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• Background Self-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of 
which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollin-
ation and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is pos-
sible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation 
of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit 
heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes 
compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. 
This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for re-
productive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding.
• Scope We review the literature on SI and SC in outcrossing grass species. We review the currently available gen-
omic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely ex-
plored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in 
the context of the Lolium–Festuca complex and the use of SC to develop immortalized mapping populations for the 
dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource 
and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species.
• Conclusions A better understanding of the genetic control of additional SC loci offers new insight into SI sys-
tems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that 
can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will 
enable heterosis to be exploited in innovative ways in genetic improvement programmes.

Key words: Self-compatibility, self-incompatibility, inbreeding, Poaceae, introgression, inbreeding depression, 
heterosis, F1 hybrid breeding.

INTRODUCTION

Self-incompatibility (SI) is the most widespread mechanism 
for promoting outcrossing in hermaphrodite flowering plants. 
Described by Charles Darwin as ‘the ability of some plants to 
reject their own pollen’, SI is considered the mating system 
of ancestral angiosperms (Allen and Hiscock, 2008). The first 
flowering plants retained SI to maximize cross-pollination and 
genetic diversity to adapt to and expand into a wide range of 
habitats. Self-incompatibility systems in angiosperms are, in 
most studied cases, controlled by one highly polymorphic S 
locus containing at least two tightly linked genes, encoding 
the male and female-specific SI determinants that mediate the 
self/non-self-pollen recognition. If the S alleles carried by the 

pollen and pistil match, the pollen is recognized as ‘self’, thus 
preventing self-fertilization and the resulting inbreeding.

The breakdown of SI caused a change from outcrossing 
to self-fertilization in the evolutionary history of many 
flowering plants (Vekemans et  al., 2014). During angio-
sperm evolution and expansion, SI has frequently been lost 
irreversibly through loss-of-function mutations (Igic et al., 
2008). Self-compatibility (SC) evolved as a reproduction 
strategy in plants as, among other factors, a preadaptation to 
plant domestication (Iriondo et al., 2018). As a consequence 
of the high level of inbreeding resulting from self-fertil-
ization, deleterious recessive mutations were revealed that 
early farmers selected against to propagate plants with 
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favourable alleles contributing to useful traits (Abbo et al., 
2012; Kantar et al., 2017).

Understanding how SC has arisen is fundamental for plant 
evolution, population dynamics and plant domestication studies. 
In practice, SC has enabled the production of superior inbred 
lines purged of deleterious recessive alleles. Homozygous lines 
from divergent backgrounds can be crossed to create F1 hybrids 
with increased performance, a phenomenon known as heter-
osis. Understanding of this phenomenon has been enhanced by 
the development of mapping populations consisting of homo-
zygous lines in which combinations of alleles from the crossed 
parents are fixed. These lines can be propagated indefinitely 
as seeds.

Thus, genetic mapping and dissection of agronomic traits 
have been useful strategies for the development of targeted ap-
proaches to DNA marker trait selection in many inbred crops 
by developing durable immortalized inbred line-based gen-
etic resources. These include recombinant inbred lines (RILs) 
produced through recurrent rounds of inbreeding (Burr et al., 
1988) and near-isogenic lines (NILs) produced by repeated 
backcrosses of an RIL to another population and selfing to pro-
duce an overall homogeneous population varying in the pres-
ence of introgressed genomic segments from the initial RIL in 
proximity to a particular target region (Kaeppler et al., 1993). 
Furthermore, homozygous lines can be produced rapidly and 
with a substantially smaller population by using doubled hap-
loid techniques (Guzy-Wrobelska and Szarejko, 2003). These 
populations cannot be produced in outcrossing species, and in 
grasses, such as perennial ryegrass (Lolium perenne), genetic 
mapping studies employ highly heterozygous pseudo-F1 or 
pseudo-F2 populations that need to be maintained clonally. This 
is labour-intensive and potentially compromises the genetic in-
tegrity of the population over time.

Several self-incompatible species of the Poaceae are eco-
nomically valuable forage crops and represent a fundamental 
component in many ruminant production systems. Self-
incompatibility has acted as a barrier to their improvement and 
forage yield advances in breeding have been small (Woodfield, 
1999; Wilkins and Humphreys, 2003). Currently, because of 
the breeding behaviour and the self-incompatible nature of the 
plants, forage crop breeding is predominantly based on lengthy 
population improvement programmes using recurrent selec-
tion, achieving modest genetic gains compared to self-compat-
ible crop species (Laidig et al., 2014; McDonagh et al., 2014). 
This might be because in outcrossing species it is extremely 
challenging to produce the inbred lines necessary to fully ex-
ploit heterosis. Instead, breeding activity has focused on recur-
rent selection, accumulating and fixing favourable genes with 
additive effects on desired traits in ‘synthetic’ population var-
ieties. In such populations, although heterosis will occur at a 
proportion of heterozygous loci, these will continue to segre-
gate through the breeding process despite the imposed selec-
tion. Perhaps more significantly, the maintenance of high levels 
of heterosis is even less likely during the process of seed multi-
plication, where there is no agronomic selection.

The need to accelerate breeding progress in forage grasses 
for traits such as biomass and seed yield, nutritional quality 
and disease resistance is stimulating grass breeders to develop 
hybrid breeding technologies as an alternative to recurrent 

population selection strategies. For this reason, overcoming SI 
and exploiting SC to breed forage grasses as an inbred line-
based crop is gaining interest (Do Canto et al., 2016; Herridge 
et al., 2019).

With SC made available in inherently highly heterozygous 
self-incompatible plant populations, there are opportunities to 
discover a potentially greater pool of novel genomic regions and 
underlying candidate genes associated with heterotic responses 
than would be found in less genetically diverse inbred crop spe-
cies. Such associations can then be practically exploited in the 
same way that variation in immortalized populations has en-
abled the genetic dissection of various traits in self-compatible 
species and a genomic marker-assisted approach to F1 hybrid 
plant breeding in several inbred crops (Xu et al., 2017).

Several SC sources in predominantly outcrossing and agro-
nomically relevant grasses have been reported so far. These 
arise mainly from spontaneous mutations at the S and/or Z loci 
that disrupt the initial self-/non-self-recognition between pollen 
and stigma. Mutations in so-called SI modifier genes can also 
lead to SC, by interrupting the downstream cascade triggered 
by the initial self-recognition response (Do Canto et al. 2016). 
However, a detailed molecular understanding of how SC arises, 
along with its systematic manipulation and introgression in a 
wide germplasm resource, is still limiting progress.

Here, we review the current knowledge of SI and SC in 
grasses and we discuss how recent developments in genomics 
and DNA sequencing technologies will help characterize novel 
SC sources in grasses. To conclude, we explore possibilities, so 
far considered impractical, that SC facilitates in the context of 
grass improvement programmes. In this final section we focus 
on how using SC in forage grasses will enable a greater funda-
mental understanding of heterosis and an ability to manipulate 
it in novel ways to fully exploit the genetic diversity potentially 
offered.

SELF-INCOMPATIBILITY IN THE GRASSES

Genetic mechanisms of SI in the angiosperms are phylogenet-
ically diverse and often family-specific, indicating several de 
novo evolutionary pathways (Bateman, 1952). Physiological SI 
mechanisms can be classified as gametophytic or sporophytic, 
but the specific mechanisms, as well as the number of genetic 
determinants involved, vary between families. Identification 
of SI-determinant genes has only been achieved for SI sys-
tems controlled by a single locus, called S, such as those of 
the Solanaceae, Rosaceae, Plantaginaceae, Brassicaceae and 
Papaveraceae, discussed in detail in a recent review (Muñoz-
Sanz et  al., 2020). Despite the involvement of different 
molecular actors, the underlying genetic principles of all single-
locus SI systems are similar. The S locus consists of at least 
two tightly linked genes that together form a non-recombining 
S haplotype: one gene encodes the female determinant of SI, 
which is expressed in the pistil, and another gene encodes 
the male determinant of SI, which is expressed in the pollen 
(gametophytically controlled SI) or in tapetal cells (sporophyt-
ically controlled SI). In a self-pollination event, the products 
of male and female determinants interact with each other and 
trigger the pollen inhibition response that leads to SI (Brennan 
et al., 2011).
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In comparison with single-locus SI systems, the SI sys-
tems under the control of more than one locus are consider-
ably more challenging to study, the additional SI loci adding 
a level of complexity to the understanding of pollen–stigma 
interactions. Known multi-locus SI systems are controlled by 
two loci in Poaceae (Hayman, 1956; Lundqvist, 1956), three 
loci in buttercup (Ranunculus spp.) (Lundqvist et  al., 1973; 
Lundqvist, 1990) and four loci in common beet (Beta vulgaris) 
(Lundqvist et al., 1973) and martagon lily (Lilium martagon) 
(Lundqvist, 1991). Of these, the SI system of the grass family 
is the best documented.

The gametophytic SI system of the Poaceae is controlled by 
two independent loci, designated S and Z, which are located on 
chromosomes 1 and 2, respectively (Thorogood et al., 2002). 
Self-fertilization is prevented when identical S and Z haplo-
types are shared by both pollen and stigma. This two-locus 
mechanism was first reported over 60 years ago in sunolgrass 
(Phalaris coerulescens) (Hayman, 1956) and rye (Secale 
cereale) (Lundqvist, 1956), later being confirmed in L. perenne 
(Cornish et  al., 1979). Despite several efforts to identify the 
SI-determinant genes, their identity and function are yet to 
be fully elucidated. However, considerable progress has been 
made in recent years. Through a combination of fine mapping, 
genome sequencing, transcriptome analysis and comparative 
sequence analysis, Manzanares et  al. (2016a) identified and 
evaluated potential candidate genes for the L. perenne pollen 
S-locus component. Three candidate genes segregated with the S 
locus and were also overexpressed in reproductive tissues, with 
two upregulated in stigma tissue and a single gene upregulated 
in pollen. The gene encoding a protein (LpSDUF247) con-
taining the DUF247 domain of unknown function appeared to 
be the most likely candidate for the pollen SI determinant as 
it possessed the high level of allelic variability expected of an 
SI determinant gene affected by frequency-dependent selec-
tion (Fearon et al., 1994). LpSDUF247 was predicted to have 
a C-terminal transmembrane helix and an extracellular domain, 
suggesting that it may function as a ligand on the pollen surface 
(Manzanares et al., 2016a). The variability between alleles was 
not evenly distributed across the protein sequence, with the re-
gion from the transmembrane domain to the C-terminus being 
more conserved. In addition, all self-compatible grass species 
for which LpSDUF247 orthologue sequence information was 
available possessed either premature stop codon mutations or 
large deletions in the predicted protein sequence (Manzanares 
et al., 2016a). However, no genes were proposed as a candidate 
for the stigma S determinant, possibly because a gap in the de-
rived sequence of the S locus identified might have prevented 
its identification.

Expression profiling and allelic diversity assessment were 
also employed by Shinozuka et al. (2010) in an attempt to iden-
tify candidate genes for the L. perenne Z locus. Two genes were 
identified as plausible candidates for either the pollen or stigma 
determinants. Interestingly, one of these was a gene encoding 
a protein containing a DUF247 domain (LpDUF247) similar 
to the S locus-linked LpSDUF247 gene, with the other candi-
date gene encoding either a putative tetratricopeptide repeat-
like domain-containing protein or a ubiquitin-specific protease 
(LpTC116908). These findings lend support to a hypothesis 
put forward by Lundqvist (1962) that the two-locus SI system 

in grasses originated from a duplication of an initial single SI 
locus. Orthologues of LpSDUF247 have also been identified in 
other grass species, such as wild rice (Oryza barthii) and sor-
ghum (Sorghum bicolor), suggesting that this gene could func-
tion as an SI determinant throughout the Poaceae (Manzanares 
et al., 2016a). Although the candidate genes for the grass SI de-
terminants here discussed have not been functionally character-
ized, preliminary studies found that calcium (Ca2+) signalling 
and protein phosphorylation are involved in the recognition 
and/or inhibition of incompatible pollen. Two independent ex-
pression studies found that transcripts predicted to code for 
proteins containing calcium-binding domains were enriched 
during the SI response in L. perenne and in sheepgrass (Leymus 
chinensis) (Yang et  al., 2009; Chen et  al., 2019). Moreover, 
Klaas et al. (2011) supported this hypothesis by showing that SI 
in L. perenne can be partially overcome by treating self-pollin-
ated stigmas with chemical reagents known to affect Ca2+ chan-
nelling across membranes.

Map-based cloning and large-scale comparative genomics 
enabled by long-read assembly methods in combination with 
more targeted editing approaches will allow functional valid-
ation and confirmation of the candidate genes discussed here 
and provide useful insights into their molecular function in 
determining the SI response.

SELF-COMPATIBILITY IN THE GRASSES

A significant portion of the literature regarding the genetic 
causes of SC is based on evolutionary studies aiming at unrav-
elling the origins and dynamics of the transition of outbreeding 
species from SI to selfing. These studies, summarized in 
Supplementary Data Table S1 and referenced in Supplementary 
Data References S1, provide information on the genetic causes 
of SC in known sporophytic and gametophytic SI systems. 
Overall, these studies demonstrate that the causes of SC can 
be classified into two categories. Firstly, SC can arise from in-
activation and/or loss-of-function mutations at SI determinants. 
Secondly, there are numerous examples of SC arising from 
genes unlinked to the SI-determinant genes, but that can affect 
their expression or mediate the up- or downstream pathways 
involved in the SI response.

Although self-incompatible species are predominant among 
the Poaceae, there are a number of naturally self-compat-
ible species (for an exhaustive list see Do Canto et al., 2016). 
Indications of how SC evolved in these species come from 
studies on darnel (Lolium temulentum), a naturally self-compat-
ible species. By analysing SC segregation in backcrossing 
generations of L. temulentum–L. perenne and L. temulentum–
annual ryegrass (Lolium multiflorum) interspecific hybrids, 
Thorogood and Hayward (1992) proposed that SC was under 
the control of a single locus and was caused by a mutation at 
the Z locus. This was inferred from distorted segregation of 
the GOT/3 isozyme locus in selfed progeny of first-generation 
backcross plants. Information available at the time showed that 
the GOT/3 locus was not linked to the S locus and therefore dis-
torted segregation was inferred to have been associated with the 
Z locus. Later, linkage mapping experiments located the GOT/3 
locus on linkage group (LG) 3 (Jones et al., 2002), unlinked to 
either S or Z. However, an epistatic relationship between the S 
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locus and a region of LG 3 that caused distorted segregation of 
markers, including the GOT/3 locus on LG 3 (Thorogood et al., 
2002), strongly implies that SC in L.  temulentum was in fact 
associated with the S locus. Corroboratively, Manzanares et al. 
(2016a) provided evidence that the orthologue of the S-locus 
candidate gene LpSDUF247 in L. perenne carried a frameshift 
mutation in L. temulentum that alters the last 24 amino acids of 
the C-terminus, which might fully explain the failure of the SI 
system in this species.

Low levels of self-fertility in individuals of self-incompat-
ible grass species, manifest as the ability of individual plants 
to set small amounts of selfed seeds on panicles isolated in 
paper bags, were known almost a century ago (Jenkin, 1930; 
Beddows, 1931). Early genetic studies on the breakdown of 
SI in S.  cereale speculated on the existence of several muta-
tions at S and Z (Lundqvist, 1958, 1962, 1968). In these studies, 
SI specificity was lost in the pollen but retained in the pistils, 
indicating that the mutants were pollen-part mutations. Later 
on, genotypes carrying putative mutations at S and Z in which 
the recognition between pollen and stigma was disrupted were 
reported in Lolium species (Thorogood and Hayward, 1991), 
S.  cereale (Fuong et  al., 1993; Voylokov et  al., 1998) and 
P. coerulescens (Hayman and Richter, 1992).

Another commonly reported route to SC in grasses is 
through loci unlinked to S and Z, as reported in S.  cereale 
(Voylokov et al., 1993; Egorova et al., 2000) and L. perenne 
(Thorogood et al., 2005). Genes underlying these loci likely 
have a function in the downstream cascade following the 
initial pollen–stigma recognition mediated by S and Z (Do 
Canto et al., 2016). The most recent studies on non-S or non-
Z sources of SC identified two genetically independent loci 
on LG 5 (Arias-Aguirre et al., 2013; Do Canto et al., 2018; 
Cropano et al., 2021) and LG 6 (Slatter et al., 2020) in two 
unrelated perennial ryegrass F2 populations segregating for 
SC. In both populations, using in vitro self-pollinations (Fig. 
1), a similar 1:1 segregation in two phenotypic SC classes 
was observed: plants showing 50  % pollen compatibility, 
where half of the self-pollen germinated and grew a pollen 
tube upon contact with the stigma, and 100  % SC, where 
all self-pollen showed a compatible reaction. In both cases, 
it was concluded that SC was under the control of a single 
gametophytically acting pollen gene. Furthermore, Cropano 
et al. (2021) narrowed down the region to a 0.26-cM locus, 
allowing the identification of candidate genes that could be 
the target of functional characterization studies.

Disruption of SI can arise from non-genetic sources as well, 
including environmental factors such as temperature and humidity, 
leading to a condition referred to as pseudo-self-compatibility 
(Cornish et al., 1980; Fearon et al., 1983). The existence of gen-
etic variation for pseudo-self-compatibility has been reported in 
L. perenne (Elgersma et al., 1989; Wilkins and Thorogood, 1992), 
but studies on its genetic regulation are lacking.

TOWARDS THE DISCOVERY AND GENE IDENTITY OF 
NOVEL SC SOURCES IN THE GENOMICS ERA

Identifying sources of SC is more effective with the advent of 
next-generation sequencing (NGS)-based technologies and ref-
erence genome assemblies of grass species (Byrne et al., 2015; 
Velmurugan et al., 2016; Shinozuka et al., 2017, ; Knorst et al., 

2019; Copetti et al., 2021). Cost-effective and high-throughput 
NGS-based genotyping technologies such as genotyping-
by-sequencing and chip arrays have been used in outcrossing 
grasses in a wide range of studies (Blackmore et  al., 2015; 
Fè et al., 2015; Thorogood et al., 2017; Begheyn et al., 2018; 
Velmurugan et al., 2016, 2018; Cericola et al., 2018; Guo et al., 
2018). These tools make more sophisticated approaches such as 
genome-wide association studies (GWAS) an attractive option 
for the identification of SC loci. Indeed, GWAS overcome some 
limitations of quantitative trait loci (QTL) mapping in biparental 
populations, such as restricted allelic diversity and low mapping 
resolution, as it can be employed on multiparental populations 
exhibiting reduced linkage disequilibrium through accumu-
lated historical recombination events and dense genome-wide 
molecular marker maps (Korte and Farlow, 2013). Performing 
GWAS is a suitable approach for the screening of natural popu-
lations and cultivars developed by breeders and does not require 
the lengthy preparation of mapping populations with controlled 
pedigrees. GWAS can also simultaneously identify multiple loci 
responsible for SC variation and provide first insights into their 
relationship (Thorogood et  al., 2017). Self-compatibility loci 
unlinked to SI determinants reported so far in grasses produce a 
1:1 segregation into two SC groups, as mentioned earlier. In such 
cases, sequencing pools of hundreds of individuals belonging to 
either of the two contrasting SC groups (bulk segregant analysis) 
might be more effective in locating the causal mutation based on 
differential allele frequencies. This approach led to the identifi-
cation of a mutation conferring pollen-part SC in sweet cherry 
(Prunus avium) (Ono et al., 2018) and several loci harbouring 
modifier genes in Arabidopsis lyrata (Mable et al., 2017).

Identifying narrow genomic regions harbouring SC using as-
sociation genetics studies relies on the effective phenotyping of 
large populations. Almost all studies on SC in grasses have used 
in vitro self-pollination to phenotype SC with high resolution 
and accuracy (Fig. 1). However, this technique is extremely 
time-consuming and is restricted by the short flowering time 
of the plants. A valid alternative to phenotyping assays is the 
analysis of segregation distortion. In plants with an SI system, 
the segregation of an SC gene in certain crosses can lead to seg-
regation distortion of markers surrounding the SC causal gene. 
Thus, the identification of distorted regions in carefully de-
signed mapping populations can be used to map their position 
in the genome. This was recently demonstrated by Slatter et al. 
(2020), who found that the SC QTL in L. perenne on LG 6 and 
LG 5 coincided with maximum marker segregation distortion. 
Mapping segregation distortion overcomes the dependency of 
in vitro pollinations on flowering and it allows the screening of 
larger populations to achieve higher mapping resolution.

Once forward genetic experiments have identified loci re-
sponsible for SC variation, the causal genes, often selected 
from a list of candidates at each locus, need to be char-
acterized and functionally validated. One way to achieve 
this is by assessing the phenotype resulting from a disrup-
tive mutation in a coding sequence. Among other methods, 
TILLING (targeting induced local lesions in genomes) offers 
a high-throughput screening of point mutations at genes of 
interest in populations mutagenized by chemical treatment  
(McCallum et al., 2000). In major crop species such as wheat 
(Triticum aestivum) (Slade et al., 2005), maize (Zea mays) (Till 
et al., 2004), pea (Pisum sativum) (Dalmais et al., 2008), tomato 
(Solanum lycopersicum) (Piron et al., 2010), barley (Hordeum 
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vulgare) (Gottwald et  al., 2009) and others (Boualem et  al., 
2014), TILLING has been adopted to isolate mutants with 
agronomically valuable traits. A TILLING platform is available 
for perennial ryegrass and is currently being used for the val-
idation of SI candidate genes identified through forward gen-
etic screens (Manzanares et al., 2016b). The use of TILLING 
is especially appropriate for validating the effect of mutations 
on monogenic traits, such as SC, because a mutation in a gene 
controlling a monogenic trait will yield a readily detectable 
phenotype, allowing easier confirmation of its function. In add-
ition, recent advances in genome editing through CRISPR/Cas9 
and its implementation in forage grasses (Zhang et al., 2020) 
makes this tool an attractive alternative for achieving targeted 

gene inactivation of SC candidate genes to unequivocally deter-
mine their function.

PRACTICAL APPLICATIONS OF SC IN 
FORAGE GRASSES

In this section of the review we focus on strategies for using 
SC in grasses to exploit genetic diversity not normally readily 
available in the outcrossing grass species. Although challen-
ging to unravel and fix, outcrossing species offer wider sources 
of genetic variation than inbreeding species (Hamrick and 
Godt, 1996).

A B G

C D

E F

5 mm 5 mm

5 mm 5 mm

5 mm 1 cm 400 μm

Fig. 1. Phenotyping SC in grasses using an in vitro pollination assay. (A, B) Virgin pistils are dissected from flowering heads and (C) placed on a Petri dish with a 
medium containing agarose, sucrose and boric acid. (D) The heads are isolated in paper bags and, at the time of anthesis, they are shaken to release and collect fresh 
pollen. (E) The pollen is sprinkled homogeneously from the paper bags directly onto the virgin pistils. (F) At least 2 h after pollination, the stigmas (E, black arrow) 
are separated from the ovary (E, white arrow) and mounted on a microscope slide after staining with aniline blue solution, which stains selectively for callose visu-
alized within pollen tube cell walls under UV light (Martin, 1959). (G) The level of pollen compatibility is assessed by observing the pollinated stigmas using UV 
fluorescence microscopy. In self-incompatible plants (above), self-pollen is usually bright, and a short and thickened pollen tube can be observed. In self-compat-

ible plants (below) self-pollen grains are translucent and they can produce a bright pollen tube that grows through the stigma branches towards the style.

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/127/7/841/6182021 by guest on 19 July 2021



Cropano et al. — Self-compatibility in outcrossing grasses846

Inbred lines and F1 hybrids for plant breeding

As forage crops, species of the Poaceae family are econom-
ically important, providing feed for ~80  % of bovine milk 
production (Huyghe et  al., 2014) and 70  % of meat produc-
tion (Wilkins and Humphreys, 2003) worldwide. According 
to figures from the European Seed Certification Agencies 
Association (ESCAA) on the area utilized for the production of 
certified forage seeds in the European Union in 2018, species of 
the Poaceae are the most important (229 838 ha), together with 
the Fabaceae (229 878 ha). In addition, they are sown as turf 
grasses in stadiums and golf courses, parks and domestic lawns, 
where they are used for sport and recreation.

Currently, forage grasses are mainly improved as popula-
tions and released as synthetic cultivars. Cultivar development 
begins with the evaluation of widely spaced plants for traits 
such as flowering time, plant habit, disease resistance, abiotic 
stress tolerance and nutritive value. Selected plants are then 
polycrossed to create a base population, which is highly het-
erozygous and heterogeneous. As some traits, notably biomass, 
cannot reliably be evaluated in individual spaced plants, syn-
thetic populations are produced by crossing selected individ-
uals to produce seed for plot trials that are more representative 
of grass pastures. Individual full- or half-sib family progeny 
seeds are collected from polycrossed plants and evaluated in 
plot trials. Only families from the best progeny plots and those 
that indicate the best performance when put together (com-
bining ability) proceed to the next generation. Rounds of re-
current phenotypic selection are made to gradually increase 
performance and at the same time populations are tested for 
uniformity. When the desired levels of performance and uni-
formity are reached the population is then intermated in isola-
tion from possible contaminant pollen from outside sources for 
several generations to produce commercial quantities of seed. 
Levels of genetic improvement in forage grass yield have been 
noticeably modest in comparison with other crops (Pembleton 
et  al., 2015). Recent estimates indicated an annual genetic 
gain for biomass yield of 0.45 % in L. perenne and from 0.27 
to 0.37  % for L.  multiflorum, amongst the lowest compared 
with other major crops (Laidig et al., 2014; McDonagh et al., 
2014), including forage Z.  mays (Taube et  al., 2020), where 
hybrid production technologies have been applied. To redress 
this deficiency, genomic selection technologies, developed in 
animal breeding, are currently being applied to recurrent se-
lection programmes of outbreeding temperate forage grasses, 
most recently by Danish (Esfandyari et  al., 2020), French/
Belgian (Keep et al., 2020), New Zealand (Arojju et al., 2020), 
Australian (Jighly et al., 2019) and UK (Grinberg et al., 2016) 
research groups and breeding companies. Four reviews of the 
technology applied to outcrossing grasses have been published 
(Hayes et al., 2013; Yabe et al., 2013; Lin et al., 2014; Talukder 
and Saha, 2017). Regardless of how successful genomic se-
lection proves to be, improvement is still restricted largely to 
the additive component of genetic variation, thus limiting po-
tential gains. We suggest that an additional approach to forage 
grass breeding programmes, whereby the reproductive system 
is altered to facilitate inbred line production and the creation 
of hybrids, is required to maximally exploit genetic variation. 
The primary constraint limiting genetic gain in grasses is the 
inability to develop hybrid breeding strategies that effectively 

exploit heterosis (Brummer et al., 2009). To boost the heterotic 
effect, the parents should be genetically distant to maximze the 
heterotic effect, and highly homozygous to restore heterozy-
gosity and homogeneity in the F1 hybrid. Since its first imple-
mentation in Z.  mays, F1 hybrid breeding has revolutionized 
grain yield during the 20th century in a wide range of crops. 
The extraordinary performance of early corn F1 hybrid varieties 
compared with synthetic varieties has stimulated forage grass 
breeders to find ways to develop hybrid forages.

Although not yet used on a commercial scale, hybrid schemes 
based on the intercrossing of two synthetic populations have 
been proposed for L.  perenne (Foster, 1971b), switchgrass 
(Panicum virgatum) (Martinez-Reyna and Vogel, 2008) and 
other forage crop species (Brummer, 1999). These are assumed 
to produce ‘chance’ hybrid populations, where up to half of the 
progeny derives from a direct hybridization of the two popula-
tions. More sophisticated strategies were also proposed based 
on selective restriction of SI diversity (England, 1974; Posselt, 
1993; Pembleton et al., 2015) and on within-population crossing 
using cytoplasmic male-sterile plants (Rouwendal et al., 1992; 
McDermott et al., 2008; Islam et al., 2014; Vogt et al., 2020). 
These are predicted to substantially increase the proportion of 
hybrid seed produced.

The systematic development and use of self-compatible 
germplasm expands the possible hybrid breeding strategies 
available for forage grasses. Specifically, it offers the oppor-
tunity to design inbred line-based F1 hybrid breeding strategies 
by producing elite homozygous parental lines capturing favour-
able genetic diversity. These lines can be crossed for testing 
heterotic combinations to maximize combining ability in F1 
hybrids. Although the challenges are considerable, the transi-
tion from populations to inbred line-based F1 hybrid breeding 
is gaining traction (Begheyn et al., 2016; Do Canto et al., 2016; 
Herridge et al., 2019) and provides a long-awaited route to in-
creased rates of genetic gain.

A major concern regarding the creation of homozygous in-
bred lines in forage grasses is the reduced fitness due to repeated 
cycles of self-pollination, a phenomenon called ‘inbreeding de-
pression’. Inbreeding depression is caused by the unmasking 
of recessive deleterious mutations through inbreeding, that 
have accumulated over generations in obligate outcrossers. In 
outcrossing individuals, their deleterious effects are buffered as 
they exist mostly in the heterozygous state (Charlesworth and 
Willis, 2009). One way to overcome inbreeding depression is 
by eliminating, or ‘purging’, recessive deleterious alleles. This 
can be achieved by recurrent self-pollination of plants showing 
high performance at each selfing generation, until fully homo-
zygous plants are created with a similar fitness to the original, 
highly heterozygous parent. This is particularly important in 
perennial species, like many of the forage grasses, that regu-
larly reproduce asexually, accumulating recessive deleterious 
somatic mutations (Zhang et al., 2019).

In grasses, inbreeding depression is severe and dependent on 
the genotype and number of cycles of inbreeding (Do Canto 
et  al., 2016). Moreover, because of SI, purging deleterious 
alleles is challenging. Only few and heavily depressed in-
bred progenies can be obtained by forced self-pollination in 
self-incompatible plants or by exploiting environmental con-
ditions that favour pseudo-self-compatibility. This has impeded 
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grass breeders in their efforts to produce highly homozygous 
lines, purged of their genetic load. In self-incompatible geno-
types, the process of purging may be facilitated by the fact 
that, by self-pollination of a single plant, it is possible to pro-
duce a larger progeny pool to select from at each self-pollin-
ation cycle. Selfing is efficient in eliminating deleterious alleles 
whose effect on the phenotype are clearly visible and can be 
selected against, but less effective on mildly deleterious alleles 
(Boakes and Wang, 2005). As a result, while selfing helps to re-
duce a large part of the mutation load, it can also accelerate the 
fixation of deleterious alleles that are difficult to detect. Also, 
repeated selfing from a highly heterozygous genotype likely re-
sults in a reduction of genome size due to the purging of trans-
posable elements and chromosomal knobs, as shown in Z. mays 
(Roessler et al., 2019). Given the absence of empirical data on 
the impact of systematic selfing in forage grasses, it is difficult 
to envisage the impact of purging efforts and their effect on 
traits of agronomic importance. However, as recently demon-
strated in potato (Solanum tuberosum), overcoming inbreeding 
depression by incorporating SC in selected germplasm is feas-
ible and provides the possibility of creating novel, valuable in-
bred germplasm for F1 hybrid breeding (Lindhout et al., 2011; 
Jansky et al., 2016).

Expanding the self-compatible germplasm pool for breeding

Forage grass breeders use a number of species, inter-species 
and inter-generic hybrids of the Lolium–Festuca complex but 
SC sources are currently only available in a restricted range of 
L.  perenne genotypes and in its naturally self-compatible re-
latives, such as L.  temulentum and flaxfield ryegrass (Lolium 
remotum). For effective exploitation of SC in breeding pro-
grammes it is crucial that a broad base of self-compatible 
germplasm is available. Introgressing SC within the Lolium 
genus would present little difficulty because all species have 
the same ploidy level (2n = 2x = 14) and show high levels of 
homoeologous chromosome pairing in interspecific hybrid off-
spring (Jauhar, 1975a). A straightforward approach of crossing 
two diploid individuals to produce, at least partially, fertile off-
spring followed by continued backcrossing could be utilized, 
as performed by Thorogood and Hayward (1992) and Yamada 
(2001) to transfer SC from L.  temulentum to L.  perenne and 
L. multiflorum. Autotetraploidy in L. perenne and L. multiflorum, 
induced by colchicine treatment of seeds or vegetative tillers, is 
exploited routinely in forage grass breeding programmes and 
transfer of SC into autotetraploid ryegrasses may be desirable. 
Although it was assumed, based on Stebbin’s seminal research, 
that polyploidy is inherently associated with SC (Stebbins, 
1950), a relatively recent review showed no such relationship 
between the two traits (Mable, 2004). Certainly, polyploid 
Festuca species, as well as induced L. perenne, L. multiflorum 
and meadow fescue (Festuca pratensis) autopolyploids, ex-
hibit an effective SI system and transfer of SC into a range of 
inter-fertile polyploid Lolium and Festuca species and hybrids 
could be proposed. For SC to be expressed in grass polyploids, 
introgressing SC into polyploid germplasm is a necessity and 
offers potential advantages over self-compatible diploid coun-
terparts. For instance, theory predicts that polyploidy reduces 

the effect of the inbreeding depression that inevitably arises 
after repeated selfing of highly heterozygous plants (Lande 
and Schemske, 1985; Husband and Schemske, 1997). It has 
been shown that in autotetraploid (2n  = 2x  = 28) L.  perenne 
the source of SC on LG 5 is functional (Do Canto et al., 2020). 
Thus, it should be possible to produce self-compatible tetra-
ploid varieties of Lolium species by first introgressing SC from 
diploid L. perenne and, after repeated backcrossing, inducing 
genome doubling in the self-compatible offspring through col-
chicine treatment (Morgan, 1976).

Species within the wider Lolium–Festuca (Section 
Bovinae = subg. Schedonorus) complex produce viable inter-
generic hybrids (× Festulolium) that are of increasing interest 
to farmers because of their inherent superior abiotic stress tol-
erance and adaptability to a range of climate change scenarios 
(Humphreys et al., 2014; Mäkinen et al., 2018). Although there 
are clearly genetic and physical incongruities between the two 
genera in these hybrids, such as differences in gross chromo-
some morphology and size and, in many cases, chromosome 
number (ploidy level) that cause reduced hybrid fertility, there 
is a high degree of orthology and co-linearity (Jones et al., 2002; 
Alm et al., 2003). This offers the opportunity to introgress SC 
into a wider variety of agronomically important grass species. 
In addition, it leads to the prospect of producing lines having 
beneficial traits from both the Lolium and the Festuca genus. In 
fact, transferring useful traits in the Lolium–Festuca complex 
by repeated backcrossing of an interspecific hybrid with one of 
its parent species has found wide application in grass breeding. 
Introgression efforts have focused on backcrossing traits such 
as drought (Humphreys et  al., 2005) and freezing tolerance 
(Kosmala et al., 2007), winter hardiness (Tamura et al., 2017) 
and disease resistance (Płażek et al., 2018) from the generally 
more robust Festuca species to the higher-yielding and nutri-
tionally superior Lolium species (Kopecký et al., 2017). For the 
successful transfer of SC sources across the complex, careful 
consideration must be given to both the degree of chromosome 
homology between the donor and recipient species along with 
differences in ploidy level, where diploid, triploid, tetraploid 
and hexaploid examples of the Festuca genus are found in na-
ture. Transferring SC between Lolium and diploid meadow 
fescue (F.  pratensis) is straightforward and natural hybrids 
are commonly found where the species are sympatric. Though 
previous reports have shown difficulties in producing seeds 
in sufficient quantity from the interspecific hybrids between 
L.  perenne and F.  pratensis, embryo rescue can increase the 
numbers of individuals recovered (Reusch, 1959; Kinoshita, 
2007). Although hybrids are usually male sterile, further gen-
erations can be obtained through backcrossing to either of the 
parent species. Another approach used to alleviate male ster-
ility is to artificially induce tetraploidy by treatment of the 
parent plants, or the F1 hybrid itself, with colchicine (Crowder, 
1953; King et  al., 1998). Repeated rounds of backcrossing 
to diploid plants with SC selection would restore diploidy 
whilst retaining the source of SC. Alternatively, the induced 
tetraploid hybrids can be used to produce tetraploid popula-
tions. Following the demonstration of SC being expressed in 
autotetraploid L. perenne (Do Canto et al., 2020), it has been 
shown that the SC source reported by Slatter et al. (2020) is 
readily expressed in L.  perenne × F.  pratensis tetraploids 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/127/7/841/6182021 by guest on 19 July 2021



Cropano et al. — Self-compatibility in outcrossing grasses848

derived from crosses between self-compatible L. perenne and 
self-incompatible F.  pratensis, generating viable seeds after 
selfing (D Thorogood, unpubl. data). Thus, the generic Lolium 
× Festuca hybrids, × Festulolium, provide a valuable target for 
transferring SC, especially as they display heterosis and re-
duced genetic load brought about by the combination of con-
trasting genomes (Comai, 2005). Consequently, the degree of 
inbreeding depression in polyploids would be reduced at each 
cycle of self-pollination, allowing the gradual removal of re-
cessive mutations over successive generations more easily than 
in diploids. However, for full exploitation of fixed heterosis in 
self-compatible hybrid lines, the problem of genetic instability 
and reduced fertility due to partial homoeologous chromo-
some pairing, resulting in segmental allopolyploidy, needs to 
be resolved (Svačina et al., 2020). The fact that many of the 
parental Festuca species are true allopolyploids with complete 
homeologous pairing indicates genetic control of chromo-
some pairing that can potentially be exploited (Jauhar, 1975b; 
Kopecký et al., 2009, 2017; Svačina et al., 2020). If successful, 
the ability to fix heterosis in self-compatible allopolyploid lines 
would negate the challenges of producing F1 hybrids.

Immortalized populations for trait mapping

Trait-mapping projects in grass species are often based on F1 
or F2 populations originating from a two-way pseudo-test cross 
between two highly heterozygous parents with contrasting 
traits. The substantial segregation shown in the progeny makes 
them suitable for mapping.

Such pseudo F1/F2 populations have been genotyped and 
phenotyped to identify QTL for several agronomical and 
physiological traits in L. perenne (Muylle et al., 2005; Barre 
et al., 2009), L. multiflorum (Studer et al., 2007), F. pratensis 
(Ergon et  al., 2006; Alm et  al., 2011), tall fescue (Festuca 
arundinacea) (Saha et  al., 2009) and cock’s-foot (Dactylis 
glomerata) (Kallida et al., 2016; Zhao et al., 2016). Because 
single F1 plants cannot be selfed, pseudo-test crosses or 
full-sib matings of F1 plants have been widely employed to 
construct pseudo-backcross or pseudo-F2 populations. An ex-
ample is the L. perenne VrnA population, a two-way pseudo-
testcross F2 population initially constructed to identify QTL 
underlying vernalization response genes (Jensen et al., 2005). 
In L.  multiflorum and F.  pratensis, several studies report the 
development of pseudo-F2 populations by intermating several 
full-sib F1 plants (Inoue et al., 2004; Ergon et al., 2013, 2016; 
Wang et  al., 2016). Only three ‘true’ F2 populations, all de-
veloped in L. perenne, are currently available among grasses: 
‘F2 Biomass’, ‘WSC F2’ and ‘F2 IOWA’. Self-compatible plants 
produced by obligate selfing were used for their development, 
and thus it has been possible to create them by self-pollinating 
a single F1 individual. These populations have been employed 
in a handful of genetic mapping studies (Thorogood et  al., 
2005; Turner et  al., 2006; Tomaszewski et  al., 2012; Arias-
Aguirre et al., 2013; Foito et al., 2015; Do Canto et al., 2018). 
Moreover, individuals of the F2 Biomass have served as starting 
material for the creation of the only immortalized population so 
far developed in forage grasses (Velmurugan et al., 2018).

Though mapping efforts have had successful outcomes, SI 
and subsequent enforced heterozygosity means that most map-
ping populations in grasses consist of individuals that can only 

be maintained vegetatively. This is time-consuming and can 
compromise genetic integrity over time through somatic muta-
tion and age-related genetic developmental changes or simply 
through human handling errors. The death of individual geno-
types, causing a reduction in population size over time, will also 
reduce the size and genetic value of the mapping population. 
That is why the development of self-compatible germplasm 
resources for mapping important agronomic traits through the 
creation of inbred lines such as RILs and double haploids for 
broad-scale mapping (Hina et al., 2020) and subsequently NILs 
for fine-mapping specific genomic regions and candidate gene 
identification (Zhang et al., 2021) is potentially valuable. These 
germplasm resources present the advantage of enabling mul-
tiple independent mapping projects to analyse a single line, as 
they are easily stored and distributed as seeds along with being 
considered ‘immortal’ due to their homozygous nature and cap-
acity to be maintained by self-pollination. A more systematic 
use of reference immortal populations will help not only in the 
identification of QTL underlying genes of interest, but also with 
developing molecular markers that can assist in trait selection.

Dissection of heterosis

Heterosis is a complex trait expressed through the action of mul-
tiple loci (Schnable and Springer, 2013). In rice (Oryza sativa) 
(Hua et al., 2002, 2003; Qu et al., 2012; Zhou et al., 2012; Zhen 
et al., 2017) and Z. mays (Frascaroli et al., 2007; Tang et al., 2010; 
Giraud et al., 2017; Wang et al., 2016), genomics and QTL map-
ping approaches have allowed the identification of major loci as-
sociated with heterosis and have provided insights into its genetic 
architecture. Despite heterotic loci in grasses being unknown, het-
erotic levels have been reported for different types of experimental 
hybrids (Foster, 1971a, b, 1973; Posselt, 1993, 2010; Anhalt et al., 
2009; Barrett et  al., 2010; O’Connor et  al., 2015; Wang et  al., 
2016), representing an untapped resource that breeders should 
capture. However, such unexplored potential can only be exploited 
with the identification of heterotic groups. In forage grasses, 
well-defined heterotic groups are not available (Vogt et  al., 
2020). This is explained by the high relatedness of plant material 
within and between different breeding programmes, often the re-
sult of exchange of material among breeders or common initial 
germplasm. However, high-throughput genotyping approaches 
have proved successful in capturing the genetic diversity con-
tained in germplasm and dividing it into different subpopulations 
(Vogt et al., 2020). In this regard, the extensive use of homozygous 
self-compatible genotypes can help to diverge and fix the diverse 
gene pool contained in such different clusters, and to structure and 
define different heterotic groups. This will provide breeders with 
strategies to effectively select parental genotypes to be used for hy-
brid crosses and for the prediction of hybrid performance. In add-
ition, the availability of well-diverged heterotic groups, coupled 
with advancement in sequencing technologies will allow the iden-
tification of genomic heterotic loci, for a better understanding of 
the genetic regulation of this complex phenomenon.

CONCLUDING REMARKS

Identifying and characterizing the basis of SC in grasses 
serves to provide a better understanding of the genes involved 
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in the induction of SC, and knowledge of how SC arises in 
normally self-incompatible species can help biologists deter-
mine the pathways involved in the SI process in grasses. This 
offers insights into the evolutionary relationship of the grass 
SI system with other SI systems and, more widely, with other 
cell–cell recognition processes in living organisms. The sub-
sequent exploitation of SC has the potential to promote more 
effective breeding methodologies based on the development 
of population or F1 hybrids exploiting genetic variation for 
hybrid vigour. Fundamental studies of the genetic basis of 
the heterosis that SC facilitates will be critical for targeted 
practical application. The systematic investigation of the 
agronomic performance of hybrids and the design of efficient 
seed production systems will be pivotal for efficient produc-
tion of first-generation hybrid or pure-line cultivars. Afforded 
by SC mutations, research exploring heterosis in normally 
outcrossing species, with high levels of accumulated hetero-
zygosity and genetic diversity, offers the prospect of contrib-
uting significantly to our understanding of heterosis currently 
gained from model species and self-fertile crops.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
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