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Kim et al. 2019 [ref.1] (KPL19) proposed an artificial intelligence (AI) model to predict the photo-22

spheric magnetograms of the Sun using EUV observations as the only inputs, and concluded that23

“the model is reliable if the farside active regions conform to Hale’s law, as long as the slight over-24

estimation of their total flux and a possible slight difference in their tilt angle are considered”. In25

this Matters Arising, we present a detailed sensitivity study of the AI algorithm by KPL19.26

Despite identifying issues in the inappropriate data preparation process and the possibility of data27

leakage in KPL19, we also found the physics basis of this idea is problematic. We detail our28

concerns and analysis below, as well as in the Supplementary Material.29

Recently, a number of novel machine learning (ML) and/or AI techniques have been in-30

troduced to and used for a variety of purposes in the area of solar physics and space weather31

forecasting2. Using direct images or extracted features from photospheric magnetic field only or32

combined with solar EUV observations, a number of efforts have been made to predict the occur-33

rence and/or onset time of solar flares employing statistical and/or ML methods3–9. In addition,34

employing algorithms including the support vector machines and convolutional neural networks,35

the mean absolute error in predicting the arrival time of Corona Mass Ejections (CMEs) has been36

remarkably reduced to as low as ∼6 hours10, 11, yielding further kudos to using ML/AI in space37

1



weather forecasting.38

In order to study solar activity and predict space weather, KPL19 employed an AI tech-39

nique - conditional generative adversal networks (cGANs) - to predict the solar photospheric mag-40

netograms. They fed cGANs with full-disk EUV and photospheric magnetic field observations41

from the Atmospheric Imaging Assembly12 (AIA) 304 Å passband and Helioseismic and Mag-42

netic Imager13 (HMI) onboard the Solar Dynamics Obsservatory (SDO). A model was then built43

with the SDO/AIA 304 Å images as the input to generate simultaneous SDO/HMI photospheric44

magnetograms. KPL19 then evaluated the model and found promising correlation coeffecients45

(CCs) between the total unsigned magnetic flux (TUMF) of the generated and observed magne-46

tograms. KPL19 claimed a conclusion that using their method, the photospheric magnetograms47

could be well forecasted to greatly improve our current knowledge of the farside active regions.48

However, there are several vital practical, as well as theoretical, issues in KPL19, detailed as below49

that to some extent mitigate the success of KPL19.50

While pre-processing the SDO/HMI photospheric LOS magnetograms (Supplementary Data51

and Method) , KPL19 set the upper and lower saturation limits of the magnetic field strength as52

±100 G. However, these limits are found to be problematic, especially for active regions, con-53

sidering one of the main purposes of KPL19 was to predict the farside active regions of the Sun.54

The average absolute magnetic field (AMF) strength of all 3936 active regions detected from the55

original observations in the testing set of the data has been found to be 208±54 G. Only 0.77%56

of all the active regions reveal an average AMF strength less than 100 G, among which only three57

active regions has an average AMF strength less than 90 G.58

The slopes of black dots in Supplementary Figures 1(a) and (b) suggest that the rescaled59

magnetograms with saturation limits of ±100 G give on average 0.45 and 0.67 of the original60

TUMF and net magnetic flux (NMF). In addition, the degree of the scattering of the dots yields61

the R2 scores (Supplementary Eq. 1) of -0.07 and 0.77, respectively. The percentage of instances62

where the rescaled magnetograms yield the opposite signs of the NMF to the original observations63

is about 19.4%. The above evaluation suggests, again, that the generated magnetograms could64

still be significantly different from the original observations even if the model were perfect, if65

saturation limits of ±100 G are used when preparing the dataset. For a comparison, blue dots and66

lines in Supplementary Figures 1(a) and (b) show the corresponding results for saturation limits67

of ±625 G. We note that setting inappropriate large saturation limits might also be problematic as68

that could introduce too much noise that might then severely impact the ability of the generative69

models to capture the prior distribution. Thus we encourage researchers to evaluate carefully70

before choosing the saturation limits for normalization purposes. In addition, KPL19 have used71

observations in September and October in each year as the testing set and the rest as the training72

set, risking a possibility of a data leakage considering that the Sun rotates at a period of ∼27.373

days (see Supplementary Potential Data Leakage).74
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Despite the above practical issues, we foresee the model to be not successful based on the75

theoretical fact that EUV observations of the chromosphere and corona do not provide any infor-76

mation about the photospheric magnetic field polarities. We trained the neural network to build an77

optimistic AI model using the code provided by KPL19, fed with the same dataset preprocessed78

with the same parameter settings (Supplementary Data and Method). Figures 1 shows a compari-79

son of the observations (panel b) and the generated magnetograms by the model we built (panel c,80

first run), which could be directly compared with the one generated from the model KPL19 built81

(Figure 1 therein). Overall, the AI models could successfully identify the active regions presented82

in the original observation. However, the shape of the active regions and the distribution of the83

positive and negative polarities are poorly reconstructed (see the two active regions enclosed in the84

green rectangle and blue square boxes in panels b to c). Further, we ran the same procedure twice85

and built two new models (best models built at 128 and 212 epochs for the second and third runs86

respectively). The generated magnetogram from one of these two models (the second run) is shown87

in Figure 1 (d). Significant differences can be seen between the generated active regions in panels88

(c) and (d), which should not happen to a robust and reliable model. We shall note that though we89

have used the same architecture, hyper-parameters and training data in all our three mod-90

els, they are different models and are exactly the same as that in KPL19, because they all91

have different trained parameters due to factors including different weight initialisation, the92

stochastic character of the optimizer and specificities of the loss hypersurface, etc. All the93

further analysis shown below and in the Supplementary Material is based on the first model94

we built. Detailed evaluations of the correlation between the generated (from the first run) and95

rescaled (with saturation limits of ±100 G) magnetograms (see Supplementary Full-disk Parame-96

ters) yield that the proposed AI model is only successful in reproducing the TUMF of the global97

magnetic field, but fails in reconstructing the relative relations between the positive and negative98

polarities, suggested by the low pixel-to-pixel cross correlation and the low correlation between99

the NMFs. Integrating the TUMF information and area of the farside active regions into dedicated100

models together with the frontside magnetograms could in some cases improve the performance in101

predicting the in-situ solar wind speed14.102

We employ an automated detection system15, 16 to automatically extract active regions and103

their parameters from the rescaled and the generated full-disk magnetograms. Supplementary104

Figure 2 depicts a direct comparison between the active regions detected from the rescaled and105

generated magnetograms at 00 UT on 28 September 2011 as an example. One can clearly observes106

significant differences between the sizes, shapes and polarity inversion lines (PILs) of the active107

regions in the northern hemisphere, especially in the two big active regions with one close to the108

disk center and the other on the right. In addition, there are missed active regions in the northern109

hemisphere and one extra active region in the southern hemisphere of the generated magnetogram110

compared to the rescaled one.111

Statistical analysis (Supplementary Active Region Parameters and Supplementary Figure 3)112

reveals that, on average, the model only reproduces less than half of the active regions in each of113

the observations. The centres of the detected active regions in the AI-generated magnetograms are114

3



on average ∼1.3◦ away in heliographic coordinates from the real ones. Detailed evaluations on a115

number of key parameters of the detected active regions (Supplementary Active Region Parameters116

and Supplementary Figure 4) suggest that the AI model performs fairly well in predicting the117

areas of the active regions, but poorly in reproducing the NMF of the active regions, and the total118

number, the length and the average magnetic gradient across PILs. To conclude, our sensitivity119

study suggests that the AI model proposed by KPL19 shall be rather far from providing120

scientifically reliable magnetograms.121

Figure 1: Example of the observations and the AI-generated magnetograms. The four panels

are the SDO/AIA 304 Å observation (a), the SDO/HMI photospheric magnetogram (b), the AI-

generated magnetogram of the Sun by two of our independent verification processes with (c)

for the first run and (d) for the second run, respectively, at 12 UT on September 5 2017.

Data Availability122

SDO/AIA and SDO/HMI data are publicly available from NASA’s SDO website (https://123

sdo.gsfc.nasa.gov/data/) . Information of the dataset we have used is available at https://124

github.com/yiminking/pix2pix_EUV2HMI_datasets.125

Code Availability126

Codes for the AI models built in this paper are accessible from Kim et al. 2019 (https://127

github.com/tykimos/SolarMagGAN). Codes used for the active region detection are avail-128

able upon requests.129
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5. Korsós, M. B., Ludmány, A., Erdélyi, R. & Baranyi, T. On Flare Predictability Based on140

Sunspot Group Evolution. Astrophys. J. Lett. 802, L21–L26 (2015).141

4

https://sdo.gsfc.nasa.gov/data/
https://sdo.gsfc.nasa.gov/data/
https://github.com/yiminking/pix2pix_EUV2HMI_datasets
https://github.com/yiminking/pix2pix_EUV2HMI_datasets
https://github.com/tykimos/SolarMagGAN
https://github.com/tykimos/SolarMagGAN


6. Nishizuka, N. et al. Solar Flare Prediction Model with Three Machine-learning Algorithms142

using Ultraviolet Brightening and Vector Magnetograms. Astrophys. J. 835, 156–165 (2017).143

7. Liu, C., Deng, N., Wang, J. T. L. & Wang, H. Predicting Solar Flares Using SDO/HMI144

Vector Magnetic Data Products and the Random Forest Algorithm. Astrophys. J. 843, 104–145

117 (2017).146

8. Florios, K. et al. Forecasting solar flares using magnetogram-based predictors and machine147

learning. Sol. Phys. 293, 28–69 (2018).148

9. Huang, X. et al. Deep Learning Based Solar Flare Forecasting Model . I . Results for Line-of-149

sight Magnetograms. Astrophys. J. 856, 7–17 (2018).150
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