
Aberystwyth University

Where to Prune
Ding, Guiguang; Zhang, Shuo; Jia, Zizhou; Zhong, Jing; Han, Jungong

Published in:
IEEE Transactions on Image Processing

DOI:
10.1109/TIP.2020.3035028

Publication date:
2020

Citation for published version (APA):
Ding, G., Zhang, S., Jia, Z., Zhong, J., & Han, J. (2020). Where to Prune: Using LSTM to Guide Data-Dependent
Soft Pruning. IEEE Transactions on Image Processing, 30, 293 - 304. https://doi.org/10.1109/TIP.2020.3035028

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Jun. 2022

https://doi.org/10.1109/TIP.2020.3035028
https://pure.aber.ac.uk/portal/en/persons/jungong-han(6674b2bb-59b5-4b04-b1aa-f98e2b2324a9).html
https://pure.aber.ac.uk/portal/en/publications/where-to-prune(10e76a99-8d46-4662-992e-59e7bd7b8132).html
https://pure.aber.ac.uk/portal/en/publications/where-to-prune(10e76a99-8d46-4662-992e-59e7bd7b8132).html
https://doi.org/10.1109/TIP.2020.3035028

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Where to Prune: Using LSTM to Guide
Data-dependent Soft Pruning

Guiguang Ding, Shuo Zhang, Zizhou Jia, Jing Zhong, and Jungong Han

Abstract—While convolutional neural network (CNN) has
achieved overwhelming success in various vision tasks, its heavy
computational cost and storage overhead limit the practical use
on mobile or embedded devices. Recently, compressing CNN
models has attracted considerable attention, where pruning
CNN filters, also known as the channel pruning, has generated
great research popularity due to its high compression rate.
In this paper, a new channel pruning framework is proposed,
which can significantly reduce the computational complexity
while maintaining sufficient model accuracy. Unlike most existing
approaches that seek to-be-pruned filters layer by layer, we
argue that choosing appropriate layers for pruning is more
crucial, which can result in more complexity reduction but less
performance drop. To this end, we utilize a long short-term
memory (LSTM) to learn the hierarchical characteristics of a
network and generate a global network pruning scheme. On top
of it, we propose a data-dependent soft pruning method, dubbed
Squeeze-Excitation-Pruning (SEP), which does not physically
prune any filters but selectively excludes some kernels involved
in calculating forward and backward propagations depending
on the pruning scheme. Compared with the hard pruning, our
soft pruning can better retain the capacity and knowledge of
the baseline model. Experimental results demonstrate that our
approach still achieves comparable accuracy even when reducing
70.1% Floating-point operation per second (FLOPs) for VGG and
47.5% for Resnet-56.1

Index Terms—Deep learning, model compression, computer
vision, image classification

I. INTRODUCTION

IN recent years, deep convolutional neural network (CNN)
has shown a great success in many computer vision

applications, such as image classification [1]–[3], semantic
segmentation [4], image captioning [5]–[7], and object detec-
tion [8]–[10] and recognition [11]–[13]. However, its success
on accuracy has come with a significant amount of model
parameters for storage and expensive training costs on GPUs.
They all impede the deployment of CNN on computationally
limited devices, such as mobile or embedded devices. To
remedy this situation, it is desired that CNN can be tiny and
fast enough while preserving sufficient accuracy. Therefore,
deep model compression has become a popular research topic.

This research was supported by the National Natural Science Foundation of
China Grant No. U1936202 and 61925107. (Corresponding author: Jungong
Han)

Guiguang Ding, Zizhou Jia and Jing Zhong are with the School of Software,
Tsinghua University, Beijing, 100084, China. Email: dinggg@tsinghua.edu.cn.

Shuo Zhang is with Lancaster University, Lancaster, UK.
Jungong Han is with Aberystwyth University, Aberystwyth, SY23 3DB,

UK. Email: jungonghan77@gmail.com.
1To encourage further developments, the source code is publicly available

at https://github.com/Zhong-J/Where-to-Prune

Fig. 1: The accuracy of ResNet-56 after one layer is pruned. The
same number of filters are removed in different layers at the same
stage. Lm in x-axis denotes the mth residual block.

Current CNN compression techniques can be divided into
four categories. The first category makes use of the quanti-
zation technique, where a model binarization approach [14]
is usually adopted. The second category is network sparse-
ness [15], [16] by removing unimportant weights or setting
it to zero. The third category takes advantage of tensor
factorization technique [17] which combines small tensors and
simple operations to approximate large and complicated ten-
sors. The last category is called filter-wise pruning [18], [19]
which directly removes unimportant convolutional filters. The
filter pruning method preserves the structure of the network,
thus resulting in smaller and faster models with little or no
performance drop. Therefore, the filter pruning technique has
gained the most attention in recent years, which is the focus
of this paper.

Basically, deep CNN model compression is a systematic
task and the pruning decision should be a trade-off of all
factors of the entire model. However, it seems that most
existing pruning approaches [18], [20]–[22] only consider the
information of individual filters but fail to take the correlation
among layers and filters into consideration. In particular,
they mostly focus on evaluating the importance of each filter
individually at each layer and the filters are pruned from top
to bottom or bottom to top in a layer by layer manner. If
it happens to remove a few filters from an important layer,
the performance of the overall system may drop significantly.
On the contrary, pruning many filters in an unimportant layer
may impact little on accuracy but get the model complexity
dramatically reduced. To demonstrate this, we take the ResNet-
56 as an example. Here, we run the filter pruning experiment
three times, called three stages, at each of which we prune
filters from three layers respectively. There is no interaction
between stages, implying that the experiments at different
stages are independent. At each stage, the same amount of
filters are removed from each of the three layers so that the

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

model complexities after pruning are identical. To be specific,
we randomly remove the same amount of filters from the layer
10, 12 and 18 when carrying our the stage two experiment, and
we show the accuracy of the model after pruning at different
layers (e.g., L10, L12, or L18 at stage 2) in Figure 1, on
which it is clear that the importance of each layer varies, as
the performance difference in accuracy is quite noticeable.
Therefore, where to prune is a critical issue for pruning
and choosing to prune the layers that have smaller impacts
on the classification accuracy will lead to more complexity
reduction with less performance drop. In Table III, we compare
a traditional pruning method [18] with the proposed approach
that allows to select to-be-pruned layers. It turns out that
our approach achieves a larger pruning rate with sufficient
accuracy preserved.

The above phenomenon motivates us to investigate the
problem of choosing the appropriate layers to prune. In this
paper, we propose a novel approach to evaluate the importance
of each layer and choose less important layers to prune.
Specifically, considering that the CNN usually exploits a
hierarchical structure that can be represented as a string, we
employ long short-term memory (LSTM) [23] as an evaluation
metric to generate the pruning decision for each layer. The
entire algorithm is carried out in two steps: unimportant
layers finding and unimportant filters finding. To detect the
unimportant layers in a deep CNN, the LSTM is trained
using reinforcement learning with model performance and
complexity considered in the reward function. In the subse-
quent unimportant filters finding step, a channel-based method
is adopted, which goes over each filter of a certain neural
network layer and finally, a number of filters with the least
importance are pruned. Through several pruning iterations, the
slimmer model is generated, which preserves the performance
of deep CNN while significantly reducing the complexity of
the model. In addition, the new slimmer network usually ends
up having a compact structure, because the training process of
LSTM aids in generating a more efficient architecture.

Existing pruning methods usually adopt a hard pruning
strategy to remove the unimportant filters from the network
directly, in which the importance evaluation of the filter is
often inaccurate due to ambiguous calculations. Specifically,
when the filter is unimportant for most image data, it is
decided to be an unimportant filter, even if it plays a relatively
important role for a small portion of image data. In this case,
feature extraction and classification performance on those few
images are degraded, which means that employing a hard
pruning strategy will definitely give rise to the decrease of
the overall accuracy. On the contrary, a soft pruning strategy
allows the pruned filters in the previous epoch to be updated
in the next epoch during the training procedure. In this way,
no filters are physically removed and the model capacity can
be recovered from the pruned model.

In this paper, we propose the Squeeze-Excitation-Pruning
(SEP), which is a soft pruning method. Referring to the slim-
mer architecture generated by LSTM, we use the SEP module
to rebuild the baseline network. Meanwhile, the SEP module
is used to generate the importance scores of all filters for each
given image. In our soft pruning, all filters of the baseline

network are preserved, but for each input image, only a portion
of important ones are involved in the forward and backward
calculations. That is, no filters are removed from the network.
When it comes to different image data, different filters might
be softly pruned depending on the selection results of SEP.
This data-dependent soft pruning method retains the capacity
and knowledge of the baseline model, thus ensuring better
performance. Specifically, the complete framework is shown
in Figure 2, and our major contributions are summarized as
follows:
• We argue that where to prune is actually a critical

issue for CNN model compression, which has long been
unfortunately neglected. To this end, propose an end-
to-end framework to prune networks in the correct or-
der. Concretely, considering the hierarchical structure of
CNN, we employ LSTM as an evaluation model to find
the least important layers and thus generate the pruning
decision for a given network. LSTM is updated using the
policy gradient method with both model performance and
complexity as the reward.

• Rather than adopting a hard pruning strategy, we propose
the SEP pruning method. SEP is a data-dependent soft
pruning method, which preserves all the filter parameters,
but for each image, only some important ones participate
in calculating forward and backward propagations. When
the given image is changed, different filters may be softly
pruned according to the SEP selection.

• Comprehensive experiments are carried out on several
benchmark datasets. The results show that our pruning
method is capable of compressing a variety of network
structures with comparable accuracy and works well on
both convolutional and fully-connected networks. It also
reveals that our method learns the sensitivity of each
network layer.

II. RELATED WORK

Our work is in relation to weight pruning, filter pruning,
compact network design, and neural architecture search, each
being elaborated below.

A. Weight Pruning

Removing network connections is an intuitive model com-
pression method, which mostly focuses on evaluating and
selecting unimportant connections. [16] assesses the network
connections through the second-order derivative information,
but it leads to high computational complexity. [24] carries out
model compression in three steps: removing connections with
the smallest absolute weights values, quantization, and Huff-
man encoding. [25], [26] regularize neural network parameters
by group Lasso penalty, resulting in group-level sparsity. [27]
prunes connections between the input and output feature maps
with a newly proposed class of parameters called Synaptic
Strength.

B. Filter Pruning

Existing software and hardware libraries usually struggle to
accelerate weight pruning methods. To address this problem,

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

CONV64,
CONV64

CONV512,
CONV512

0/1 0/1 0/1

Network

Softmax
Filter selection

 and pruning

Calculate reward

Accelerate

fine-tuning

Channel-based filter selection

and recovery mechanism

Pruned network learns from

its parent network

Performance and complexity

both contribute to reward R

Guide pruning

Update LSTM with policy gradient

Step 1：Architecture generation

Step 2：Dynamic data-dependant pruning

0 0 0 0 0 0
CONV

0
CONV... ...CONV

FsFpre-se

Fscale Fscale

0 0 0 00 0 0

Fpre-sePre-SE Selective-pruning

CONV32,
CONV64

Fig. 2: The framework of our end-to-end pruning method. The first step is to make pruning decisions based on the LSTM evaluation model.
After several epochs, a more efficient and slimmer network structure is finally generated. LSTM is updated in the policy gradient method
with both model performance and complexity as the reward. In the second step, we rebuild the baseline network by deploying the SEP
module for each layer and train it from scratch. The SEP attention module is composed of feature extraction and selection, which generates
the weight vector, selects and sets some weights to zero according to the pruning structure generated in the first step. Then, the feature map
in the next convolution layer is scaled by this weight vector to achieve dynamic and data-dependent soft pruning.

more works focus on filter-wise pruning. [18] first proposes to
prune parameters at the filter level, which evaluates a filter by
calculating its absolute weights sum and removes unimportant
filters sequentially. [28] assesses the channels by introducing
additional discrimination-aware losses to increase the dis-
criminative power of the intermediate layers. ThiNet [21]
considers filter pruning to be an optimization problem and
proposes a greedy method to prune filters using their statistics
information in the next layer. [22] leverages the scaling
factors in the batchnorm layers to evaluate filters combined
with a sparsity regularization. Different from the methods
above, [29] allows the pruned filters to be updated during
the training procedure. [30] trains the reinforcement learning
agent to predict actions like whether to remove one layer in
network and uses a reward function to update their agent. [31]
applies the structure regularization to the corresponding out-
channels and in-channels in the continuous network layer. [32]
utilized reinforcement learning to learn two seperate policies
to remove and shrink layers respectively in tiny datasets. [33]
uses attention modules as the criterion to evaluate the impor-
tance of channels and prune channels with low correlations
to accelerate networks. [34] uses reinforcement learning to
predict the action and gets sparsity to find the redundancy in
each layer for pruning.

C. Compact Network Design

Current widely used compact network structures are de-
signed manually based on expert knowledge. For instance,
ShuffleNet [35] is designed specifically for mobile devices

with limited computing power, which utilizes two new op-
erations, pointwise group convolution and channel shuffle. As
an extension of ShuffleNet, ShuffleNet V2 [36] performs faster
and more accurately when following some practical guidelines.
Alternatively, MobileNetV1 [37] is based on a streamlined ar-
chitecture that uses depth-wise separable convolutions to build
lightweight deep neural networks. On top of MobileNetV1,
MobileNetV2 [38] adds a novel layer module: the inverted
residual with a linear bottleneck, which improves the accuracy
significantly.

D. Neural Architecture Search

In order to reduce labor costs, automatic design/search of
the network structure by machine has received worldwide at-
tention in both academia and industry [39]–[43]. For instance,
evolutionary techniques [39]–[41] discover target models from
trivial initial architectures by setting up the vast search space,
which requires enormous computing resources. Alternatively,
[42], [43] utilize the reinforcement learning mechanism to
train the recurrent neural network (RNN) controller to gen-
erate the neural networks automatically, which have achieved
good results on various datasets. To reduce the search space,
Nasnet [44] searches for an architectural building block on
a small dataset and then transfers it to a larger dataset.
For further improvement, Mnasnet [45] introduces a novel
factorized hierarchical search space that partitions CNN layers
into groups, within which operation and connection searches
can be carried out. [46] utilizes Bayesian Optimization to

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

search for a compressed network structure on a given teacher
network.

III. METHOD

In this section, we present our end-to-end pruning method.
Before going into further details, we briefly explain the basic
idea. We first use LSTM to generate the pruning decisions
by evaluating the importance of each layer, where the most
unimportant layers will be selected to be pruned. Once we
have collected such guidance information, the SEP attention
mechanism is employed to rebuild the baseline network.
Basically, we train a SEP from scratch by deploying the
pruning information, e.g., which layers will be pruned and
how many filters in each layer need to be pruned, estimated
by the preceding LSTM. The SEP module consists of two
parts: the pre-SE module includes squeeze and excitation
used for feature extraction and weight vector generation; the
selective-pruning module selects and sets some weights to
zero. Therefore, the SEP module can automatically predict the
importance of each feature map and set some weights to zero
based on the information of feature extraction. The details of
the end-to-end pruning framework in Figure 2 are elaborated
as follows.

(a). Pruning guidance: An initial or intermediate network
representation is fed into LSTM, and LSTM generates a
strategy indicating which layers should be pruned.

(b). Filter selection and fine-tuning: We evaluate the im-
portance of each filter in the layers chosen by LSTM
with a channel-based method, then prune those unim-
portant filters combined with the recovery mechanism.
Afterwards, we fine-tune the pruned model using the
distillation method.

(c). Updating LSTM: We update LSTM in a reinforcement
learning way incorporating both the performance and
complexity of the pruned model in the reward signal.

(d). Repeat from (a) to (c):
(e). Data-dependent soft pruning: Referring to the slimmer

architecture generated by LSTM, the baseline network
is rebuilt with SEP modules and trained from scratch to
achieve data-dependent soft pruning.

A. Where to Prune

The basic idea can be interpreted as follows: LSTM gen-
erates the pruning probability for each layer. The output of
each layer is associated with two real values, indicating the
probabilities of “Pruning” and “Not Pruning”, respectively.
Suppose the number of all candidate convolution layers is
defined as L, we can get one matrix P ∈ RL×2, corresponding
to the pruning probabilities of L conv layers. If the probability
of “Not Pruning” is larger than that of “Pruning” in one row,
we treat this row as “0”, meaning we do nothing for this
layer. Otherwise, it is a to-be-pruned layer. In this way, we
can obtain a map, indicating which layers in the network need
to be pruned.

1) Input and Output of LSTM: A neural network is a
hierarchical sequence from input to output connected by
operation nodes, which can be convolution, pooling, and fully-
connected operation. For a common CNN here, the ith node
ξi is denoted as (mi, ni), where the operation type m is
in {0, 1, 2} corresponding to convolution, pooling, and fully-
connected block respectively, operation attribute n equals to
filter number, pooling stride or unit number. Convolution and
fully-connected nodes (final classifier layer is not included) are
called the primary nodes, while pooling and the final classifier
are seen as the secondary nodes because they cannot be pruned
but supply auxiliary information instead.

Since LSTM is good at time series prediction, we use a
2-layer LSTM in Figure 2 to learn the network structure
and produce reasonable pruning decisions. At each timestep,
the current primary node as well as its next primary or
secondary node [ξi, ξi+1] are fed into LSTM equivalent to
[mi, ni,mi+1, ni+1] and the pruning decision whether to prune
the first primary node is generated by a softmax layer. For a
network with N primary nodes, LSTM repeats the above step
N times and N distinct softmax layers predict whether to
prune these nodes or not. Pooling nodes and the final classifier,
taken as the secondary nodes, cannot get pruning predicted but
play a key role in helping LSTM to understand a complete
network structure.

2) Training LSTM with Policy Gradient Method: After
LSTM generates pruning decisions, we prune some filters
in the chosen layers such that a slimmer model can be
obtained. Both performance and complexity of this new model
contribute to the reward signal R for assessing the performance
of LSTM. The trade-off is shown in Eq. 1, where we use
the training loss or accuracy on the validation set to measure
the performance, and use model FLOPs or the number
of PARAM to measure the complexity. Let λ be a trade-
off hyperparameter, whose optimal value can be obtained
empirically via experiments:

R = performance− λ× complexity. (1)

We use the policy gradient algorithm [47] (Eq. 2) here, en-
abling LSTM to generate better pruning strategies. Concretely,
we define αt, st and Rk as Action, State and Reward at
time step t of one trajectory respectively. m is the number
of rollouts for a single gradient update. In order to reduce
the variance cuased by sampled trajectories, the reward of the
current input network is taken as our baseline b:

∇θJ(θ) =
1

m

m∑
k=1

T∑
t=1

∇θ logP (αt|st; θ)(Rk − b). (2)

B. Filter Selection and Fine-tuning Strategy

1) Filter Selection and Recovery: LSTM generates a de-
cision about which layers should be pruned, given an input
network. A convolution node in layer i can be denoted by a
triplet 〈Ii,Wi,Oi〉, where Ii ∈ Rxi−1×hi×wi same as Oi−1
is the input tensor with channels xi−1, height hi and width
wi. The filter tensor Wi ∈ Rxi×xi−1×k×k with k × k filter
size convolutes with Ii and generates an output tensor Oi

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Filter(i, j)

Channel set(i+1, j)Channel(j)

. ..

...

... ...

Output tensor in layer i Output tensor in layer i+1Output tensor in layer i-1 Filters in layer i Filters in layer i+1

Fig. 3: Pruning a convolution filter requires removing its corresponding convolution channel set in next layer.

with xi channels. From the perspective of filters, Wi consists
of xi filters Fi ∈ Rxi−1×k×k, while from the perspective of
channels, Wi consists of xi−1 channel sets Ci ∈ Rxi×k×k.

After the jth filter in the layer i Fi,j has been pruned,
its corresponding jth channel set Ci+1,j becomes useless and
should be removed at the same time. Convolution structures in
other layers are not affected and remain unchanged as shown
in Figure 3. It is the output tensor deviation in layer i+ 1 that
transfers errors to the final loss and directly leads to worse
performance. Therefore we remove less important filters in
layer i and channel sets in layer i+ 1 to minimize the output
value deviation ∆Oi+1. Since there often exists an activation,
pooling or batchnorm layer between two convolution layers,
the channel sets Ci+1 affect the output value Oi+1 more
directly than convolution filters Fi. We follow Eq. 3 to
measure the importance of each channel set in layer i + 1
by L2-norm, because L2-norm gives an expectation of the
magnitude of the output feature map and reflects the weight
diversity. Then, (Rprune × xi) channel sets with the smallest
scores sj and their corresponding filters in layer i are selected
to be removed.

sj = ‖(Ci+1,j)‖2, s.t. j ∈ [1, xi]. (3)

Eq. 3 is similar to [18] in form, but focuses more on the
least important channel sets in layer i+ 1 rather than the least
important filters in layer i, which is a reverse selection process
starting from the occurrence of loss.

After pruning a channel set and its corresponding filter,
Fi+1 becomes F̂i+1 and Oi+1 becomes Ôi+1. To reduce the
loss of model performance, we try to minimize ∆Oi+1 through
a recovery method. In detail, we use the hyperparameter α to
select filters with larger value deviations and scale up those
filter tensors by a certain proportion (Eq. 4). Filters here are
pruned one by one. After one filter and its corresponding
channel set are removed, the recovery mechanism is operated
immediately by:

F̂i+1,j =

{
F̂i+1,j × (

‖Fi+1,j‖2
‖F̂i+1,j‖2

)2, if 1− ‖F̂i+1,j‖2
‖Fi+1,j‖2 >

a
xi

F̂i+1,j , otherwise
.

s.t. j ∈ [1, xi+1]
(4)

2) Accelerated Fine-tuning: In the LSTM training process,
there are many intermediate models produced, then they are
fine-tuned to calculate reward signals and update LSTM.
In order to improve the algorithm efficiency, we use the
distillation method [48] to accelerate the fine-tuning procedure.

Specifically, the input model of LSTM is regarded as a teacher
network, and the pruned model based on the teacher is taken as
a student network. During fine-tuning, we use the loss function
g (Eq. 5) to make student’s probabilities logit f approximate
to teacher’s logit z.

g(x, z, θ) =
∑
x

‖ f(x, θ), z ‖22 . (5)

C. Data-dependent Soft Pruning

1) SEP attention module: The slimmer network architec-
ture with the highest reward can be found from the inter-
mediate models generated by LSTM, which becomes the
reference of the baseline network rebuilding. The key to the
baseline network rebuilding lies in the Squeeze-Excitation-
Pruning (SEP) attention mechanism in Figure 4, on which the
left part is a normal CNN structure with a few convolution
layers while the right part is a SEP module. The SEP module
consists of two parts: the pre-SE module similar to SENet [49]
includes squeeze and excitation used for feature extraction
and weight vector generation, the selective-pruning module
selects and sets some weights to zero. We apply the SEP
operation to the previous conv layer i, then it generates a
weight vector to scale the feature map Oi+1 in layer i + 1.
There are two differences between SENet [49] and our pre-
SE module. Firstly, we perform the SEP operation on the
previous conv layer to predict the weight vector in the next
conv layer. Secondly, after squeezing and dimensionality-
reduction to xi/r with the reduction ratio r, the dimensionality
is increased to xi+1 for the sake of keeping consistency with
the dimensionality of Oi+1.

We denote the output of the sigmoid function as Vi+1 ,
which is the weight vector in the layer i+ 1 , and denote the
number of filters to prune as mi+1. The slimmer architecture
generated by LSTM determines the value of mi. If the slimmer
module has pruned 36 kernels in the third layer, we set m3

to 36. Regarding the meaning of the attention mechanism,
the larger the weight, the more important it will be. We set
some weights with minimum values to zero in Eq. 6, because
the corresponding feature maps of these weights are of the
lowest importance. In Eq. 6, the function Fs is a way of
using a sorting method to find the mi+1-th minimum weight
in Vi+1. For instance, if the slimmer module decided to prune
mi+1 kernels in the layer i + 1, we sort the values of Vi+1

in ascending order. Then, we get the mi+1-th smallest value
represented by Fs(mi+1). The activation function ReLU sets
all weights smaller than Fs(mi+1) to zero. After the activation

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

Conv

Ii

Conv

Scale

Ii+1

FC

ReLU

FC

Global Pooling

ReLU(Vi+1-Fs(mi+1))

Scale

ReLU(Vi-Fs(mi))

h x w x xi

1 x 1 x xi

1 x 1 x xi /r

1 x 1 x xi /r

1 x 1 x xi+1

1 x 1 x xi+1

sigmoid

1 x 1 x xi+1

Fig. 4: The schema of the SEP attention module

operation, we get the sparser vector V̂i+1, which would scale
the feature map xi+1.

V̂i+1 = ReLU(Vi+1 − Fs(mi+1)). (6)

2) Architecture Rebuilding: Given the slimmer network ar-
chitecture generated from LSTM, we deploy the SEP modules
on the baseline network to rebuild it. At the core of the
SEP module is an attention mechanism, which automatically
predicts the importance of each feature map. When the SEP
sets some feature maps to zero, it is equivalent to pruning their
corresponding kernels. Therefore, when it comes to different
image data, different kernels might be utilized according to
the SEP selection. All of the kernel parameters are preserved,
but only some of which participate in calculating the forward
and backward propagations. During the model training, SEP
selection strategy is constantly updated, thus indicating this
is a dynamic and data-dependent soft pruning procedure. We
do not prune the kernels physically, but we preserve all the
feature knowledge hierarchy and predict which kernels would
be utilized for a specific image data. Although the SEP module
introduces extra model complexities, the FLOPs of SEP is
negligible because of the fully-connected operation.

In the training process of LSTM, the slimmer model
with smaller size and complexity is generated, which can
be compared with other hard pruning methods. The SEP
algorithm, which is a soft pruning method on the basis of the
slimmer architecture generated by LSTM, can also be applied
independently, given a predefined slimmer architecture.

D. Discussion

The new model compression method presented above is
built upon our previous work in [50], but it differs in many
ways from that work, where the main extensions are summa-
rized as: i) We propose a Squeeze-Excitation-Pruning (SEP),
which is a data-dependent soft pruning method, retaining the
capacity and knowledge of the baseline model. The base-
line network is reconstructed with SEP modules and trained
from scratch to eventually achieve a dynamic soft pruning;
ii) Extensive experiments of SEP method are conducted to
validate its performance. Filter distribution maps based on SEP
soft pruning are also provided; iii) The experimental results
demonstrate that our new proposed SEP method outperforms
the previous work [50] and other state-of-the-art pruning
methods.

We have to point out that training the LSTM to approximate
the slimmer architectures usually takes a long time, which
might be a bottleneck of our algorithm. Concretely, it requires
several epochs to train each student model before the reward
gets maximized. The computational cost of this step can be
high, given a large-scale dataset such as ImageNet.

IV. EXPERIMENTS

We evaluate our method on four benchmark datasets:
MNIST [51], CIFAR-10, CIFAR-100 [52], and ImageNet [53].
Two CIFAR datasets contain 50000 training images and 10000
test images. The MNIST contains 60000 and 10000 images for
training and testing respectively. In all the datasets, 10% of the
images are split from the training set as a validation set used
for evaluating new network structures and calculating their
reward signals to LSTM. On CIFAR, all images are cropped
randomly into 32*32 with four paddings during the training
process. Horizontal flip is also adopted. On MNIST, there is
no data augmentation preprocessing. In ImageNet, there are
over 1.28 million training images and 50K validation images
of 1,000 classes.

Three networks: VGGNet [1], ResNet [2] and a 3-layer
fully-connected network in [26] are used to validate our
method. We employ a 2-layer LSTM with 100 hidden units to
make pruning decisions. All the experiments are implemented
with PyTorch on one NVIDIA TITAN X GPU.

A. Implementation Details

We train initial models from scratch and calculate their
accuracies as baselines. In the first step of training the LSTM,
the pruning rate Rprune is set to 0.2, and the teacher model
instructs the student model to fine-tune 30 epochs on CIFAR
and 10 epochs on MNIST dataset. LSTM training is terminated
when LSTM no longer produces a better network structure
within 10 epochs. We retrain the network with the best reward
for 250 epochs on CIFAR and 100 epochs on MNIST. For
ImageNet, the pruning rate Rprune is set to 0.1, and the teacher
model instructs the student model to fine-tune 20 epochs.
LSTM training is terminated when LSTM no longer produces
a better network structure within 10 epochs. We then retrain
the network with the best reward for 40 epochs. Both training

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

Fig. 5: Comparison between two methods. Fig. 6: The effect of recovery mechanism. Fig. 7: Sensitivity of VGG-19 for layers.

Fig. 8: Pruning rate within 50 epochs. Fig. 9: Pruning rate within 150 epochs. Fig. 10: Pruning rate within 250 epochs.

and validation datasets are used for retraining the network with
the fixed learning rate of 0.001 for ultimate accuracy.

The new parent structure is created based on the combina-
tion of the current parent structure and the pruning information
for each layer generated by LSTM. Then it is added into
the list of parent structures for the next training epoch. In
each epoch of LSTM training, 5 parent structures with the
largest rewards in the list are picked up and fed into the
LSTM successively for the next training epoch. Their rewards
are taken as baselines b in policy gradient method. If there
are no more than 5 local structures, all local networks are
taken as inputs. In the first epoch, the input is the pre-trained
network. We use FLOPs to measure the complexity of CNN
and PARAM to measure fully-connected networks in order to
keep in line with the existing methods.

After getting the slimmer model from LSTM, we rebuild
the baseline network to deploy the SEP attention modules.
The network redeployed is trained from scratch for 90 epochs
on ImageNet and 200 epochs on the rest of datasets to get its
final accuracy.

B. Filter Selection and Recovery Criteria

Our channel-based method is compared with the filter-based
method [22], which evaluates a filter by calculating the sum
of its absolute weights. We prune some filters from a pre-
trained VGG-16 on CIFAR-10 without applying the recovery
mechanism. Different layers are pruned with the same pruning
rate. Then, we fine-tune the pruned model for 1 epoch. The
experiment is repeated 5 times to eliminate the influence of
random disturbance, and we report the averaged accuracy on
the test set. Figure 5 shows the pruning results with pruning
rate, ranging from 0.1 to 0.9, while both methods are set with
the same configuration. The results reveal that our channel-

TABLE I: Results of VGG-19 on CIFAR-10.

Model FLOPs Pruned
Rate%

Params Acc.%

Baseline 3.98× 108 − 20.04M 93.66
Slimming-4 a[22] 8.89× 107 77.2 3.76M -0.25
Slimming-5 [22] 4.41× 107 88.7 2.84M -1.39

Ours-LSTM 5.98× 107 84.7 2.92M -0.36
Ours-scratch b 5.98× 107 84.7 2.92M -1.74
LSTM-SEP 5.98× 107 84.7 4.01M -0.26

a “Slimming-N” denotes repeating the slimming method [22] N times.
b “Ours-scratch” denotes training the slimmer network generated by LSTM
from scratch for 200 epochs.

TABLE II: Results of VGG-19 on CIFAR-100.

Model FLOPs Pruned
Rate%

Params Acc.%

Baseline 3.98× 108 − 20.04M 73.26
Slimming-3 [22] 1.27× 108 67.3 5.48M -2.34
Slimming-4 [22] 6.63× 107 83 3.27M -3.85

Ours-LSTM 1.17× 108 70.1 4.86M +0.0
Ours-scratch 1.17× 108 70.1 4.86M -3.5
LSTM-SEP 1.17× 108 70.1 5.95M +0.31

based filter selection outperforms the filter-based selection
method.

To evaluate the recovery mechanism, we calculate the ac-
curacy of a pruned model on the test set directly without fine-
tuning. Figure 6 indicates that the recovery method helps the
pruned model to recover its performance significantly. Instead
of a random value, we empirically run several experiments
to obtain the optimal value for the hyperparameter α. The
observation is: while the hyperparameter α in Eq. 4 equals
0.8, the pruned model gets the best recovery. In fact, when we
prune a completely unimportant channel, the filter it belongs to

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

TABLE III: Results of ResNet-56 on CIFAR-10.

Model FLOPs Pruned
Rate%

Params Acc.%

Baseline 1.25× 108 − 0.86M 93.04
PFEC-A [18] 1.12× 108 10.4 0.77M +0.06
PFEC-B [18] 9.09× 107 27.6 0.61M +0.02

CP [54] − 50.6 − -1.00
NISP-56 [55] − 43.6 − -0.03

SFP [29] 5.94× 107 52.6 0.51M -1.33
FPGM [56] 5.94× 107 52.6 0.51M -0.66

Ours-LSTM-1 8.24× 107 34.1 0.56M +0.56
Ours-scratch-1 8.24× 107 34.1 0.56M -0.85
LSTM-SEP-1 8.24× 107 34.1 0.62M +1.01
Ours-LSTM-2 6.56× 107 47.5 0.49M -0.11
Ours-scratch-2 6.56× 107 47.5 0.49M -0.87
LSTM-SEP-2 6.56× 107 47.5 0.62M +0.81

TABLE IV: Results of a Fully-connected Network on MNIST.

Model Pruned% Acc.% #Neurons

Baseline − 98.57 784-500-300-10
Structured sparsity [26] 83.5 -0.11 434-174-78-10

Slimming-1 [22] 84.4 -0.06 784-100-60-10

Ours-LSTM 87.26 -0.03 784-83-48-10

does not need to be scaled because the pruned channel almost
has no contribution to the whole network performance. Unless
it covers a relatively large proportion of the filter, scaling
operation is unnecessary.

C. Results

Our layer-selection method based on LSTM is compared
to both orderly and global hard filter pruning methods.
Specifically, on the fully-connected network and VGG, we
report the pruning results compared with two global pruning
methods [22], [26]. On the Resnet-56, we compare our pruning
method with a series of existing pruning methods, including
an orderly pruning method [18], CP [54], NISP-56 [55],
and FPGM [56]. We also provide SEP results to reveal the
performance of data-dependent soft pruning.

1) VGG-19 on CIFAR-10: We prune the VGG-19 [1] on
the CIFAR-10 dataset. Each convolution layer is followed by
a batch normalization layer [59] and we prune filters from the
FC layer, which is the last layer before classification.

FLOPs is used as an indicator of model complexity. One
multiply-add here is regarded as a floating-point operation
unit. We calculate the reward R according to Eq. 1 where
network’s accuracy in validation set represents performance,
FLOPs represents complexity and λ is set to 4 × 10−10.
We summarize the results in Table I comparing our layer-
selective method and SEP method with the global slimming
method [22], which selects unimportant filters in all the layers
first and then prune all of them simultaneously. “Slimming-N”
denotes repeating the slimming method N times. After LSTM
is trained for 150 epochs, the optimal structure emerges,
whose FLOPs is reduced by 84.7% with only 0.36% accuracy
decreased.

TABLE V: Results of ResNet-50 on ImageNet.

Model baseline
Top-1
Acc.%

baseline
Top-5
Acc.%

Pruned
Rate%

Params Top-1
Acc.%

Top-5
Acc. %

SFP [29] 76.15 92.87 41.8 16.96M -1.54 -0.81
FPGM [56] 76.15 92.87 42.2 16.96M -1.12 -0.47
CFP [57] 75.30 92.20 49.6 − -1.90 -0.80
CP [54] − 92.20 50.0 − − -1.40

GDP [58] 75.13 92.30 51.3 − -3.24 -1.59

Ours-
LSTM

76.12 93.00 43.0 15.96M -1.12 -0.33

LSTM-
SEP

76.12 93.00 43.0 17.18M -0.90 -0.27

We use SEP modules to rebuild the baseline network
referring to the optimal slimmer structure generated by LSTM,
which gets a better performance with only 0.26% accuracy
declined. We also train the slimmer network from scratch for
200 epochs, which is equivalent to a hard filter pruning model,
and compare it with the SEP rebuilding model. The results
show that our soft pruning can maintain higher precision than
the hard pruning.

It is worth noting that [22] takes one multiply-add as two
floating-point operations, so their calculated FLOPs is two
times as much as ours. For a fair and clear comparison, we
convert their FLOPs such that it can be in line with ours. It
can be observed that our pruned model is more accurate than
the pruned model generated by [22] (-0.26 vs -1.39) when the
FLOPs are comparable (84.7% vs 88.7%).

Moreover, the number of parameters (Params) is an indi-
cation of the memory costs for storing a trained deep model,
which is a widely used criterion for evaluating model pruning
algorithms. Since extra FC layers are added into the proposed
SEP modules, additional parameters are inevitably produced.
As a result, though our LSTM-SEP obtains the best accuracy,
the model parameters are increased a little bit, compared to
Ours-LSTM method without SEP modules. However, from
Table I, we still can see that the accuracy of Ours-LSTM
is over 1% higher than that of Slimming-5 [22] when the
numbers of the parameters of these two trimmed models are
similar (2.92M vs 2.84M).

For further investigation, we plot the sensitivity of each
layer in the pre-trained VGG-19 in Figure 7. Specifically, at
each time we prune one layer while keeping the other layers
unchanged, then calculate the accuracy. The results depict
that the overall sensitivity distribution keeps the same under
different pruning rates and the most sensitive four layers are
layer 2, 3, 4, 5. Figure 8, Figure 9 and Figure 10 represent the
practical pruning rates of each layer for the optimal network
after training LSTM for 50, 150 and 250 epochs respectively.
With more training, the real pruning rate from layer 2 to 5
becomes lower and the other layers are pruned more, which
is consistent with the observation from Figure 7. The results
demonstrate that our method could make reasonable pruning
decisions and learn network sensitivity effectively.

2) VGG-19 on CIFAR-100: We use the same VGG-19
network to evaluate our method on CIFAR-100. Due to more
categories, CIFAR-100 is much more difficult to train than

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

0 10 20 30 40 50 60
Filter Index

0

2000

4000

6000

8000

10000

Im
ag

e
Co

un
tin

g

(a)

0 10 20 30 40 50 60
Filter Index

0

2000

4000

6000

8000

10000

Im
ag

e
Co

un
tin

g

(b)
Fig. 11: The soft-pruned filters distribution of the last (a) and the second-to-last (b) residual block in LSTM-SEP-2 model based on ResNet-56
on CIFAR-10 testset. Some filters (red bar) are always discarded on all the images but some (green bar) are discarded on specific images.

CIFAR-10. Thus, the training and validation set are both used
to fine-tune the pruned model. Here we use the training loss
to evaluate performance, and set λ to 2 × 10−11 in Eq. 1.
After training LSTM for 123 epochs, we get the best network
whose FLOPs is reduced by 70.1% with no accuracy drop.
The SEP rebuilding model even improves the accuracy by
0.31%, which indicates the superiority of the SEP module.
The attention mechanism improves the model performance. In
the meantime, the soft pruning manner retains the capacity
of the baseline network, thus maintaining the accuracy to the
fullest. As can be seen from Table II, our method outperforms
the slimming method significantly (above 3%), even though
the number of parameters is a little bit higher than that of
Slimming-4 [22].

3) ResNet-56 on CIFAR-10: In this section, we verify
the feasibility of our method on ResNet-56 [2]. Due to the
particularity of the ResNet structure, we only prune the first
convolution layer of each ResNet block and keep the second
convolution layer unchanged. The parameter configuration of
Eq. 1 is the same as the VGG-19 experiment on CIFAR-10.

Table. III reports the results when compared
to [18] [54] [55] [56], which analyze the sensitivity of
each ResNet block first, then prune filters referring to the
analysis results. Note that all the results of existing algorithms
are collected from their original publications. We do not
make any analysis in advance because our method is capable
of automatically learning the network sensitivity. After
LSTM is trained for 32 epochs, the best network emerges
with 47.5% FLOPs reduction and comparable accuracy.
Compared to [18], more filters are pruned with an acceptable
accuracy decrease of 0.11% so that we get the model with
the minimum number of parameters, which is only 0.49M.
For further comparison, we select the second-best structure
with fewer FLOPs reduction, and it achieves a notable 0.56%

accuracy promotion. The SEP models based on these two
slimmer architectures present more significant performance.
Even if compared to a recent method [56], we still obtain the
promising results - the accuracy of our best slimmer model
exceeds that of their slimmer model by 1.47% when the
FLOPs of both models are equivalent.

In Figure.11, we draw the maps of soft-pruned filters distri-
bution in the last and second-to-last residual block respectively
to show the data dependence of the SEP method. We run the
LSTM-SEP-2 model on CIFAR-10 to check which filters are
discarded for different image data in a specific layer. The x-
axis represents the filter index, while the y-axis represents the
number of images on which this filter is discarded. The last and
the second-to-last residual block both consist of 64 filters. The
CIFAR-10 testset concludes 10000 images. As can be seen in
Figure.11, some filters (red bar) are always discarded on all the
images but some (green bar) are discarded on specific images.
Some filters are always utilized because they are important to
all data. SEP selects different filters for different images, which
reveals that the SEP is data-dependent, and has the ability to
select different filters for different images.

4) A Fully-connected Network on MNIST: We further val-
idate the effect of our method on multi-layer perceptrons.
We prune a 3-layer fully-connected network compared with
two global pruning methods [22], [26] as shown in Table IV.
Similar to CNN, the evaluation of neurons in the current FC
layer depends on its next FC layer. Here we use the accuracy
on the validation set to measure performance. We set λ
to 1 × 10−7. After 20 epochs, the optimal network structure
emerges with 87% neurons pruned and 0.03% accuracy drop.

5) ResNet-50 on Imagenet: In this section, we verify the
performance of our method on ImageNet, which is a large-
scale dataset. Since ResNet-50 [2] structure is commonly
used by many pruning methods such as SFP [29], CP [54],

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

GDP [58], we choose it to conduct the pruning experiments for
a fair comparison. Specifically, we prune the first and second
convolution layers of each ResNet block and keep the third
convolution layer unchanged. The parameter configuration of
Eq. 1 is the same as the VGG-19 and ResNet-56 experiments
on CIFAR-10.

Table. V shows that our methods can achieve competitive
performance, compared to state-of-the-art methods including
SFP [29], FPGM [56], CFP [57], CP [54], GDP [58]. Note
that we collect their results from the original publications,
and no pre-trained models are used. Seen from the results,
the performance of LSTM-SEP is better than that of Ours-
LSTM, which shows that our soft pruning can maintain higher
accuracy than the hard pruning. Although the pruning rate of
our methods is slightly lower than that of CFP [57], CP [54]
and GDP [58], the accuracies of Ours-LSTM and LSTM-
SEP are much higher than them. Particularly, the accuracy
of LSTM-SEP exceeds CFP [57] and GDP [58] models by
1.00% and 2.34% respectively and the Top5 accuracies of
our two methods are 1.00% higher than that of CP [54] and
GDP [58]. Besides, in comparison to SFP [29] and FPGM [56]
that also prune filters in a soft manner, LSTM-SEP reduces
more FLOPs of the model with even less accuracy drops.
Overall, it is clear that our method outperforms the state-of-
the-art soft pruning methods.

V. CONCLUSION

In this paper, we have presented a framework to evaluate
the importance of each network layer and to select the most
unimportant layers to prune. Considering the hierarchical
structure of CNN, we employ LSTM as an evaluation model
to generate pruning decisions. Besides, the channel-based filter
selection method and recovery mechanism are adopted to
prune filters effectively. Based on the slimmer architecture
generated from LSTM, we further propose the SEP attention
mechanism to rebuild the baseline network, which realizes
the data-dependent soft pruning. Experimental results show
the superiority of our methods compared to both orderly
and global pruning methods and reveal the ability to learn
the sensitivity of each network layer. In future work, we
will, on one hand, use LSTM model to guide other filter
pruning algorithms, including C-SGD [60] and GSC [61];and
on the other hand, apply the proposed model compression
method to simplify deep models for different visual tasks,
such as video retrieval [62], image classification [63] and 3D
reconstruction [64].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for the constructive suggestions.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CVPR, 2016.

[5] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” CVPR, 2015.

[6] S. Ye, J. Han, and N. Liu, “Attentive linear transformation for image
captioning,” IEEE Transactions on Image Processing, vol. 27, pp. 5514–
5524, 2018.

[7] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” ICML, 2015.

[8] R. Girshick, “Fast r-cnn,” in ICCV, 2015, pp. 1440–1448.
[9] Y. Zhu, C. Zhao, H. Guo, J. Wang, X. Zhao, and H. Lu, “Attention

couplenet: Fully convolutional attention coupling network for object
detection,” IEEE Transactions on Image Processing, pp. 113–126, 2019.

[10] G. Cheng, J. Han, P. Zhou, and D. Xu, “Learning rotation-invariant and
fisher discriminative convolutional neural networks for object detection,”
IEEE Transactions on Image Processing, pp. 265–278, 2019.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
ICCV, 2015.

[12] X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao, W. Jiang,
C. Zhang, and J. Sun, “Alignedreid: Surpassing human-level perfor-
mance in person re-identification,” arXiv preprint arXiv:1711.08184,
2017.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in CVPR, 2015, pp. 815–823.

[14] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
ECCV. Springer, 2016, pp. 525–542.

[15] Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, vol. 2, 1990, pp.
598–605.

[16] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[17] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems, 2014,
pp. 1269–1277.

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in ICLR, 2017.

[19] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
in ICLR, 2017.

[20] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[21] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” arXiv preprint arXiv:1707.06342,
2017.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” arXiv preprint
arXiv:1708.06519, 2017.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in ICLR, 2016.

[25] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing, 2017.

[26] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

[27] C. Lin, Z. Zhong, W. Wu, and J. Yan, “Synaptic Strength For Convolu-
tional Neural Network,” NIPs, 2018.

[28] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware Channel Pruning for Deep Neural
Networks,” NIPs, 2018.

[29] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft Filter Pruning for
Accelerating Deep Convolutional Neural Networks,” in IJCAI, 2018.

[30] R. Pahwa, M. G. Arivazhagan, A. Garg, S. Krishnamoorthy, R. Saxena,
and S. Choudhary, “Data-driven compression of convolutional neural
networks,” arXiv preprint arXiv:1911.12740, 2019.

[31] J. Li, Q. Qi, J. Wang, C. Ge, Y. Li, Z. Yue, and H. Sun, “Oicsr: Out-
in-channel sparsity regularization for compact deep neural networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 7046–7055.

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

[32] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning:
Network to network compression via policy gradient reinforcement
learning,” arXiv preprint arXiv:1709.06030, 2017.

[33] K. Yamamoto and K. Maeno, “Pcas: Pruning channels with at-
tention statistics for deep network compression,” arXiv preprint
arXiv:1806.05382, 2018.

[34] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
784–800.

[35] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” arXiv
preprint arXiv:1707.01083, 2017.

[36] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design,” ECCV, 2018.

[37] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” arXiv preprint
arXiv:1801.04381, 2018.

[39] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62,
2008.

[40] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[41] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2017, pp. 497–504.

[42] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[43] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in ICLR, 2016.

[44] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” arXiv preprint
arXiv:1707.07012, 2017.

[45] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “MnasNet:
Platform-Aware Neural Architecture Search for Mobile,” arXiv preprint
arXiv:1807.11626, 2018.

[46] S. Cao, X. Wang, and K. M. Kitani, “Learnable embedding
space for efficient neural architecture compression,” arXiv preprint
arXiv:1902.00383, 2019.

[47] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[48] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in neural information processing systems, 2014, pp. 2654–
2662.

[49] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” arXiv preprint arXiv:1709.01507, 2017.

[50] J. Zhong, G. Ding, Y. Guo, J. Han, and B. Wang, “Where to prune:
Using lstm to guide end-to-end pruning,” IJCAI, 2018.

[51] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of hand-
written digits, 1998,” URL http://yann. lecun. com/exdb/mnist, vol. 10,
p. 34, 1998.

[52] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech Report, 2009.

[53] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[54] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389–1397.

[55] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9194–9203.

[56] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks acceleration,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4340–4349.

[57] P. Singh, V. K. Verma, P. Rai, and V. Namboodiri, “Leveraging filter cor-
relations for deep model compression,” in The IEEE Winter Conference
on Applications of Computer Vision, 2020, pp. 835–844.

[58] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning.” in IJCAI,
2018, pp. 2425–2432.

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015,
pp. 448–456.

[60] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal sgd for pruning very
deep convolutional networks with complicated structure,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4943–4953.

[61] X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, “Global sparse
momentum sgd for pruning very deep neural networks,” in Proceedings
of Advances in Neural Information Processing Systems (NeurIPS), 2019,
pp. 6382–6394.

[62] G. Wu, J. Han, Y. Guo, L. Liu, G. Ding, Q. Ni, and L. Shao,
“Unsupervised deep video hashing via balanced code for large-scale
video retrieval,” IEEE Transactions on Image Processing, vol. 28, no. 4,
pp. 1993–2007, 2019.

[63] Y. Guo, G. Ding, J. Han, and Y. Gao, “Zero-shot learning with
transferred samples,” IEEE Transactions on Image Processing, vol. 28,
no. 4, pp. 1993–2007, 2019.

[64] C. Yan, B. Shao, H. Zhao, R. Ning, Y. Zhang, and F. Wu, “3d room
layout estimation from a single rgb image,” IEEE Transactions on
Multimedia, vol. DOI: 10.1109/TMM.2020.2967645.

Guiguang Ding is currently an Associate Professor with the School of
Software, Tsinghua University, China. Before joining the School of Software
in 2006, he was a Post-Doctoral Research Fellow with the Department of
Automation, Tsinghua University. He has published over 100 papers in major
journals and conferences, including the IEEE TIP, TMM, TKDE, SIG IR,
AAAI, ICML, IJCAI, CVPR, and ICCV. His current research centers on
the areas of multimedia information retrieval, computer vision, and machine
learning.

Shuo Zhang is currently a Ph. D. candidate with School of Computing
and Communications at Lancaster University, Lancaster, UK. Previously, he
obtained his M.Sc. degree from the University of Sheffield, Sheffield, UK. His
research focuses on very deep Neural Network compression and acceleration.

Zizhou Jia is currently a graduate student with School of software engineering
at Tsinghua University, Beijing, China. Previously, he obtained his B.S degree
from the Wuhan University, Wuhan, China. His research focuses on deep
Neural Network compression and acceleration.

Jing Zhong received her B. S. degree from School of Computer Sicience,
Beijing Institute of Technology, China in 2016. And currently she is a M.E.
candidate in School of Software in Tsinghua University. Her research interests
include computer vision, machine learning and model compression.

Jungong Han is currently a Chair Professor with the Department of Computer
Science, Aberystwyth University, U.K. He also holds an honorary professor-
ship with the University of Warwick, U.K. Previously, he was working at
Lancaster University. His research interests include computer vision, artificial
intelligence, and machine learning.

