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Abstract

Background: The 12-lead ECG is spatially limited in
diagnosing cardiac abnormalities. Additional leads (right
sided and posterior leads) are inconvenient in a clinical
setting, however, they can be derived. In this paper we re-
port on the development of coefficients to allow derivation
of right sided and posterior leads.

Method: Analysis was performed using body surface
potential maps (BSPM) recorded from 910 patients in two
centres. Recordings were made up of healthy controls
(n=314), peak balloon inflation during elective percuta-
neous coronary angioplasty (n=88), myocardial infarc-
tion (n=271) and left-ventricular hypertrophy (n=237).
All recordings were expanded to the 352-node Dalhousie
torso. Coefficients to allow derivation of right sided and
posterior leads were generated by linear regression. Fur-
ther coefficients from a previously reported study were
used for performance comparisons.

Results: Correlation coefficients between recorded and
derived leads were significantly improved using the new
coefficients (p<0.05) in leads V7-V12.

Conclusion: We have developed coefficients that al-
low the derivation of 10 additional leads from the 12-lead
ECG.

1. Introduction

The 12-lead ECG remains the most important tool in
the diagnosis of cardiac abnormalities [1]. This method
has a spatial resolution across the torso that results in high
specificity in anomaly detection [2, 3]. However, it has
been shown that more leads can improve the detection ac-
curacy of some cardiac abnormalities [4, 5]. It is incon-
venient to use lead systems that use additional recording
sites in a clinical environment, especially posterior leads
underneath a supine patient. One solution for this is to
derive the additional leads from the information already
present in the existing 12-lead ECG. Derived leads are less

accurate than measured leads [6], however, they still have
potential to improve diagnostic accuracy [7]. Body sur-
face potential maps (BSPM) capture potentials across the
entire torso and therefore allow the development of trans-
formation coefficients that in turn allow the derivation of
additional lead sets from existing lead systems [8]. In this
study, we aim to introduce coefficients toward the deriva-
tion of additional right-sided (V3R-V6R) and posterior
chest leads (V7-V12) from the 12-lead ECG. This prob-
lem has been tackled by researchers in the past however
our work involves the use of more extensive data sets in
the development of the derivation coefficients. In our study
we show how our method compares to previous work. We
have included the transformation coefficients as derived in
our work.

2. Method

2.1. Data

The data were recorded from two centres, with a to-
tal of 910 recordings. The data were recorded using a
similar electrode configuration of 117 thoracic unipolar
leads recorded with respect to the Wilson Central Termi-
nal (WCT). Limb lead data were also recorded for each
subject. Recordings from both centres were expanded to
a 352-node Dalhousie torso [9] using Laplacian interpola-
tion. Each recording was a single beat in length sampled at
500 Hz. Data were split at random to 75% training (n=685)
and 25% test (n=225).

Centre one data (n=176) has already been described
[10]. Recordings were from patients undergoing elective
percutaneous transluminal coronary angioplasty (PTCA).
Two recordings from each patient were taken: one dur-
ing rest and the other during peak balloon inflation (PBI).
Inflations were carried out in one of three coronary arter-
ies: LAD (n=32), LCX (n=22), RCA (n=34). Rest and
PBI recordings were kept together during training/test par-
tition. Centre two data (n=734) was described previously
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[11, 12]. Recordings were from patients experiencing my-
ocardial infarction (n=271), left ventricular hypertrophy
(n=237) and healthy controls (n=226).

Figure 1. Cross section (plan view) of the thorax with
approximate locations of precordial leads (blue), posterior
leads (red) and right-sided leads (green)

2.2. Coefficient Generation

Eight of the independent channels of the 12-lead ECG
were extracted from each recording (I-II, V1-V6). The
leads to be derived were also extracted. The leads to
be derived consisted of the commonly recognised poste-
rior leads (V7-V12) and right-sided precordial leads (V3R-
V6R). The approximate locations of these leads are shown
in Figure 1.

Recorded leads and the leads to be derived were used
in the coefficient generation. All recordings in the training
set (n=685) were pooled prior to calculation. Linear re-
gression was then used to derive the transform coefficients
as follows:

β =

[(
RLT

train ·RLtrain

)−1
RLT

train

]
·DLtrain (1)

Where β is the resulting 8x10 matrix of coefficients
that relates recorded and derived leads. RLtrain repre-
sents an mtrainx8 matrix of recorded leads (I-II, V1-V6)
taken from the training dataset. DLtrain represents an
mtrainx10 example of derived leads (V7-V12, V3R-V6R)
also taken from the training dataset. In all of our experi-
ments, bothRLtrain andDLtrain were made up of pooled
data from the corresponding respective leads from all sub-
jects in our training set. mtrain indicates the total number
of ECG samples in the training set (n=218,094)

2.3. Lead Derivation

The derived leads were generated using the calculated
coefficients on the test dataset (n=226). The leads were

derived using (2).

D̂Ltest = RLtest · β (2)

Where D̂Ltest was an mtestx10 matrix containing the
estimate of the derived leads (V7-V12, V3R-V6R).RLtest

was an mtestx8 matrix of recorded leads (I-II, V1-V6)
taken from the test dataset. β was the 8x10 matrix of
derivation coefficients as defined in (1). mtest indicates
the total number of ECG samples in the test set (n=69,909)

2.4. Verification

The recorded leads of the test dataset were used to
benchmark performance. The Pearson correlation coeffi-
cient (CC) and root-mean square error (RMSE) were cal-
culated by comparing the recorded leads (previously ex-
tracted from our BSPM data) (x) with our derived equiva-
lents (y). CC is calculated as follows:

ρ(x,y) =
1

M − 1

M∑
m=1

(
ym − µy

σy

)(
xm − µx

σx

)
(3)

Where ρ(x,y) is the CC. x and y represent the recorded
leads (RLtest) and derived leads (D̂Ltest) respectively.
M indicates the number of samples, µ is the mean, σ is
the standard deviation and m is the sample number. The
RMSE between recorded and derived lead was calculated
using Equation (4):

RMSE(x,y) =

√√√√ 1

M

M∑
m=1

(xm − ym)2 (4)

3. Results

3.1. Generated Coefficients

The coefficients were arranged in an 8x10 matrix as
shown in Table 1. The rows represent the recorded leads
(I-II, V1-V6) with columns representing the derived leads
(V7-V12, V3R-V6R). Both CC and RMSE were calcu-
lated for each derived lead. The median values are dis-
played in Table 1.

Figures 2 and 3 show the CC and RMSE values for each
derived chest lead respectively. The error-bar plot indicates
the median value (circle) with the 25th and 75th interquar-
tile ranges (whiskers).

3.2. Analysis

Previously published coefficients from Nagenthiraja et
al. [13] were used to verify the derivation performance.
The previously published coefficients transform the 12-
lead ECG to posterior leads V7-V12 using coefficients cal-
culated from a multiple regression model. Figure 4 shows



Table 1. Derived lead coefficients (β) and their calculated performance
Derived Leads

V 7 V 8 V 9 V 10 V 11 V 12 V 3R V 4R V 5R V 6R

R
ec

or
de

d
L

ea
ds

I -0.0063 -0.0597 -0.1912 -0.2975 -0.3655 -0.4039 -0.2030 -0.3340 -0.3809 -0.4015
II -0.0397 -0.0515 -0.0398 -0.0415 -0.0495 -0.0460 0.1331 0.1686 0.1570 0.1424
V 1 -0.1374 -0.1765 -0.1997 -0.1819 -0.1189 -0.0567 0.8030 0.5037 0.3217 0.1848
V 2 -0.0348 -0.0268 -0.0174 -0.0197 -0.0204 -0.0341 -0.1878 -0.1401 -0.0916 -0.0657
V 3 0.0887 0.0723 0.0631 0.0663 0.0562 0.0716 0.1678 0.1051 0.0434 0.0320
V 4 -0.0192 -0.0077 -0.0220 -0.0463 -0.0499 -0.0618 -0.0812 -0.0320 0.0050 0.0017
V 5 -0.2299 -0.2715 -0.2482 -0.1774 -0.0918 -0.0408 0.0291 0.0109 -0.0216 -0.0432
V 6 0.7940 0.7156 0.5638 0.3126 0.1279 0.0568 -0.0380 -0.0439 -0.0238 0.0055
CC 0.98 0.96 0.94 0.91 0.95 0.97 0.99 0.97 0.96 0.95

RMSE 46.2µV 51.8µV 48.3µV 38.6µV 27.0µV 23.7µV 25.8µV 35.3µV 31.6µV 28.8µV

Figure 2. Correlation coefficient between recorded and
derived chest leads

a box plot comparing the coefficients introduced in this
study with those previously suggested. Median (centre),
interquartile ranges (box edges) and extremes (whisker)
are displayed for both sets of coefficients. A Wilcoxon
signed-rank test was used to indicate statistical difference
between results. Significant improvements in CC (p<0.05)
were noted in V7-V12.

For derived posterior leads (V7-V12), the CC decreases
toward V10. This may be due to the increasing distance
between recorded and derived lead positions on the torso.
The same is true for derived right-sided chest leads (V3R-
V6R) which show CC inversely proportional to distance
from the recorded leads. CC increases in V11 and V12.
These leads are almost opposite the recorded leads V2-

Figure 3. Root mean square error between recorded and
derived chest leads

V4 across the thorax, potentially making them pseudo-
inverse. This may have increased the accuracy of the de-
rived coefficients. RMSE does not follow the same pattern
as CC. RMSE is proportional to the recorded lead ampli-
tude. Lower potentials present in leads more distal from
the heart may have made RMSE appear lower compared
to leads more proximal to the heart.

4. Conclusion

We have provided coefficients toward the derivation of
posterior and right-sided chest leads (V7-V12; V3R-V6R)
from the 12-lead ECG using linear regression. Median cor-
relation between recorded and derived leads was greater



Figure 4. Box plot of CC comparing previously published
coefficients with the those introduced in this study

than 0.9 for all channels. This method showed statisti-
cally significant improvements in the generation of leads
V7-V12 when compared to a previous study. An imbal-
anced number of recordings in each centre and lack of data
may have reduced the performance of regression calcula-
tions. Furthermore, to our knowledge there are no pub-
lished right-sided precordial lead coefficients to compare
against. Further studies will be required to investigate the
efficacy of additional-lead coefficients to cardiac abnor-
mality detection.
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