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Abstract

Abiotic stress tolerance in plants is said to be induced by pre-stress events (priming) during 

the vegetative phase. We aimed to test if drought priming could improve the heat and drought 

tolerance in wheat cultivars. Two wheat cultivars ‘Gladius’ and ‘Paragon’ were grown in a 

fully controlled gravimetric platform and subjected to either no stress or two drought cycles 

during the tillering stage. At anthesis, both batches were subjected to either high temperature 

stress, drought stress, or kept as control. No alleviation of grain yield reduction due to 

priming was observed. Higher CO2 assimilation rates were achieved due to priming under 

drought stress. Yield results showed that priming was not damage cumulative to wheat. 

Priming was responsible to alleviated biochemical photosynthetic limitations under drought 

stress and sustained photochemical utilization under heat stress in ‘Paragon’. Priming as a 

strategy in abiotic stress alleviation was better evidenced in the stress susceptible cultivar 

‘Paragon’ than tolerant cultivar ‘Gladius’, therefore the type of response to priming appears 

to be cultivar dependable, thus phenotypical variation should be expected when studying the 

effects of abiotic priming.

Keywords: heat stress; chlorophyll fluorescence; gas exchange; grain yield; photosynthesis; 

stomatal conductance.

Introduction

Predictions about future climate scenarios, such as intensification in the frequency and 

severity of extreme climate events, are reported to negatively affect crop yield and global 
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food production (Deryng et al., 2014). Crop yield is of key importance when discussing the 

improvement of crop production under water-limitation (Farooq et al., 2009) and elevated 

temperature scenarios (Wahid et al., 2007). The extent and nature of the damage, as well as 

the plants’ capacity of recovery from abiotic stress are, among other factors, depended on the 

developmental stage at which the crop encounters the stress (Saini and Westgate, 1999). The 

most critical costs on crop yield have been reported to occur when stress coincides with the 

onset of meiosis, anthesis and early grain initiation (Garg et al., 1984, Saini and Westgate, 

1999). Although the vulnerability of cereals to abiotic stresses are well studied, the progress 

to overcome this problem has been very slow. Thus, improving crop’s tolerance to abiotic 

stress happening during their reproductive stages is of high importance to future crop 

production. 

Elevated temperatures during anthesis can affect the yield components by accelerated rate of 

development, accelerated leaf senescence, inhibition of photosynthesis and carbohydrate 

synthesis, increase in respiration as well as flower abortion, pollen sterility/viability, pollen 

germination and floral asynchrony (Dupuis and Dumas, 1990). While accounts of grain 

weight losses are often recurrent over stress occurring after anthesis during the grain filling 

phase (Abid et al., 2017), the reduction in seed set is mainly during the two main phases of 

ontogeny: the meiosis and anthesis (Wahid et al., 2007). The main factor influencing the final 

grain yield in crops is often shown to be the grain number, while the grain weight is of lesser 

importance.

The response to drought stress in crops will vary from partial stomatal closure under 

moderate stress to desiccation and plant death at the wilting point. In wheat, a gradual decline 

in stress sensitivity to drought is expected as grains develop (Saini and Westgate, 1999). 

Although early drought can reduce tillering and the number of ears per square meter, plants at 
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the tillering stage are regarded as more plastic in their stress responses due to their smaller 

leaf area, moderated rates of physiological activity, lower water demand as well as their 

flexibility to compensate stress damages in favourable soil moisture conditions after drought 

episodes (Garg et al., 1984)

The decline in CO2 assimilation under drought stress can be attributed to direct factors such as 

a reduction in the CO2 diffusion through the leaf mesophyll and consequently the CO2 supply 

to Rubisco (Chaves et al., 2009) or by indirect factors such as metabolic constraints caused 

by a decrease in ATP synthesis and a limited RuBP (Ribulose 1,5-bisphosphate) synthesis 

(Lawlor and Cornic, 2002). Reproductive processes in crops are very vulnerable to changes 

in the water status. The reduction of photosynthetic flux can lead to a reduction on starch 

accumulation and invertase activity what can ultimately lead to pollen sterility and ovary 

abortion (Cattivelli et al., 2008, Farooq et al., 2014). At anthesis, mild drought stress can lead 

to a reduction of yield (Gupta et al., 2001), with a minimal effect on grain number but a direct 

effect on grain size (Ji et al., 2010). Positive correlations among plant height, leaf area and 

grain yield (Gupta et al., 2001) and among relative water content, stomatal conductance and 

grain yield (Akram, 2011) were reported for wheat plants under drought stress imposed at 

anthesis. Thus, the need to advance strategies to improve the tolerance of the crop to drought 

stress occurring during reproductive phases are acute.

The occurrence of high temperature or soil water depletion can result in a range of 

morphological, anatomical, physiological and biochemical changes in plants. It can directly 

induce alterations in existing physiological processes, or indirectly promote alterations in the 

pattern of the plant’s development (Chaves et al., 2009). A transient stress can prime a plant 

against a subsequent stress, the retention of a stress memory is evident from acclimation 

responses (Chinnusamy and Zhu, 2009). The priming state can be triggered by biotic and 
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abiotic stress events as well as chemical elements and interspecies communication (Bruce et 

al., 2007, Conrath, 2006). It is defined as a state which by a plant responds more rapidly and 

or more efficiently to a stress (Balmer et al., 2015). The length of the priming state can 

include the post-challenge primed state in the same generation and a) be transient (if 

dependable of the half-life of stress induced proteins, RNAs and metabolites) or b) be 

maintained throughout plant’s live (if morphology/phenology reprograming occur), it can 

also be passed on to the next generation, a term defined as transgenerational tolerance (when 

stable or heritable DNA methylation and histone modification occurs) (Chinnusamy and Zhu, 

2009).

Improvements in the antioxidant defence system, changes in hormones, metabolites and sugar 

signals are reported to be induced by priming, which are believed to increase plant tolerance 

under abiotic stress (Wang et al., 2017). Previous results have described a positive effect of 

drought priming by alleviating both drought and heat stresses during the grain filling stage in 

wheat (Abid et al., 2017, Wang et al., 2014, Wang et al., 2015). Improvements in grain yield, 

photosynthetic capacity, oxidative stress mitigation (Wang et al., 2014), alleviation of 

photoinhibition (Wang et al., 2015) and improvements in regulation of growth hormones 

(Abid et al., 2017) at grain-filling stage are also attributed to drought priming. Taking in 

account the current climate crises (IPCC, 2019), both post-challenge primed state in the same 

generation and transgenerational priming can act as an approach for abiotic stress mitigation. 

Advancing the understanding of the effects of the physiological basis of abiotic stress 

induced priming to maintain or improve the yield is needed. To our knowledge, no advances 

regarding the effects of drought priming on heat and drought events during critical ontogeny 

phase anthesis has been made. A improvement in photosynthetic performance due to abiotic 

priming has been suggest in previous literature (Wang et al., 2017). Therefore we aimed to 
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investigated if the effect of mild drought priming on the photosynthetic apparatus could be 

responsible for improving yield under drought and heat stress conditions during anthesis in 

two commercial wheat cultivars from different origins.

Materials and Methods

Plant Material

The  experiment  was  conducted  at  the  National  Phenomics  Centre  at  the  Institute  of 

Biological, Environmental & Rural Science (IBERS) at Aberystwyth University, Wales, UK 

(52.43N, 4.01W) during spring of 2017. Four seeds from two wheat (Triticum aestivum L.) 

cultivars ‘Paragon’ and ‘Gladius’ were sown in 3.5 L plastic pots filled with potting grown 

mix ICL Levinton F2 (added nutrients: 144 N, 73 P, 239 K) in a greenhouse at ambient CO2, 

light intensity of 350 µmol m-2 s-1 photosynthetic photon flux density (PPFD), with day length 

following the photoperiod regime. The average temperature of the duration of the experiment 

was 19.8 ± 3.2 ˚C and relative air humidity of 50.4 ± 13.1%. 

The cultivars studied in this experiment are commercial cultivars from two different origins. 

‘Gladius’ is an Australian cultivar adapted to more heat and drought prone climates (Fleury et 

al., 2010), while ‘Paragon’ is an UK cultivar bred to a cool and temperate climate (Mendanha 

et al., 2018, Sikder et al., 2015). 

Treatments

At three fully developed leaves stage, four replicate pots per treatment were allocated to a 

fully controlled gravimetric platform and randomly assigned across scales. Following the set-

up described by Wang et al. (2015), half of the pots were subjected to a drought priming (P) 

by reducing the soil relative water content (SRWC) to 35% (withholding watering for five 

days), followed by a recovery period (SRWC of 80%) until the full extension of the fifth leaf 
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when the drought priming process was repeated by withholding watering for five days. The 

other half of the pots were kept well-watered at SRWC of 80% as non-primed control plants 

(C).

At the developmental stage when 50% of the primary head was visible (Zadoks 55), plants 

were subjected to either a high temperature stress (H, 32/28˚C), drought stress (D; SRWC of 

25%) or kept as non-stressed control plants (C) for seven days. The treatments subjected to 

high temperature took place in a controlled climate chambers (Sanyo Fitotron, Weiss 

Technik, Leicestershire) set at 14 hours of light in a diurnal cycle, at a photosynthetic photon 

flux density of 350 µmol m-2 s-1 (PPFD) and relative humidity (RH%) of 82 ± 4.0%. In total, 

six treatments were established (Figure 1): no priming + no stress (CC); no priming + drought 

stress (CD); no priming + heat stress (CH); priming + no stress (PC); priming + drought 

stress (PD); priming + heat stress (PH).

Destructive harvest 

Growth and morphological development 

During the experiment, growth and morphological development data were collected from the 

three leaves stage (Zadoks 13) until end of anthesis (Zadoks 69). Once a week, plant height, 

the number of leaves in main shoot, developmental stage (Zadok scale), and number of tillers 

were noted. Chlorophyll index (SPAD-502, Konica Minolta, Osaka, Japan) was determined 

on the mid portion of the youngest fully developed leaf in three non-overlapping 

measurements, once a week in all plants per pot. 
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Biomass accumulation

One plant in each pot was sampled for the destructive harvest two weeks after the end of the 

stress event and both cultivars were harvested at the milk developmental stage (Zadoks 75-

77). Fresh weight (FW) was determined separately for plant fractions in order to establish 

biomass allocation: main shoot (leaves, stem and head) and tillers (leaves, stems and heads) 

were weighed individually. Dry weight (DW) was determined after 48h at 80oC in constant 

flux oven; leaf area (LA) was determined for green leaves (primary tiller was measured 

separately) using WinDias (Delta-T Devices Ltd., Cambridge, The UK). Green leaves were 

counted separately from dead leaves in order to establish green leaves retention and to adjust 

the final total leaf area after the stress event.

Grain yield components 

Three plants per pot were kept in the greenhouse (average temperature of 22.0 ±2.3˚C; RH% 

59.0 ± 11.4 and PPFD of 350 µmol m-2 s-1) until they reached full grain maturity. Primary 

spikes were harvested individually from the rest. Spikes were manually threshed and yield 

recorded. Numbers of spikes, primary spike dimensions, kernel number per spike and 

thousand-kernel weight (TKW) were measured.

Photosynthesis measurements

Gas exchange 

Photosynthetic light (A/Q) and intracellular CO2 (A/Ci) responses were measured in vivo on 

leaves using a portable gas exchange fluorescence system (Walz GFS-3000, Walz, Eiffeltrich 

Germany) with an integrated red-blue LED light source with a chlorophyll fluorescence 

module (Walz 3055-FL). Measurements were done on one randomly selected plant per pot. 
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During priming, the youngest fully developed leaf was chosen for measurements and during 

anthesis the primary flag leaf was used at the end of the stress period. The leaf mid-portion 

was placed in a 4.0 cm2 leaf cuvette with PPFD set at 500 µmol m-2 s-1, flow rate of 750 mL 

min-1 and reference [CO2 ] was set at 407 ppm (equal to the ambient CO2 concentration). The 

cuvette temperature was set as growth temperature so the control and drought stressed plants 

were measured at 20° C and heat stressed plants at 32° C. The vapour pressure deficit (VPD) 

was kept below 10.0 (control and drought stress treatments) and 20.0 Pa/kPa (heat stress 

treatment). Before measurements were initiated, leaves were acclimatised to the highest light 

level by increasing PPFD stepwise to 2000 µmol m-2 s-1 until steady-state carbon assimilation 

and stomatal conductance (gs) rates were obtained. Curves were performed by decreasing 

light from 2000 µmol m-2 s-1 to the following light levels: 1500, 1200, 1000, 700, 500, 350, 

250, 150, 150 and 75 µmol m-2 s-1. Following the end of the A/Q curve, the same leaf portion 

was used to attain the A/Ci curve. The PPFD was set to 1500 µmol m-2 s-1 and [CO2] was 

varied according to the sequence: 407, 300, 250, 150, 100, 50, 407, 600, 800, 1100 and 1500 

ppm. Light response curves were fitted to a non-rectangular hyperbola (Ögren, 1993), to 

estimate dark respiration (Rdark), maximal quantum efficiency of photosynthesis (α), light 

compensation point (LCP), maximum net assimilation (Amax) and curve convexity (θ). The 

leaf cooling during the A/Q measurements (∆T) was calculated as ∆T = Tleaf –Tcuvette, in which 

the negative numbers indicate cooling. Water use efficiency at the leaf level (WUEleaf) is 

defined as the ratio of Amax to transpiration rate (E), under saturating light intensity. 

Assimilation rate obtained at varying [CO2] were plotted against intracellular CO2 

concentration (Ci) to obtain a response curve. The biochemical parameters were normalized 

to 25˚C for comparation. Photosynthetic parameter limitations: maximum carboxylation 

velocity of Rubisco (Vc,max25), electron transport demand for RuBP regeneration (J25), day 

respiration (Rd25), mesophyll conductance (gm25) and the rate of use of triose phosphate 
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(TPU25) were fitted according the equations presented by Sharkey et al. (2007), using an 

estimator utility (available at: http://www.blackwellpublishing.com/plantsci/pcecalculation/). 

Saturated assimilation rate (Asat) was determined from assimilation values obtained at 1500 

ppm CO2 concentration.

Chlorophyll fluorescence

All treatments were subjected to chlorophyll a fluorescence analysis. Plants were moved to a 

dark room and a primary flag leaf was dark-adapted for 30 minutes at room temperature. A 

pulse amplitude modulation (PAM) fluorimeter (PAM-2500, Walz Eiffeltrich, Germany) was 

used to calculate PSII operating efficiency (Fq’/Fm’), non-photochemical quenching (NPQ), 

maximum quantum efficiency of PSII photochemistry (Fv/Fm) and electron transport rate 

(ETR) on the adaxial surface of the leaves. All quenching parameters were measured at 900 

µmol m-2 s-1. 

Leaf absorbance measurements 

Leaf light absorptance (AbsLeaf) was measured using an integrated sphere (Spectroclip-JAZ, 

Ocean Optics, Duiven, The Netherlands) in three non-overlapping areas in the mid-portion of 

the primary flag leaf. Measurements were performed after gas exchange measurements and 

absorbance was calculated as:

 = 1 –  – 

where  is the absorptance,  is the reflectance and  is the transmittance i.e. the absorbed, 

reflected and transmitted fractions of light, respectively. The mean absorptance in the 
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wavelength range 400-700 nm was used to calculate the absorbed PPFD when calculating 

ETR. 

Leaf relative water content (LRWC)

After seven days of stress treatment (heat or drought), a 5-cm long mid-portion segment of 

the flag leaf of the main tiller (primary leaf) was harvested and immediately weighed to 

record fresh weight (FW). The leaf piece was subsequently transferred to a petri dish and 

immersed in distilled water for four hours at room temperature. Turgid weight (TW) was 

determined and leaf samples were dried at 80°C for 48 hours in a constant flux oven to obtain 

dry weight (DW). The LRWC of each leaf was calculated as:

LRWC (%) = [(FW-DW)/(TW-DW)]  100.

Statistical analyses 

All of the results are reported as mean ± standard error of the mean of at least three replicates, 

the number of replicates (n) is indicated in every figure or table in the results section. Data 

was checked for variance homogeneity and normal distribution before statistical analysis. The 

data was analysed for each cultivar separately. Following the imposition of stress (S), a two-

way analysis was performed to indicate the effect of priming (P), stress (S) and their 

interaction (P x S), and the level of significance of each factor is indicated as*P<0.05, 

**P<0.01, ***P<0.0001. When a interaction between factors was detected, one-way ANOVA 

was used to determine significant difference between treatments and is indicated by small 

letters in the figures and tables. The means were compared using Duncan’s multiple 
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comparison tests with R package agricolea. Statistical analyses were performed using R 

(Team, 2017) open source statistical computing software (Version 3.4.3, The R Foundation, 

Vienna, Austria),. The figures presented were generated using Sigmaplot program (version 

11.0, Systat Software Inc).

Results

Biomass accumulation 

In ‘Gladius’, specific leaf area (SLA) and plant height were not affected by priming or stress 

imposition (Supporting information). In ‘Paragon’, plant height and SLA decreased with 

priming but not by the stress imposition during anthesis (Supporting information). Biomass 

accumulation and SPAD index did not differ between treatments in any of the studied 

cultivars.

Gas exchange 

Priming (P1 and P2) imposition during the vegetative stage did not affect most of the light or 

intercellular CO2 response parameters (Supporting information). Only gs was reduced in 

‘Gladius’ during P1 (Supporting information). 

Priming did not improve LRWC (Table 1 and 2) under stress imposition. In Paragon, heat 

and drought reduced LRWC, but no difference was observed in ‘Gladius’. In light response 

parameters, the interaction between priming and drought stress (PD) upregulated the 

maximum assimilation (Amax) in ‘Paragon, and the same trend was observed in ‘Gladius’ 

(P<0.08). However, no difference under non-stress conditions or heat stress was observed 

between primed (PC; PH) and non-primed (CC, CH) treatments (Figure 2).
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Under drought stress, the stomatal conductance (gs) of ‘Gladius’ was upregulated by priming 

(PD), but the same was not observed in ‘Paragon’. The transpiration rate (E), internal CO2 

(Ci) and water use efficiency (WUEleaf) were affected by stress imposition in both cultivars, 

but no effect due to priming was noticed (Table 1 and 2). In both cultivars, a decrease in 

intracellular CO2 (Ci) was observed under drought stress, while no change was detected in 

heat stress treatments. As for WUEleaf, values increased with drought and decreased with heat 

stress in both cultivars (Table 1).

As for intercellular CO2 response parameters, Asat values were upregulated by priming in 

‘Gladius’. In ‘Paragon’ only stress imposition affected this parameter, as a decreased in Asat 

due to drought and an increase due heat stress was observed (Figure 3a and b, Table 2). The 

estimated values of Vc,max25 and J25 were not affect by priming or by the interaction between 

priming and stress in ‘Gladius. In this cultivar, Vc,max25 increased in stressed plants (both under 

heat and drought stress), while J25 decreased under heat but was unchanged under drought 

(Figure 3c and e). In ‘Paragon’, the same parameters (Vc,max25 and J25 ) were upregulated in 

primed plants under drought stress (PD), but no difference in heat stressed plants due to 

priming was noticed (PH) (Figure 4d and f).

Chlorophyll fluorescence 

In ‘Paragon’, priming decreased values of Fv/Fm, the same was not observed in ‘Gladius’ 

Stress imposition affected the parameter in both cultivars, with a significant reduction of the 

paramenter in heat stressed treatments (Figure 4a and b). An interaction between priming and 

stress was detected for values of the photochemical efficiency ( Fq’/Fm’) and ETR in both 

cultivars, while under heat stress those values were upregulated by priming, under non-stress 

condition the parameter decreased (Figure 4c, d, g and h). 
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Values of non-photochemical quenching (NPQ) in ‘Gladius’ were not affected by any of the 

two factors studied (Figure 4e). In ‘Paragon’ stress affected NPQ as plants under heat stress 

presented significantly lower values compared to drought and non-stressed (PC) plants 

(Figure 4f). 

Grain Yield

Stress imposition decreased grain number and grain yield in both cultivars. No effect of 

priming was observed for those parameters (Figure 5a, b, c and d). The decrease in the 

number of grains and grain yield was more accentuated by heat stress than by drought stress. 

Yield of the primary ear showed a positive interaction between priming and heat and drought 

stress in ‘Gladius’. The same parameter in ‘Paragon’ decreased by priming and stress 

imposion (Figure 5e and f).

While heat stress increased values of TKW for both cultivar (Figure 5g and h, Table 3), no 

difference was observed by either drought treatments or by priming in ‘Gladius’ (Figure 5g, 

Table 3). The interaction between priming and drought stress decreased TKW in ‘Paragon’ 

(PD) (Figure 5h).
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Discussion

Abiotic stress may result in substantive losses in crop production. Following the exposure to 

a stress, plants may become more tolerant to future stress through the acquisition of a “stress 

memory”, here defined as priming (Martinez-Medina et al., 2016). We tested if drought 

priming during the tillering stage could alleviate photosynthetic limitations and yield 

reduction of abiotic stresses imposed during anthesis in two wheat cultivars.

The capability to sustain grain yield under abiotic stress is regarded as a characteristic of 

tolerance in crops. The photosynthetic performance determines the concurrent photosynthates 

available to the plant. Any constrain in photosynthesis can limit yield and biomass 

accumulation (Fischer et al., 1998). Our investigation showed that priming upregulates CO2 

assimilation (Amax) under drought stress, suggesting that the priming plants would had better 

grain-filling substrate supply to early developing grains, which was expected to be translated 

on to yield improvements. However, our yield results could not show yield improvments in 

either the studied cultivars due to priming. Drought reduction in yield during early grain 

initiation is reported to be due to a smaller sink size of initiated grains (Saini and Westgate, 

1999) and the correlation between yield components such as the increase of TKW in spikes 

with reduced grain number is a key adaptive mechanism for restoring yield losses inflicted by 

stress in plants (Blum, 1996). ‘Gladius’ yield reduction under drought stress is attributed to a 

reduction in TKW, while ‘Paragon’ yield loss is shown to be explained by a reduction of 

grain number. Again, priming presented no significant effect on the ability to reallocate photo 

assimilates to grain filling (TKW) or prevent grain abortion on the studied cultivars, 

suggesting that the cultivars studied were not able to maintain carbohydrate accumulation in 

the reproductive organs throughout the drought stress treatment, even when assimilation was 

upregulated. Ji et al. (2010) showed that the drought stress applied during anthesis had a 
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larger cost effect on grain weight than on grain number in wheat, however the difference in 

the germplasm studied indicated that the genetic control for grain number and size is different 

under drought stress, as they observed that the germplasm that was able to maintain grain 

number was not better in maintaining grain weight. The same authors showed that grain 

weight of drought‐tolerant varieties is usually strongly reduced when drought stress occurs 

during anthesis. The difference in origins of the two cultivars may as well explain the reasons 

their yield response differed to drought stress.

Although no reduction in CO2 assimilation was observed, heat stress decreased grain number 

and grain yield in both cultivars and no alleviation was detected in primed plants regarding 

their yield components. The reduction in yield of the heat stressed plants (CH, PH) was 

attributed to a reduction in grain number rather than a drop in TKW. Under heat stress 

conditions, plants are reported to allocate resources in order to cope with the stress, reverting 

less photo assimilates for reproductive development (Wahid et al., 2007) .When CO2 

assimilation is taken in consideration, no changes were observed in the maximum 

carboxylation efficiency of Rubisco (Vc,max25), but a reduction in the regeneration of the 

substrate RuBP driven by photosynthetic electron transport (J25) was observed under all heat 

stress treatments included here. Ratios of J/Vc,max, linked to differences in nitrogen 

partitioning within the photosynthetic apparatus, were lower in all heat stress treatments, 

indicating that heat-stressed plants spent less nitrogen in RuBP regeneration processes (e.g. 

electron transport) than Rubisco synthesis (Yamori et al., 2010). The reduction observed on 

the J/Vc,max ratio at anthesis indicate a potential unbalance in the photosynthetic CO2 

assimilation during the re-allocation of leaf assimilates to the reproductive organs. Yet, this 

change was not affected by priming nor did decreased overall CO2 assimilation at anthesis. 
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While discussing the fitness costs of priming, Martinez-Medina et al. (2016) indicated that 

priming fitness is only a clear advantage in times of stress, as primed plants are expected to 

outperform non-primed plants, otherwise allocation costs are usually expected under non-

stress condition. Non-stressed drought primed wheat plants have both been reported to reduce 

grain yield (Liu et al., 2017, Wang et al., 2015) as well as not (Abid et al., 2016). In our 

study, the priming imposition (SRWC was lowered to 35% ) was fairly mild as no effect was 

seen on the photosynthesis parameters, as a result, primed non-stressed plants (PC) were able 

to maintain a high yield when not stressed during anthesis. The lack of allocation costs may 

be explained by the fact that our priming consisted of two brief stress periods at tillering, 

followed by a recovery phase. As post-stress resembled pre-stress conditions, plants did not 

progress into a new developmental stage during priming and therefore morphological costs 

were avoided. 

The moderate temperature used (32/28˚C) during heat stress may be the reason for the lack of 

clearer differentiation between primed and non-primed heat treatments (PH and CH). Heat 

induced effects on photosynthesis are usually only permanent in temperatures above 36˚C 

(Sharma et al., 2015), however in our previous study ‘Paragon’ plants did not withstand 

day/night temperatures of 36/32˚C during heat stress (Mendanha et al., 2018), therefore lower 

temperatures were used to impose heat stress in the current study.

Although a decrease in gs was observed during the first priming (P1) in ‘Gladius’, the 

reduction did not affect Amax, transpiration rate or the ability to restore assimilation under 

elevated [CO2] (Asat). Under drought stress, primed plants of ‘Gladius’ presented gs similar to 

control. The stomatal closure is said to be the first response to mild drought and the main 

limitation of photosynthesis (Flexas and Medrano, 2002). Stomatal closure will lead to a 

reduction in CO2 assimilation, transpiration cooling and nutrient uptake, and it is a trait of 
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tolerance when water loss preservation compensates the negative costs (Farooq et al., 2009). 

Results of gs in ‘Gladius’ shows that priming did not improved stomatal control under 

drought stress for this cultivar.

Primed plants of both cultivars were able to maintain carbon assimilation under drought 

stress (PD) to values similar to control conditions. The A/Ci response curves enable us to 

quantitatively estimate the internal limitations of carbon assimilation in plants. Under 

saturating light and high [CO2], values of J25 and Vc,max25 are positively correlated with Asat in 

wheat (Law and Crafts-Brandner, 1999). Drought stress in ‘Gladius’ (CD and PD) increased 

values of Asat, Vc,max25 and J25 when compared to the control treatment (CC). Drought stressed 

plants of ‘Paragon’ (CD and PD) were not able to restore assimilation under elevated 

concentrations of CO2 (Asat) and values of Vc,max25 and J25 contrasted between primed and non-

primed plants (CD and PD). Primed and heat stressed plants (PD) of ‘Paragon’ were able to 

sustain values of Vc,max25 and J25 similar to those of non-stressed plants (CC and PC). As gs 

decreases under moderated drought stress, internal CO2 (Ci) is expected to decrease compared 

to well-watered plants, leading to a reduction in carbon assimilation. Hence, drought stress is 

believed to decrease Rubisco activity due to the restriction of CO2 availability for 

carboxylation (lower level or function of Rubisco activase) (Galmés et al., 2007), leading to a 

reduction in RuBP content as well (Tezara et al., 1999). The Vc,max correlates with the 

apparent activity of Rubisco in vivo, which will vary both with the amount of Rubisco and its 

activation state (Long and Bernacchi, 2003). In plants acclimated to drought stress, both 

Vc,max (Flexas et al., 2009) and Rubisco activase (Cramer et al., 2007) have been upregulated 

under moderate drought stress. Cramer et al. (2007) proposed that a possible explanation for 

either an unchanged or increased value of Vc,max seen in ‘Gladius’ and primed ‘Paragon’ under 

moderated drought stress could be an upregulation of Rubisco activase in response to the 

lower [Ci] experienced during drought priming imposition, therefore balancing the Ci 

19

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412



reduction in the chloroplast (Cc) and compensating net carbon assimilation. Therefore, we 

believe that the unchanged values of Vc,max25 observed in our experiment were associated with 

increases in Rubisco activase due the tolerance trait of ‘Gladius’ and to priming in ‘Paragon’. 

Although Rubisco content or activity was not measured in our study, the results by Abid et al. 

(2016) and Wang et al. (2014) are in agreement with our data studies. They showed that 

wheat plants subjected to drought priming either at tillering or jointing stages had a) 

significant higher Rubisco content (Abid et al., 2016), and b) were able to upregulate Rubisco 

small subunit and Rubisco activase (Wang et al., 2014) when compared to non-primed plants 

under drought stress. The decrease in Vc,max25 observed in non-primed plants can also be 

attribute to oxidative stress affecting Rubisco, as drought priming improved the tolerance to 

oxidative stress by induction of antioxidant defence in wheat (Selote and Khanna‐Chopra, 

2006, Wang et al., 2014).

Chlorophyll fluorescence provides information about the extent to which PSII is utilising or 

being damaged by excess light. Among the fluorescence parameters, Fv/Fm has been used 

widely to quantify the damages in PSII during heat stress (Poudyal et al., 2018, Sharma et al., 

2015). The lower values of Fv/Fm found for heat stressed plants (CH and PH) are in 

accordance with literature (Sharma et al., 2015), although it is worth to mention that the 

lowest value (0.71) cannot be considered as extremely stressed. Non-primed ‘Paragon’ plants 

showed a decrease in the Fq’/Fm’and ETR under heat stress (CH) and a greater heat 

dissipation via NPQ when compared to primed plants (PH). Primed ‘Paragon’ plants (PH) 

were able to maintain higher rates of Fq’/Fm’ with lower values of NPQ. Our results indicate 

that the primed plants (PH) of the heat susceptible ‘Paragon’ had a higher photochemical 

efficiency than non-primed (CH) and could thus better mitigate the damages of heat stress. 

However, no decrease in carbon assimilation due to heat stress was observed, suggesting that 

plants in our experiment were able to regulate to the prevailing temperature (Law and Crafts-
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Brandner, 1999). While neither carboxylation nor RuBP regeneration were altered due to 

priming during heat stress, the upregulation of ETR in ‘Paragon’ can be linked to its dynamic 

behaviour to NPQ decrease. Other than improvements in Fq’/Fm’ due to priming, none of the 

other results in our study suggested that drought priming enhanced heat tolerance. A previous 

report by Wang et al. (2015) showed that drought priming could improve cross-tolerance to 

heat stress and reduce grain loss, by sustaining higher photosynthetic rates and dissipating a 

lower energy rates when compared to non-primed plants. 

We found that priming alleviated photosynthetic limitations in carbon assimilation under 

drought stress and enhanced photochemical utilization under heat stress, within the life span 

of the susceptible cultivar ‘Paragon’. Short periods of drought stress were not cumulatively 

damaging to the wheat cultivars studied. The type of response to priming appears to be 

cultivar dependent, thus phenotypical variation also should be explored when studying the 

effects of abiotic priming.
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Figures legends

Figure 1: Design scheme of the experiment. Illustration of the six treatments showing 1st 

priming (P1), 2nd priming (P2) and heat and drought stress at anthesis: no priming + no 

stress (CC); no priming + drought stress (CD); no priming + heat stress (CH); priming + no 

stress (PC); priming + drought stress (PD); priming + heat stress (PH).

Figure 2: Measured light response curves of ‘Gladius’ (a, b and c) and ‘Paragon’ (d, e and f) 

in the end of the stress treatments at anthesis where the panels are non-stressed control (a 

and d), drought stressed (b and e) and heat stressed (c and f) plants. The effects of the two 

factors studied: priming (P) and stress (S) and their interaction are indicated in the figure. 

Treatments presented are: no priming + no stress (CC); no priming + drought stress (CD); 

no priming + heat stress (CH); priming + no stress (PC); priming + drought stress (PD); 

priming + heat stress (PH). Different lower letters indicate significant difference at P<0.05 

within each cultivar for fitted values of Amax while ns indicate no significant difference. Data 

represents mean values ± SEM, n = 3.

Figure 3. Parameters derived from A/Ci curves for ’Gladius’ (a, c, e) and ‘Paragon’ (b, d, f): 

saturated net photosynthetic rate (Asat) (a and b); maximum carboxylation of Rubisco 

(Vc,max25) (c and d) and electron transport demand for RuBP regeneration (J25) (e and f). Heat 

stressed treatments were measured at 32oC after seven days of stress at heat treatment; all 

other treatments were measured at the normal growth temperature 20oC. The effects of the 

two factors studied: priming (P) and stress (S) and their interaction are indicated in the 

figure. Treatments presented are: no priming + no stress (CC); no priming + drought stress 

(CD); no priming + heat stress (CH); priming + no stress (PC); priming + drought stress 
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(PD); priming + heat stress (PH). Asat is given at actual leaf temperature while Vc,max25, J25 

and TPU25 are given at standardized 25oC. . Data represents mean values +/- SEM, n = 3.

Figure 4: Chlorophyll fluorescence parameters measured at a PPFD of 900 µmol m-2 s-1 of 

‘Gladius’ (a, c, e, g) and ‘Paragon’ (b, d, f, h). Fv/Fm in dark adapted leaves (a and b), 

quantum efficiency of PSII (Fq’/Fm’) (c and d), non-photochemical quenching (NPQ) (e and f) 

and electron transport rate (ETR) based on absorbed light (g and h). The effects of the two 

factors studied: priming (P) and stress (S) and their interaction are indicated in the figure. 

Treatments presented are: no priming + no stress (CC); no priming + drought stress (CD); 

no priming + heat stress (CH); priming + no stress (PC); priming + drought stress (PD); 

priming + heat stress (PH). Different lower letters indicate significant difference at P<0.05, 

ns indicate no significance between treatments within each cultivar. Data represents mean 

values ± SEM, n = 3.

Figure 5. Effects of drought priming during vegetative growth stages on grain yield 

parameters of ‘Gladius’ (a, c, e, g) and ‘Paragon’ (b, d, f, h): total grain number (a and b), 

total grain yield (c and d), yield of primary ear (e and f) and thousand-kernel weight (TKW) 

(g and h) of wheat plants exposed to heat or drought stress during anthesis. The effects of the 

two factors studied: priming (P) and stress (S) and their interaction are indicated in the 

figure.  Treatments presented are: no priming + no stress (CC); no priming + drought stress 

(CD); no priming + heat stress (CH); priming + no stress (PC); priming + drought stress 

(PD); priming + heat stress (PH). Different lower letters indicate significant difference at 

P<0.05 between treatments for each cultivar individually. Data represents mean values +/- 

SEM, n = 4.
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