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Highlights

Overall fungal species richness and diversity do not change with management in 

oligotrophic grasslands, but mulching has a negative effect on richness and diversity of 

CHEGD fungi. 

The effect of mulching on CHEGD fungi and on vascular plants is similar but these 

two groups have contrasting seasonal responses. 
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The results suggest that mulching affects vascular plant diversity directly by changing 

their reproductive and competitive ability, but fungal diversity is altered indirectly by changes 

in soil properties caused by decomposition of dead plant biomass. 

Abstract 

Mulching (cutting of vegetation without removal of clippings) is used as a low-cost 

method for maintaining remote or abandoned grasslands in Slovakia. The likely consequence 

of mulching is seasonal nutrient enrichment resulting from decomposition of plant litter by 

saprotrophic organisms. The potential  changes in biodiversity of the ecosystem caused by 

long-term  application  of  mulching  are  to  date  only  very  poorly  understood.  In  order  to 

examine  the  impact  of  mulching on soil  mycobiota,  we compared six different  grassland 

management regimes applied over nine years on a sub-montane oligotrophic Nardus pasture 

in the Central Slovakia. The diversity of soil fungi was assessed using DNA metabarcoding of 

the ITS2 regions of the nrRNA locus performed by Illumina MiSeq. 

We focused on a particular group of macrofungi which is characteristic of traditionally 

managed and undisturbed European grasslands, and which are often the dominant soil fungi in 

these habitats. These are collectively known as CHEGD fungi (the acronym of the constituent 

taxa: Clavariaceae,  Hygrophoraceae, Entolomataceae,  Geoglossaceae and  Dermoloma). We 

compared the relative abundance and diversity of CHEGD fungi with the total fungal and 

plant diversity. CHEGD fungi were dominant across all treatments. Although there were no 

statistical  effects  of  treatments  on total  fungal  richness  and diversity,  CHEGD fungi  and 

vascular plants diversity and richness were lower on plots where mulching or no management 

were imposed, suggesting that such management regimes would have a negative impact on 

grassland fungi.  However,  no single treatment  covered  the  total  CHEGD diversity  of  the 

study, indicating that the localized use of mulching in addition to traditional managements can 

enhance overall diversity of grasslands in the area. Our results also suggest that the impact of 

mulching depends on the season when the grassland is mulched and it might be reduced by 

combination with other management treatments. The high relative abundance and sensitivity 

of CHEDG fungi in oligotrophic grasslands to management treatments makes them excellent 

indicators of grassland natural quality and is consistent with the ecological importance of this 

fungal group.
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Introduction

Grasslands  are  recognised  as  important  European  habitats  highly  dependent  on 

agricultural  practices (Halada et  al.  2011). Grazing and mowing were common traditional 

management strategies applied in the Western Carpathians, but the dramatic decline of cattle 

numbers after the political changes in 1989 in Eastern and Central Europe resulted in frequent 

management  cessation  (Kanianska  et  al.  2014).  Traditional  management,  which  has 

maintained grasslands of high conservation value in the Western Carpathians,  has become 

rare (Meyer et al. 2015). Mulching (cutting of vegetation without removal of clippings) is 

used  as  a  low-cost  method  for  maintenance  of  abandoned  grasslands  in  Central  Europe 

(Mašková et al. 2009). The purpose is to control scrub encroachment and establishment of 

trees, which is required for farmers to receive subsidy support from the Common Agricultural 

Policy  of  the  European  Union  (Gaisler  et  al.  2013).  Mulching  differs  from  traditional 

managements  (mowing  and  grazing)  in  that  phytomass  is  not  removed  but  rather  left  to 

decompose in situ. As a consequence, it can modify soil properties, for example contribute to 

maintain phosphorus (P) nutrition (Oelmann et al. 2017), reduce nitrogen (N) requirements 

(Qian et al. 2003) and/or stabilize carbon (C) sequestration (Werth et al. 2005).

The  general  purpose  of  mulching  and various  traditional  management  regimes  on 

grasslands is the prevention of succession. Mulching has some similar effects to traditional 

cutting for hay or sheep/cattle grazing, since taller vegetation is removed, but their effects on 

functional  diversity  and  community  structure  may  be  very  different  (Moog  et  al.  2002, 

Römermann et al. 2009, Doležal et al. 2011). Recent studies suggest that mulching does not 

substitute  for  traditional  management  treatments  and  may  lead  to  plant  diversity  decline 

(Gaisler et al. 2019), change of local ant species composition (Wiezik et al. 2013), butterfly 

population decline (Schmitt, 2003) as well as a decrease in microbial biomass and microbial 

metabolic  efficiency  (Uhlířová,  Šimek  &  Šantrůčková  2005).  Mulching  of  biomass  in 

grasslands of Central Europe is a relatively recent and regionally specific phenomenon that is 

poorly understood and urgently deserves a study because of possible consequences linked to 

ecosystem services and conservation concern. 
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Plant-driven changes in soil properties are strongly associated with the compositional 

turnover of fungi (Yang et al. 2017, Anthony at al. 2019, Oriol et al. 2019). Specific soil fungi 

play their particular roles in grassland ecosystems and plant species richness does not affect 

their  diversity  directly  (Navrátilová  et  al.  2018).  However,  individual  plant  species  have 

different  associated  endophytic  or  mycorrhizal  fungi  (Wearn et  al.  2012),  suggesting  that 

compositions of fungal soil communities changes with changes in plant community structure. 

The functions of fungi in soil  ecosystem are different from other organisms, for example 

under mowing management, they play a more important role in nitrogen (N) mineralization 

than bacteria (Li et al. 2017). Diverse fungal groups with different dispersal mechanisms are 

able,  under  changing environmental  condition  of  newly  forming soil,  to  establish  diverse 

communities  in  a  relatively  short  time  (Detheridge  et  al.  2018).  This  makes  soil  fungi  a 

potentially  useful  indicator  group  for  the  study  of  microbial  responses  to  grassland 

management practices. 

Among fungi occurring in semi-natural grasslands of Europe, macrofungi collectively 

referred as CHEGD fungi (an acronym of Hygrophoraceae, Entolomataceae, Clavariacaeae, 

Geoglossaceae and Dermoloma) are well known to be typically associated with undisturbed, 

unfertilised grasslands (Griffith et al. 2013). Natural abundance of 15N, 14C and 13C isotopes in 

basidiomata of Hygrophoraceae, as well as  13C pulse label experiments, further suggest that 

these fungi are not saprotrophs but rather biotrophic endophytes and possibly mycorrhizal 

symbionts (Halbwachs et al. 2018). The metabarcoding analyses of fungal microbial diversity 

shown that  CHEGD fungi  are  often  the  most  abundant  group  in  oligotrophic  grasslands 

(Detheridge et al.  2018, Hay, Thorn & Jacobs 2019). Another clue to identify the trophic 

strategy of CHEGD fungi is proof that  Cuphophyllus  (formerly  Hygrocybe)  virgineus is a 

systemic endophyte of Plantago lanceolata (Tello et al. 2014).

The likely consequence of mulching is seasonal nutrient enrichment  resulting from 

decomposition  of  plant  biomass  by  saprotrophic  organisms.  Competitive  and antagonistic 

interactions of saprotrophic microorganisms and changes in available nutrients likely reshape 

the  fungal  community  structure  of  grasslands.  We aimed  to  study changes  in  the  fungal 

microbial  diversity  of  Slovak  oligotrophic  grasslands  caused  by  long-term  (eight  years) 

application  of  six  different  grassland  management  regimes.  The  results  of  fungal  soil 

microbial diversity assessment by metabarcoding are compared with vascular plant diversity 

assessed during the ninth year of the experiment. In particular, we want to test the reliability 
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of CHEGD fungi as indicators of ecosystem changes in grasslands. We also aim to compare 

the response of CHEGD fungi to various mulching regimes with the responses of vascular 

plants.

Materials and methods

Study site and sampling

The study area was located in Central Slovakia (48°42′09.57′′ N, 19°22′00.8′′ E, 715 

m  a.s.l.),  in  the  Poľana  Mts.,  a  mountainous  area  of  volcanic  origin.  The  experimental 

grassland  area  was  traditionally  maintained  through  extensive  grazing  by  sheep  and 

occasionally also by young cattle (heifers). It is located on south-west-facing slope with an 

inclination of 15°. Average daily temperature was 6.5 °C. Average annual precipitation was 

852  mm  (Cornes  et  al.  2018).  The  geological  bedrock  was  classified  as  ryodacite  tufas 

(http://mapserver.geology.sk/gm50js/) and the soil as a Cambic Umbrisol Endoarenic Skeletic 

(Sobocká,  2000).  Organic  carbon  (Cox),  humus,  N  and  P  contents  of  soil,  sampled  7th 

November  2016,  were  measured  for  all  individual  plots.  Organic  carbon  ranged between 

21.58 to 36.92 g/kg, humus 37.2–63.65 g/kg, N 2.69–3.42 g/kg and P 1.59–3.79 g/kg. Only P 

content  showed  significant  differences  between  treatments  (Appendix  A:  Tab.  1).  The 

vegetation of this sub-montane oligotrophic Nardus grassland was classified into the alliance 

Violion caninae Schwickerath 1944 (Hegedüšová-Vantarová & Škodová 2014). 

The field  experiment  was established in  2009 with six  management  treatments:  1. 

grazing  (GR)  (positive  control);  2.  traditional  mowing  by  scythe  (clippings  removed), 

combined with grazing (MOGR); 3. mulching in autumn (first half of September) (MUAU); 

4. mulching in spring (second half of June – first half of July) (MUSP); 5. grazing combined 

with  autumn  mulching  (MUGR)  and  6.  no  management  (NM)  (negative  control).  Each 

treatment  was  represented  by  four  randomly  distributed  replicates  (Fig.  1).  In  total,  24 

permanents plots were established, with 12 plots fenced to eliminate grazing. Plots outside the 

fencing  were  extensively  grazed  by  sheep  (herd  of  approximately  600–700  individuals, 

stocking density 0.3–0.4 LU/ha)  from May to September each year and occasionally  also 

grazed by young cattle (herd of 80–100 heifers) at the end of summer or in autumn (August to 

October). Cut biomass for mulching treatments experiments was evenly distributed across the 

plot whereas for mowing treatments the biomass was removed. Each plot was 2 × 2 m and 

surrounded by a 1-m buffer zone, maintained the same way as the corresponding core zone. 
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Presence and cover of vascular plants were sampled in 2 × 2 m plots using the percentage 

cover estimation. The diversity of vascular plants was recorded in May–June 2018. Soil cores 

for DNA metabarcoding were collected on 12 Oct 2017 and 3 May 2018. Five soil cores of 

2.5 cm diameter to a depth of 10 cm were sampled per plot (approx. 120–170 g of dry soil),  

one from the center and four at a distance of 1 m along the diagonal axis, and samples were 

pooled. The organic soil horizon, stones, plant tissues and animal remnants were removed. 

Soil samples were stored at -80 °C.

DNA amplification and sequencing

Environmental DNA (eDNA) was extracted in three replicates following the modified 

cetyl trimethylammonium bromide (CTAB) protocol of Sagová-Marečková et al. (2008). The 

diversity  of soil  fungi was assessed by metabarcoding analysis  of the internal  transcribed 

spacer 2 region of the ribosomal DNA operon (ITS2 rDNA) using primers ITS3F, ITS4R 

(White et al.  1990). PCR amplification,  library preparation and amplicon sequencing were 

performed by Illumina MiSeq using MiSeq reagent kit v2 by SEQme s.r.o. (Dobříš, Czech 

republic;  www.seqme.eu), following standard protocols used by the company. Both autumn 

and spring samples were sequenced in a single Illumina run. Raw amplicon sequence data are 

deposited in NCBI as BioProject PRJNA691143 under accession numbers SAMN17282714–

SAMN17282761.

Sequence data processing

Amplicon sequence data were processed using the SEED 2.0.1. pipeline (Větrovský, 

Baldrian & Morais 2018). Amplicons were shortened to 250 bp prior to pair-ending. Pair-

ended sequences with 20% maximum difference and minimum overlap 20 bp were further 

analysed applying recommended settings and automatic chimera removing. Sequences with 

average phred score lesser than 30 were discarded. 

Pair-ended sequences were processed as detailed in Detheridge et al. (2016) with the 

USEARCH clustering of molecular operational taxonomic units (MOTUs) at 98.5% identity 

and taxonomy assignment by the RDP Naïve Bayesian Classifier (Wang et al. 2007) against a 

database built from v 8.0 of UNITE (Abarenkov et al. 2010, UNITE community 2019). The 

most abundant sequences of each cluster were checked using Blastn against UNITE v 8.0 
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(Kõljalg  et  al.  2013)  and GenBank databases.  Non-fungal  sequences  were excluded from 

further analysis. Fungal amplicon abundances at each plot are listed in Appendix A: Tab. 2.

Ecological functions were assigned as described in Detheridge et al. (2018), with eight 

main groups: fungi associated with grasslands (CHEGD), plant mutualists forming arbuscular 

mycorrhiza  (AMF),  plant  mutualists  forming  ectomycorrhiza  (ECM),  dark  septate  plant 

endophytes (DSE), parasitic fungi (PAR), pathogenic fungi (PAT), lichenized fungi (LICH), 

and saprotrophic fungi (SAP). 

Special  emphasis  was  given  to  grassland  macrofungi  associated  with  semi-natural 

habitats  known  as  CHEGD  fungi  (Griffith  et  al.  2013).  These  include  members  of 

Clavariaceae (i.e. Clavaria, Clavulinopsis, Ramariopsis, Camarophyllopsis and Hodophilus), 

the  genus  Hygrocybe and  related  genera  of  Hygrophoraceae  (Cuphophyllus,  Gliophorus, 

Neohygrocybe),  Entoloma (Entolomataceae),  Dermoloma (Tricholomataceae), and members 

of  the  family  Geoglossaceae  (i.e.  Geoglossum,  Glutinoglossum, Trichoglossum).  We also 

included  genera  of  the  ‘green’  earth  tongue  fungi  Microglossum and  Thuemenidium 

(Leotiaceae)  because  they  were  previously  included  in  CHEGD  fungi  and  the  genus 

Pseudobaeospora (Tricholomataceae) because of its apparent affinity to grasslands with high 

conservation value (Adamčík, Ripková & Kučera 2007). 

Occurrence  of  CHEGD MOTUs was  transferred  into  a  binary  matrix  based  on  a 

minimum threshold 0.01% of all amplicons per sample (two to four sequences per sample). 

Representative sequences of each CHEGD MOTU from both analyses were aligned within 

our  CHEGD  reference  datasets  built  on  relevant  phylogenetic  studies  for  Clavariaceae 

(Birkebak et al. 2016), Hygrophoraceae (Ainsworth, Cannon & Dentinger 2013, Lodge et al. 

2013, Wang et al. 2018), Entolomataceae (Morgado et al. 2013, Morozova, Noordeloos & 

Vila 2014), Geoglossaceae (Schoch et al. 2010, Fedosova & Kovalenko 2015, Fedosova et al. 

2017)  and  Tricholomataceae  (Sánchez-García  et  al.  2021).  For  individual  genera,  the 

alignments were trimmed to ITS2 amplicon size and analysed by ML as fasta files using 

RAXML-HPC2 on XSEDE (8.2.12)  (Stamatakis  2014)  under  the  GTR + GAMMA model 

with 1000 bootstrap iterations. MOTU clustering was reconsidered based on inconsistencies 

between automatic clustering and accepted taxonomic concepts supported by the phylogenetic 

analysis (ML>75 is considered as significant support).
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Statistical analysis

Spring and autumn sequence data were pooled and analysed together as one entry per 

plot.  Diversity  indices  (Inverse  Simpson  and  Shannon)  were  calculated  from  relative 

abundance based on amplicon sequence data in PAST version 4.0 (Hammer, Harper & Ryan 

2001). All other analyses of CHEGD fungi are based on presence/absence data at four plot 

replications (Appendix A: Tab. 3). Average percentage cover data were analysed for vascular 

plants  (Appendix  A:  Tab.  4).  Post  hoc  comparisons  (Tukey´s  test)  were  computed  by 

Statistica  12  software.  One-way  PERMANOVA  was  computed  using  PAST  version  4.0 

(Hammer,  Harper  & Ryan 2001).  Species  composition  of  CHEGD fungi  and of  vascular 

plants were evaluated by Principal Components Analysis (PCA) using the program Canoco 

for Windows 5 (Šmilauer & Lepš 2014), with plant data logarithmically transformed. Non-

scaled or row-scaled heatmap analysis was plotted under default settings in R version 3.6.1 (R 

Core Team 2019) using heatmap.2 function implemented in gplots package (Warnes et al. 

2009). 

Results

Total fungal diversity assessed by metabarcoding analyses 

DNA was successfully purified, amplified and sequenced by Illumina MiSeq from all 

48 samples (spring and autumn sampling of 24 permanent plots), resulted in an average of 

66898  unpaired  amplicons  per  sample.  On  average  21148  pair-ended  fungal  amplicons 

(ranging  from  8293  to  33577)  per  sample  were  retrieved  after  quality  check,  chimera 

detection  and  elimination  of  non-fungal  sequences.  In  total,  1191  fungal  MOTUs  were 

retrieved. More than half (666 MOTUs), representing 94.8% of all fungal amplicons were 

identified to family level or better. The average number of fungal MOTUs per treatment was 

similar across all samples (range 353–402), with species richness highest for MUSP and NM 

and  no  significant  differences  between  treatments  resulted  in  Tukey´s  test  .  The  highest 

diversity according to average Shannon and Simpson indexes showed MOGR to be the most 

diverse, followed by NM and GR, with lower values of all mulching treatments. 

More than 80% of all amplicons were identified as Basidiomycota and Ascomycota 

(Fig. 2), with the former group being consistently more abundant. These two groups were 

nearly equally represented in GR and MOGR. Glomeromycotina had low relative abundance, 
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ranging  from  0.4%  to  1%.  Blastocladiomycota  showed  a  distinct  increase  of  relative 

abundance in NM plots (NM1, NM2, NM4). 

All treatments showed similar general patterns in relative abundance of groups defined 

by ecological function (Fig. 3). CHEGD fungi were the most abundant functional group in all 

samples, ranging from 28.8% (NM) to 54.1% (MUAU). On average,  NM had the highest 

relative abundance of ECM (8.7%), PAR (1.1%) and SAP (7.4%). DSE showed an affinity to 

traditional management with more than 50% of all their amplicons retrieved from GR and 

MOGR.

Diversity of CHEGD fungi 

We  identified  121  MOTUs  belonging  to  the  CHEGD  fungi:  51  Clavariaceae,  23 

Hygrophoraceae,  30  Entolomataceae,  10  Geoglossaceae,  four  Leotiaceae  and  three 

Tricholomataceae (Appendix A: Tab. 3). Clavariaceae consistently had the highest species 

richness, followed by (depending on treatment) Hygrophoraceae or Entolomataceae (Table 2). 

Also frequent were Geoglossaceae with at least three MOTUs present in all treatments. There 

were no significant differences in overall CHEGD diversity and richness among treatments, 

but some individual groups showed differences. NM had significantly lower Entolomataceae 

(similar to MUAU and MUSP), and significantly higher Leotiaceae representation (similar to 

MUSP and MOGR).  Geoglossaceae  were  significantly  more  abundant  at  MUSP and less 

abundant at MORG and MUGR. 

There were no significant differences in relative abundance of individual groups of 

CHEGD fungi nor their  total  diversity  between treatments  (Table 2).  In terms of relative 

sequence abundance, Hygrophoraceae were dominant, ranging from 24.6% (NM) to 42.4% of 

all fungal amplicons across all treatments. The second most abundant group were, depending 

on treatment, Clavariaceae or Leotiaceae. Both groups exhibited reduced relative abundance 

in  NM plots,  and  abundance  of  Clavariaceae  was  additionally  reduced  on  MUSP  plots. 

Entolomataceae had higher relative abundance in traditional managements (GR and MORG) 

and was lower in NM. 

Within  the  dominant  Hygrophoraceae  family,  the  most  abundant  species  were 

Neohygrocybe nitrata, with average relative abundance per treatment 10.81%, followed by 

Hygrocybe chlorophana (5.96%) and H. punicea (5.38%). These three species were the most 
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abundant taxa across the whole experiment, representing >20% of all the fungal sequences 

obtained.  The  most  abundant  MOTU  of  Clavariaceae  was  Camarophyllopsis  schulzeri 

(1.53%), of Geoglossaceae Geoglossum barlae (1.97%), of Leotiaceae  Microglossum sp. 2 

(1.18%), the most abundant Entolomataceae MOTU was E. cf. bloxamii (0.3%), of the genus 

Dermoloma  was  D. sp.  2  (0.32%)  and  there  was  only  one  MOTU  of  the  genus 

Pseudobaeospora, P. pyrifera (0.02%). 

NM and MUSP also showed the lowest total CHEGD species richness per treatment 

(Table 2). In addition, both Inverse Simpson and Shannon index showed that NM and two 

mulching treatments (MUSP and MUAU) have the lowest diversity of CHEDG fungi. The 

relative proportion of total fungal and CHEGD richness was highest in NM and was also high 

in MUSP (Appendix A: Fig. 1). GR showed the highest (and consistent at all plots) proportion 

of CHEGD fungi compared to total fungal richness.

There was no single CHEGD MOTU that occurred in all 24 research plots, but 40 

MOTUs were recorded in at least one plot of each treatment (Appendix A: Table 3, Appendix 

A: Figs. 3–4). Ten CHEGD MOTUs were recorded only from a single treatment and nine of 

them were only present in a single plot. 

Plant diversity

We recorded 97 taxa of vascular plants. The total species richness per treatment varied 

from 61 to 76 and it was highest in grazed treatments (GR, MUGR). The average richness per  

plot was higher in GR, MOGR and MUSP treatments and was significantly lower in NM. 

Both Shannon and Inverse Simpson indices clearly showed NM as the least diverse treatment 

(Table 3, Appendix A: Fig. 2). 

Plant  richness  was broadly correlated  with CHEGD richness,  showing consistently 

high taxon numbers for grazing. Plant species diversity decrease in the NM treatment was 

even more apparent than in CHEGD fungi. 

Comparison of fungal and plant communities between different treatments 

Pairwise comparison of treatments based on presences of CHEDG fungal MOTUs on 

individual  plots  (Table  4)  showed the  only  significant  difference  in  community  structure 

between  GR  and  NM  (PERMANOVA  P<0.05).  The  same  pairwise  analyses  of  plant 
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community structure revealed NM as significantly different from all other treatments except 

of MUSP and the only other significant difference show MUAU and MUSP. 

The PCA analysis comparing all treatments in the ordination space (Fig. 4A) revealed similar 

community  structure  of  CHEGD  fungi  of  the  NM  and  MUSP  treatments.  These  two 

treatments  were  correlated  with  presence  of  Hygrocybe citrinovirens,  H. sp.  1,  Entoloma 

prunuloides, Neohygrocybe  ovina,  Pseudobaeospora  pyriforme and  Trichoglossum cf. 

walteri. The traditional treatments MOGR and GR were placed together in the ordination. GR 

was  correlated  with  presence  of  Clavaria sp.  3,  Hygrocybe insipida,  H.  phaeococcinea, 

Microglossum sp. and  Ramariopsis sp. 8. MOGR was correlated with  Clavulinopsis sp. 1, 

Entoloma griseocyaneum and Entoloma cf.  bloxamii. MUAU was grouped with MUGR and 

they were correlated with presence of three Clavariaceae MOTUs: Camarophyllopsis sp. 1, C. 

sp. 2 and Clavaria fumosa. 

The PCA of vascular plant cover showed an isolated position of NM (Fig. 4B). The 

first  axis  was  correlated  to  the  left  with  the  gradient  of  managed  Nardus grasslands 

represented  by  the  species  Festuca  ovina,  Pilosella  officinarum,  Lotus  corniculatus  or 

Euphrasia rostkoviana. To the right was the first axis correlated with unmanaged plots (NM) 

represented by tall species typical for such habitats e.g. Avenula praeusta and various woody 

plants  e.g.  Pinus  sylvestris,  Picea  abies  that  would  otherwise  be  controlled  by  mowing, 

mulching or grazing. The second axis represents the gradient from the low grazed grassland 

vegetation (GR) with presence of small species like Genista pilosa or Danthonia decumbens 

to the taller vegetation of MUAU defined by presence of species Briza media or Ranunculus 

bulbosus. 

The  hierarchical  clustering  based  on  relative  abundance  (amplicons  per  treatment 

sequence  count)  showed  the  isolated  position  of  NM,  whereas  MUSP and  MUAU were 

clustered  together  and  all  grazing  treatments  including  MUGR  form  the  other  cluster 

(Appendix  A:  Figs.  4).  This  hierarchical  clustering  based  on  fungal  amplicon  relative 

abundances did not agree with PERMANOVA and PCA of CHEGD fungi that analysed only 

presence/absence  data.  It  should  be  noted  that  within  the  hierarchical  clustering,  the 

treatments are found in three groups based on management style (mulching, grazing and no 

management). 
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Discussion

Plant and microbial diversity changes with management

The  current  biological  diversity  of  grasslands  in  temperate  areas  of  the  Northern 

Hemisphere is the result of longstanding traditional practices of stock-moving and grazing. In 

this study, we treated GR and MOGR as positive controls, NM as a negative control and we 

tested the hypothesis that mulching can be used as an alternative treatment to maintain the 

diversity and community structure of grasslands. Our study showed similar overall patterns 

for richness and diversity of vascular plants and CHEGD fungi (Appendix A: Figs. 1–2). NM 

treatment had the lowest richness and diversity of both plants and CHEGD fungi and it was 

clearly  different  from  other  treatments.  This  is  in  agreement  with  previous  studies 

demonstrating decline of general biological diversity in abandoned grasslands (Mariott et al. 

2004, Öckinger, Eriksson & Smith 2006). In contrast to the conclusions of Tälle et al. (2016), 

we did not find that  grazing had a more positive effect  than mowing on the diversity  of 

vascular plants and CHEGD fungi in grasslands.

The traditional managements (GR and MOGR) were similar to each other and more 

diverse in both CHEGD and vascular plants than other treatments. There was a contrasting 

effect  of  mulching  season on the  community  structure  of  fungi  and plants.  While  spring 

mulching (MUSP) had an effect on CHEGD fungi similar to NM and dissimilar from other 

treatments (Fig. 4A), the plant community structure was more strongly affected by autumn 

mulching (MUAU) (Fig. 4B). Some studies have found that the amount of plant biomass left 

at the end of the season is more important in determining yields in the following year than is  

the  amount  removed  by  grazing  during  the  season  (Willms,  Smoliak  &  Bailey  1986). 

Community turnover of fungi is more similar to plant responses than to bacterial communities 

(Sayer  et  al.  2013, Cassman et al.  2016, Egan et  al.  2018),  and depends only weakly on 

edaphic  factors  (Detheridge  et  al.  2018).  The  similar  responses  of  plants  and  CHEGD 

communities  to  management  regimes  can  be  explained  by  plant-driven  changes  in  soil 

properties (Yang et al. 2017, Oriol et al. 2019). 

The effect of plants on fungal and microbial diversity and community structure can be 

indirect. Navrátilová et al. (2018), for example, found no direct correlation between plant and 

soil  microbial  diversity.  Whilst  various  grassland  management  regimes  affect  plants  by 

changing their reproductive and competitive abilities (Binet et al. 2016), fungi may be more 
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influenced  by  available  biomass  and  nutrient  availability  (Detheridge  et  al.  2016).  As  a 

consequence,  the  global  plant  alpha  diversity  patterns  in  temperate  grasslands  are  poorly 

related to those observed for soil microbial groups, but plant beta diversity (compositional 

dissimilarity between sites) is significantly correlated with the beta diversity of bacterial and 

fungal communities (Prober et al. 2015). 

Cessation of stock-moving/grazing causes either dominance of individual herbaceous 

plants or succession to scrubland, with both resulting in lower diversity of plants (Binet et al.  

2016, Oriol et al. 2019). This is also in agreement with our results (Fig. 4B). The increased 

input of cut biomass causes an increase in soil C:N ratio or changes in availability of some 

essential elements that are not beneficial to plant diversity maintenance (Xiong et al. 2016, 

Oriol et al. 2019). 

There  is  a  negative  correlation  between  nitrogen  levels  and  diversity  of  some 

functional fungal groups, including CHEGD fungi (Detheridge et al. 2018, Halbwachs et al. 

2018). The changes in the abundance and diversity of CHEGD fungi seen between traditional 

managements and mulching experiments in this study may be the result of increased N levels 

due  to  elevated  N  input  from cut  vegetation  (Fang,  Xie  &  Zhang  2007).  We  found  no 

significant  differences  in  N  content  between  treatments  (Appendix  A:  Tab.  1)  but  our 

measurements are all from a single timepoint. Soil N can change seasonally in response to 

plant uptake and mobilisation of N by soil microbes but it is likely that mulching, especially 

in spring when there is high competition for N, would result in a transient increase which 

would  dissipate  rapidly  as  N  release  from plant  debris  was  taken  up  by  plants  and  soil 

microbes (Hooper & Vitousek 1998; Jackson et al. 1988). The contribution of plant residues 

to  available  N is  linked to  the C:N ratio  of decomposed plant  biomass,  and this  depends 

strongly on plants species (Chen et al. 2014; Hooper & Vitousek 1998). 

NM and MUGR had significantly reduced P content compared to MOGR and MUAU, 

but our analyses of plant and CHEGD fungal community structure (Figs. 6 and 7) did not 

support  any similarities  linked to  P content.  The less  distinct  CHEGD diversity  loss  and 

richness  of autumn mulching (MOGR, MUGR) was probably also linked to  reduced hay 

nutrition quality of biomass under delayed treatment (Klink van et al. 2017). Fungi may play 

an important role in N mineralization in grassland ecosystems (Li et al. 2017). 
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Community  structure of  CHEGD fungi  analysed by hierarchical  clustering  showed 

different patterns for presence/absence data and relative sequence abundances (Appendix A: 

Figs. 3–4). The presence/absence clustering was similar to PCA analysis in this study that was 

also based on the same dataset and it showed three pairs: NM and MUSP, MUGR and MUAU 

and GR and MOGR. The clustering based on relative abundance grouped treatments  into 

three sets, i.e.no management (NM), grazing (GR, MORG, MUGR) and mulching (MUAU 

and MUSP). 

Amplicon numbers and relative abundance may be influenced by a number of factors 

including GC contents, variation in nrRNA operon copy number, and the length of the ITS2 

spacer region (Fonseca, 2018; Lofgren et al., 2019) but these will be consistent within a given 

experiment  and thus  not  affect  comparisons  between samples.  Our hierarchical  clustering 

analysis  grouped treatments  based on grassland management  and suggested that  a  dataset 

based on multiple, carefully selected MOTUs of several phylogenetic lineages, based on their 

ecology, can yield reliable results (Appendix A: Figs. 3–4). 

CHEGD community interactions 

Egan et al. (2018) suggested that important functioning of soil microbiota may only be 

detected at lower taxonomic levels. Here we demonstrate that CHEGD fungi are a reliable 

group to monitor management effects in grassland ecosystems, and especially relevant since 

they  comprise  the  majority  of  the  fungal  OTUs  found  in  these  soils.  The  high  relative 

abundance  of  these  fungi  in  all  treatments  is  consistent  with  previous  grassland  fungal 

microbial community studies using different metabarcoding loci (Detheridge et al. 2018, Hay, 

Thorn & Jacobs 2019). The response of CHEGD species richness to management treatments 

was very different from that of total fungal richness, for example CHEGD MOTUs declined 

but total fungal MOTUs increased in NM (Fig. 3, Appendix A: Fig. 1). 

The arbuscular  mycorrhizal  fungi  (Glomeromycotina)  are  often considered to have 

special importance for grassland environments (Koziol & Bever 2017).  In our experiment, 

they were represented by a low relative abundance compared to CHEGD fungi, as has been 

reported in various other studies using a range of metabarcoding approaches (Geml et  al. 

2014, Jumpponen &  Jones 2014, Detheridge et al. 2018) but it is possible that despite being 

present at low levels in terms of biomass that they are highly active. 
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Ectomycorrhizal fungi, which dominate the soils of forest habitats where relevant host 

trees  are  present  (Wei,  Song  & Jia  2020),  were  also  detected  in  some  plots  within  our 

experiment. In NM plots, saplings of ectomycorrhizal host trees (Pinus,  Picea and  Betula) 

established as the result of succession. However, the relative abundance of ECM fungi was 

less than 9%, suggesting that colonization of tree roots by ECM fungi was still at a very early 

stage and ecologically these fungal communities are still dominated by fungi from the pre-

existing grassland communities. Toju, Sato and Tanabe (2014) hypothesised that ECM alter 

other components of the soil ecosystem where they are present but we did not find evidence to 

support of this hypothesis here, since CHEGD fungi remained the dominant group in NM 

plots. ECM fungi were also detected at lower levels (<5%) in some other plots, presumably 

due to the presence of roots from adjacent trees(Kageyama et al. 2008) or presence of host 

tree seedlings (Lynch & Thorn 2006). However, here too we found no effect of ECM on 

communities of CHEGD fungi.

Conservation importance of CHEGD fungi metabarcoding

Our study confirmed that metabarcoding analysis of CHEGD fungi can result in much 

higher  CHEGD species  counts  than  field  surveys  (Griffith,  Cavalli  & Detheridge  2019). 

‘Traditional’ field surveys based on fruitbody collections are highly influenced by seasonality 

and weather conditions. Our survey included only two visits of the sampling area (October 

2017, May 2018), during which we collected only one Hygrocybe species, one Ramariopsis 

species and one Clavaria species. The paucity of fruitbodies was probably due to lack of rain 

and  humidity  in  the  days  preceding  our  visits.  Recording  of  CHEGD  fruiting  bodies  is 

currently the main method for assessment of the conservation value of grasslands (Bosanquet 

et  al.  2018).  However,  even with careful  planning and repeated  visits  on collecting  sites, 

fruitbody  data  yields  fewer  species  in  total  and per  site,  and had  larger  variance  in  site 

richness compared to the metabarcoding approach (Frøslev et al. 2019). 

The  system  for  scoring  grassland  fungi  is  often  based  only  on  the  presence  of 

Hygrocybe species (Griffith et al. 2013), including other Hygrophoraceae genera recognised 

by recent phylogenetic studies and previously classified in this genus (Lodge et al.  2013). 

From  our  eDNA  analyses,  we  identified  a  total  of  23  Hygrophoraceae  MOTUs  which 

correspond to Hygrocybe in the traditional broad sense. This number is higher than the best 

Slovak Hygrocybe site scored so far based on a field survey (Adamčík & Kautmanová 2005). 

Based on Hygrophoraceae species number, our small research area of 16 × 24 m is placed in a 
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category of international importance (Boertmann, 2010). Clearly this scoring system has to be 

reconsidered and adapted to eDNA metabarcoding datasets (Griffith, Cavalli & Detheridge 

2019). 

One usual feature of our plots was the high abundance of  Neohygrocybe nitrata. In 

western Europe, where CHEGD fungi have been more intensively studied, this species is very 

rare, and only very occasionally found in eDNA metabarcoding studies (Griffith et al., 2019). 

It is globally rare, being classed as Vulnerable by IUCN (Jordal, 2019). It is however more 

commonly  recorded  in  Scandinavia  (https://www.gbif.org/species/2538440),  possibly 

indicating   that  this  species  favours  high  altitude/latitude  habitats  with  very  low  winter 

temperatures.

Metabarcoding  can  also  recover  cryptic  diversity  of  fungi,  since  sequence-based 

identifications  are  more  accurate  than  morphological  ones  (because  of  phenological 

variation), but the species delimitation depends on reliable reference sequence database which 

can be problematic in the case of closely related taxa (Rees & Cranston 2017). Our study 

shows how insufficient taxonomic knowledge in combination with seasonality and cryptic 

diversity affects the results of field fruiting body-based surveys. Many field surveys reported 

Hygrocybe (in a broad sense) and Entolomataceae as the richest and the dominant grassland 

fungi (Newton et al. 2003, Genney et al. 2009, McLay, 2016). However, our study detected 

Clavariaceae as the richest group of CHEGD fungi, in agreement with other studies dealing 

with metabarcoding of  soil fungi in pastures (Marí et al.  2020) and even in successional 

agricultural grasslands which were previously tilled (e.g. Lynch & Thorn 2006). The total 

MOTU  richness  of  Clavariaceae  recovered  in  our  study  was  more  than  twice  that  of 

Hygrophoraceae and more than 50% higher than that of Entolomataceae. The majority (79%) 

of  Clavariaceae  MOTUs were  not  identified  to  species  rank,  in  contrast  to  only  28% of 

Hygrophoraceae MOTUs. This is due to poor knowledge of diversity and systematics of the 

group.  Phylogenetic  study  of  agaricoid  Clavariaceae  members  of  the  genus  Hodophilus 

revealed much higher diversity of agaricoid members and suggests urgent need of taxonomic 

research of clavaroid lineages (Adamčík et al. 2020). Cryptic diversity, low mycelial biomass 

and  difficulties  with  identification  due  to  taxonomic  problems  are  probable  reasons  why 

Clavariaceae were previously overlooked or underrepresented in field surveys.

In this study, we did not recover any sequences of  Hodophilus spp. a genus of the 

family Clavariaceae with currently 16 well-defined species in Europe (Adamčík et al. 2020). 
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The genus Dermoloma was represented only by two MOTUs in our study, but the diversity of 

the  genus  in  Europe  is  higher  than  15  species  (Sánchez-García  et  al.  2021).  The  genus 

Pseudobaeospora represented in our study by a single MOTU has 20 accepted species known 

from  Europe  (Adamčík  &  Jančovičová  2011).  Absence  or  low  representation  of  some 

taxomomic  groups  typical  for  grasslands  indicates  that  there  might  be  higher  CHEGD 

community  variation  between  different  and  distant  grassland  habitats.  Members  of 

Hygrophoraceae  have  probably  a  special  function  in  grassland  ecosystems.  Their  relative 

abundance  is  very  high compared to  other  groups and 25 MOTUs detected  in  this  study 

represent a relatively high proportion of the known diversity of the group which includes 

approximately 50 species in Hygrocybe s.l. in Northern Europe (Boertmann, 2010). 

Several of the CHEGD species recorded during our study are known to be rare and are 

included  in  national  Red  Lists  of  several  countries  (https://www.nationalredlist.org),  e.g. 

Camarophyllopsis  schulzeri,  Cuphophyllus  flavipes,  Entoloma  prunuloides,  Microglossum 

olivaceum,  Neohygrocybe ovina or  Ramariopsis crocea. Some rare species were correlated 

with  MUSP  and  NM,  for  example  Hygrocybe  citrinovirens,  N.  ovina,  E.  prunuloides, 

Pseudobaeospora pyrifera and  Trichoglossum cf.  walteri. All the above-mentioned species 

occurred on all six or at least five treatments and it seems that some of them may benefit from 

available plant biomass substrate.  However,  in the long term, the change of ecosystem to 

forest dominated by ECM trees will probably cause their decline. The research area is situated 

in a large pasture maintained by traditional forms of management for a long time and this has 

probably played an important  role in the relatively high diversity  of CHEGD fungi in all 

research plots and insignificant decline of richness and diversity with mulching. 

Conclusion and future perspectives

Mulching is not a suitable substitute to replace traditional managements and maintain 

natural ecosystems of oligotrophic Nardus grasslands. Total soil fungal richness of mulching 

treatments was lower than in traditional and no-management treatments, while vascular plant 

richness of mulched treatments was similar to traditional treatments. However, even mulching 

and  no-management  treatments  contributed  some  unique  CHEGD fungi,  and  some  other 

CHEGD species increased under these treatments.  This suggests that combining of all  the 

management regimes within the area would enhance overall levels of CHEGD diversity in 

these grasslands. 
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CHEGD fungi proved to be a reliable group to explain the impact of management on 

changes in soil ecosystem. They showed similar richness patterns to vascular plants, with a 

decline in NM and an increase in GR. CHEGD fungi showed a more distinctive effect of 

mulching  than  vascular  plants  when  compared  to  traditional  treatments.  The  timing  of 

mulching had contrasting effects on plants and fungi, with spring mulching (MUSP) affecting 

CHEGD fungi diversity (relative to traditional treatments) and autumn mulching (MUAU) 

having a greater effect on plants. We hypothesize that changes in fungal community structure 

and functional group representations may be induced by changes in soil chemistry driven by 

decomposition of biomass. Future studies should focus on correlation of fungal soil diversity 

with levels of bioavailable essential elements. 

Mulching  (often  referred  to  as  grasscycling)  is  also  widely  practised  in  amenity 

grassland (Harivandi & Gibeault 1999, Hartin, Henry & Harivandi 2001), as evidenced by the 

many varieties of “mulch mower” that can be purchased. Often it is claimed that the return of 

nutrients is beneficial to the sward (e.g.  https://wildseed.co.uk/page/management-of-lawns). 

However, the harmful effects of eutrophication are not appreciated by the wider public and 

the evidence from our study suggests that such policies should be reconsidered since they 

cause reduction in the diversity of both soil fungi and higher plants.

Our  study  demonstrated  high  relative  abundance  of  some  CHEGD  fungi  in 

oligotrophic  grassland  and  our  ordination  analyses  showed  interesting  links  of  individual 

fungal MOTUs to different treatments. This information strongly suggests an important role 

of CHEGD fungi for the function of oligotrophic grassland ecosystems. 
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at 

XXXXX.
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Figures

Fig. 1. Study design showing arrangement of permanent plots and sampling

Fig.  2.  Stacked bar chart  showing relative  abundance of the different  fungal  phyla at  the 

different treatments (mean of four plot replications). 
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Fig. 3. Stacked bar chart showing relative abundance of the different ecological functional 

groups at the different treatments (mean of four plot replications). Ecological functions: SAP - 

saprotrophic fungi, PAT - pathogenic fungi, PAR - parasitic fungi, ECM - plant mutualists 

forming  ectomycorrhiza,  DSE  -  dark  septate  plant  endophytes,  AMF  -  plant  mutualists 

forming arbuscular mycorrhiza,  LICH - lichenized fungi, CHEGD – fungi associated with 

grasslands.
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Fig. 4. Community structure of  CHEGD fungi and vascular plants analysed by PCA. (A) 

Ordination diagram of CHEGD fungi based on cumulative numbers of MOTU presences at 

four plot replications per treatment (Appendix A: Tab. 3). (B)  Ordination diagram of vascular 

plants  community  based  on data  are  represented  as  average  percentage  cover  of  the  four 

replications (Appendix A: Tab. 4).
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Table  1. Fungal  relative  abundance,  MOTU richness  and diversity  within  the  treatments. 

Given  values  are  averages  of  spring  and  autumn  sampling  from four  replicate  plots  per 

treatment. Values in parentheses are standard errors. 

GR MOGR MUAU MUGR MUSP NM
Average all 

plots

Fungi identified to 

family [%]
94.7 (2.4) 94.0 (1.8) 94.8 (3.1) 95.1 (1.2) 95.2 (2.9) 95.1 (1.9) 94.8 (2.3)

Fungi identified to 

genus [%]
94.3 (2.7) 93.4 (1.7) 94.6 (3.2) 94.7 (1.2) 94.9 (3) 94.8 (2) 94.4 (2.5)

Fungi identified to 

species [%]
86.7 (5.2) 84.2 (4.3) 89.5 (4.8) 88.6 (2.5) 90.6 (4.8) 89.3 (2.8) 88.2 (4.7)

Shannon Index
3.88 

(0.49)
4.21 (0.55)

3.49 

(0.73)

3.71 

(0.62)

3.52 

(0.66)
4.05 (0.6) 3.81 (0.67)

Inverse Simpson 

Index

17.84 

(12.43)

23.59 

(13.05)

12.03 

(9.09)

13.02 

(11.48)

11.25 

(13.58)

21.88 

(13.17)
16.6 (13.15)

Average fungal 

MOTU richness

353.1 

(47.2)

372.3 

(83.9)

358.1 

(56.5)

385.3 

(54.6)
402 (46.8)

401.5 

(74.5)

378.7 (65.1)
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Table 2. MOTU richness /  relative abundance of individual  groups of CHEGD fungi  per 

treatment. Given values are averages of spring and autumn sampling from four replicate plots 

per treatment. In the last three rows; Inverse Simpson index, Shannon index and average of 

CHEGD MOTU richness  are  followed by standard errors in parenthesis.  If  there are  any 

statistically significant differences between treatments resulted from Tukey´s test, they are are 

labelled by lowercase letters . 

GR MOGR MUAU MUGR MUSP NM Average 
all plots

Clavariaceae 18.3/6.7 22.8/7.8 21.5/6.1 21.5/7.3 15/3.1 17.8/2.8 19.5/5.7

Hygrophoraceae 14.5/25.7 12.5/28.7 11.8/40.5 11.3/30.6 13.8/42.4 11.8/24.6 12.6/32.2

Entolomataceae 12.3b/2.4 14b/2.4 11.3ab/0.7 12.8b/1.2 11ab/0.5 6.8a/0.5 11.3/1.3

Geoglossaceae 4.8ab/3.7 3.5a/2.8 5ab/2.0 3.3a/2.6 6.3b/2.5 4.3ab/1.4 4.5/2.5

TRICHOLOMAT
ACEAE

1.8/0.5 1/0.3 1.5/0.6 1.3/0.3 2/0.1 1.8/0.2 1.5/0.3

 Leotiacae 2.8a/5.9 2.3ab/0.8 3.25a/5.3 3a/1.8 2.3ab/0.7 1.3b/0.1 2.5/2.4

Shannon Index 2.74 (0.23) 2.64 (0.35) 2.11 (0.19) 2.53 (0.16) 1.78 (0.09) 2.15 (0.12) 2.33 (0.19)

Inverse Simpson 
Index 

8.39 (1.59) 7.17 (0.87) 4.63 (0.54) 7.0 (0.36) 2.94 (0.29) 4.32 (0.45) 5.74 (0.68)

Average CHEGD 
MOTU richness

54.25 
(1.79)

56 (8.8) 54.25 
(7.56)

53 (4.18) 50.25 
(3.49)

43.25 (1.5) 51.88 
(6.73)
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Table 3. Species richness and diversity of vascular plants per treatment.  Given values are 

averages of spring and autumn sampling from four replicate plots per treatment. Values in 

parentheses  are  standard  errors.  Statistically  significant  differences  between  treatments 

resulted from Tukey´s test are labelled by lowercase letters

GR MOGR MUAU MUGR MUSP NM Average 

all plots

Shannon Index 3.13b 

(0.17)

3.25b 

(0.09)

3.15b 

(0.22)

3.32b 

(0.15)

3.16b 

(0.16)

2.37a 

(0.23)

3.06 (0.36)

Inverse Simpson 

Index 

14.21ab 

(3.81)

15.62ab 

(2.39)

12.50ab 

(5.48)

15.40ab 

(4.11)

14.74b 

(4.05)

5.31a 

(2.11)

11.21 

(5.25)

Average plant 

species richness

50.8b (1.5) 50b (4.5) 45ab (3.2) 54ab (2.4) 45b (6.7) 35.8a (2.5) 46.8 (7)
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Table 4. Results of one-way PERMANOVA comparisons of plant and CHEDG communities 

between pairs of treatments. Significant values (p<0.05) are labelled with asterisk (*). 

CHEGD

GR 0.8791 1 0.8778 0.2002
0.0256

*

P
L

A
N

T
S

0.7501
MOG
R 0.8516 0.7153 0.3709 0.1138

0.0592 0.1849 MUAU 1 0.5804 0.0541

0.12 0.2542
0.0297

*
MUG
R 0.4814 0.0583

0.2306 0.2852 0.9374 0.1099 MUSP 0.0571
0.0291

*
0.0287

* 0.029*
0.0326

* 0.0583 NM
Appendix A: Supplementary materials

Appendix A: Table 1. Inorganic composition of the soil at the studied plots

Appendix A: Table 2. List of fungal MOTUs retrieved at all 24 permanent plots arranged 
based on cumulative relative abundance

Appendix A: Table 3. Presence of CHEGD MOTUs at individual permanent plots

Appendix A: Table 4. Average percentage cover of vascular plants at individual permanent 
plots recorded in the last (9th) year of the research

Appendix A: Fig. 1. Species richness and diversity of fungi at the different treatments. The 

large pie chart compares CHEGD (in blue) and all fungi (in red) richness at individual 

plots. The small pie charts below show species richness, Inverse Simpson and Shannon 

indices of CHEGD fungi at the individual treatments.

Appendix A: Fig. 2. Species richness and diversity of CHEGD fungi and vascular plants at the 

different treatments. The large pie chart compares CHEGD fungi (in blue) and vascular 

plants (in green) richness at individual plots. The small pie charts below show species 

richness,  Inverse  Simpson and Shannon indices  of  vascular  plants  at  the  individual 

treatments.

Appendix  A:  Fig.  3.  Heatmap  showing  hierarchical  clustering  of  treatments  based  on 

presence/absence of CHEGD fungi. 

Appendix A: Fig 4. Heatmap showing hierarchical clustering of treatments based on relative 

abundances of CHEGD species. 
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