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Abstract
Coronavirus disease 2019 (COVID-19) has accounted for millions of causalities. While it affects not only individuals but 
also our collective healthcare and economic systems, testing is insufficient and costly hampering efforts to deal with the 
pandemic. Chest X-rays are routine radiographic imaging tests that are used for the diagnosis of respiratory conditions such 
as pneumonia and COVID-19. Convolutional neural networks have shown promise to be effective at classifying X-rays for 
assisting diagnosis of conditions; however, achieving robust performance demanded in most modern medical applications 
typically requires a large number of samples. While there exist datasets containing thousands of X-ray images of patients 
with healthy and pneumonia diagnoses, because COVID-19 is such a recent phenomenon, there are relatively few confirmed 
COVID-19 positive chest X-rays openly available to the research community. In this paper, we demonstrate the effectiveness 
of cycle-generative adversarial network, commonly used for neural style transfer, as a way to augment COVID-19 negative 
X-ray images to look like COVID-19 positive images for increasing the number of COVID-19 positive training samples. 
The statistical results show an increase in the mean macro f1-score over 21% on a one-tailed t score = 2.68 and p value = 
0.01 to accept our alternative hypothesis for an � = 0.05 . We conclude that this approach, when used in conjunction with 
standard transfer learning techniques, is effective at improving the performance of COVID-19 classifiers for a variety of 
common convolutional neural networks.

Keywords Generative adversarial network · Transfer learning · Convolutional neural network · Neural style transfer · Data 
augmentation

Introduction

Coronaviruses are a family of microorganisms known to 
cause respiratory infections. The most recent outbreak 
Coronavirus,Disease 2019 (COVID-19) [5] is spreading 
worldwide [2, 31]. Symptoms of COVID-19 share some 
visual similarities with other common respiratory diseases 
such as pneumonia [20] when observed using an X-ray scan-
ning machine. One of the routine test techniques currently 
used to assist in diagnosing COVID-19 consists of chest 
radiological imaging such as computed tomography and 
X-ray radiographs [38]. Chan et al. [3] show evidence that 
early symptoms can be observed in X-rays in infected areas 
of a patient’s chest. Similarly, Yoon et al. [35] have shown 
that X-ray images contain features helpful in distinguishing 
COVID-19 from other respiratory diseases, such as opacity 
in the lower lung, hence providing a more accurate diagnosis 
of COVID-19.

This article is part of the topical collection “Computer Aided 
Methods to Combat COVID-19 Pandemic” guest edited by 
David Clifton, Matthew Brown, Yuan-Ting Zhang and Tapabrata 
Chakraborty.
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In the context of image classification problems, convo-
lutional neural networks (CNNs) can be effective at super-
vised image-based classification tasks. Yet, they typically 
entail a large amount of labelled training data to be effective 
[11]. Some early thriving CNNs such as AlexNet [13] and 
GoogLeNet [29] require training with thousands of labelled 
samples per class [28], which presents a challenge when 
applying these solutions to emerging problem areas, such as 
the diagnosis of the ongoing COVID-19 pandemic, where 
the availability of labelled data is limited.

Two techniques increasingly being used to improve the 
performance of a classifier with a small number of labelled 
samples are transfer learning and data augmentation. Trans-
fer learning is a technique in which a model is first trained 
on a general task for which there exists a large training 
dataset and then fine-tuned on a related specific task [9]. 
When successful, good performance can be achieved on the 
fine-tuning task using relatively few additional data samples. 
Data augmentation for image classification is a strategy that 
increases the diversity of existing training data by perform-
ing geometric transformations, colour space augmentations, 
feature space augmentation, adversarial training, and gen-
erative adversarial networks (GANs) [26]. The benefit of 
using GANs is that they enable transforming data samples 
from one class into another class using techniques created 
for neural style transfer [6].

In this paper, we illustrate the effectiveness of data aug-
mentation by applying the neural style transfer approach 
to alleviate the insufficiency of labelled samples for image 
classification problems in unbalanced datasets. We rely on 
generating synthetic images from the under-represented 
class. Specifically, we use GANs to synthesise COVID-
positive X-ray images from publicly available X-ray images 
of healthy patients and patients diagnosed with pneumonia, 
which given its visual similarity to COVID-19, challeng-
ing the capabilities of CNNs classifiers. Viewing this task 
as a multi-class problem with three classes: X-ray images 
from healthy patients, diagnosed with pneumonia, and diag-
nosed with COVID-19, this paper is driven by the following 
research question and hypothesis: 

Q:  To what extent can the use of synthetic images improve 
CNN’s ability to classify X-ray images?

From this, we derive the following hypothesis: 

H
1
:  Synthetic images improve the performance of CNNs in 

multi-class classification problem to accurately distin-
guish X-ray radiographs from healthy patients, patients 
diagnosed with respiratory diseases such as pneumo-
nia, and patients diagnosed positive for COVID-19.

The paper begins by introducing related work in Sec-
tion  “Related Work”, followed by a description of our 
approach to generate COVID-19 positive samples in Sec-
tion “Feature Transfer Using a Cycle-Generative Adver-
sarialNetwork”. We outline our experiments in Sec-
tion “Experimental Investigation” and present our results in 
Section “Results”. We conclude with Section “Discussion 
and Conclusion”, where we discuss our results and propose 
further directions.

Related Work

Synthetic Images Using Generative Adversarial 
Networks

GANs are a type of machine learning model consisting of 
two neural networks, a Generator and a Discriminator. While 
the Discriminator classifies data into two classes—realis-
tic or unrealistic, the Generator produces fake data and is 
rewarded for fooling the Discriminator [6]. GAN’s training 
is successful when the Generator learns to generate data that 
is indistinguishable from the training set [7].

Several architectures for GANs have been proposed. 
For instance, Super Resolution GANs (SRGAN) consists 
of three neural networks: a very deep generator network, a 
discriminator network, and a pre-trained VGG-16 network. It 
uses a perceptual loss function defined as the weighted sum 
of the content loss and adversarial loss to achieve a natural 
and more sufficient detail [16], which is commonly used 
when high-resolution images are available. InfoGAN (Infor-
mation GANs) uses concepts from information theory such 
that the noise term is transformed into latent codes which 
provide predictable and systematic control over the output. 
It maximises the mutual information between a small subset 
of the latent variables and a given observation sample, where 
labels act as an extension to the latent space to generate and 
discriminate images better [4], which makes it inconvenient 
for scenarios of scarce data. Cycle-Generative Adversarial 
Network (CycleGAN), however, adapt significant features 
from a given domain to an image from another domain. It 
learns to perform image translation in the absence of train-
ing pairs [37], which makes it convenient for scenarios with 
insufficient data.

Implementation of Transfer Learning Technique 
for Convolutional Neural Network Architectures

CNNs are multi-layer neural networks designed to recognise 
visual patterns. In supervised image classification, two key 
factors in the success of CNNs are the availability of labelled 
data and the topology of CNNs’ architecture.
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The availability of labelled data has a strong influence 
on the performance of a CNN as it can affect the quality of 
the features to characterise the different categories included 
in a given dataset. The CNN architecture contributes an 
inductive bias for spatial invariance, which helps identify 
the most appropriate features characteristic of an image cat-
egory. Efforts aligned to the detection of COVID-19 include 
the adaptations of CNNs such as DarkNet (DarkCovidNet 
[20]), DenseNet (CovidAID [18]), VGG-19 (VGG-19 [2]), 
and ResNet (ResNet50+SVM [24]) architectures, which 
report classification performances of 87%, 92%, 93%, and 
95% for a macro f1-score; respectively. DarkNet, for exam-
ple, is an architecture that introduces a filter layer in each of 
the convolutional layers of the architecture, ResNet50+SVM 
extracts features from the fully connected CNN which are 
fed into an SVM for classification. CovidAID and VGG-19 
vary in the classification layers from the respective CNNs 
architectures. These architectures leverage the feature min-
ing capabilities of transfer learning to improve the convolu-
tional modelling, a downside, however, is that they require 
above 1000 samples of X-ray images for training purposes, 
which presents a challenge when access to data is limited.

CNN algorithms became fundamental in modern archi-
tectures. Its importance goes back to 2012 when modern 
CNN introduced the concept of depth in neural networks 
[15] and showcased their impact at the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) [22] by out-
performing other alternatives by a difference of 10.7%.

To date, some of the most successful architectures con-
sist of deep structures demanding sizeable computational 
power to address complex architectures comprised of mil-
lions of parameters and large datasets assembled by millions 
of images. Nevertheless, in practice, having access to both 
computational power and a sufficient amount of labelled data 
is a challenge. Modern strategies such as transfer learning 
[34] enable an approach wherein a pre-trained CNN retains 
both its initial architecture and the learned experience (e.g. 
weights). In this context, using transfer learning, one can 
make use of pre-trained models (computed over million of 
samples) to predict new categories alleviating the need for 
a large dataset and computational resources.

Transfer learning techniques have proved useful for clas-
sification problems hampered by the insufficiency of labelled 
data. Previous research has shown that with as little as 50 
samples, one can fine-tune a pre-trained model to achieve a 
classification accuracy above 90% [20, 25, 32].

In what follows, we briefly describe some of the most 
relevant CNN architectures discussed in this work.

– AlexNet Architecture winner of ILSVRC 2012 was 
proposed by Krizhevsky et al. [14]. It consists of fixed 
kernels of size 11×11, 5 × 5, and 3 × 3. It comprises five 
convolutional layers, some of which are followed by max-

pooling layers, and two globally connected layers with 
a final 1000-way softmax. It attached ReLU activation 
function after every convolutional and fully-connected 
layer. To be used for transfer learning, the 6th layer of 
the classifier needs to be retrained.

– DenseNet Architecture was proposed by Huang et al. 
[10]. It connects each layer to every other layer in a 
feed-forward fashion. Whereas traditional convolutional 
networks with L layers have L connections, one between 
each layer and its subsequent layer, DenseNet has L(L + 
1)/2 direct connections. To be used for transfer learning, 
the last fully connected linear layer needs to be retrained.

– ResNet Architecture was winner of ILSVRc 2015 pro-
posed by He et al. [8]. It consists of a network of 152 
layers. It introduced a novel architecture with skip con-
nections and features heavy batch normalisation connec-
tions also known as gated units. To be used for transfer 
learning, the last fully connected linear layer needs to be 
retrained.

– ResNeXt Architecture was proposed by Xie et al. [33]. It 
is a highly modularised network constructed by repeating 
a building block that aggregates a set of transformations 
with the same topology. To be used for transfer learning, 
the last fully connected linear layer needs to be retrained.

– SqueezeNet Architecture was proposed by Landola et al. 
[12]. It begins with a standalone convolution layer, fol-
lowed by eight fire modules, ending with a final convo-
lutional layer. Where a fire module comprised a squeeze 
convolution layer (which has only 1 × 1 filter), feeding 
into an expand layer that has a mix of 1 × 1 and 3 × 3 con-
volution filters. To be used for transfer learning, the last 
fully connected linear layer needs to be retrained.

– VGG Architecture was proposed by Oxford university’s 
Visual Geometry Group [27]. It consists of 16 convolu-
tional layers thought a uniform fully connected architec-
ture. To be used for transfer learning, the 6th layer of the 
classifier needs to be retrained.

Other CNNs referenced in this work are GoogLeNet [29], 
MNASNet [30], ShuffleNet [17], Wide ResNet [36].

Feature Transfer Using a Cycle‑Generative 
Adversarial Network

In this paper, we adopted CycleGAN as a technique to gen-
erate augmented X-ray radiographs of patients diagnosed 
as positive for COVID-19 (hereafter referred to as covid-
synthetic Ŷ  ). As described before, this technique’s founda-
tion relies on two CNNs which iterate to transform an image 
from a source category X so that it looks as if it belongs to 
a target category Y [37].
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Discriminator Component

The discriminator component consists of a CNN that sees an 
image and classifies it as realistic or unrealistic.

As presented in Fig. 1, the Discriminator sees a three 
dimensional image of size 128×128× 3 (width, height, depth, 
respectively) and passes it over five convolutional layers with 
a down-sampling factor of two. The first four layers apply 
a BatchNorm and ReLu activation function, while the last 
layer acts as a classifier which outputs a scalar value. The 
output is normalized between 0 and 1 and treated as a prob-
ability score where realistic covid-synthetic images are close 
to 1, and unrealistic covid-synthetic images are close to 0.

Generator Component

Figure 2 shows the generator component, which consists of 
three elements. The first two elements define a convolutional 
encoder network as feature extractor and a convolutional 
decoder network as a feature assembler, whereas a third ele-
ment establishes a network of residual block [8].

The encoder network sees a 128×128× 3 image and down-
samples it by a factor of two resulting in a compressed 

16x16x256 tensor. The compressed image is then passed 
through a network of residual blocks, followed by the 
decoder network that up-samples the output of the residual 
block, which outputs a synthetic image.

Note that while the ReLU activation function is used 
for the convolutional layers, the final transposed convolu-
tional layer uses tanh as activation function since it has been 
reported to be appropriate at addressing saturation and col-
our symmetry in images [21].

The residual block consists of six CNNs with the same 
size input and output, where each network is built upon two 
convolutional layers using ReLU activation function on the 
output of the first layer and BatchNorm to the outputs of 
both layers as depicted in Fig. 3.

Training Pipeline

The workflow for generating synthetic images consists of 
a sequence of iterative steps driven by the pipeline of the 
CycleGAN. As illustrated in Fig. 4, the process starts when 
the Generator is given category of images X as input (a) 
and generates a synthetic image (b). The Discriminator then 
analyses the images from the targeted category Y (c) and 

Fig. 1  Architecture for the CycleGAN’s Discriminator CNN

Fig. 2  Architecture for the CycleGAN’s Generator CNN
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returns a score estimating the similarity of the synthetic out-
put to a realistic or unrealistic appearance (d). The Generator 
uses this score to update its weights using back-propagation 
(e), followed by the reconstruction of the synthetic image.

Every step in this pipeline is repeated for a given number 
of iterations (n) to continuously improve the performance 
of the network.

Experimental Investigation

The approach was tested using a Tesla NV1001 data centre 
consisting of eight GPUs. We designed two experiments in 
which we used a publicly available unbalanced dataset of 
X-ray images collected from 43 publications [19].

Unbalanced Dataset

The dataset consisted of 2905 labelled X-ray samples clas-
sified in one of the following three categories: patients con-
firmed as having no relevant medical diagnoses (healthy, n 
= 1341), patients having a confirmed pneumonia diagnosis 
(pneumonia, n = 1343), and patients having a confirmed 
COVID-19 diagnosis (covid, n = 219). The sample data con-
sisted of conventional radiographic images represented as a 

grayscale image with resolutions ranging from 477×411 to 
2169×1852 pixels (width × height).

Unpaired Source‑Target Sets to Train the CycleGAN

We first trained the CycleGAN to learn to capture the dis-
tinctive characteristics of one category to transfer them into 
another category in the absence of any paired training exam-
ples. In this context, we used the healthy category as the 
source set X and the covid category as the target set Y. The 
model outputs images resembling those from the category 
Y, so we refer to outputs belonging to this category as covid-
synthetic Ŷ .

To populate the covid-synthetic category, we trained the 
CycleGAN under an unsupervised approach in which the 
source and target image sets are unpaired, i.e. X ≠ Y  . The 
source set X consists of 1341 healthy images, whereas the 
target set Y consists of 219 covid images. This approach aims 
to provide sufficient data for the CycleGAN to capture the 
distinctive characteristics from Y and transfer them to images 
from X. Note that as this approach eliminates the need for 
source-to-target image pairs, it leverages the scarce amount 
of images in Y by transferring key features to the widely 
populated X. For the purposes of this work, we generate Ŷ  
consisting of 100 covid-synthetic images (Fig. 5).

To train the CycleGAN, we used Adam optimiser and 
defined the model’s hyperparameters using a learning rate of 
0.0001 and beta values: 0.5, 0.999. The training images were 
resized to fit 224×224× 3 tensors [21]. As a preprocessing 

Fig. 3  Representation of a 
single residual block

Fig. 4  Workflow for generating synthetic images over a CycleGAN

1 https:// www. nvidia. com/ en- us/ data- center/ v100/.

https://www.nvidia.com/en-us/data-center/v100/
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step, we scaled the images from –  1 to 1-pixel range; as it 
has been reported appropriate to address image saturation 
[21]. The CycleGAN was trained for ten thousand epochs 
( ≈ 72 h).

Fine‑Tuning Pretrained CNNs with Transfer Learning

The second experiment aims at balancing a dataset by incor-
porating images from the covid-synthetic category. We eval-
uate the benefit of using synthetic images by analysing their 
contribution in the performance of different CNNs. Thus, 
here we present our baseline and six alternatives to training 
the CNNs by gradually incorporating images from the covid-
synthetic category.

To evaluate the benefit of adding covid-synthetic images 
to train supervised machine learning algorithms, we adapted 
ten common CNNs (Section “Implementation of Transfer 
Learning Technique forConvolutional Neural Network 
Architectures”) using transfer learning technique. Hence, 
we fine-tune by freezing the pre-trained weights up to, but 
not including, the last layer and only retrain the weights from 
the last convolutional layer.

As preparation, we ensured that the input images were 
preprocessed consistent with the original method used to 
train the CNNs, including resizing and normalisating the 
inputs (mean = [0.485, 0.456, 0.406] and std = [0.229, 
0.224, 0.225]). We used the Adam optimiser with learning 
rate: 0.0002 and beta values: 0.5, 0.999 as hyperparameters 
[14].

The CNNs were trained for 50 epochs, but only the model 
with the best validation score was considered.

Driven by our research question “To what extent can the 
use of synthetic images improve CNNs ability to classify 
X-ray images?”, we trained the CNN models with six differ-
ent datasets assembled over covid-synthetic images and com-
pared their performance by looking at the macro f1-score.

The baseline CNN was trained over 15 images across the 
three categories (healthy, pneumonia, and covid + covid-
synthetic), whereas the six CNN models were trained over a 
balanced distribution of images in which synthetic images 
were gradually including as presented in Table 1.

For validation purposes, we used a subset of unseen 
samples consisting of 30 images from each of the dataset’s 
categories (healthy, pneumonia, and covid), and 174 for 
the testing stage where X ≠ Y  (Table 2). Note that images 

Fig. 5  Sample of images to illustrate the creating of covid-synthetic 
images derived from images of the healthy category. It can be 
observed that the quality of synthetic images improves as the training 

progresses. The leftmost column shows images from the healthy cat-
egory and the remaining columns show the progression of the covid-
synthetic image generation process over 30 epochs
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from the augmented category covid-synthetic are used to 
enhance the accuracy of our CNN models; hence they are 
not included as part of the validation dataset.

Results

Here we show the results in three sections. We first analyse 
output samples of synthetic images. Next, we discuss the 
transfer learning performance over ten of the most common 
open-access CNNs across six different models trained over 
covid-synthetic images. Finally, we present a theoretical 
evaluation through a hypothesis test using one-tailed t score 
and p values for � = 0.05.

Comparison Between Source Samples and CycleGAN 
Generated Samples

The covid-synthetic category was populated with a single 
batch of 100 synthetic images generated after training for 
ten thousand epochs (Fig. 6).

The feature space can be observed over the gradient-
weighted class activation mapping (Grad-CAM) [23], which 
uses the gradients flowing into the final convolutional layer 

Table 1  Distribution of labelled samples across the assembled train-
ing datasets

The first setting defines the baseline, whereas the rest represent six 
variations in which covid-synthetic samples are gradually included 
(left column)

Healthy Pneumonia Covid + 
covid-
synthetic

Baseline 15 15 15 + 0
(+) 15 GAN 30 30 15 + 15
(+) 30 GAN 45 45 15 + 30
(+) 45 GAN 60 60 15 + 45
(+) 60 GAN 75 75 15 + 60
(+) 75 GAN 90 90 15 + 75
(+) 90 GAN 105 105 15 + 90

Table 2  Distribution of labelled X-ray radiographs

Category Validate Test Total

Healthy 30 174 204
Pneumonia 30 174 204
Covid 30 174 204
Total 90 522 612

Fig. 6  Sample batch of 16 tuples of images after the CycleGAN performed ten thousand iterations. Left: a sample from the healthy category, 
right: a sample from the covid-synthetic category
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to produce a heat map highlighting the features that most 
contributed to the predicted classification.

In Fig. 7, the top images are samples from each of the 
three categories available in our dataset; below, is a heat map 
highlighting the feature space characterising each category 
where the darkest red colour represents the most consider-
able contribution to classification criteria.

As it can be observed, images from the covid category 
show a higher number of feature areas highlighted in red 
compared to those from the pneumonia category. Also, note 
that the sample belonging to the healthy category does not 
depict any feature.

In Fig. 8, we present the Grad-CAM mapping over a 
sample of images from the covid-synthetic category. As it 
can be observed, the feature space captured when using the 
synthetic images is similar to those observed from the covid 
category.

Convolutional Neural Network

As this paper is motivated by the insufficient labelled data for 
training a CNN, we made use of transfer learning techniques 
(described in Section “Implementation of Transfer Learn-
ing Technique forConvolutional Neural Network Architec-
tures”) where we used a small number of images consisting 
of three categories: healthy, pneumonia, and covid + covid-
synthetic to fine-tune the last convolution layer of the CNN 
(see Table 1). We present the results based on the macro 

f1-score as a metric to evaluate the performance of each 
CNN model trained over a dataset that gradually integrated 
the synthetically generated images. As it can be observed 
in Table 3, the macro f1-score gradually increases across 
the six variations augmented with the synthetic samples. 
This table shows that the CNN’s performance increases as 
a larger number of covid-syntetic samples are integrated 
improving their classification accuracy up to 21% in the 
case of SqueezeNet model when training with datasets aug-
mented by + 90 covid-synthetic images.

To evaluate the contribution of the CycleGAN-generated 
images as part of CNN training, we conducted a hypothesis 
test using a paired sample student’s t test statistical analysis. 
We compared the macro f1-score from the baseline against 
each of the six alternatives that include synthetic images. 
The calculation was conducted over a one-tailed t score.

As it can be observed in Table 4, results across the six 
CNNs model trained over different variations of data aug-
mentation reject the null hypothesis H

0
 in favour of the alter-

native hypothesis H
1
 for an � = 0.05.

Comparison Against Other Methods

Different research has been conducted over chest X-ray 
radiographs (Section “Implementation of Transfer Learn-
ing Technique forConvolutional Neural Network Architec-
tures”). Here we compare our findings with some of the 

Fig. 7  Tuples of X-ray radiographs and their feature space highlighted by Grad-CAM maps. It shows a sample of a healthy individual (left), a 
patient diagnosed as positive for pneumonia disease (centre), and a patient diagnosed positive for COVID-19 (left)
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studies that used the same class distribution as we do in 
this paper (i.e. healthy, pneumonia, COVID-19).

As it can be observed in Table 5, efforts from other 
researchers attempting different methodologies to model 
a classifier. These methodologies rely on transfer learn-
ing technique with CNNs. A key aspect to observe, how-
ever, is the data distribution utilised for training purposes. 
While their performance is comparable, one of their limi-
tation relying on the imbalance distribution of the datasets 

Fig. 8  A sample of three synthetically generated images of patients diagnosed positive for COVID-19 taken from category covid-synthetic. X-ray 
radiographs (above) and their feature space highlighted by Grad-CAM maps (below)

Table 3  Macro f1-score that 
measures the performance of 
each CNN across six variations 
in which covid-synthetic images 
are gradually integrated as part 
of the training of images

CNN Baseline +15 +30 +45 +60 +75 +90

AlexNet 0.94 0.94 0.94 0.96 0.94 0.95 0.96
DenseNet 0.77 0.82 0.86 0.83 0.85 0.84 0.87
GoogLeNet 0.94 0.95 0.95 0.94 0.96 0.94 0.95
MNASNet 0.83 0.87 0.86 0.87 0.85 0.88 0.88
ResNet 0.94 0.94 0.95 0.95 0.95 0.96 0.95
ResNeXt 0.93 0.95 0.95 0.95 0.95 0.96 0.96
ShuffleNet 0.92 0.94 0.94 0.95 0.95 0.95 0.95
SqueezeNet 0.65 0.77 0.81 0.83 0.85 0.86 0.86
VGG 0.93 0.94 0.95 0.94 0.95 0.95 0.95
Wide ResNet 0.90 0.92 0.95 0.95 0.94 0.95 0.94

Table 4  Statistical calculation of a paired sample t test

Alternatives Mean Standard 
deviation

T score p value

(+) 15 GAN 0.03 0.04 2.57 0.02
(+) 30 GAN 0.04 0.05 2.64 0.01
(+) 45 GAN 0.04 0.05 2.55 0.02
(+) 60 GAN 0.04 0.06 2.36 0.02
(+) 75 GAN 0.05 0.06 2.57 0.02
(+) 90 GAN 0.05 0.06 2.68 0.01



 SN Computer Science           (2021) 2:410   410  Page 10 of 12

SN Computer Science

adopted for training the models; which one could argue 
can limit the performance of CNN’s feature modelling.

When comparing the related work against the higher 
CNN modelled with covid-synthetic (AlexNet, ResNeXt), 
one can observe that the classification performance is simi-
lar. Nonetheless, our findings suggest that the performance 
of a CNN can be unaffected in scenarios where there are as 
little as 15 labelled samples, as one can rely on synthetic 
samples to balance a dataset.

Discussion and Conclusion

The contribution of this work was to illustrate the impact 
of neural style transfer as an approach for alleviating the 
insufficiency of labelled samples in imbalanced datasets 
when modelling image classification problems. Mainly, we 
focused on the task of chest X-ray radiograph for the diagno-
sis of COVID-19 as a computational alternative to accelerate 
the development of machine learning technology to assist in 
the diagnosis of this medical condition.

As the neural style transfer refers to techniques enabled to 
adopt key characteristics from one set of samples to another 
to perform image transformation, in this paper, we used a 
CycleGAN to generate a set of samples from X-ray images 
of healthy individuals (widely available) so that they look 
as if they belong to an X-ray image set of patients diagnosed 
positive for COVID-19 (covid-synthetic), scarcely available. 
To evaluate this approach, we made use of transfer learning 
techniques by retraining some of the most successful CNNs. 
The evaluation consisted of assessing the macro f1-score 
across six different alternatives in which covid-synthetic 
images are gradually incorporated as part of the training 
set of images.

It can be observed that the classification accuracy from 
the baseline is generally high across the different CNNs con-
sidering the small number of samples used at the training 
stage (n = 15), which we attribute to the adoption of the 
transfer learning technique over the balanced dataset used.

As presented in Table 5, our findings suggest that by 
adopting synthetic images, training CNNs with transfer 
learning techniques preserves the performance of feature 

mining, which can be an important contribution in scenar-
ios of emerging phenomena (such as COVID-19), and more 
generally in situations of limited data availability.

The ability to extract features relevant to an image cat-
egory is determined by diverse factors such as the convolu-
tional design of CNN layers or the number of training sam-
ples within a category. In this work, one can observe that as 
the synthetic images are gradually incorporated as part of 
the training set, the classification accuracy increases across 
the different CNN architectures, which we have shown is 
likely due to the contribution of covid-synthetic images used 
as data augmentation to training the different CNN models.

In summary, our results show the feasibility of using 
synthetic X-ray images to alleviate the insufficiency of a 
radiograph of patients diagnosed positive for COVID-19. 
While the statistical results show confidence for a one-tailed 
t score = 2.68 and p value = 0.01 for � = 0.05 , we encourage 
the community to experiment further with the neural style 
transfer approach to generating synthetic images. Building 
upon innovative style transfer techniques can accelerate 
the development of image classification algorithms to cope 
with the insufficiency of labelled data in erratic scenarios of 
emerging clinical contingencies.
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Table 5  Comparison of 
performance achieved for 
a multi-class classification 
problem across different 
methods trained using chest 
X-ray images

Study Data distribution Methodology f1-score (%)

Tulin et al. [19] 125 COVID-19 500 Pneumonia 500 Healthy DarkCovidNet 87.02
Arpan et al. [17] 115 COVID-19 3867 Pneumonia 1341 Healthy CovidAID 92.30
Ioannis et al. [1] 224 COVID-19 700 Pneumonia 504 Healthy VGG-19 93.06
Sethy et al. [23] 127 COVID-19 127 Pneumonia 127 Healthy ResNet50 + SVM 95.52
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