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1 Introduction 

Given a person-of-interest query, the goal of a person re-identification (Re-ID) algorithm is to 

retrieve images containing the same person in a specified pedestrian database captured across 

several different security cameras.  Automatic person re-identification has recently attracted much 

attention and has become an important component in modern video surveillance systems. Despite 

progress in this area, person re-identification is still a challenging problem in complex situations 

such as occlusions, low resolution, and large variation in posture. In these situations, visual cues 

can be dramatically different. To address these challenges, powerful deeply-learned 

representations1,2,3,4 have been widely applied and have obtained promising performances 

compared with hand-crafted approaches5,6,7. 
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The traditional approach employed by deeply-learned representations is to extract global 

features from a person’s body. However, the process of global feature extraction can lead to a 

problem that non-salient regions are easily ignored and do not contribute to improved 

discrimination. To address this issue, many approaches learn a discriminative partial representation 

and this has proven to be more effective than a global feature approach in person Re-ID accuracy. 

Recent state-of-the-art part-based methods for person re-identification can be categorized into 

three groups: 1) prior knowledge2,8,9 such as pose estimation is utilized as structural information 

to locate partial regions. Nevertheless, as the off-the-shelf pose estimation model predicts 

unexpected body landmarks, the performance of Re-ID is inevitably influenced. 2) Attention-based 

methods 3,10,11 focus on enhancing features in salient parts while the selected parts lack semantic 

information. 3) Region based  methods4,12 produce bounding boxes for locating parts, but the 

proposed parts typically have fixed semantics and cannot represent all possible discriminative 

parts. Additionally, these methods use the output of the final convolution layer as a representation 

in order to distinguish the person’s identity, which mainly consists of high-level semantic features 

and discards mid-level semantic features. 

For the person re-identification task, there are two types of loss functions, the metric loss13,14,15 

and the softmax loss1,3,4. If an image pair belongs to the same identity or not, it is just a weak label 

and the metric loss may have a compromised efficiency when using a  large database. In contrast, 

softmax loss leverages image labels to supervise the training of network parameters, which results 

in a superior accuracy using both the Market-150117 and DukeMTMC-ReID18 datasets. However, 

both these loss functions give the same importance to each sample (image level) or stripe (local 

level), ignoring the image complexity. . 
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In this paper, we focus on partial discriminative features to enhance the performance of person 

Re-ID. Inspired by two feature learning strategies, Horizontal Pyramid Matching (HPM)19 and 

Devil in the Middle (DIM)20, we propose a simple yet effective Multi-level and Multi-scale 

Horizontal Pooling Network (MMHPN) to fully exploit global information in the high semantic 

level and partial information in the middle semantic level. Specifically, we make the following 

three contributions. 

1)  We horizontally slice the deep feature maps, produced by different convolutional layers, 

into various sizes of partition stripes for multi-level and multi-scale pooling as shown in Figure 1.  

We then learn to classify each partial stripe independently. Intuitively, integrating multi-level 

semantic information from different layers tends to enhance the capability of being context-

invariant whilst learning multi-scale information by pyramid pooling can improve the 

discriminative feature of a person. We combine the strengths of the above two strategies, thus 

making global and local feature representation more robust and discriminative. 

2) As an alternative to max/average pooling in each partition, we propose an Adaptive Pooling 

Strategy (APS) as a weighted summation of Global Average Pooling (GAP) and Global Max 

Pooling (GMP) to automatically balance the significance of each. Max pooling focusses on the 

salient local features but fails to exploit the available global information of the person under 

consideration.  Average pooling represents global information yet can easily lead to over-estimated 

body regions. Adaptively combining them not only utilizes their complementary abilities to 

enhance the discrimination of features but also balances the effectiveness between global and local 

information.  

3) We propose a Part Sensitive Loss (PSL) to give more importance to difficult scenarios and 

partition stripes during training.  The motivation is that easy examples or stripes should not 
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dominate when updating the network. Therefore, we decrease the contribution of easy examples 

to facilitate the training of the person Re-ID network. 

We conduct performance evaluation using  current benchmark person re-identification datasets 

and demonstrate that the proposed method can achieve state-of-the-art performance. In particular, 

the mAP scores on the Market-1501, DukeMTMC-ReID and CUHK03 datasets are 83.4%, 75.2%, 

65.4%, respectively. 

 

 

 

Fig. 1 Illustration of the proposed Multi-level and Multi-scale Horizontal Pooling Network. The person is split into 

different horizontal stripes from multiple scales and multiple semantic levels. The feature representation produced by 

APS of each stripe are then utilized to learn a person’s identity independently. Note that ⊕ stands for a 

weighted summation between GAP and GMP. 

2 Related Work 

The success of deep learning methods was initially extended to the person Re-ID community in 

2014, when person Re-ID works21,22 first considered a Siamese network architecture using pairs 
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of images to learn the latent features of human body parts. The performance of this approach 

surpassed existing hand-crafted Re-ID methods. A number of methods based on deep 

convolutional neural networks have been proposed for simultaneously learning both feature 

representations and distance metrics. For example, Ahmed et al.,13 improved the Siamese network 

by measuring feature similarity using a subtraction between the features of one input image and 

the features in a nearby location of another image. Recent works have also started to exploit the 

effectiveness of mid-level features. Yu et al.,20 proposed a simple approach where the mid-layer 

and final-layer feature maps are fused into a single representation, followed by a softmax function 

to predict person identity. Compared with [20], each horizontal feature map in the proposed mid- 

and high-level semantic branches are supervised by an independent part sensitive loss rather than 

fusing all the feature maps followed by a softmax loss. 

More recently, person Re-ID methods based on deep learning have demonstrated improved 

performance over previous approaches. Zhang et al.,23  utilise part alignment by matching the 

shortest path as well as manual learning in distance metrics to facilitate global feature 

representation. Sun et al.,24 cropped the feature maps into six stripes in the vertical orientation to 

represent local parts and concatenated them as a final feature representation. Unfortunately, it 

assumes that images containing people are well aligned and thus the approach is prone to errors 

due to outliers. To tackle this issue, Li et al.,19 proposed a Horizontal Pyramid Matching (HPM) 

network to mitigate the outlier issue by incorporating a slack distance, yet it slices feature maps 

into stripes at the same convolutional layer. In the proposed MMHPM approach, we split feature 

maps into four scales at different convolutional layers to fuse mid- and high-level semantic features 

for effectively distinguishing person identity. 
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Applying this strategy, we argue for performance improvement, we can draw the conclusion 

that combining local representations of body parts is the most effective way to enhance the 

discriminative ability of the model. As discussed in Section 1, we divide deep part-based methods 

into three categories: The first one utilizes extra tools such as pose estimation and landmark 

detection2,8 to parse pedestrians. In particular, Su et al.,2 formulate a Pose-driven Deep 

Convolutional (PDC) module and feature weighted sub-network to overcome pose deformations 

and view variations. Secondly, several works integrate attention mechanism into person Re-Id for 

salient parts and report encouraging improvements3,10,11. Thirdly, region based methods 25,26 are 

exploited to locate semantic parts in several part-based methods27,12. Yao et al.,12 propose Part Loss 

Networks which automatically generates a set of boxes as body parts in an unsupervised manner 

and learn each part for person classification independently. In the proposed method, we only use 

simple horizontal stripes in the multi semantic level and we use multi pyramid scales as part 

regions for local feature learning. 

Generally, two types of loss function are used as supervisory signals for person re-

identification: metric and classification loss. For the first metric loss used in embedding learning, 

the person Re-ID is considered as a ranking problem in which a pair or triplet of images is fed into 

a Siamese-like network. For instance, the contrastive loss28 is used in a verification network13,16,17 

to determine whether a pair of images is similar or not, which encourages the network to make the 

distance of intra-class pairs closer and push the images of inter-class further apart. This loss 

function is effective and is suitable for a person Re-ID task as it naturally reduces the intra-personal 

variations due to its retrieval nature. However, the performance of this kind of model is limited by 

a large pedestrian database. Whether a pair of images is similar or not, is just a weak label and it 

does not take full advantage of identity annotations in Re-ID. Unlike aforementioned approaches, 
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other works4,21,24 treat person Re-ID not as a ranking problem, but rather as a recognition problem. 

Due to its strong robustness to a variety of multi-class classification tasks, softmax loss remains 

the overwhelming choice as a supervisory signal. Besides, integrating metric loss and classification 

loss may be accepted as a way to improve the overall performance of person Re-ID. In [23, 29, 

30] authors adopt triplet loss and softmax loss as joint supervision to train a convolutional neural 

network (CNN), achieving promising performance when using the benchmark datasets. However, 

the aforementioned loss functions all treat both simple and complex images  equally in the training 

phase. 

3 Method 

In this section, we first present an overview of the proposed Multi-level and Multi-scale Horizontal 

Pooling Network (MMHPN). Then we show details on the proposed Multi-level and Multi-scale 

Horizontal Pooling framework and Part Sensitive Loss.  

3.1  Overview of network 

The structure of the MMHPN is shown in Fig 2. The images containing people are input into the 

backbone network to extract feature maps. Then the feature maps undergo res_conv5_1, 

res_conv5_2 and res_conv5_3 blocks in turn (see Figure 2) and we define this straightforward 

stream with high-level information as a global branch. During this process, in order to make the 

extracted feature maps discriminative at different semantic levels, we introduce two local branches 

at the middle semantic level, which are immediately after the res_conv5_1 and res_conv5_2 blocks 

respectively. The global branch and local branches are not separated, thus they are complementary 

for learning feature embedding. We utilize different scales of the horizontal pooling module to 

capture spatial information in global and local stripes.  For each horizontal stripe, we transform 
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the feature maps to vectors by using an APS, which automatically balances the importance between 

the GAP operation and GMP operation. Then the  MMHPN leverages a non-share convolution 

layer to reduce the channel dimensions from 2048 to 256. Finally, each column feature vector is 

input into a classifier independently, which consists of a non-shared fully-connected (FC) layer 

and a softmax layer, to predict the ID of each input image. During training, the MMHPN is 

supervised by minimizing the summation of part sensitive losses over global and local branches 

of ID predictions. At the testing phase, we concatenate all feature vectors to form a 3780-

dimension descriptor containing information at different semantic levels and pooling scales. 

 

Fig. 2 Overview of Multi-level and Multi-scale Horizontal Pooling Network. The input image firstly goes forward 

through a ResNet-50 (before res_conv5) to extract feature maps. Then two local branches right after res_conv5_1 and 

res_conv5_2 in middle semantic level are introduced to boost discriminative information. Afterwards, different scales 

of pooling are used to produce feature representation of each stripe using adaptive pooling strategy. Finally, we assign 
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each stripe an independent classifier to predict a partial-level person identity. During testing, we concatenate features 

of stripes at different scales and semantic levels to form the final representation of each image. 

3.2 Multi-level and Multi-scale Horizontal Pooling Module 

3.2.1 Backbone Network 

The backbone of the proposed MMHPN is ResNet-5031, with a relatively concise architecture to 

obtain competitive performance compared with other person Re-ID systems23,29 and to be 

consistent with previous methods24,19 for a fair comparison. There are some slight modifications 

from the original ResNet-50. Firstly, the global average pooling layer and subsequent layers are 

removed. Additionally, the stride of the res_conv4_1 block is set to 1 which enlarges the feature 

maps from 1/32 to 1/16 of the original image size for more abundant spatiality and granularity of 

detected features. Finally, two local branches immediately after res_conv5_1 and res_conv5_2 are 

added to learn mid-level semantic features as illustrated in Figure 2. 

3.2.2 Multi-level Semantic Module (MSM) 

An effective person Re-ID model should possess the capability of extracting discriminative 

features at different semantic levels. However, most existing person Re-ID systems take direct 

advantage of deep neural networks, typically designed for object recognition, and employ a final 

layer output with high-level semantic features as a representation. As a result, the mid-level 

features are missed and cannot help to distinguish identity effectively. Therefore, it is essential for 

deep person Re-ID to mix mid- and high-level semantic features in a fusion module. 

We adopt multi-level semantic branches in Fig. 2 where we define upper and middle branches 

with local information as mid-level semantic branches.  We denote the lower branches that contain 

global information as high-level semantic branches. Moreover, the two mid-level branches are also 
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regarded as auxiliary classifiers connected to res_conv5_1 and res_conv5_2 blocks to increase the 

gradient signal, encourage mid-level discrimination, and provide additional regularization. 

As shown in Fig 3, when we narrow the area of represented regions to learn local features, we 

can observe that the network encourages response of local attention maps starts to cluster on some 

salient semantic patterns which are not exploited in a global attention map. From the 

aforementioned  observations, we can conclude that body parts at  small scales tend to learn mid-

level details such as head, pants and shoes, and  body parts  at larger scales will exploit high-level 

semantic information. Hence, we slice feature maps into 8, 4 and 2 stripes at local branches to 

enable the system to focus on mid-level information as in Fig 2. The global branch contains the 

complete feature map without any partition information. As a result, the global and local 

representation with high and mid-level semantic information respectively are combined to form 

the final feature descriptor for the discriminative person Re-ID model. 

 

Fig. 3 Attention maps in different scales produced by the last convolutional output of different models. Second 

Column: a person image. First Column: global attention map by IDE model. Third Column: four local attention maps 

corresponding to four spilt stripes of the person image, produced from part-based model. 
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3.2.3 Multi-scale Horizontal Pooling Module (MHPM) 

Due to the requirement of a fully connected layer needing a fixed-length vector, the convolutional 

neural network is obliged to accept a fixed-size input image, which is often contradictory to 

pedestrian images as well as images of the body parts  which typically are of varying sizes or 

ratios. As a result, the recognition accuracy is compromised due to the limited scale of the input 

image. 

To eliminate the requirement for arbitrarily sized input images, we adopt the concept of HPM19 

which splits and pools the feature maps at  four scales. As shown in Fig 3, the proposed multi-

scale pooling module has four scales and the output feature maps of each scale are split into 8, 4, 

2, and 1 stripe(s) respectively and the adaptive pooling strategy is applied to each stripe. By 

applying multi-scale horizontal pooling, we can obtain both a fixed-dimensional vector for body 

parts with varying sizes, and also capture a discriminative representation of partition from global 

to local, from high-level to mid-level and from coarse to fine. Moreover, global and local cues are 

stacked in four scales together, which contributes to making the final predictions more reliable, 

especially when the key parts are missing.  

3.2.4 Adaptive Pooling Strategy 

Average pooling usually exploits the global extent of the body, yet it is prone to over-estimate the 

unrelated background, while max pooling focusses on the most salient local region but lacks 

discriminative information. Intuitively, adaptively integrating GAP and GMP is appropriate to 

automatically balance the effectiveness between global and local information in each stripe. To 

this end, we propose an Adaptive Pooling Strategy (APS) using the weighted summation of the 

GAP and GMP operations. Specifically, the proposed MMHPN has four scales and in each scale 

the feature maps inherited from backbone network B are divided into a specific number of stripes 
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horizontally and equally. We denote the j-th stripe in the i-th scale as . Note that the indexes, 

i and j, are incremented from top to bottom. Then, each stripe is pooled by a weighted sum of the 

GAP and GMP operations to obtain the feature vector . 

 , (1) 

where  denotes learnable parameters and is shared in the same scale. We also try to set each 

stripe in the same branch to share the parameter , but the Re-Id model fails to converge due to 

the obvious difference of stripe scale in the upper branch. With this design, each partition at 

different scales could voluntarily choose to focus more on either global information or local 

information by adaptively adjusting the learning  parameter . Then a convolutional layer is 

employed to reduce the channel dimensions from 2048 to 256 in each scale. Finally, these reduced 

dimension vectors  , with the same index i, are concatenated to obtain the final feature 

descriptor for the pedestrian images. 

3.3 Part Sensitive Loss  

With the consideration of strong robustness to a variety of multi-class classification tasks, we 

employ softmax loss in the proposed MMHPN to unleash the discriminative capability of the deep 

representation. As discussed in Section 3.1, three branches at different semantic levels have 

complementary strengths to learn discriminative descriptors for pedestrian images. In order to 

maximize these complementary effects, the three branches of the network are trained jointly to 

distinguish person identity in a global and local feature learning manner. We utilize a non-shared 
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fully connected layer as classifier for each stripe. Specifically, we input each feature column vector 

 into a corresponding classifier  and employ a softmax layer to predict person identity. In 

the training phase, we consider  each person as a class, and the MMHPN as a function that maps a 

given image to a set of predictions . Each  can be formulated as: 

 , (2) 

where y is the ground truth for person identity of input image I, N is denoted as the total number 

of person identities in the training dataset and  is defined as the learned weight in . The 

loss function on this sample is computed by the sum of softmax loss of the predicted probability 

. 

 , (3) 

where M is the size of the mini-batch in the training phase. 

However, one notable problem of using the softmax loss is that each example or stripe is given 

the same importance during the training process. This results in the softmax loss ignoring how 

complex  the images examples or stripes are. The easy examples  incur the loss with non-

trivial magnitude. When summed over a large number of simple examples, these small loss values 

overwhelm the valuable, whilst, rare and complex examples with sophisticated illumination, 

deformation and scale variation that can be learned to improve robustness and further enhance the 

generalization ability. As a consequence, easily classified examples or stripes comprise the 
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majority of the softmax loss and dominate the gradient. Hence, we propose a Part Sensitive Loss 

(PSL) to encourage the network to focus more on the complex examples or stripes and decrease 

the contribution of simples ones when training the classifier. The predicted probability  of each 

stripe with the same index i and differing index j is employed with a softmax function to obtain 

the easy and hard degree  across the whole body. Thus  can be defined as: 

 , (4) 

where P is the corresponding number of stripes at each scale. From Eq. (4), we can observe that 

as the value of predicted probability  increases, the hard and easy degree  increases 

similarly, which means the corresponding stripe in the whole body can be classified more easily. 

When  for a specific stripe is significantly larger than other stripes, we should reduce the weight 

of it to decrease the effectiveness of this easy stripe and focus on the hard stripes. Hence, we align 

the proposed approach to be consistent with focal loss33 and attach a modulating factor in terms of 

the hard and easy degree  to the softmax loss. To be specific, we build the PSL upon the 

softmax loss: 

 , (5) 

where  is a tunable focussing parameter with a range value of [0, 2]. The stripes with the same 

index i and differing index j employ the same tunable parameter . We note two properties of the 
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PSL: 1) When a stripe is considered to be a hard stripe and  is small, the modulating factor (

) is close to 1 and the loss is not affected. As  tends to 1, the factor ( ) approaches 

0, and the loss of the easily classified stripe in the whole body is given a reduced weight. 2) The 

focussing parameter  can reflect the extent to which  easy stripes are down-weighted. When the 

focussing parameter  is 0, the Part Sensitive Cross loss is equivalent to the softmax loss. As the 

focussing parameter  is increased, the effect of the modulating factor ( ) is enhanced 

similarly. Intuitively, the modulating factor ( ) decreases the loss contribution from the 

easily classified stripe and enforces the requirement where each stripe could receive a lower loss. 

For instance, when the focussing factor is 2, the part sensitive loss of an easy stripe with  =0.1 

is 1% of the softmax loss. This in turn casts a high importance to a hard misclassified stripe whose 

loss is scaled down by at most 4 times when  <=0.5 and  = 2. 

4 Experiment 

 We evaluate the proposed method using three benchmark datasets Market-150117, DukeMTMC-

reID18,34 and CUHK0321. 

4.1 Dataset and Evaluation Protocol 

4.1.1 Market 1501 Dataset 

The dataset contains 32,368 pedestrian images with 1,501 different identities captured by six 

manually installed cameras. The dataset is divided into a training set and a test set, the training set 
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contains 12,936 images of 751 identities, the testing set contains 3,368 query images and 19,732 

images of 750 identities in the gallery. On average, each person has 3.6 corresponding images 

taken from different angles. These images can be divided into two categories, namely, clipping 

images and DPM35 automatically detecting pedestrian image. 

4.1.2 DukeMTMC-ReID Dataset 

The DukeMTMC-ReID dataset is composed of 36,411 images of 1,812 identities from 8 high-

resolution cameras where 1,404 identities appear in more than two cameras and the remaining 408 

identities are used as distraction images. Among the 1,404 identities, the dataset randomly selected 

16,522 images of 702 identities as a training set, and the remaining 702 are categorized into a test 

set, including 2,228 query images and 17,661 gallery images. DukeMTMC-ReID is considered to 

be one of the most challenging Re-ID datasets so far, because it has many common situations with 

high similarity and also contains huge differences in person with the same identity. 

4.1.3 CUHK03 Dataset 

This CUHK03 dataset includes 1,467 labeled persons from the CUHK campus, with a total of 

14,097 images. Each identity is captured by two disjoint cameras, and each identity has 

approximately 4.8 corresponding images per view. The annotation of this dataset includes 

manually tagged pedestrian bounding boxes and automatic detections by DPM. We conduct the 

performance evaluation based on the latter. 

4.1.4 Evaluation Protocol 

We perform a standard evaluation protocol on each dataset. In order to evaluate the performance 

of the proposed person Re-ID method, we report the Cumulative Matching Characteristics (CMC) 

in terms of Rank-1 accuracy and mean Average Precision (mAP) for all candidate datasets. CMC 
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represents the accuracy of the pedestrian search and is accurate when there is only one ground 

truth in each query. However, when multiple ground truths exist in the gallery CMC may not have 

sufficient discrimination and often uses mAP to reflect recalls. For the DukeMTMC-ReID and 

CUHK03 datasets, the evaluation is performed in a single query mode. As for Market-1501, the 

experiments are conducted both using single query and multiple-query settings. Meanwhile, to 

simplify the evaluation procedure using the CUHK03 dataset, we adopt the new protocol used in 

[36]. Note that all the results are reported without using the re-ranking proposed in [36]. 

4.2 Implementation Details 

The proposed MMHPN model is trained and fine-tuned using the Pytorch framework. For the 

backbone network, we adopt the ResNet-50 model with weights from a pre-trained ImageNet. 

During training, we only employ horizontal flipping to train pedestrian images for data 

augmentation. in order to obtain an appropriately sized feature map for multi-scale and multi-level 

pyramid pooling, all the training images are resized to 384x128 pixels. We set the mini-batch size 

to 64 for all experiments and trained the model for 60 epochs in total. With respect to the learning 

rate strategy, we set the learning rate to 0.1, and decay it to 0.01 after 30 epochs. As for the 

optimizer,  stochastic gradient descent (SGD) with momentum 0.9 and weight decay factor 0.0005 

was selected to update the parameters in each mini-batch. The focussing factor  in PSL is set to 

0.3, 0.5, 1.5, 2.0 respectively. 

4.3 Comparison with State-of-the-Art Methods 

We compare the proposed method, MMHPN, with current state-of-the-art approaches using three 

benchmark datasets to demonstrate the improved performance achieved by the proposed method. 

The experimental results are detailed in the following sub-sections. 
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4.3.1 Evaluation using  Market1501 

The compelling results using the Market-1501 dataset are shown in Table 1. the proposed MMHPN 

achieves a mAP of 83.4% and Rank1 accuracy of 94.6%, which improves the former method by 

0.4% on the Rank1 accuracy and 0.7% on the mAP in a single query mode. The metric is only a 

little higher than HPM19  and the mAP and Rank1 accuracy of the HPM we implemented are just 

81.6% and 93.5% respectively. In addition, it should be noted that we do not adopt any post-

processing operation such as a re-ranking approach36, which will further enhance performance for 

person Re-ID especially with respect to  mAP. With the multiple query setting on this dataset, we 

also obtain similar performance improvements, achieving 1.4% and 2.8% improvements for Rank1 

and mAP respectively. The HPM has the closest performance to the proposed  MMHPN, which 

also utilizes part-based feature learning for person Re-ID. Nevertheless, there are two main 

disadvantages of HPM: 1) it only makes use of various scale pyramid pooling on the last feature 

map, which merely leverages high-level semantic features to form the final descriptor; 2) it gives 

the same importance to each partition in the whole human body, which ignores the effectiveness 

of complex images when updating the gradient. In contrast, the proposed MMHPN approach 

conducts horizontal pyramid pooling on different feature maps to fuse mid- and high-level features 

for further enhancement of  discriminative information. In addition, we focus more on difficult 

partitions and reduce the contribution of simple ones by using part sensitive loss. 

Table 1 Comparison of state-of-the-art results on Market1501 with Single Query setting and Multiple Query setting. 

Methods Single Query Multiple Query 
Rank1 mAP Rank1 mAP 

Spindle9 76.9 - - - 
MSCAN 4  80.3 57.5 86.8 66.7 
DLPA27 81.0 63.4 - - 
SVDNet25 82.3 62.1 - - 
TripletLoss16 84.9 69.1 90.5 76.4 
Part loss12 88.2 69.3 - - 
Multi-Scale2 88.9 73.1 92.3 80.7 
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DIM20  89.9 75.6 93.3 82.4 
HA-CNN3 91.2 75.7 93.8 82.8 
GP-reid32 92.2 81.2 94.7 87.3 
PCB24 92.3 77.4 - - 
Deep-Person29 92.3 79.6 94.5 85.1 
Aligned-ReID23 92.6 82.3 - - 
PCB+RPP24 93.8 81.6 - - 
HPM19 94.2 82.7 - - 
HPM (Ours) 93.5 81.6 95.8 87.1 
MMHPN 94.6 83.4 96.1 88.2 

 

4.3.2 Evaluation using DukeMTMC-ReID 

Comparison between MMHPN and state-of-the-art approaches using the DukeMTMC-ReID 
dataset is given in Table 2. This is a challenging dataset due to the pedestrian images being 
captured from eight different cameras and the bounding box size varies dramatically across 
different camera views. Nevertheless, the proposed MMHPN achieves 87.8% for Rank-1 
accuracy and 75.1% for mAP, outperforming all the state-of-the-art methods and achieving an 
even better improvement of 1.5% Rank1 accuracy as well as 0.9% mAP compared with other 
approaches. Beyond HPM, the best model PCB19 conducts a powerful post-processing method 
named Refined Part Pooling (RPP) to re-assign outliers from the human body partition. 
Combined with any post-processing operation, we believe that the performance is expected to be 
further enhanced. 

Table 2 Comparison of state-of-the-art results on DukeMTMC-reID 

Methods Rank1 mAP 
SVDNet25 76.7 56.8 
Multi-Scale2 79.2 60.6 
DIM20  80.4 63.9 
HA-CNN3 80.5 63.8 
Deep-person29 80.9 64.8 
PCB24 81.8 66.1 
PCB+RPP24 83.3 69.2 
GP-reid32 85.2 72.8 
HPM19 86.6 74.3 
HPM (Ours) 85.6 71.7 
MMHPN(Ours) 87.8 75.1 

4.3.3 Evaluation using CUHK03 

Table 3 shows evaluation results using the CUHK03 dataset where pedestrian bounding boxes 

automatically detected by DPM are used both in the training and testing phase. Under this setting, 

the proposed MMHPN achieves the state-of-the art result of 68.2% for Rank-1 accuracy and 65.4% 

for mAP, which outperforms all other published methods by a large margin. We attribute this 
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significant result to the effectiveness of part sensitive loss, which encourages the network to mine 

hard examples thereby reducing the risk that the deep network is prone to overfit with simple 

partition examples, especially on this small scale dataset. 

Table 3 Comparison of state-of-the-art results on CUHK03 detected set 

Methods Rank1 mAP 
LOMO+XQDA7 12.8 11.5 
SVDNet25 41.5 37.3 
DIM20  47.1 43.5 
HA-CNN3 41.7 38.6 
PCB24 61.3 54.2 
PCB+RPP24 63.7 57.5 
HPM19 63.1 57.5 
HPM (Ours) 64.8 61.6 
MMHPN 68.2 65.4 

 

4.3.4 Qualitative Results 

Figure 4 presents some queries and the corresponding heatmap as well as the top-10 ranking 

results. From the first two results, we can observe that MMHPN can represent robust and 

discriminative information of pedestrian identities regardless of the varying pose, gait and 

illumination. Note that the third pedestrian image is captured under  low-resolution  such that a 

certain amount of important information is lost. However, by some detailed cues such as an orange 

handbag and cyan T-shirt, the majority of person Re-ID ranking results are accurate and high 

quality. In the last query the person is pushing a bicycle and their body is partly occluded by the 

bicycle However, we can obtain all the corresponding captured images except for the one in which  

the man rides the bicycle. It can be seen that the proposed MMHPN model has an incredible 

capability in guaranteeing accurate person Re-ID results. 
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Fig. 4 Top-10 ranking list and discriminative heatmap for some given query images on Market1501 dataset by 

MMHPN. The images within green rectangles have the same identity as the query image, and thise with red rectangles 

do not. 

4.4 Ablation Study 

To verify the validity of each individual component in the proposed MMHPN, we conduct several 

ablation studies using the Market-1501, DukeMTMC-reID and CUHK03 datasets. 

4.4.1 Effectiveness of Multi-level and Multi-scale Horizontal Pooling Network 

In order to evaluate the effectiveness of the Multi-level Semantic Module (MSM) and the Multi-

scale Horizontal Pooling Module (MHPM) within MMHPN, we remove two mid-level branches 

and just preserve the high-level branch with single scale as our baseline. Here, the MSM separated 

from MMHPN represents the three branches immediately after res_conv5_1, res_conv5_2 and 

res_conv5_3 and only contains one complete feature map. Additionally,  MHPM separated from 

MMHPN means that multi-scale pooling is operated at the same convolutional layer. As depicted 
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in Table 4, we can observe that the baseline model with added MSM results in an obvious 

performance improvement over the three datasets. The Rank1 accuracy and mAP using Market-

1501 are significantly improved from 85.5% and 68.2% to 90.1% and 77.3% respectively, which 

indicates that combining mid-level and high-level features can further enhance discriminative 

information to distinguish a person’s identity. In addition, when MHPM is added to the baseline 

model, we obtain an even better performance improvement. Finally, we integrate MSM and 

MHPM to form MMHPN as introduced in Sec 3.2, which also achieves promising Rank1 accuracy 

and mAP.  

Table 4 Effectiveness of Multi-level and Multi-scale Horizontal Pooling Network on three datasets. 

Model Market1501 DukeMTMC-reID CUHK03 
Rank1 mAP Rank1 mAP Rank1 mAP 

Baseline 86.1 69.9 78.1 60.3 42.7 41.6 
Baseline+MSM 90.1 77.3 82.5 65.8 55.3 53.8 
Baseline+MHPM 93.5 81.6 85.6 71.7 66.8 63.6 
Baseline+MMHPN 93.6 82.3 85.7 72.5 67.1 64.1 

 

4.4.2 Effectiveness of the number of body scales 

Figure 5 shows the performance of the Multi-scale Horizontal Pooling Module (MHPM) with 

different body scales, e.g. 1, 2, 4, 8, 12.  As body scale increases, the mAP and Rank1 accuracy 

generally improve. Compared with one complete feature map, dividing the feature map into 8 parts 

achieves an improvement of 9.6% and 6.9% on mAP and Rank1 accuracy using the Market1501 

dataset. When the feature map is divided into 12 parts, it does not bring obvious improvement, but 

has additional costs. Hence, we adopt four body scales in the MHPM.  In addition, body scale 

determines the granularity of the part feature. We can also observe that the performance of person 

Re-ID can be further improved when multi-scale pooling is employed, as illustrated in Table 5. 

Table 5 Effectiveness of number of body parts. 
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Number of  
body parts 

Market1501 DukeMTMC-reID CUHK03 
Rank1 mAP Rank1 mAP Rank1 mAP 

1  86.1 69.9 78.1 60.3 42.7 41.6 
1+2 91.8 78.4 84.6 69.5 59.6 56.5 
1+2+4 93.1 81.4 85.2 71.9 65.3 62.1 
1+2+4+8 93.6 82.3 85.7 72.5 67.1 64.1 

 

 

Fig. 5 The mAP and Rank1 accuracy of different body scales. 

4.4.3 Effectiveness of Pooling Strategies 

We evaluate the effect of different pooling strategies for MMHPN. As shown in Table 6, it can be 

seen that the performance of the GMP operation is better than the GAP operation in most 

situations. The reason is that the GAP exploits the full extent of a particular part and gives the 

same importance to all locations for final partial representation. Hence, when one discriminative 

partition of a pedestrian is surrounded by unrelated background patterns, it will have a low 

response and the discriminative information may be missed. In contrast, the GMP only focusses 

on the location with the largest response. These two pooling strategies are complementary in 

generating the final feature representation. Thus, it is essential to use both the GAP and GMP to 

maintain discriminative and robust information. Therefore we integrate GAP and GMP into a 

weighted sum to take advantage of the two strategies adaptively. From Table 5, we can observe 

that the Adaptive Pooling Strategy (APS) achieves better performance compared with using the 

GAP and GMP operations alone. 
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Table 6 Effectiveness of different pooling strategies on three datasets 

Model Market1501 DukeMTMC-reID CUHK03 
Rank1 mAP Rank1 mAP Rank1 mAP 

MMHPN+GAP 93.6 82.3 85.7 72.5 67.1 64.1 
MMHPN+GMP 93.9 82.8 87.3 74.3 67.9 64.7 
MMHPN+APS 94.2 83.1 87.0 74.6 68.3 64.5 

 

4.4.4 Effectiveness of Part Sensitive Loss 

In order to verify the effectiveness of the Part Sensitive Loss (PSL), we also conduct comparison 

of MMHPN with and without applying PSL for training. As given in Table 7, it can be observed 

that PSL may not ensure the best performance using the Rank1 accuracy. However, we achieve 

consistent improvements using the three benchmark datasets in mAP, which is the most important 

metric to evaluate the effectiveness of person Re-ID methods. In fact, Rank 1 accuracy indicates 

the ability to match the easiest gallery in different cameras, whereas mAP characterizes the ability 

to retrieve all the galleries. Meanwhile, the PSL reduces the loss from an easy partition and 

encourages the network to focus on difficult ones, which enhances the robustness of the feature 

representation, especially when using small datasets such as CUHK03. 

Table 7 Effectiveness of different pooling strategies on three datasets. 

Model Market1501 DukeMTMC-ReID CUHK03 
Rank1 mAP Rank1 mAP Rank1 mAP 

MMHPN+softmax 94.2 83.1 87.4 74.7 68.3 64.5 
MMHPN+PSL 94.6 83.4 87.8 75.1 68.2 65.4 

 

5 Conclusion 

In order to combine the appropriate global and local features to solve the key  missing part cases 

in Re-ID, we propose a Multi-level and Multi-scale Horizontal Pooling Network (MMHPN). In 

addition to the traditional expansion of ResNet for person Re-ID, we extend the multi-level and 
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multi-scale features designed specifically for the Adaptive Pooling Strategy (APS). Local and 

global cues are stacked together in networks for joint optimization to make final predictions more 

reliable. We also build our Part Sensitive Loss (PSL) upon softmax loss to reduce the effect of 

easy partition and focus more on difficult  ones, which decreases the risk of over-fitting to easy 

samples and facilitates training the person re-identification networks. Extensive experiments on 

three popular and challenging benchmark datasets thoroughly demonstrate the superiority of the 

proposed method over the state-of-the-art methods. 
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