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Abstract
The use of exogenous compounds such as ‘gasotransmitter’ molecules is a well-established agronomic strategy to improve 
the crop tolerance to environmental stresses. In this current work, when Cr (200 µM) was combined with the nitric oxide 
(NO) generator sodium nitroprusside SNP, 500 µM) there was a suppression of metal-induced alterations in embryo growth. 
Exogenous NO produced by SNP reduced the accumulation of toxic hydrogen peroxide and methylglyoxal and stress-linked 
proline in Cr-treated seedlings. Chromium increased thiol and S-nitrosothiol levels but this was restored to control levels by 
SNP, in spite of a competing NO reaction leading to increase of S-nitrosoglutathione content. However, added complexity 
was indicated by addition of arginine analogue N (ω)-nitro-L-arginine methyl ester (L-NAME, 500 µM) in the germinating 
medium to suppress endogenous NO production. This suppressed endogenous NO production but superoxide dismutase 
(SOD) was suppressed not enhanced in Cr + L-NAME treatments. In addition, Cr + L-NAME significantly decreased the con-
tent of spermidine and spermine in epicotyls as compared to Cr treatment alone. Similarly, exposure to Cr + SNP decreased 
spermidine and spermine levels in both radicles and epicotyls. This is important as polyamines have been suggested as route 
for NO production. Thus, our observations suggest that exogenous NO mitigates Cr-induced damage and confers seedling 
tolerance to Cr through suppression of NADPH oxidase activity and increased GSNO contents. This may act to prevent an 
excess of methylglyoxal and hydrogen peroxide. However, the reduction in polyamine mediated cellular NO generation could 
also promote increased viability under Cr stress.

Keywords  Chromium · Maize · Nitric oxide · Nitrosative stress · Oxidative stress · Polyamines

Abbreviations
GSNO	� S-nitrosoglutathione
GSNOR	� S-nitrosoglutathione reductase
L-NAME	� Nω-Nitro-L-arginine methyl ester
MG	� Methylglyoxal
NO	� Nitric oxide
O2·−	� Superoxide radicals

Pas	� Polyamines
Pro	� Proline
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
SOD	� Superoxide dismutase
SNO	� S-nitrosothiols
SNP	� Sodium nitroprusside
Spd	� Spermidine
Spm	� Spermine

Introduction

Environmental contamination with heavy metals can be 
hazardous to human health by entering the food chain via 
crop plants. Chromium (Cr) is one of the most toxic metal 
pollutants in the earth’s crust. This transition metal is fre-
quently generated by anthropogenic activities; metallurgy, 
electroplating, steel, leather and fertilizer production (Tóth 
et al. 2016). Chromium can adopt several oxidation states, 
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but the trivalent Cr(III) and hexavalent Cr(VI) forms are 
the most dominant and stable in polluted soils. However, 
Cr(VI) is more toxic than Cr(III) due to its high solubil-
ity and mobility through cell membranes (Oliveira 2012; 
Wakeel et al. 2020).

In plants, excessive accumulation of Cr is harmful and 
affects germination, growth, development, and metabolism 
leading to cell death (Wakeel et al. 2020). As a redox active 
metal, Cr can catalyze the generation of reactive oxygen 
species (ROS) via Fenton reaction leading to oxidative dam-
age. The reduction of Cr(VI) to Cr(III) is concomitant with 
the generation of superoxide radicals (O2·−) and hydrogen 
peroxide (H2O2) (Shahid et al. 2017). To cope with a cas-
cade of negative reactions triggered by metal toxicity, plants 
have ROS scavenging systems, which include antioxidant 
enzymes such as superoxide dismutase (SOD), catalase 
(CAT) and peroxidases (POX) (Shahid et al. 2017). The 
effects of heavy metal mediated ROS generation may be 
enhanced by the accumulation of methylglyoxal (MG); a 
potent cytotoxic compound (Nahar et al. 2016). In addition, 
high cellular levels of MG affects biological macromolecules 
and inactivates antioxidant defense systems (Mostofa et al. 
2018).

Carbon monoxide (CO), hydrogen sulphide (H2S) and 
nitric oxide (NO) are signalling molecules which modulate 
physiological processes in animals and plants (Hartsfield 
2002; Rui 2010; Mukherjee and Corpas 2020). NO is a 
bioactive endogenous molecule with vital roles in germi-
nation, growth and tolerance to biotic and abiotic stresses 
(Per et al. 2017). NO biosynthesis can be formed via oxida-
tive pathways from L-arginine or polyamines as “reductive 
pathways” via e.g. nitrate reductase. The oxidative pathway 
of NO is interconnected with various signalling molecules 
and metabolites that perform important functions in plant 
stress responses including polyamines (PAs) and proline 
(Pro) (Spormann et al. 2020). In plants, the existence of NO 
synthase (NOS)-like activity is still a controversial issue. 
PAs and NO share overlapping physiological functions in 
free radicals and ROS scavenging by activating cellular 
enzymatic and non-enzymatic systems which confers plant 
tolerance to metallic stress (Nahar et al. 2016). The PAs are 
known to act as an agent improving effects of NO (Asghari 
and Abdollahi 2013). Indeed, an over-accumulation of PAs 
in response to various environmental constraints can protect 
cellular structures, and detoxify free radicals, at least in part 
through the production of NO (Spormann et al. 2020).

The underlying mechanisms by which NO acts in plants 
to counteract environmental stress are frequently mediated 
by post-translational modifications (NO-PTMs) of pro-
teins (Begara-Morales et al. 2016). In particular, protein 
S-nitrosation (also known as S-nitrosylation) is recognized 
as a key aspect of NO-based signalling. This is based on 
the reactiveness of NO and protein thiols to generate such 

S-nitrosothiols (SNO), and S-nitrosoglutathione (GSNO) 
(Groß et al. 2013; Mukherjee and Corpas 2020). GSNO is 
formed by the reaction of NO with GSH in the presence of 
oxygen and can serve as a mobile reserve of bioactive NO 
in plant cells (Corpas et al. 2019). Another role for GSNO is 
the S-nitrosylation of cysteine residues to influence a range 
of protein functions. The degree of protein nitrosation is 
affected by the cellular level of GSNO which is influenced 
by S-nitrosoglutathione reductase (GSNOR) activity. Nitro-
sation targets can include antioxidant enzymes such as per-
oxiredoxin IIE or ROS generating NAD(P)H oxidase and 
such events can influence cell death mechanisms (Yun et al. 
2011).

Maize a monocotyledonous plant, is a staple food crop 
which has a very relevant agronomic and economic impor-
tance worldwide (Ranum et al. 2014). In certain areas, maize 
production could be limited by Cr contamination from 
source such as industrial production. To help in developing 
suitable Cr tolerant maize genotypes we aimed to charac-
terize how NO could mitigate the adverse effects of Cr on 
maize plants. In particular, we here assess the mechanisms 
through which NO could modulate oxido-nitrosative events 
with Cr-stress. Based on our observations, we describe and 
complex interaction between endogenous and exogenous 
NO, which have effects on (i) the oxidative and nitrosative 
events, (ii) the suppression of toxic chemicals and (iii) the 
accumulation of polyamines that act to confer tolerance to 
Cr.

Material and Methods

Germination Conditions, Treatments and Growth 
Tests

Maize seeds (Zea mays L. cv Agrister), were surface steri-
lized with 2% (v/v) sodium hypochlorite for 10 min, rinsed 
and soaked in distilled water at 4 °C for 30 min. Then were 
germinated in glass petri dishes (23 cm in diameter, 30 seeds/
petri dish) at 25 °C in the dark during 9 days between two 
sheets of filter paper moistened with 30 ml (every 3 days) 
of the following treatment solutions: (1) H2O (control), (2) 
sodium nitroprusside (SNP; NO donor), (3) Cr(K2Cr2O7), 
(4) Cr + SNP and (5) Cr + Nω-Nitro-L-arginine methyl ester 
(L-NAME, an inhibitor of NO generation). The metal salt 
concentration was selected based on a previous study with 
Zea mays which showed that 200 µM of Cr caused > 50% 
inhibition embryonic axis growth (Kharbech et al. 2017). In 
all treatments, the concentration of SNP and L-NAME was 
500 µM, which was applied individually or combined with 
200 µM of Cr. Harvesting was carried out daily from the 
third until the ninth day after germination.
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The germination stage was selected as it is one of the 
most vulnerable to heavy metals. At harvest, the germinated 
seeds were peeled; then the embryonic axis was carefully 
separated from the cotyledon. This was sequentially washed 
twice in distilled water for 1 min before drying between two 
sheets of filter paper. The lengths of the embryonic axes 
(radicle and epicotyls separately) were measured using a 
ruler. The samples were weighed and then stored in liquid 
nitrogen.

Quantification of NO

The NO produced by the cells was estimated in vivo using 
Griess reagent (Kaur et al. 2015). The latter was composed 
of 2% (w/v) sulfanilamide and 0.2% (w/v) N-(1-naphthyl) 
ethylenediamine prepared within 5% (v/v) phosphoric acid 
solution. NO production from 1 g (fresh weight) of tissue 
was measured following the methods described by Vitecek 
et al. (2008). The absorbance of the Griess reagent was read 
at 540 nm after 15 min of capture of NO carried through the 
gaseous phase. The NO concentration (as oxidized NO2

−) 
was determined from a calibration curve prepared using 
sodium nitrite as a standard.

Hydrogen Peroxide Determination

H2O2 content was evaluated at 390 nm according to the 
method of Sergiev et al. (1997). 1 g of fresh sample material 
was homogenized in 10 ml of TCA (0.1%) and then centri-
fuged at 12,000 ×g for 15 min at 4 °C. The reaction mixture 
consists of 1 ml potassium iodide (1 M), 0.5 mL K-phos-
phate buffer (25 mM, pH 7.0) and the resulting supernatant. 
Hydrogen peroxide concentrations were calculated using a 
standard curve.

Protein Extraction, Thiol Levels and Assays 
of Enzyme Activities

Radicles and epicotyls of maize seedlings were homog-
enized in liquid nitrogen in Tris–HCl (100 mM, pH 8.0) 
extraction buffer containing 1 mM EDTA, DTT (5 mM), 
Triton X-100 (0.02%, v/v) and glycerol (10%, v/v). After 
centrifugation at 17,000 ×g for 20 min at 4 °C, the resulting 
supernatants were recovered and aliquoted for protein, thiol 
content and enzymatic assays. Protein concentrations were 
determined using Bradford’s (1976) method.

Thiol contents were measured according to the method 
of Ellman (1959, ε = 13,600 M−1 cm−1). The protein extract 
was added to DTNB (5–5′-dithiobis acid-2-nitrobenzoic); 
4 mg/ml prepared in Tris–HCl (50 mM, pH 8). The reduction 
of DTNB was detected spectrophotometrically at 412 nm.

The activity of SOD (EC 1.15.1.1.1) in the supernatant 
was appraised at 490 nm according to the method described 

by Misra and Fridovich (1972). The reaction mixture con-
tained 1.88 U/mL CAT, sodium carbonate/bicarbonate buffer 
(62.5 mM, pH 10.4), EDTA (125 µM) and protein extract.

NADPH oxidase activity (EC 1.6.3.1) was determined 
by monitoring NADPH oxidation, which expressed by the 
decrease in absorbance at 340 nm (Ishida et al. 1987). The 
reaction mixture was composed of sodium acetate buffer 
(100  mM, pH 6.5), MnCl2 (1  mM), acid ρ-coumarate 
(0.5 mM), NADPH (0.2 mM) and enzyme extract. The 
activity was calculated using an extinction coefficient of 
6.22 mM−1 cm−1.

GSNOR activity (EC 1.2.1.1.1) was determined at 25 °C 
by following the oxidation of NADH at 340 nm (Barroso 
et al. 2006). The protein extracts were incubated in Tris–HCl 
(20 mM, pH 8.0) containing NADH (0.2 mM) and EDTA 
(0.5 mM). The enzymatic reaction was initiated by adding 
GSNO (0.4 mM) to the reaction mixture. Enzyme activity 
was expressed by using ε = 6.22 mM−1 cm−1.

Determination of S‑Nitrosothiol (SNO) Content

Fresh samples were ground in the dark in a phosphate buffer 
(50 mM, pH 7.2) containing 80 mM S-methyl methanethio-
sulfonate (MMTS) (Gow et al. 2007) and centrifuged for 
20 min at 20,000 ×g at 4 °C. The supernatants were col-
lected and added to chilled acetone a ratio of 3:1; chilled 
acetone/extract volume. This was incubated for 60 min at 
24 °C and centrifuged again at 20,000 ×g for 20 min at 4 °C. 
The supernatant was discarded and the pellets resuspended 
in the extraction buffer. The SNO content was estimated by 
the method of Saville (1958). Thus, 300 μL of the protein 
extract was incubated for 20 min with 300 μL of (3.4%, 
w/v) sulfanilamide (prepared in 0.4 M HCl) and 250 μL of 
(0.1%, w/v) N-(1-naphthyl) ethylenediamine, with or with-
out (0.1%, w/v) HgCl2. After incubation for 20 min at room 
temperature, the absorbance was measured at 540 nm using 
UV/Visible spectrophotometer, UV-3100PC. The difference 
in absorbance between samples treated and untreated with 
HgCl2 was used to estimate the SNO content in the samples.

Liquid Chromatography–Electrospray/Mass 
Spectrometry (LC‑ES/MS) Based Measurement 
of GSNO

For chromatographic measurement of GSNO, the method 
described by Airaki et al. (2011) was used with slight modi-
fications. Samples (0.3 g) were ground in 1 mL HCl (0.1 M) 
and the homogenates were centrifuged at 21,000 ×g for 
20 min at 4 °C. The supernatants were collected and passed 
through 0.45 mm nylon filters, and immediately analyzed. 
All procedures were performed at 4 °C and protected from 
light to avoid potential degradation of GSNO.
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Samples were assayed by LC-MS using a TSQ Quantum 
Ultra triple quadrupole mass spectrometer (Thermo Scien-
tific), coupled to an Accela ultra-high performance liquid 
chromatography (UHPLC) system (Thermo Scientific). 
Instrument control, data collection, analysis and manage-
ment were controlled by the Thermo XCalibur 2.0.7 soft-
ware package. Separation was performed using a Hypersil 
Gold (1.9 µm, 200 × 2.1 mm) RP-C18 column (Thermo 
Scientific). GSNO was separated using isocratic condi-
tions using formic Acid (0.1%, v/v) in water for 8 min at 
0.4 ml min−1. This was followed by a methanol wash. The 
effluents from the HPLC were introduced into the mass spec-
trometer using an electro-spray ionisation (ESI) source. The 
capillary temperature was 215 °C and the vaporizer tempera-
ture was 250 °C. The sheath gas and auxiliary gas settings 
were 70 psi and 50 psi, respectively. The spray voltage was 
4.0 kV. Argon gas (1.5) was in the collision cell. Mass spec-
trometric parameters were optimized by continuous infusion 
of 100 ppm of GSNO in 0.1 M HCl. Detection of all the 
compounds was performed in positive ionization mode. The 
quantification of the compounds was based on appropriate 
multiple reaction monitoring (MRM) of ion pairs, using the 
following transition: GSNO 337.110 > GSNO 232.186.

Targeted Metabolite Measurement by Flow Injection 
Electrospray High Resolution Mass Spectrometry 
(FIE‑HRMS)

Samples (40 mg) were ground in the presence of 1 mL of 
the following mixture; chloroform–methanol-H2O (1: 2.5: 
1, v:v:v) at 4 °C. After stirring for 1 h at 4 °C, the homoge-
nates were centrifuged at 5000 ×g for 5 min at 4 °C. 100 
µL of each sample was transferred in mass vials for flow 
infusion electrospray high-resolution mass spectrometry 
(FIE-HRMS) fingerprinting analysis. FIE-HRMS were 
performed using an Exactive HCD mass analyser equipped 
with an Accela UHPLC system (Thermo Fisher Scien-
tific). Compounds were identified based on ratio mass-to 
charge (m/z); this generated metabolite fingerprints in posi-
tive–negative ionization mode, in a single run as described 
by Kharbech et al. (2020). Electro spray ionization (ESI) 
source parameters were set according to manufacturer’s 
recommendations. For each ionization mode, mass spectra 
around the apex of the infusion peak were combined into 
a single intensity matrix (runs x m/z). Metabolomics data 
analyses used the R-based platform MetaboAnalyst 4.0. Data 
was normalized based on the percentage total ion count and 
then log10-transformed from intensity matrix. Each nomi-
nal mass spectra (m/z) generated matches be a metabolite 
that was separated from different metabolites by virtue of 
their molecular mass. KEGG pathway database was used to 
metabolites annotation; the tolerance on the accurate mass 
for each mass-ion (m/z) was 3 ppm.

Statistical Analysis

The experiments were repeated four times (n = 4). The 
results were analysed by one-way analysis of variance 
(ANOVA) using Statistica ver. 7 software, with a 5% risk 
of type I error. Tukey’s test was used to assess the degree 
of significance of the differences between the treatments. 
Values were given as means ± SE and significant differences 
were indicated by different letters (p ≤ 0.05).

Results and Discussion

NO Protects Against Chromium Toxicity in Maize

Maize belongs to the list of plants available for phytoex-
traction technology, which has high metal accumulating 
ability (Chiwetalu et al. 2020). However, this ability can 
be increased if the metal toxic effects are counteracted. The 
use of exogenous materials such as ‘gasotransmitter’ mol-
ecules is a well-established agronomic strategy to improve 
the crop tolerance to environmental stresses. Sodium nitro-
prusside (SNP) is commonly used as an exogenous NO 
donor to strength crop tolerance against heavy metal (Kaur 
et al. 2015; Kaya et al. 2019; Kharbech et al. 2020). After 
6 days of exposure, the toxic effects of Cr on maize seed-
lings were indicated by the reduction of radicle and epicotyl 
elongations reaching 59% and 35% of control respectively 
(Fig. 1a). After 9 days, Cr effects on cell elongation were 
more pronounced in radicles (− 70% of control) than epico-
tyls (− 49% of control). Similarly, radicle fresh weights were 
severely affected (− 63% of control) after 9 days of Cr treat-
ment (Fig. 1b). These results aligned with those reported in 
Zea mays (Islam et al. 2016).

Under our experimental conditions, when applied alone, 
SNP (500 µM) did not significantly affect seedling growth 
(Fig. 1). However, when SNP was combined with Cr, any 
toxic effects were clearly suppressed (Fig. 1). Focusing on 
recovery indices, it was clear that, even in Cr-treated seed-
lings, SNP increased tolerance of radicles from 40 to 74% 
on day 6 and from 24 to 58% on day 9. In epicotyls, SNP 
also mitigated growth losses caused by Cr (Fig. 1). These 
data aligned with reports that NO (often added as SNP) is 
capable of mitigating the adverse effects of heavy metals 
stresses, (Per et al. 2017; Singh et al. 2020).

We hypothesized that SNP application could be acting 
to amplify an innate NO response to heavy metal in order 
to make it more effective. To confirm this, NO production 
was measured in epicotyls and radicles following various 
treatments using a Griess reagent-based assay (Fig. 2). In 
the control treatment, the slight NO production elicited 
over the 9-day measuring period noted is likely to be a 
sampling artefact. Addition of Cr increased the production 
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of NO which was further increased with SNP and even 
more with SNP + Cr. These results could be linked with 
the effectiveness of exogenous NO application in improv-
ing growth processes and NO levels.

To indicate the effects of endogenous NO production 
on any anti-Cr action, the experiments were repeated in 
the presence of an inhibitor of NO biosynthesis: L-NAME 
which acts by inhibiting nitric oxide synthase (NOS) 
in animal systems (Astier et al. 2018). The addition of 
L-NAME effectively abolished the increase in NO previ-
ously seen with Cr alone (Figs. 2 and 3). Similarly, NO 
produced with Pb (Kaur et al. 2015) and Cr (Singh et al. 
2020) stresses could confer tolerance but was quashed 
after L-NAME addition (Phillips et al. 2018). In plants, 
NOS-like activity (if not NOS) has been widely involved 
in generating endogenous NO but L-NAME could also be 
affecting several possible NO-generating pathways (Geng 
et al. 2019; Singh et al. 2020). This was not assessed in 
our study but the L-NAME treatments clearly show a role 
for NO in Cr tolerance.

NO Affects Oxido‑Nitrosative Metabolism 
in Responses to Chromium

Cr is one of the highly ecotoxic borderline metals. Cr(VI) 
stimulates ROS generation (Oliveira, 2012) and this was 
supported by this present study. Thus, Cr has considerably 
increased H2O2 levels by 268% and 237% respectively in 
both radicles and epicotyls (Fig. 4a). However, exogenously 
applied, SNP significantly attenuated H2O2 levels in both 
organs (Fig. 4a). Indeed, SNP/Cr co-administration could 
considerably alleviate Cr accumulation in maize radicles 
(about 30%; Kharbech et al. 2017). Equally, the ROS-induc-
ing effect of Cr (VI) was clearly apparent when L-NAME 
was combined with Cr (Fig. 4a). These data are fully in 
agreement with earlier studies with NO scavengers to reverse 
the protective effects of NO with resulting effect on both 
H2O2 generation and metal accumulation (Per et al. 2017; 
Kováčik et al. 2019).

Previous data have shown that NO-mediates up-regula-
tion of antioxidant enzymes to detoxify H2O2 and O2·− which 

Fig. 1   Length (a) and fresh 
weight (b) of radicles and epi-
cotyls of 6 and 9-day-old maize 
seedlings grown in the presence 
of H2O (control), 500 µM SNP 
and 200 µM Cr(VI) individually 
or in combination with 500 µM 
SNP or L-NAME. Values are 
given as the means ± SE of six 
replicates (n = 6). Bars followed 
by different letters indicate sig-
nificant differences (p ≤ 0.05). 
Lowercase and uppercase letters 
were used for 6 and 9-day-old 
seedlings respectively
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are generated following Cr treatments (Kharbech et al. 2017; 
2020). To explore how far SNP could be acting to quench 
ROS through increased antioxidant enzyme activities and/
or suppressing their generation, SOD and NADPH oxidase 
activities were assessed (Fig. 4). Under Cr stress, SOD activ-
ity was increased by 64% and 26% in radicles and epicotyls, 
respectively and greatly augmented in both organs with SNP 
(e.g. 2.5 fold increase in radicles compared to Cr-treated 
only) (Fig. 4b).

Endogenous metal accumulation may affect antioxidant 
defenses. In this context, Kharbech et al. (2017) reported 
that Cr accumulation in maize seedling radicles elevated 
catalase, glycolate oxidase, and peroxidase activities. Given, 
O2·− is recognised as a precursor for H2O2 which can be 
formed by SOD so that the up-regulation of SOD (Fig. 4b) 
may contribute to Cr-increased H2O2 levels (Fig. 4a). Sev-
eral previous investigations were demonstrated that NO sup-
ply might trigger the endogenous NO synthesis and quench 
ROS by stimulating the antioxidant enzymes system espe-
cially under stress conditions (Kaur et al. 2015; Nahar et al. 
2016; Kaya et al. 2019). However, this could reflect an effect 
of endogenous NO production since Cr + L-NAME treatment 
reduced SOD activities more than 35% compared to Cr in 
both radicles and epicotyls. Indeed inhibition of antioxidant 
enzymes, including SOD, is a widely accepted consequence 
of L-NAME treatment (Phillips et al. 2018; Singh et al. 
2020), which suggest that NO is essential for strengthen-
ing antioxidant defence systems. These changes need not 
associated to direct inhibitory effects of L-NAME but can 
seem likely to be a consequence of a shift in endogenous NO 
levels. NO can directly or indirectly react with pro- and anti- 
oxidants eventually by regulating the expression of pro- and 
anti- oxidant enzyme activities (Groß et al., 2013).

The activity of NADPH oxidase was boosted by Cr 
more than 2.7 and fourfold in both radicles and epicotyls, 
respectively (Fig. 4c). Chromium elicited NADPH oxidase 
activity was significantly suppressed following SNP treat-
ment (Fig. 4b). Unlike with SOD, suppression of endog-
enous generation of NO using L-NAME had no significant 
effect on this activity. This agreed with our recent find-
ing (Kharbech et al. 2020) that NADPH oxidase activity, 
as opposed to the induction of antioxidant enzymes, are 
a source of exogenously applied SNP –mediated Cr toler-
ance (Figs. 1 and 3). Arasimowicz-Jelonek et al. (2012) 
observed a similar response of NADPH oxidase in relation 
in lupine roots treated with 2–4-Carboxyphenyl-4, 4, 5, 5- 
tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) under Cd 
conditions. In addition, Ding et al. (2009) found that pre-
treatment with L-NAME and DMTU (dimethylthiourea, a 
suppressor of H2O2 generation) abolished signalling trans-
duction of mitogen-associated protein kinases triggered by 
NO and ROS which to affect Cr (VI) toxicity in maize roots. 
In plant immunity; S-nitrosylation of NADPH oxidase has 

Fig. 2   Nitric oxide content in the radicles (a) and epicotyls (b) 
of maize seedlings treated with H2O (control), SNP (500  µM) 
and Cr(VI) (200  µM) individually or in combination with SNP or 
L-NAME (500 µM). Values were determined daily from the 3rd to the 
9th day. Values are given as the means ± SE of four replicates (n = 4). 
Bars followed by different letters indicate significant differences 
(p ≤ 0.05)

Fig. 3   The impact on phenotype in radicles and epicotyls of 9-day-
old maize seedlings germinated and grown in the presence of H2O 
(control), and 200  µM Cr(VI) individually or in combination with 
500 µM SNP or L-NAME
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been shown to limit its activity (Yun et al. 2011) and a simi-
lar mechanism could be acting with Cr/SNP treatment.

SNP Influences GSNO in Response to Chromium

Total protein -SH is often used as a marker of protein oxida-
tion state under metallic stress which reflects the chemical 
affinity between thiols and metal ions (Woolhouse, 1983). 
Quantitative changes in protein -SH were observed in bean, 
chickpea and pea treated with Cd or Cu (Sakouhi et al. 2016; 
Ben Massoud et al. 2018). Such data exhibit a major capac-
ity of plants to protect the redox status of protein thiols in 
response to heavy metal. Chromium was found to induce 
a significant increase of -SH levels in epicotyls which was 
reduced by 46% with SNP, but not with L-NAME (Fig. 5a). 
However, the lower levels of –SH seen with SNP treatment 
could reflect the outcome of S-nitrosylation.

Protein S-nitrosation consists of the covalent addition of 
a NO group to the -SH leading to SNO generation and con-
sequently might modify the function of a broad spectrum of 
proteins (Barroso et al. 2006). S-nitrosation is reversible and 

selective NO-PTMs that might also highly interfere with cell 
signalling mechanisms (Corpas et al. 2019). Endogenous 
SNO reduction is substantially influenced by varying pro-
cesses including transnitrosylation and denitrosylation. Glu-
tathione and thioredoxin (Trx), and their associated redox 
systems are particularly involved in cellular redox homeo-
stasis and signalling (Benhar, 2015). Thioredoxin/thiore-
doxin reductase systems is increasingly recognized as a 
‘denitrosylases’ as well as GSNOR activity; thus influencing 
the cellular balance between nitrosylation and denitrosyla-
tion (Begara-Morales et al. 2016). Cr greatly stimulates 
S-nitrosylation, which is lowered by combination with SNP 
(Fig. 5b). In contrast, under stress, L-NAME did not signifi-
cantly affect SNO levels compared to Cr and Cr + SNP treat-
ments. Thus, L-NAME treatment reduced NO levels (Fig. 2) 
and was linked to low levels (equivalent to controls) of SNO 
under Cr toxicity (Fig. 5b). Thus, Cr-increased SNO reflect 
the effects of endogenous NO production. This clearly does 
not equate to a mitigatory mechanism (Figs. 1 and 3) and so 
that the effects of SNP cannot be clearly linked to S-nitros-
ylation events despite a high availability of free NO (Fig. 2).

Fig. 4   Hydrogen peroxide 
content (a) and activities of 
superoxide dismutase (b) and 
NADPH oxidase (C) in radicles 
and epicotyls of 9-day-old 
maize seedlings treated with 
H2O (control) and Cr(VI) 
(200 µM) individually or in 
combination with SNP or 
L-NAME (500 µM). Values are 
given as the means ± SE of four 
replicates (n = 4). Bars followed 
by different letters indicate sig-
nificant differences (p ≤ 0.05). 
Lowercase and uppercase letters 
were used for radicles and 
epicotyls respectively
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In maize seedlings treated with Cr + SNP, the increase of 
NO contents (Fig. 2) induced a significant nitrosylation of 
GSH leading to an almost two fold increase in GSNO levels 
in the epicotyls; although this occurred to a lesser extent in 
radicles (Fig. 6a). Besides acting as a mobile reservoir of 
bioactive NO, GSNO also exists in a balance with S-nitros-
ylated proteins through a trans-nitrosylation process (Corpas 
et al. 2019). In Cr-treated seedlings, cellular levels of NO 
were near to the control (H2O) and even less in radicles at 
the 9th day (Fig. 2). After Cr application, a large amount of 
NO can interact with -SH to generate SNO (Fig. 5b). With 
Cr treatment, low levels of GSNO were detected and cor-
related with increasing activity of GSNOR (Fig. 6). GSNOR 
activity appeared to be elevated with Cr treatment (Fig. 6b) 
which correlated with the reduction in GSNO (Fig. 6a) and 
increase in SNO content (Fig. 5b). However, with co-treat-
ment Cr + SNP, maize seedling maintained their high con-
centration of GSNO (Fig. 6a), with little appreciable change 
in GSNOR activity as compared to treatment with Cr alone 

(Fig. 6b). The importance of GSNO suggests the question of 
how this acts to confer SNP-induced tolerance to Cr. Given 
the reduction in ROS and RNS levels may reflect the result 
of NADPH oxidase activity reducing, GSNO increase could 
be acting as a “sponge” to soak up excess NO to prevent 
wide-ranging impacts on protein function via S-nitrosyla-
tion. The increase in GSNOR activity, concomitantly with 
reduction in GSNO cell reserve, was related to the abnormal 
decrease in NO content caused by the inhibitory effect of 
L-NAME with Cr (Fig. 2). He et al. (2018) have revealed 
the same behaviour in plants under various stress conditions.

The GSNOR activity protects against nitrosative stress by 
affecting the degree of nitrosylation on both GSH and other 
substrates. The presence of -SH in GSH makes this mol-
ecule a redox switch of proteins facilitating their regulation 
through processes such as S-glutathionylation and S-nitros-
ylation (Groß et al. 2013). Thus, current data suggests that 
maize seedlings exposition to Cr can enhance the catabolism 
reaction of GSNO possible to: (i) to compensate for a NO 

Fig. 5   Thiol (a) and S-nitro-
sothiol (b) in radicles and 
epicotyls of 9-day-old maize 
seedlings germinated in the 
presence of H2O (control) and 
Cr (VI) (200 µM) individually 
or in combination with SNP or 
L-NAME (500 µM). Values are 
given as the means ± SE of four 
replicates (n = 4). Bars followed 
by different letters indicate sig-
nificant differences (p ≤ 0.05). 
Lowercase and uppercase letters 
were used for radicles and 
epicotyls respectively

Fig. 6   S-nitrosoglutathion (a) 
contents and S-nitrosoglutathion 
reductase activity (b) in radicles 
and epicotyls of 9-day-old 
maize seedlings germinated in 
the presence of H2O (control) 
and Cr(VI) (200 µM) individu-
ally or in combination with SNP 
or L-NAME (500 µM). Values 
are given as the means ± SE 
of four replicates (n = 4). Bars 
followed by different letters 
indicate significant differences 
(p ≤ 0.05). Lowercase and 
uppercase letters were used for 
radicles and epicotyls respec-
tively
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deficiency resulting from the ROS and/or –SH interaction, 
(ii) to boost antioxidants enzymes such as SOD and (iii) to 
generate endogenous GSH (Corpas et al. 2019). Addition-
ally, GSNOR plays a key role in preventing or reversing 
nitrosylation of varying thiols of proteins, thus indirectly 
controlling SNO levels. It is also plausible that there is cross-
talk between NO and thiol, which involve GSH/GSNOR and 
Trx/TrxR systems. If this were the case, this is interaction 
should be investigated in the future. The downregulation of 
GSNOR activity by SNP could indicate that the denitrosyla-
tion processes of SNO was mediated more by the Trx/TrxR 
than GSH/GSNOR.

SNP‑Derived NO Influences Cr‑Elicited Stress 
Metabolites

Beyond effects on oxido-nitrosative stress, we also con-
sidered additional mechanisms through which SNP acts to 
confer Cr tolerance. In one, the possibly of SNP derived 
NO affected MG accumulation which is formed in plants as 
one result of metal toxicity. In maize seedlings, Cr induced 
MG accumulation in both radicles and epicotyls (Figs. 7a 
and b). In radicles, this could be minimized by 23% with 
SNP but achieved controls levels with L-NAME (Fig. 7a). 
This could suggest that the MG increase was dependent 
on NADPH oxidase, ROS and endogenous NO production 
which could not countered by exogenous SNP effects. The 
over-accumulation of MG can cause the deterioration of dif-
ferent physiological and metabolic processes (Mostofa et al. 
2018). Previous studies have established that NO is a major 

actor in MG detoxification in heavy metal contaminated 
plants, but either directly by improving the glyoxalase sys-
tem (Nahar et al. 2016; Kharbech et al. 2020) or indirectly by 
quenching the ROS production by activating the antioxidant 
defence systems as we also noted in our investigation (see 
SOD activity, Fig. 4b).

In both radicles and epicotyls of maize, increased levels 
of Pro were registered in response to Cr (Figs. 7c and d). 
Co-addition of SNP with Cr significantly reduced Pro accu-
mulation relatively with NO contents (more than 50% with 
SNP compared to Cr alone). These results suggest that SNP, 
i.e. high amounts of NO, but not endogenous levels affected 
Cr-induced accumulation of Pro in epicotyls. A minor effect 
could be occurring in radicles and indicated by L-NAME 
(Fig. 7c and d). Proline accumulation patterns could reflect 
wider effects of Cr on amino acid/ amine metabolism. The 
production of high amounts of Pro in plants is a typical non-
enzymatic response to several biotic and abiotic constraints 
(Shahzad et al. 2018). Proline has been linked to several 
roles against metal toxicity including ROS removal, redox 
homeostasis, metal ion chelation and protein stabilization 
(Aslam et al. 2017). Kováčik et al. (2019) reported that NO 
intensifies accumulation of Pro. Such wider impacts have 
been noted in NO effects on proline and polyamines (PAs) 
metabolism (e.g. Wang et al. 2020).

In plants, the most common free PAs are Spd and Spm 
as well as putrescine (Asghari and Abdollahi, 2013; Spor-
mann et al. 2020). Chromium was found to increase the 
accumulation of PAs in both radicles (2 and 5 times, com-
pared to control, for Spd and Spm, respectively) (Fig. 8a 

Fig. 7   Accumulation of methyl-
glyoxal (a, b) and proline (c, d) 
in radicles (a, c) and epicotyls 
(b, d) of 9-day-old maize seed-
lings treated by H2O (control), 
and Cr(VI) (200 µM) individu-
ally or in combination with SNP 
or L-NAME (500 µM). Values 
are given as the means ± SE 
of six replicates (n = 6). Bars 
followed by different letters 
indicate significant differences 
(p ≤ 0.05). Log10 normalisation 
using logarithmic transforma-
tion of data
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and c) and epicotyls (430%, compared to control, for Spd 
as an example) (Fig. 8b). However, SNP addition sup-
pressed Cr-increased Spd and Spm levels in epicotyls 
and particularly in the radicles (Fig. 8). This would indi-
cate that SNP-mitigation of Cr toxicity does not involve 
enhancement of PAs. Therefore, we hypothesize that the 
higher accumulation of endogenous NO may limit NO bio-
synthesis pathways mediated by PAs. In contrast, Groppa 
et al. (2008) reported that exogenous NO enhances PAs 
accumulation and visa-versa in Cd-stressed plants. In line 
with this, Nahar et al. (2016) suggest an important cross-
protection mechanism between NO and PAs to modulate 
the antioxidant defence systems in Cd-stressed bean plants.

The inhibitor L-NAME was used to confirm the involve-
ment of NO in the PAs metabolism. Cr + L-NAME treat-
ments led to a decrease in Spm levels which further exac-
erbated with Cr + SNP in radicles (Fig. 8c) and slightly 
accumulated in epicotyls (Fig. 8d) as compared with other 
treatments. By contrast, Spd showed higher amounts (more 
than 7 and 1.8 × fold in radicles and epicotyls, respectively, 
as compared to its endogenous levels under Cr + SNP; 
Fig. 8a and b). This PAs misbalance between Spd and Spm 
may be connected to the lower NO levels by the addition 
of L-NAME. In our case, PAs may play a dual role; as 
antioxidant compounds and controller of NO biosynthesis. 
A similar finding was reported by Wang et al. (2020); PAs 

concentration in tea roots showed different trend by apply-
ing exogenous NO scavenger and inhibitor. Based on these 
results we can assume an existing relationship between 
the biosynthesis of NO and its intracellular amount. This 
balance should be maintained to avoid NO toxicity effects 
(Fig. 9).

Conclusion

In maize seedlings, the NO-induced Cr toxicity alleviation 
could involve (i) the suppression of NADPH oxidase gener-
ated O2·− in order to reduce oxido-nitrosative stress, (ii) the 
attenuation of H2O2, MG and Pro accumulation, and (iii) 
the build-up of cellular GSNO pool acting to prevent cellu-
lar disruption through de-regulated protein S-nitrosylation. 
NO may regulate its own cellular levels by modulating PAs 
production (one of the several NO-generating pathways in 
plants) and preventing GSNO decomposition (considered 
as a NO reservoir in cells). The results obtained indicate 
the potential of exogenously applied SNP in the manage-
ment of metal toxicity. Hence, NO generating compounds 
have potential agronomical applications when cultivating in 
contaminated areas.

Fig. 8   Accumulation of spermi-
dine (a, b) and spermine (c, d) 
in radicles (a, c) and epicotyls 
(b, d) of 9-day-old maize seed-
lings treated by H2O (control), 
and Cr(VI) (200 µM) individu-
ally or in combination with SNP 
or L-NAME (500 µM). Values 
are given as the means ± SE 
of six replicates (n = 6). Bars 
followed by different letters 
indicate significant differences 
(p ≤ 0.05). Log10 normalisation 
using logarithmic transforma-
tion of data
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