m

mB

(
d

�B
+B

)
= 0, (9)

m

mC

(
Ad+i

�B

)
+ m

mB

(
Ad+i

�B
+B

)
=

1
4c

m

mB

(
A�i

)
, (10)

m

mC

(
d+B

�B

)
+ m

mB

(
d+B

�B
+B

)
=

d

�B

m ln A
mB

(
+2
i −

�2
i

4cd

)
− 1

8c�B

m�2
i

mB
− 1
�B

m?

mB
− d

�B

mΦ

mB
, (11)

m

mC

(
�i

A�B

)
+ m

mB

(
�i

A�B
+B

)
=
m

mB

(
+i

A

)
. (12)

Equations (9) - (12) have been derived by Hollweg et al. (1982).
Using the directional derivatives (5), (6), and the angle \ between

the poloidal field and the symmetry axis we derive the following
divergence-free condition:

m

mB
ln |�BA | +

m\

m0
= 0. (13)

An additional transfield equation can be cast in the following form:

(
d+2
B −

�2
B

4c

)
m\

mB
=

cos \
A

(
d+2
i −

�2
i

4c

)
− m

m0

(
�2

8c
+ ?

)
− d mΦ

m0
.

(14)

Figure 1. Distance B along a radial magnetic field and incremental increase
along and across the poloidal field projected onto the radial, A , and the
symmetry, I, axes.

The above equation expresses force balance in a direction perpendicu-
lar to the magnetic field and therefore represents a generalised Grad-
Shafranov equation. It is equivalent to equation (21) in Okamoto
(1975) and equation (7.41) in Mestel (2012). The transfield equa-
tion (14) determines the shape of the field lines as a result of the
forces acting in the transverse direction. The field lines bend away or
towards the symmetry axis depending on the sign of m\/mB.

The solenoidal condition (13) and the balance of forces in the
transverse direction (14) complete the set of the governing equations
for axisymmetric motions in curvilinear coordinates.

The azimuthal part of the energy density represents the sum of the
azimuthal kinetic and magnetic energy densities. It is given by

,i =
d+2
i

2
+
�2
i

8c
(15)

The set of governing equations (9) - (12) can be combined to derive
the following equation:

m

mC

(
,i

�B

)
+ m

mB

(
�,

�B

)
=
+B

�B

m ln A
mB

(
�2
i

4c
− d+2

i

)
−
�2
i

8c
m

mB

(
+B

�B

)
,

(16)

where �, = +B,i −
�B+i�i

4c
(17)

represents the azimuthal energy flux.

4 DISCUSSION

Equations (9) - (12) were derived by Hollweg et al. (1982) using
curvilinear coordinates. For an axisymmetric field the divergence-
free condition (4) takes the form

Aℎb �B = constant along field lines, (18)

where A denotes distance from the axis of symmetry and ℎb is
an arbitrary curvilinear scale factor. It was argued that due to the
conservation of magnetic flux the above condition (18) could be
reduced to

�BA
2 ≈ constant along field lines, (19)

for field lines close to the axis of symmetry. Condition (19) has been
widely used in many studies of axisymmetric motions.

MNRAS 000, 1–6 (2021)



Divergence-free condition in axisymmetric MHD 3

We note that the conservation of magnetic flux,∫
(

B·3S = constant along field lines, (20)

can be derived from the divergence-free condition by applyingGauss’
theorem. Assuming nearly vertical field lines, �B , close to the axis
of symmetry, we have∫
(

B·3S ≈
∫
(
�B3( = �̃BcA

2 = constant along field lines, (21)

where �̃B is the mean magnetic field between 0 and A. However, the
mean is not necessarily the same as the value of �B at A because,
in general, the strength of the magnetic field is variable across the
field lines. Therefore, condition (19) cannot be derived from general
considerations of flux conservation.
The divergence free condition (13) obtained in the present work

is consistent with the remaining governing equations in curvilinear
coordinates. It can be used to investigate axisymmetric motions with
more general poloidal magnetic fields.We consider two applications:
a radial field and a nearly vertical field.
As a first example we consider the case of a radial field shown in

Figure 1 for which we have

B X\ ≈ X0, (22)

where X denotes incremental variation. For a radial field we also have

XA

XB
=
A

B
(23)

Therefore the derivative of \ is reduced to
m\

m0
=

1
B
=

1
A

mA

mB
(24)

Equation (13) is reduced to

m

mB
ln |�BA | +

m

mB
ln A = 0. (25)

or

�BA
2 = constant along field lines. (26)

Condition (26) was used by Cui & Yuan (2020) to study stellar winds
along radial field lines. It is equivalent to the well known condition
for �''2 in spherical coordinates where ' denotes radial distance.

Condition (26) was also used by Hollweg et al. (1982) and in
subsequent studies of field lines in the neighbourhood of the sym-
metry axis. However, these studies did not assume a radial magnetic
field and therefore condition (26) may not be compatible with the
remaining governing equations that contain both �B and A .
For field lines near the axis of symmetry that are nearly vertical the

angle \ is small and the second term in equation (13) can be ignored.
The resulting divergence-free condition is:

�BA = constant along field lines (27)

Condition (27) is applicable to arbitrary field lines that remain close
to the symmetry axis. It is different from condition (26) which has
been traditionally used in axisymmetric models. Replacing condition
(27) with condition (26) should result in stronger variation of the
poloidal field for a given expansion factor. It is important to note that
both �B and A figure in the governing equations and cannot be chosen
independently.
Equation (27) can be used to derive an equation of energy for the

neighbourhood of an arbitrary field line near the axis of symmetry.

The azimuthal energy in a volume element 3+ containing a field line
element 3B is given by:

,i3+ =

(
d+2
i

2
+
�2
i

8c

)
A3i3A3B. (28)

The total azimuthal energy in a thin axisymmetric shell of thickness
3A is given by the integral:

2c3A
∫
,iA3B = 2c3A

∫ (
d+2
i

2
+
�2
i

8c

)
A3B. (29)

Integrating equation (16) and using the divergence-free condition
(27), we obtain:

m

mC

∫
,iA3B +

∫
m

mB
(�, A) 3B =∫

+BA
m ln A
mB

(
�2
i

4c
− d+2

i

)
3B −

∫
�2
i

8c
m

mB
(+BA) 3B. (30)

Equation (30) represents an equation for the temporal variation of the
total azimuthal energy in a thin axisymmetric shell. The second term
on the left-hand side of equation (30) represents the net azimuthal
energy flux. The sources on the right-hand side of equation (30)
represent the sum of the tension and centrifugal forces (first term)
and the twist-flow coupling (second term).

It is worth noting that condition (27) separates two classes of field
lines. More specifically, the divergence free condition (13) shows
that for a diverging field (mA/mB > 0 ) of the form �B ∼ AU−1, where
U < 0, the field lines become less vertical and more inclined with
distance 0. The radial field with U = −1 that we have considered
above belongs in this category. On the contrary, for U > 0, the field
lines tend to become more vertical with distance 0.

5 SUMMARY

Axisymmetric MHD models are commonly used to study the prop-
erties of magnetised stellar winds and the evolution of Alfvén
waves in solar/stellar atmospheres. Both time-dependent and time-
independent models rely on a divergence free condition to determine
the poloidal magnetic field. Alternatively, it is represented in terms
of a field-stream function, so the divergence-free condition is au-
tomatically satisfied. In both cases, the poloidal magnetic field is
represented in spherical or cylindrical coordinates that are treated as
independent variables.

We derive a general divergence-free condition for axisymmetric
motions where the curvilinear coordinates B and 0 are treated as
independent variables. It completes the set of governing equations in
curvilinear coordinates.

As an application, we demonstrate that a well-known condition,
previously thought to represent a nearly axial poloidal field, is con-
sistent with a radial field. The correct condition for a nearly axial
poloidal field is obtained. The derived divergence-free condition can
be used in future studies to find more general solutions that are
compatible with the remaining governing equations.

DATA AVAILABILITY

No new data were generated or analysed in support of this research.
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APPENDIX A: DERIVATION OF THE
DIVERGENCE-FREE CONDITION

The radial component of the induction equation can be written in the
following form:

m�A

mC
=
(+A�i −+i�A ) (i)

A
− (+I�A −+A�I) (I) , (A1)

where the superscript denotes the partial derivative with respect to
the enclosed variable. The z-component of the induction equation
can be represented as:

m�I

mC
==
(A+I�A − A+A�I) (A ) − (+i�I −+I�i) (i)

A
. (A2)

Using the adopted time-independence of �A and �I and the axisym-
metric nature of the model (m/mi = 0) we have:

m�A

mC
= (+A�I−+I�A ) (I) = 0,

m�I

mC
=
(A+I�A − A+A�I) (A )

A
= 0,

(A3)

that are satisfied if:

+A�I = +I�A . (A4)

We split the velocity and the magnetic field into toroidal, i, and
poloidal, B, components:V = (0, +i , +B) andB = (0, �i , �B), where

�2
B = �

2
A + �2

I , +2
B = +

2
A ++2

I . (A5)

The corresponding components in the direction transverse to the field
are zero. Using equation A4 we have

+B

�B
=
+I

�I

√√√√√√√1 + +
2
A

+ 2
I

1 + �
2
A

�2
I

=
+I

�I
. (A6)

We also have

+B�B = +I�I

√
1 + +

2
A

+ 2
I

√
1 + �

2
A

�2
I

= +I�I

(
1 + +

2
A

+ 2
I

)
= +I�I ++A�A (A7)

We introduce the directional derivatives:
m

mB
=
�A

�B

m

mA
+ �I
�B

m

mI
(A8)

along the magnetic field, and

m

m0
=
�I

�B

m

mA
− �A
�B

m

mI
(A9)

transverse to the magnetic field. The equations of field lines can be
found by solving:

mA

mB
= − mI

m0
=
�A

�B
= sin \, (A10)

mI

mB
=
mA

m0
=
�I

�B
= cos \. (A11)

where we have introduced the angle \ between the poloidal field
�B and the symmetry axis A = 0. By combining (A8) and (A9), we
obtain expressions for the partial derivatives with respect to A and I:

m

mA
=
�A

�B

m

mB
+ �I
�B

m

m0
(A12)

m

mI
=
�I

�B

m

mB
− �A
�B

m

m0
(A13)

The divergence-free condition in cylindrical coordinates has the fol-
lowing form:

∇ · B =
(A�A ) (A )

A
+
�
(i)
i

A
+ � (I)I = 0, (A14)

The assumed axisymmetry (m/mi = 0) reduces condition A14 to:

(A�A ) (A )
A

+ � (I)I = 0, or �
(A )
A + � (I)I +

�A

A
= 0, (A15)

We rewrite this formula in the form:

A�2
A

�I

(
�I�

(A )
A

A�2
A

−
�
(A )
I

A�A
+ �I

A2�A

)
+
�A�

(A )
I

�I
+ � (I)I = 0 (A16)

to obtain

− A�
2
A

�I

(
�I

A�A

) (A )
+
�A�

(A )
I + �

(I)
I �I

�I
= 0. (A17)

Alternatively, we have:

A�2
A

�I

(
�I

A�A

) (A )
=
�B

�I

m�I

mB
or

m

mB
ln |�I | +

�A

�B

m

mA
ln

���� A�A�I
���� = 0.

(A18)

The next step is to use the relationship (A12) and express all terms
in equation (A18) via the directional derivatives:

m

mB
ln |�I | +

�2
A

�2
B

m

mB
ln

���� A�A�I
���� + �A�I

�2
B

m

m0
ln

���� A�A�I
���� = 0. (A19)

After some simple algebra, using expressions (A10) and (A11), we
reduce equation (A19) to the following form:

1
�I

m�I

mB
+
�2
I

�2
B

m

m0

(
�A

�I

)
+ �A

A�B
+ �A�I

�2
B

m

mB

(
�A

�I

)
= 0. (A20)

Using the relationships (A10) and combining the first and last terms
in condition (A20), we have:

�I

�2
B

m�I

mB
+
�2
I

�2
B

m

m0

(
�A

�I

)
+ m

mB
ln A + �A

�2
B

m�A

mB
= 0. (A21)
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or
m

mB
ln |�BA | +

�2
I

�2
B

m

m0

(
�A

�I

)
= 0. (A22)

Finally, by using the relationships (A10), (A11), we can express the
second term in the right hand side of (A22) in terms of the angle \:

m

mB
ln |�BA | +

m\

m0
= 0. (A23)

Equation (A23) represents the divergence free condition for axisym-
metric motions in curvilinear coordinates.

APPENDIX B: DERIVATION OF THE GOVERNING
EQUATIONS

In the present section, we derive the conservation equations of mass,
momentum and induction in terms of the introduced variables B and
0 and show their consistency with those derived by Hollweg et al.
(1982). An additional transfield equation is derived.
From the mass conservation law (1) we have

d (C) + (A+A d)
(A )

A
+ (+Id) (I) = 0. (B1)

Using equations (A4) and (A6) we have:

d (C) + 1
A

(
A�A d

+B

�B

) (A )
+

(
�Id

+B

�B

) (I)
= 0,

or, using the divergence-free condition (A14), we obtain

d (C) + �A
(
d
+B

�B

) (A )
+ �I

(
d
+B

�B

) (I)
= 0.

Finally, using the definition (A8) of the directional derivative and the
time independence of �B , we obtain the desired continuity equation
(9):

m

mC

(
d

�B

)
+ m

mB

(
+Bd

�B

)
= 0. (B2)

The i- component of the equation of motion has the form:

+
(C)
i +

(A+i) (A )+A
A

++ (I)i +I =
(A�i) (A )�A + A� (I)i �I

4Acd

Wemultiply both sides by A and use the introduced directional deriva-
tive (A8) to obtain:

A+
(C)
i + (A+i) (A )+A + A+

(I)
i +I =

(A�i) (A )�A + A� (I)i �I

4cd
,

A+
(C)
i ++B

m

mB

(
A+i

)
=
�B

4cd
m

mB

(
A�i

)
,

or, using the continuity equation, the equation of motion (10):

m

mC

(
Ad+i

�B

)
+ m

mB

(
Ad+i

�B
+B

)
=

1
4c

m

mB

(
A�i

)
. (B3)

The i component of the induction equation reads:

�
(C)
i = (+i�I −+I�i) (I) + (+i�A −+A�i) (A )

or � (C)i = (+i�I −+I�i) (I) +
[
�A

�I

(
+i�I −+I�i

) ] (A )

We use the definition of the partial derivative with respect to B to
obtain:

�
(C)
i =

�B

�I

m

mB

(
+i�I −+I�i

)
+

(
�A

�I

) (A )
(+i�I −+I�i).

From equation (A18) we have:(
�A

�I

) (A )
= − �B

A�2
I

m

mB
(A�I) .

We therefore obtain:

�
(C)
i =

�B

A�2
I

(
A�I

m

mB
(+i�I −+I�i) − (+i�I −+I�i)

m

mB
(A�I)

)
,

�
(C)
i = A�B

m

mB

(
+i�I −+I�i

A�I

)
or

m

mC

(
�i

A�B

)
+ m

mB

(
�i

A�B
+B

)
=
m

mB

(
+i

A

)
.

which is the induction equation (12) in curvilinear coordinates.
The z-component of the equation of motion reads:

+
(C)
I ++

(I)
I +I ++ (A )I +A +

? (I)

d
+Φ(I) + �

(I)�
4cd

=

1
4cd

(
�
(I)
I �I + � (A )I �A

)
.

or + (C)I +
+A

�A
(+ (I)I �I + �A+ (A )I ) +

? (I)

d
+Φ(I) =

−�
(I)�

4cd
+ 1

4cd

(
�
(I)
I �I + � (A )I �A

)
Using the definition of the partial derivative with respect to B we
obtain:
m+I

mC
++B

m+I

mB
+ 1
d

m?

mI
+ mΦ
mI
+ �

4cd
m�

mI
=
�B

4cd
m�I

mB
. (B4)

The radial component of the equation ofmotion can be represented
in the following form:

+
(C)
A ++A (+ (A )A ++ (I)A +I/+A ) +

? (A )

d
+Φ(A ) =

−�
(A )� − � (A )A �A − � (I)A �I

4cd
+
+2
i

A
−

�2
i

4cdA

Using expression (A8) we obtain:

m+A

mC
++B

m+A

mB
+ 1
d

m?

mA
+ mΦ
mA
+ �

4cd
m�

mA
− �B

4cd
m�A

mB
=
+2
i

A
−

�2
i

4cdA
.

(B5)

We multiply equation (B4) by d�I/�2
B , (B5) by d�A /�2

B , add the
two together, and use the relationship (A7) to derive the equation of
motion in the B-direction (11):

m

mC

(
d+B

�B

)
+ m

mB

(
d+B

�B
+B

)
=

d

�B

m ln A
mB

(
+2
i −

�2
i

4cd

)
− 1

8c�B

m�2
i

mB
− 1
�B

m?

mB
− d

�B

mΦ

mB
, (B6)

Finally, we multiply equation (B4) by d�A /�2
B , equation (B5) by
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d�I/�2
B , and subtract the two from each other to derive the transfield

equation (14):(
d+2
B −

�2
B

4c

)
m\

mB
=

cos \
A

(
d+2
i −

�2
i

4c

)
− m

m0

(
�2

8c
+ ?

)
− d mΦ

m0
.

(B7)

Note that no time derivatives are present in equation (B7) due to the
condition (A4) and the adopted time-independence of the magnetic
field components �A and �I .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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