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Abstract 

Background: Multidrug resistance (MDR) limits the beneficial outcomes of conventional 

breast cancer chemotherapy. Ras-related nuclear protein (Ran-GTP) plays a key role in 

these resistance mechanisms, assisting cancer cells to repair damage to DNA. Herein, 

we investigate the co-delivery of Ran-RCC1 inhibitory peptide (RAN-IP) and doxorubicin 

(DOX) to breast cancer cells using liposomal nanocarriers. 

Research design: A liposomal delivery system, co-encapsulating DOX, and RAN-IP, 

was prepared using a thin-film rehydration technique. Dual-loaded liposomes were 

optimized by systematic modification of formulation variables. Real-Time-Polymerase 

Chain Reaction was used to determine Ran-GTP mRNA expression. In vitro cell lines 

were used to evaluate the effect of loaded liposomes on the viability of breast and lung 

cancer cell lines. In vivo testing was performed on a murine Solid Ehrlich Carcinoma 

model. 

Results: RAN-IP reversed the Ran-expression-mediated MDR by inhibiting the Ran 

DNA damage repair function. Co-administration of RAN-IP enhanced sensitivity of DOX 

in breast cancer cell lines. Finally, liposome-mediated co-delivery with RAN-IP improved 

the anti-tumor effect of DOX in tumor-bearing mice when compared to single therapy. 

Conclusions: This study is the first to show the simultaneous delivery of RAN-IP and 

DOX using liposomes can be synergistic with DOX and lead to tumor regression in vitro 

and in vivo. 

Keywords: Doxorubicin, Ran-inhibitory peptide, Drug delivery, Liposome, Formulation 

variables, Optimization, Breast cancer 
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1. Introduction 

Breast cancer is a genetic disease, characterized by gene mutation, 

rearrangement, and amplification [1]. High mortality rates in industrialized countries are 

well documented [2], along with the limitations and adverse effects associated with the 

various protocols used during treatment [3]. It is a heterogeneous disease with several 

subtypes based on the expression of three different receptors, namely the 

progesterone, estrogen, and human epidermal growth factor receptor 2 (HER-2/neu)[4]. 

Clinical options share much with conventional chemotherapeutic strategies, based on 

the administration of cytotoxic drugs as a first-line approach, as is often the case with 

other types of cancer [5]. However, these types of regimens frequently induce multidrug 

resistance (MDR), leading to significant limitations in clinical outcomes [6]. MDR can 

develop over multiple rounds of continual chemotherapy and via various molecular 

mechanisms, including the regulation and deregulation of drug influx [7], mutation of 

drug targets, activation of DNA repair mechanisms, and deregulation of apoptosis [8]. 

Doxorubicin (DOX) is considered an orthodox chemotherapeutic drug. It is 

frequently used to treat solid tumors, such as breast, lung, gastric, ovarian, and thyroid 

cancers. The clinical use of DOX is limited severely by the risk of progressive, dose-

dependent cardiomyopathy, and irreversible congestive heart failure [9,10]. There are 

considerable efforts in the field of DOX research on maintaining drug efficacy while 

reducing toxicity.  It is administered as a monotherapy or, more commonly, in 

combination with other drugs and is primarily used in breast cancer treatment[11]. Its 

cytotoxic effect arises from inhibition of DNA topoisomerase II [12]. Unfortunately, the 

results of several studies have linked poor prognosis during DOX treatment with 

increased MDR [13]. For example, it has been shown that cancer cells evade the 

apoptotic effect of P53 by transporting it to the cytoplasm using a CRM1-mediated 

export mechanism[14].  

Achieving an effective anti-tumor effect requires an understanding of the MDR 

pathway, prompting the development of attenuation strategies based on some form of 

interruptive intervention. A decrease of MDR, combined with the simultaneous use of a 

potent chemotherapeutic agent, is a potentially advantageous therapeutic strategy [15].  

One approach has focused on novel delivery methods, such as anthracycline nano-
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delivery systems, reported circumventing MDR effectively, both in vitro and in 

vivo[16,17]. This approach augments the therapeutic effect, whilst minimizing the 

expected adverse effects of high drug dosing [18]. Liposomes are of particular interest, 

having been successfully employed for the delivery of DOX. They possess a unique 

bilayer vesicular structure, comprising an internal aqueous compartment entrapped by 

one or more concentric lipid bilayers to facilitate the encapsulation of both lipophilic and 

hydrophilic drugs[19]. Liposomes have a number is beneficial properties, when 

compared to other nanosystems [20,21]. These properties include improving drug 

solubility, stability, and delivery to specific target sites [21]. Their sub-cellular size and 

lipid structure allow for higher intracellular uptake, which improves drug bioavailability 

when compared to other particulate systems. Furthermore, they provide drug protection 

against degradation while sustaining its release[20]. The main reason for selecting 

liposome as a drug nanocarrier is its significant role in effective drug delivery to target 

sites while minimizing systemic toxicity.  Liposomal formulations have been shown to be 

beneficial for stabilizing therapeutic biomolecules, overcoming obstacles of cellular and 

tissue uptake, and improving the drug biodistribution to target sites in vivo. Liposomes 

exhibited positive outcomes in preclinical studies, thus the clinical translation of 

liposome-based drug delivery platforms has improved incrementally[22]. 

Our group has a particular interest in the functions of Ras-related nuclear protein 

(Ran). It is a key component of the exportin transport system and exists in two 

nucleotide forms [16]. It is best known for its roles in directional nucleocytoplasmic 

transport, mitotic spindle fiber assembly, and post-mitotic nuclear envelope 

dynamics[23]. Ran overexpression induces cellular transformation, tumorigenesis, and 

metastasis, both in vitro and in vivo[24,25]. Cancer cells with mutations and abnormal 

expression in proto-oncogenes and suppressors correlate to the activation of the 

PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways, which are the most frequently 

dysregulated signaling pathways in cancer[26]. These pathways are more susceptible to 

Ran knockdown than normal cells [27,28]. 

The cellular compartmentalization of the Ran GTP-GDP cycle is regulated by the 

Ran guanine nucleotide exchange factor (RCC1). Besides, Ran-GAP creates a Ran-

GTP gradient, which controls the transport of macromolecules between the nucleus and 
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the cytoplasm [26]. RanGTP-regulated nuclear export and import pathways control the 

cell cycle rate and cellular responses to DNA damage. If the cellular RanGTP 

concentration reaches a threshold, RanGTP-regulated nuclear-cytoplasmic transport 

reactions approach rates that support normal DNA Damage Response (DDR) function 

and cell cycle transitions. Consequently, DNA damage in such cells is successfully 

repaired, followed by termination of DDR and re-entry into the cell cycle. If RanGTP 

levels fall below the required threshold or a required nuclear transport receptor pathway 

is defective, the mechanisms of DNA repair or cell cycle re-entry are delayed. This, in 

turn, triggers cell cycle arrest or possible cell death [29]. The relation between Ran gene 

and DOX is controlled by the role of RCC-1. It was reported that, RCC1 promotes 

doxorubicin resistance in colorectal carcinoma cells. Besides, overexpression of RCC1 

prevented the onset of DNA damage–induced cell senescence in normal cells. In case 

of colonic carcinoma, RCC1 overexpression strongly increased cell survival following 

doxorubicin-induced DNA damage. RCC1 overexpression was sufficient to accelerate 

cell cycle and DNA damage repair after DOX treatment[30]. 

Our group has reported previously, for the first time, on a specific peptide 

segment (CAQPEGQVQFK), known as Ran-RCC1 inhibitory peptide (RAN-IP).  Its 

structure is based on the Ran protein sequence and blocks the interaction between 

RanGDP and RCC1 in MDA-MB231 breast cancer cells and A549 lung cancer cells.  

This competitive inhibition of the binding of RCC1 to its specific binding pocket present 

in the RanGDP conformation prevents RanGTP formation[23,31]. Experimental 

disruption of the guanine nucleotide cycle by RAN-IP has been demonstrated using 

RAN-IP-loaded nanoparticles, which prevent the generation of RanGTP by disrupting 

nucleotide-binding with RCC1, resulting in a dominant inhibitory effect on RanGTP 

formation. This suppresses tumorigenesis and metastasis both in vitro and in vivo 

[23,31]. 

Herein, we report on a novel liposome-based co-delivery of DOX and RAN-IP as 

combination chemotherapy for the first time. Importantly, the delivery of liposomal 

payloads comprising combinations of cytotoxic and peptide drugs has been reported 

elsewhere, such as paclitaxel and sorafenib, for reversion of multidrug resistance in 

vitro in breast cancer cells[32].  However, the peptide-based payload is used primarily 
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for targeting purposes and decorates the peripheral aspects of the liposome, as 

demonstrated by the co-delivery of DOX and vincristine for the treatment of glioma[33], 

DOX and erlotinib for treatment of glioblastoma[34] and DOX for treatment of lung 

metastasis[35].  

The first aim of this work was to study the formulation and optimization of the 

physicochemical properties of liposomes loaded with both peptide and DOX using 

different formulation variables. The second aim was to use simultaneous liposomal 

delivery of DOX and RAN-IP to confirm the effect of reducing or reversing the 

overexpression of Ran during exposure to DOX. In vitro cytotoxicity of these dual 

functionalized liposomes was tested on breast and lung cancer cell lines (MDA-MB231, 

MCF-7, and A549). Finally, the study aimed to confirm that the upregulation of Ran in 

DOX-treated cells, in vitro, is a key mechanism that counteracts antineoplastic effects. 

The anti-tumor activity of dual functionalized liposomes was evaluated in an in vivo 

Solid Ehrlich Carcinoma (SEC) breast cancer model. 

 

2. Materials and methods  

2.1. Materials 

1,2-Dipalmitoyl-sn-glycerol-3-phosphate-rac-(1-glycerol) (DPPG, sodium salt) and 1,2-

dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE, purity >99%) were purchased from 

Avanti Polar Lipids, Inc., (Alabaster, AL). Peptide (NT 3-12) (MW 1243 Da, purity ≥ 

96%) was synthesized by GL-Biochem Ltd. (Shanghai, China). Doxorubicin 

hydrochloride (DOX), cholesterol, methanol, dichloromethane, and phosphate-buffered 

saline were obtained from Sigma-Aldrich Company Ltd. (Poole, UK). Dichloromethane, 

acetonitrile, and trifluoroacetic acid were of HPLC grade and other reagents were of 

analytical grade. Water used in the work was produced to Type 1 standard (Milli-Q®, 

resistance of 18.2 MΩ cm at 25 °C, conductivity is �  10 µS/cm, ion-free water at the 

sub-ppb level, total organic carbon is �  30 µg/ml, and pH of 6.99). 

 

2.2. Preparation of drug-loaded liposomes 

Liposomes were prepared using a modified, thin-film rehydration method [36]. 

Phospholipids and cholesterol (DPPG: DOPE: cholesterol) of (4:4:2 molar ratio) were 
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dissolved in dichloromethane and methanol (3:1 v/v) in round bottom glassware. The 

organic solvent was evaporated at 40 °C using rotary evaporation. The resultant thin 

film was maintained under vacuum for 6 hours to ensure removal of residual solvents. 

The thin film was hydrated in a solution of NT 3-12 peptide in PBS for 1 hour at 60 °C 

using a bath sonication (150 W). The sample was frozen at -20 °C and then a freeze-

thaw cycle repeated four times using bath sonication without addition of cryoprotectant. 

The sample was centrifuged at 22,000 g for 30 minutes at 4 °C for purification and 

removal of the non-encapsulated drug. DOX-loaded liposomes were prepared using this 

method, differing only in the rehydration step, where a PBS solution containing 

dissolved DOX was used. Dual-loaded liposomes containing both peptide and DOX 

were prepared using an identical procedure, but with a PBS solution containing 

dissolved NT 3-12 peptide and DOX for rehydration of the lipid film. Process variables, 

such as the pH of the dispersion medium, peptide loading and addition of DOX, are 

listed in (Table 1), together with the identifying code used to label each liposome 

formulation.  

 

2.3. Characterisation of drug-loaded liposomes 

Average size and population spread (polydispersity index) of liposome preparations 

were determined using dynamic light scattering (Nanosizer ZS, Malvern Instruments, 

UK). The particle size and distribution were measured after each freeze-Thaw cycle 

during preparation and after each week for one month during storage for measuring in 

vitro stability. Liposomal charge (Zeta potential) was determined using laser Doppler 

anemometry after a 5-fold dilution in distilled water (Nanosizer ZS, Malvern Instruments, 

UK). All measurements were performed in triplicate.  Liposomal surface morphology 

was studied using transmission electron microscopy (JOEL JEM 2000 EX200) operating 

at an accelerating voltage of 80 kV. Samples were prepared by placing a suspension on 

a Formvar-coated grid and coating with a carbon layer (20 nm) under vacuum before 

scanning. 
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2.4. Determination of drug encapsulation efficiency 

Peptide content was determined by an indirect procedure based on the determination of 

uncoated free peptide in the supernatant using HPLC [23,31]. Briefly, reversed-phase 

chromatography (Phenomenex- Luna® C18-5 column mm, 5 µm) with a flow rate of 1.0 

ml per min, and UV detection (254 nm) was used.  A mobile phase elution gradient was 

used, comprising two solvent mixtures (solvent A: 0.1% TFA in acetonitrile; solvent B: 

0.1% TFA in water). Peptide encapsulation inside the liposome was calculated from the 

difference between the initial amount of peptide added and the free peptide remaining in 

the supernatant after liposome fabrication. DOX was detected using HPLC performed 

under conditions described elsewhere [37]. Chromatographic separation was 

accomplished with a mobile phase consisting of acetonitrile: water at a ratio of 30:70 

(pH 3.0), and the drug was detected at 233 nm using a UV detector at a flow rate of 1.0 

ml per min and ambient temperature. Each sample was assayed in triplicate and 

loading of both peptide and DOX reported as a percentage encapsulation efficiency 

(%E.E). Physicochemical characterizations of peptide-loaded, DOX-loaded and dual-

loaded liposomes were represented in (Table 2). 

 

2.5 In vitro release studies 

A sample of peptide-loaded liposome formulation containing predetermined amounts of 

peptide and DOX was placed into a dialysis bag (10 kDa molecular weight cut off). The 

membrane was dialyzed against receptor media (50 ml PBS, pH 7.4). The release was 

studied at 37 °C at 100 rpm. At predetermined time interval points, a sample was 

removed (1.0 ml) replaced by an equal volume of fresh media to maintain sink 

conditions. Drug concentrations were assessed using HPLC, as described previously. 

 

2.6. Cell culture 

Breast cancer cell lines (MCF-7 and MDA-MB-231) and non-small cell lung carcinoma 

cells (A549) were obtained from the Cell Culture Department, VACSERA (Cairo, Egypt). 

Cells were routinely grown in T75 canted-neck tissue culture flasks. Cells were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) medium (Invitrogen/ Life Technologies, 

Grand Island, NY) supplemented with FBS (10% v/v), 10µg ml-1 of insulin and 1% 
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penicillin-streptomycin. The medium renewal was carried out every three days at 80% 

confluence. Cell cultures were incubated at 5% CO2 and 37 °C. 

 

2.7. In vitro cell viability assay 

A cell viability assay was performed using an in vitro toxicology assay kit (MTT, 7H258, 

Sigma, Saint Louise, Missouri, USA) [38,39]. MCF-7, MDA-MB-231, and A549 cells 

(1.2-1.8 x104 cells/well in 100 µl media) were seeded in 96-well plates for 24 hours 

before treatment. The following day, all cells were treated with 100 µl of each of the 

following formulations: blank liposome, free peptide (1 µM), free DOX (1 µM), peptide-

loaded liposome (1 µM), DOX-loaded liposome (1 µM), combination of both peptide-

loaded liposome (1 µM) and DOX-loaded liposome (1 µM), dual-loaded liposome at 

three different concentrations (0.25, 0.5 and 1 µM). All treatments were suspended in 

transfection Optimem® media. Untreated MCF-7, MDA-MB-231, and A549 cells were 

used as controls.  

Cell viability following each treatment was determined after 24, 48, and 72 hours. 

Treated cells were washed in PBS (100 µl) and 100 µl of reconstituted MTT (M-5655) 

dye solution in complete media was added to each well. The plates were incubated at 

37 °C and 5% CO2 for an additional 3 hours. The supernatant was discarded, 

solubilizing solution added (M-8910, 100 µl) and gently mixed in to dissolve the 

precipitate. The color intensity was measured at 570 nm and the background absorption 

measured at 690 nm in a microplate reader (Fluostar Omega, BMG Lab Tech GMBH, 

Germany). The anti-proliferative effect of different doses of free drugs and liposomal 

treatments was calculated as a percentage of cell growth concerning control cells. The 

absorbance of the untreated cells was set at 100%. The dose-effect curves were plotted 

for each treatment to measure the drug concentration that caused 50% growth inhibition 

(IC50)[40,41]. All experiments were performed in triplicate.  

 

2.8. Real-time polymerase chain reaction 

RNA was extracted using selective binding to silica-based membranes (RNeasy® Mini 

Kit, Qiagen Ltd., Manchester, UK), and reverse transcription was performed using 

SuperScriptTM III first-strand synthesis system (Invitrogen Ltd.) according to the 
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instructions supplied by the manufacturer. Real-time PCR (Applied Biosystem, Foster 

City, CA) was performed using an SYBR® Green assay for RanGTP and a forward 

primer 5’ CCATCTTTCCAGCCTCAGTC 3′ and reverse primer 5’ 

CCAAGGAAGGCGTCTAAGGC 3’. 

 

2.9. In vivo study 

2.9.1. Animals 

The In vivo study was performed on 60 female BALB/C mice, aged 7–8 weeks, and 

weighing 20 ± 2 g. They were housed in stainless steel mesh cages in ten groups of six. 

Mice were kept under standard conditions of light, relative humidity, and temperature, 

for ten days before the experiment. Animals had free access to standard laboratory food 

and water throughout the study. All procedures were performed according to a protocol 

approved by the Faculty of Pharmacy, Tanta University, and designed by the Animal 

Care and Use Committee. 

 

2.9.2. Development of tumor model 

The induction of a solid Ehrlich carcinoma tumor was performed as previously described 

[23,42]. Ehrlich ascites tumor (EAT) cells, supplied from the National Institute of Cancer, 

Egypt, were collected from the ascites fluid of female mice harboring 8–10-day old 

ascites tumor. Approximately, 2 x106 viable EAT cells were suspended in PBS and 

injected subcutaneously into the back of BALB/C female mice. Growth was assessed 

daily until the tumor volume reached 100 mm3. Volume was calculated by measuring 

both perpendicular diameters of the tumor using a digital caliper and applying the 

following equation [43]. ܚܝܗܕܝܜ	܍ܕܝܔܗܞ	ሺܕܕ૜ሻ = ૙. ૞૛.  ૛ܐܜ܌ܑܟ.ܐܜ܏ܖ܍ܔ

2.9.3. In vivo antitumor efficacy 

To assess the in vivo antitumor efficacy of liposome formulations, animals were 

randomly separated into ten groups (six mice per each group). The study design of the 

in vivo experiment and treatment protocols are shown in (Table 3). The tumor-bearing 

mice were subdivided into groups, with each receiving an intraperitoneally administered 
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dose every three days for 16. At the end of the experiment, animals were sacrificed by 

cervical dislocation. The excised tumors were washed in cold saline, then weighed to 

determine the final tumor weight. 

 

2.10. Biochemical assays 

Lipid peroxide content in the heart tissue of treated animals was determined by 

measuring MDA (Biodiagnostic Ltd., Giza, Egypt). The method used colorimetric 

detection of the colored product formed following the reaction between thiobarbituric 

acid and the MDA content in heart tissue samples [44]. The assay procedures were 

conducted according to the protocol supplied by the manufacturer. 

Serum lactate dehydrogenase (LDH) was measured by using a LDH kit 

(SPINREACT, Spain), following a method previously described [45]. Creatinine kinase 

(CK-MB) activity was measured using a propriety assay (Egyptian Company for 

Biotechnology, Cairo, Egypt) according to methods described elsewhere [46]. All serum 

samples were collected immediately before animal sacrifice. 

 

2.11. Statistical analysis 

Results for in vitro experiments were determined as mean ± SD and results from in vivo 

experiment were presented as mean ± SEM. The level of significance was evaluated 

statistically using a one-way ANOVA, followed by the post-hoc Tukey's test. P < 0.05 

was considered to be statistically significant for both in vitro and in vivo experiments. 
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3. Results and discussion 

Herein, we used thin film rehydration method followed by freeze-thaw cycle for 

preparation of drug-loaded liposomes. Thin film rehydration technique was adopted for 

encapsulation of hydrophilic drugs due to its simplicity, reproducibility, practicability, and 

its ability to yield small and uniform drug loaded liposomes after freeze-thaw 

cycles[47,48]. 

 

3.1. Effect of pH of the dispersion medium 

The physicochemical characteristics of three different peptide-loaded liposome 

formulations (F1, F2, and F3) are shown in (Table. 2). NT 3-12 peptide was dissolved in 

aqueous dispersion media with each adjusted to one of the following pH values (PBS 

pH 7.4, phosphate buffer pH 6.8, and phosphate buffer pH 6) to investigate the effect of 

the pH value on the physicochemical properties of the peptide-loaded liposomes. 

Decreasing the pH of the aqueous dispersion medium resulted in a significant increase 

in liposomal size. The average size of (F1) rehydrated by phosphate buffer (pH 6) was 

found to be 139 ± 21 which was significantly bigger (p �  0.01) compared to 81 ± 11nm 

in the case of (F3) prepared at higher pH of 7.4. Low pH values cause the protonation of 

the phospholipid heads and therefore hydrogen bond formation may occur resulting in 

bigger liposomal size meanwhile some phospholipid may exhibit electrostatic repulsion 

between protonated phospholipid heads. In the case of DPPG, protonation of 

phospholipid heads was more likely to occur compared to other lipids so that hydrogen 

bond formation between adjacent protonated heads predominate the electrostatic 

repulsion resulting in larger liposome size [49,50]. The change in pH value of the 

dispersion medium showed a slight change in zeta potential (p �  0.05). This might be 

attributed to the poor electrostatic repulsion effect resulted from the change in pH 

values.  

Increasing pH value from 6 to neutral 7.4 resulted in a significant increase in peptide 

encapsulation efficiency. The average % E.E of (F1) prepared at a low pH value of 6 

was found to be 52.13 ± 7.96 which was significantly lower than % E.E of 93.15% ± 

6.1% in case (F3) prepared at higher pH of 7.4 (p �  0.001). This can be explained by 

the hydrogen bond formation between neighbouring protonated heads of DPPG at lower 
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pH which decreases their hydrophilicity. This subsequently decreases the hydration of 

the lipid film by the aqueous drug-containing medium leading to a lower encapsulation 

efficiency. On the other hand, smaller liposome size resulted at pH 7.4 exhibited higher 

surface area available for lipid hydration with aqueous drug-medium resulting in a 

higher percentage of peptide encapsulation[49,50].  

In vitro release profiles of different peptide-loaded liposomes (F1, F2, and F3) showed a 

significant decrease (p < 0.05) in initial burst release phase in the case of F3 compared 

to both F1 and F2 (Fig. 1A). Burst release after 24 h was 59.17% ± 8.36%, 53.13% ± 

5.11%, and 44.66% ± 5.7% in case of F1, F2 and F3, respectively. This lower initial 

burst is preferable especially in case of in vivo administration of nano-drug delivery 

system reducing the risk of premature drug release before reaching the targeted site of 

action [31]. 

 

3.2. Effect of peptide loading 

The physicochemical properties of the three peptide-loaded liposome formulations (F3, 

F6, and F9) were recorded in (Table 2). Three peptide loadings levels (3%, 5%, and 7% 

w/w) were used in this study while maintaining the lipid composition and concentration. 

Increasing peptide loading resulted in a significant increase in the liposomal size (p �  

0.05). liposome size increased from 81 ± 11 nm in the case of 3% w/w peptide loading 

(F3) to 128 ± 14 nm in the case of 7% w/w peptide loading (F9) (p �  0.01). Increasing 

the peptide loading might have resulted in the separation of the concentric lipid bilayers 

encapsulating the aqueous drug core due to the high molecular weight of the dissolved 

peptide leading to the increasing of liposomal surface area and therefore size [51]. The 

lower level of peptide loading of 3% w/w (F3) showed a significant decrease in 

polydispersity compared to a higher peptide loading level of (F7) (p �  0.05). Peptide 

loading showed no significant effect on the zeta potential of the liposomes (p > 0.05).  

On the other hand, drug loading had a significant impact on the encapsulation efficiency 

of peptide inside liposomes. The increase in peptide loading resulted in a significant 

decrease in encapsulation efficiency (p < 0.05). Results showed that encapsulation 

efficiency observed for F7 was significantly decreased to 64.7% ± 2.1% compared to 
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93.15% ± 6.1% for (F3) (p �  0.01). This might be attributed to the inability of 

phospholipid structure to entrap this high mount of peptide inside its aqueous drug 

layers [52].  

In vitro release profiles and the initial burst release were closely related to the degree of 

peptide loading (Fig.1B). The burst release of F3 with peptide loading of 3% w/w was 

significantly lower than those of (F9) with 7% peptide loading (p < 0.01).  Initial bursts of 

44.7% ± 5.7%, 56.2% ± 6.1% and 65.9% ± 4.2% were observed from F3, F6 and F9, 

respectively. High peptide loading in the dispersion medium enhanced the saturation of 

liposomal structure with peptide creating a relatively higher concentration gradient 

driving a higher rate of diffusion of peptide towards the external aqueous release phase 

increasing burst and total in vitro release [53].  

According to the previous results, it was clear that F3 was found to be the optimum 

peptide-loaded liposome formulation as it has the lowest size, highest zeta potential, 

highest encapsulation efficiency, and lowest initial burst release. Therefore, the same 

formulation conditions adopted for preparing (F3) were used for co-encapsulation of 

peptide and DOX in the same liposome to prepare (double-loaded liposome). 

 

3.3. Effect of adding DOX  

In this part of the study, DOX was dissolved along with the NT 3-12 peptide in the same 

aqueous dispersion medium of (PBS, pH 7.4) to investigate the effect of adding DOX on 

the physicochemical characterization of different peptide-loaded liposomes (Table 2). 

The addition of DOX to peptide-loaded liposomes as in the case of (F11) demonstrated 

no significant increase of the mean liposome size compared to (F3) prepared without 

Dox (p > 0.05). A significant decrease in zeta potential was observed (p < 0.05). A slight 

decrease in peptide % E.E was observed. On the other hand, the % E.E of doxorubicin 

was 80.6%.  Nonetheless, a significant increase in the initial burst release of the peptide 

was also observed (p < 0.05) (Fig. 1.C). This might be attributed to the displacement 

effect of the loaded DOX on the loaded peptide resulting in lower encapsulation 

efficiency and higher initial release [54]. Approximately, 58% of peptide was released 

after 24 h which accounted for the drug adsorbed on the surface of the liposomes. 
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However, 99 % of peptide was released after 72 h, due to the drug encapsulated inside 

the inner aqueous core of the dual-loaded liposomes. These results indicated the 

presence of drug in both adsorbed form and encapsulated.  On the other hand, DOX 

showed a different release profile with a significantly lower initial burst release (p < 0.01) 

of 35.7% compared to 58.6 % of peptide released from F11. Faster DOX release was 

observed after the first 24 hours with almost 97.3% released after 48 hours. The fast 

release of DOX after 24 hours may be due to high diffusion of the encapsulated drug 

towards the dissolution media depending on its small molecular weight compared to the 

high molecular weight of the encapsulated peptide. In addition, membrane fluidity of the 

prepared liposomes might contribute to the high DOX release. Incorporation of DOPE 

with low phase transition temperature Tc of -16 increased the fluidity of the liposomal 

membrane which facilitated doxorubicin release[55]. In vitro release, results showed 

that peptide and Dox can be released efficiently from the dual loaded liposomal carrier. 

Based on the above results, F11 was used for further in vitro and in vivo experiments 

due to its superior physiochemical properties compared to other formulations as 

demonstrated by its optimum mean size, zeta potential, encapsulation efficiency and in 

vitro release of both drugs. 

 

3.4. Transmission electron microscopy 

To visualize the surface morphology of the double-loaded liposome (F11), TEM was 

used to assess the liposome morphology. TEM images revealed a smooth spherical 

shape of homogenous size, with no evidence of liposome adhesion or aggregation (Fig. 

2.A). The average size obtained using TEM showed no significant differences when 

compared to similar data captured using light scattering.  

To ensure the stability of this formulation (F11), a sample was stored in a fridge at 4oC 

for 4 weeks and its particle size was measured periodically. The results show that the 

particle size showed a non-significant increase after 3 weeks compared to freshly 

prepared liposomes (p > 0.05).  A significant increase in liposomal size (p �  0.05) was 

noticed on day 28 after preparation (Fig 2.B). The % E.E of both peptide and 
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doxorubicin showed a non-significant change after 5 days of preparations (p �  0.05). 

Therefore, freshly prepared samples were used continuously for in vivo study. 

 

3.5. In vitro cell viability assay 

The cytotoxic action of different liposomal treatments on the MDA-MB 231, MCF-7, and 

A549 cell lines were evaluated by MTT assay 24, 48, and 72 hours after treatment (Fig. 

3). MDA-MB 231 and MCF-7 breast cancer cell lines were used efficiently as a model 

for studying doxorubicin resistance[56]. Besides, A549 cell line is one of resistant lung 

cell lines against doxorubicin treatment[57]. The results show that the blank liposome 

and free peptide had no cytotoxicity on breast and lung cancer cells. Treatment with 

peptide-loaded liposome (1µM) showed a significant reduction in cell viability compared 

to the control and free peptide (p < 0.05). This confirms the subcellular delivery of 

peptide inside the cancer cell where it can achieve its action on Ran inactivation as we 

previously reported [23,31]. On the other hand, treatment with free DOX and DOX-

loaded liposomes showed a significant reduction in cell viability compared to control 

cells (p < 0.05). However, treatment with DOX-loaded liposome showed more cytotoxic 

action compared to the free drug (p < 0.01). These results were in good agreement with 

other previously reported [58]. The dose-effect curves were plotted to measure the 

liposomal drug concentration that caused 50% growth inhibition (IC50). Double-loaded 

liposome (F11) showed a dose-dependent cytotoxic action in all cell lines as cell viability 

decreased with increasing the dose from 0.25 to 1 µM. Treatment of MDA-MB 231 

breast cancer cells with double-loaded liposome reduced cell viability in a dose-

dependent manner while maintaining its cytotoxic action up to three days after treatment 

due to sustained cytotoxic action (Fig. 3.A). After 24 hours of treatment, the mean IC50 

value of double-loaded liposome (F11) in MDA-MB 231 cells was 0.304 ± 0.08 µM. This 

IC50 value is significantly lower than previously calculated IC50 of our peptide-loaded 

polymeric nanoparticles which was estimated to be 3.6 µM (p < 0.001) [31]. This might 

be due to the co-delivery of DOX and peptide together in the same liposome as well as 

to the nature of the liposomes as a superior drug delivery vehicle. Higher cytotoxic 

action was observed after the treatment of MCF-7 breast cancer cells with double-

loaded liposomes. A similar dose-dependent effect was demonstrated in the case of 
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MCF-7 cells. The mean IC50 value of (F11) in the case of MCF-7 cells was 0.112 ± 0.05 

µM, which was significantly lower than IC50 of the same treatment in MDA-MB 231 cells 

calculated after 24 hours (p < 0.01) (Fig. 3.B).  Treatment of lung cancer cells with (F11) 

showed a similar dose-dependent cytotoxic action up for three days after treatment (Fig. 

3.C).  The mean IC50 value for (F11) in A549 cells was 0.416 ± 0.12 µM, compared to 

similar IC50 values for MDA-MB 231 and MCF-7, respectively (p < 0.05). Cell viability 

results showed a non-significant decrease in cell viability after 72 hours compared to 48 

hours (p �  0.05) especially in lung cancer cells. This might be attributed to cell 

saturation with both drugs. Besides, in vitro release results showed a non-significant 

difference between the amount of peptide and doxorubicin released after 48 and 72 

hours from the double-loaded liposomes.  

Based on these results, double-loaded liposome (F11) achieved a significant reduction 

in cell viability (p < 0.001) compared to free peptide, peptide-loaded liposome, free 

DOX, and DOX-loaded liposome. Besides, F11 showed a significant cytotoxic action 

compared to the combination of both peptide-loaded and DOX-loaded liposomes. This 

might be attributed to the synergistic anti-cancer effect resulted from the co-delivery of 

peptide and DOX in one liposomal form. Double-loaded liposome achieved successful 

peptide and DOX delivery to the subcellular site of action meanwhile preserving their 

anti-cancer activity after formulation. 

 

3.6. Quantitative Real-time PCR 

To explain the results of the cell viability study, qPCR was carried out to investigate the 

effect of Dox on mRNA ran expression. The results were analysed as mean ± SD by 

use of analysis of variance (ANOVA) with Dunnett's multiple comparisons test using 

GraphPad prism 8.1.2. (Fig. 4.A) shows RAN mRNA expression level in MDA-MB-231 

cell-line following treatment with Dox 1µM at three-time points (6,12 and 24h). RAN 

mRNA expression was downregulated after 6 and 12 hours treated by 1µM Dox by 40% 

and 20%, respectively compared to control empty liposome treated cells. This could be 

due to a decrease in cell viability.  
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 At 24 hours, however, the level of Ran mRNA expression was significantly increased 

by 100% compared to the control and by 200% compared to the 6hrs level.  Following 

the treatment of MDA-MB231 cell by Dox at 1.3 µM, Ran mRNA expression was 

decreased by 20% at 6 hours compared to empty liposome treated cells but increased 

at 12 and 24 hrs to 110% and 200%, respectively compared to the cells treated by 

empty liposome. The addition of the liposomal RAN-GTP blockade peptide 

counteracted the overexpression in RAN mRNA due to the treatment with DOX (Fig. 

4.B). 

Ran overexpression may help cancer cells resistance to DOX. It has been shown that 

Ran has an important role in DNA damage repair, thus introducing a RAN inhibitor will 

neutralize this effect and synergize the effect of DNA damage caused by DOX and, 

thus, increase cell apoptosis. In vitro results showed that DOX inhibited RAN expression 

in cells then after 24 hours RAN expression was upregulated hence cells are resisting 

the cytotoxic effect of DOX. The after treating with RAN-IP, the RAN expression was 

downregulated again and re-sensitize the cells to DOX. 

 

3.7. In vivo studies 

3.7.1. In vivo antitumor efficacy 

This study was performed using the SEC model to investigate the anti-cancer activity of 

prepared nano-drug delivery systems on breast cancer-induced in mice. The SEC 

model was carefully selected for this study due to the following reasons. Firstly, SEC is 

a well-established murine mammary adenocarcinoma model in tumor biology. This 

model has largely been used for study of tumor pathogenesis and development of anti-

tumorigenic agents[59]. Secondly, the  Ehrlich model is used extensively in studying the 

MDR of different chemotherapeutics such as daunorubicin, Mitoxantrone, etoposide[60-

62]. Finally, Doxorubicin has been shown to induce expression of P-gp after only 24 h of 

contact with sensitive Ehrlich cells[61,63,64]. Therefore, this model can develop MDR to 

doxorubicin in a very short time of only 24 hours[63], meanwhile, the duration of our in 

vivo study was 16 days. The antitumor activity of peptide-loaded liposome, Dox-loaded 

liposome, and double-loaded liposome (Table 3) was demonstrated in (Fig. 5). 
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Intraperitoneal administration (IP) of liposomal drug delivery systems was selected due 

to its numerous advantages. Previous studies showed that, intraperitoneal 

administration of siRNA-loaded liposomes was as efficient as intravenous administration 

for treatment of ovarian cancer. Liposomes injected IP were distributed by diffusion into 

intraperitoneal cavity through the vasculature, rather than direct diffusion to reach the 

tumor site from the peritoneal cavity[65]. IP administration of doxorubicin-loaded 

liposome was the best choice for treatment of SEC model in vivo due to its significant 

effect on prolongation of survival time of treated animals due to its leaky properties and 

high peritoneal dissemination of these liposomes[66]. After 16 days of treatment, the 

control and blank liposome-treated groups showed an increase in tumor volume by 

281.93% and 312.25%, respectively. Animals treated with free peptide (10 mg kg-1) 

showed no anti-tumor activity as tumor volumes increased by 354.24%. Mice treated by 

peptide-loaded liposome (10 mg kg-1), free DOX (5 mg kg-1) and DOX liposome (5 mg 

kg-1) exhibited a significant tumour growth inhibition of 55.4%, 50.22% and 65.91% 

respectively (p < 0.001) (Fig. 6). The animal group treated with the combination of 

peptide liposome (10 mg kg-1) and DOX liposome (5 mg kg-1) demonstrated a 78.61% 

reduction in tumor volume that was significantly more effective than the use of each 

single-drug loaded liposome (p < 0.001). Treatment with double-loaded liposomes 

showed the highest % of tumor growth inhibition of 85.91%, 95.55%, and 97.77% in 

cases of 1X, 2X, and 3X, respectively. The most favourable antitumor activity was 

observed in animals treated with double-loaded liposomes (2X and 3X). These results 

confirm the superiority of synergistically combined therapy of NT 3-12 peptide and DOX. 

This is the first time to report the anticancer activity of the combination of NT 3-12 

peptide and DOX by co-delivery of both drugs in a liposome-based drug delivery 

system.   

 At the end of the treatment, all animals were sacrificed. A photograph of excised 

tumors for each animal group was shown in (Fig. 7). The difference in tumor weights 

between control and treated animals was exhibited in (Fig. 8). The average tumor 

weight in the control group after treatment was 3.95 ± 0.46 g.  Animals treated with 

double-loaded liposomes showed a reduction in average tumor weight of 91.13 %, 

97.46%, and 99.49% in cases of 1X, 2X, and 3X, respectively (p < 0.001). 
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3.7.2. In vivo safety 

There were no signs of decreased activity or abnormal behaviour, which indicates no 

toxicity caused by all treatments. Most animals appeared healthy and no substantial 

body weight loss was observed (Fig. 9). However, animals treated with free DOX and 

DOX-loaded liposomes showed a significant body weight loss compared to the control 

animal (p < 0.05). Biochemical assays were done to investigate the cardiotoxicity of 

DOX-loaded liposome in vivo. Three different biochemical parameters of cardiac MDA, 

LDH, and CK-MB levels were investigated, and results were presented in (Table 4). 

Tumor-bearing animals served as a control group showed a non-significant (P �  0.05) 

increase in cardiac MDA compared to normal animals. Mice treated with free DOX and 

DOX-loaded liposome showed a significant increase in cardiac MDA levels compared to 

control animals and animals treated with peptide-loaded liposome. However, DOX-

loaded liposome showed a non-significant decrease in MDA level compared to free 

DOX. This was due to the cardiotoxic effect of DOX in vivo.  Besides, treatment with 

free DOX and DOX-loaded liposomes resulted in a significant increase in LDH and CK-

MB activity levels. However, DOX-loaded liposome showed a significant decrease in 

CK-MB level compared to free DOX treated animals (p < 0.05).  Fortunately, double-

loaded liposomes showed a non-significant increase in cardiac MDA, LDH, and CK-MB 

levels compared to control animals which can confirm its safety for in vivo use. 
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4. Conclusions 

Peptide-loaded liposomes were prepared using a thin film rehydration technique 

comprising several peptides and DOX loading levels, and variable pH of the dispersion 

media. An optimum double-loaded liposome was selected, which had the highest 

peptide loading of 85%, the lowest particle size of 80 nm, whilst sustaining the peptide 

and Dox release for 3 days. In vitro cell viability studies of peptide-loaded liposomes 

showed superior cytotoxic action compared to free peptide and free Dox. The highest 

reduction in cell viability was observed in case of MCF-7 due to the lowest IC50 of 0.112 

± 0.05 compared to 0.304 ± 0.08 and 0.416 ± 0.12 µM for MDA-MB-231 and A549, 

respectively after treatment with double-loaded liposome. Dox treatment was shown to 

cause a significant increase in RanGTP mRNA level, and this increase was successfully 

reversed when RAN-IP was included in the treatment. The in vivo results confirmed the 

enhanced anti-cancer activity of double-loaded liposome by achieving 85.91%, 95.55%, 

and 97.77% tumor growth inhibition after treatment with different doses of 1X, 2X and 

3X of the double-loaded liposome. Toxicity examinations showed that a combined-drug 

delivery system was found to be safer to liver and kidney tissues when compared to the 

free DOX. The emergence of a novel drug delivery system is of high clinical importance 

because it will improve the therapeutic response by providing a synergistic anti-tumor 

effect both in vitro and in vivo along with causing minimal side effects compared to 

classic dosage forms of the same drugs. 

  

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

Author contributions 

Conceptualization and design: Y Haggag, B Abu Ras, M Isreb, M El-Tanani; Analysis 

and interpretations of data, Y Haggag, Y El-Tanani, M Tambuwala, P McCarron, M El-

Tanani; Writing and drafting the paper: Y Haggag, Y El-Tananai, B Abu Ras, M Isreb, M 

El-Tanani; All authors have read and agreed to the published version of the manuscript. 

 

Funding 

This paper was not funded.  

 

Declaration of interest 

The authors have no other relevant affiliations or financial involvement with any 

organization or entity with a financial interest in or financial conflict with the subject 

matter or materials discussed in the manuscript apart from those disclosed. 

 

Reviewer disclosures 

Peer reviewers on this manuscript have no relevant financial or other relationships to 

disclose. 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

References 

1. Merlo LM, Pepper JW, Reid BJ, et al. Cancer as an evolutionary and ecological 

process. Nature reviews Cancer. 2006 Dec;6(12):924-35. 

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for 

clinicians. 2019 Jan;69(1):7-34. 

3. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment of 

metastatic clear cell renal cell carcinoma. Cancer treatment reviews. 2018 

Nov;70:127-137. 

4. Haffty BG, Yang Q, Reiss M, et al. Locoregional relapse and distant metastasis 

in conservatively managed triple negative early-stage breast cancer. Journal of 

clinical oncology : official journal of the American Society of Clinical Oncology. 

2006 Dec 20;24(36):5652-7. 

5. Dawar S, Singh N, Kanwar RK, et al. Multifunctional and multitargeted 

nanoparticles for drug delivery to overcome barriers of drug resistance in human 

cancers. Drug Discov Today. 2013 Dec;18(23-24):1292-300. 

6. Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in 

metastatic breast cancer. Cancer Treat Rev. 2008 Jun;34(4):378-90. 

7. Szakacs G, Hall MD, Gottesman MM, et al. Targeting the Achilles heel of 

multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev. 

2014 Jun 11;114(11):5753-74. 

8. Markman JL, Rekechenetskiy A, Holler E, et al. Nanomedicine therapeutic 

approaches to overcome cancer drug resistance. Advanced drug delivery 

reviews. 2013 Nov;65(13-14):1866-79. 

9. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and 

pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol 

Rev. 2004 Jun;56(2):185-229. 

10. Minotti G, Recalcati S, Menna P, et al. Doxorubicin cardiotoxicity and the control 

of iron metabolism: quinone-dependent and independent mechanisms. Methods 

Enzymol. 2004;378:340-61. 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

11. Capelôa T, Benyahia Z, Zampieri LX, et al. Metabolic and non-metabolic 

pathways that control cancer resistance to anthracyclines. Seminars in cell & 

developmental biology. 2020 Feb;98:181-191. 

12. Aas T, Børresen A-L, Geisler S, et al. Specific P53 mutations are associated with 

de novo resistance to doxorubicin in breast cancer patients. Nature Medicine. 

1996 1996/07/01;2(7):811-814. 

13. Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance 

and poor prognosis in triple negative breast cancer. Proceedings of the National 

Academy of Sciences of the United States of America. 2013 Jul 

2;110(27):11091-6. 

14. Shen J, He Q, Gao Y, et al. Mesoporous silica nanoparticles loading doxorubicin 

reverse multidrug resistance: performance and mechanism. Nanoscale. 2011 Oct 

5;3(10):4314-22. 

15. Iyer AK, Singh A, Ganta S, et al. Role of integrated cancer nanomedicine in 

overcoming drug resistance. Advanced drug delivery reviews. 2013 Nov;65(13-

14):1784-802. 

16. Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug 

resistance in cancer. Biochemical Pharmacology. 2012;83(8):1021-1032. 

17. Nielsen D, Maare C, Poulsen F, et al. The relationship between resistance, P-

glycoprotein content, and steady state accumulation in five series of Ehrlich 

ascites tumor cell lines selected for resistance to daunorubicin. Cell Pharmacol. 

1994;1:127-135. 

18. Zununi Vahed S, Salehi R, Davaran S, et al. Liposome-based drug co-delivery 

systems in cancer cells. Materials Science and Engineering: C. 2017 

2017/02/01/;71:1327-1341. 

19. Torchilin V, Weissig V. Liposomes: a practical approach. Oxford University 

Press; 2003. (264).  

20. Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal Formulations in 

Clinical Use: An Updated Review. Pharmaceutics. 2017;9(2):12. 

21. Chen X, Wang X, Wang Y, et al. Improved tumor-targeting drug delivery and 

therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

Journal of controlled release : official journal of the Controlled Release Society. 

2010 Jul 1;145(1):17-25. 

22. Sercombe L, Veerati T, Moheimani F, et al. Advances and Challenges of 

Liposome Assisted Drug Delivery. Frontiers in pharmacology. 2015;6:286-286. 

23. Haggag YA, Matchett KB, Falconer RA, et al. Novel Ran-RCC1 Inhibitory 

Peptide-Loaded Nanoparticles Have Anti-Cancer Efficacy In Vitro and In Vivo. 

Cancers. 2019 Feb 14;11(2). 

24. Kurisetty VV, Johnston PG, Johnston N, et al. RAN GTPase is an effector of the 

invasive/metastatic phenotype induced by osteopontin. Oncogene. 2008 Dec 

04;27(57):7139-49. 

25. Yuen HF, Chan KK, Grills C, et al. Ran is a potential therapeutic target for cancer 

cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 

and Ras/MEK/ERK pathways. Clin Cancer Res. 2012 Jan 15;18(2):380-91. 

26. Clarke PR, Zhang C. Spatial and temporal coordination of mitosis by Ran 

GTPase. Nat Rev Mol Cell Biol. 2008 Jun;9(6):464-77. 

27. Yuen H-F, Chan K-K, Platt-Higgins A, et al. Ran GTPase promotes cancer 

progression via Met receptormediated downstream signaling. 2016. (2016).  

28. Yuen HF, Gunasekharan VK, Chan KK, et al. RanGTPase: a candidate for Myc-

mediated cancer progression. Journal of the National Cancer Institute. 2013 Apr 

3;105(7):475-88. 

29. Cekan P, Hasegawa K, Pan Y, et al. RCC1-dependent activation of Ran 

accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell 

senescence. Mol Biol Cell. 2016 Apr 15;27(8):1346-57. 

30. Cekan P, Hasegawa K, Pan Y, et al. RCC1-dependent activation of Ran 

accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell 

senescence. Molecular biology of the cell. 2016;27(8):1346-1357. 

31. Haggag YA, Matchett KB, Dakir El H, et al. Nano-encapsulation of a novel anti-

Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 

(RCC1) function in MDA-MB-231 breast cancer cells. International journal of 

pharmaceutics. 2017 Apr 15;521(1-2):40-53. 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

32. Lei M, Ma G, Sha S, et al. Dual-functionalized liposome by co-delivery of 

paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of 

multidrug resistance. Drug delivery. 2019;26(1):262-272. 

33. Zhang Y, Zhai M, Chen Z, et al. Dual-modified liposome codelivery of doxorubicin 

and vincristine improve targeting and therapeutic efficacy of glioma. Drug 

delivery. 2017 2017/01/01;24(1):1045-1055. 

34. Lakkadwala S, dos Santos Rodrigues B, Sun C, et al. Dual functionalized 

liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the 

treatment of glioblastoma. Journal of Controlled Release. 2019 

2019/08/10/;307:247-260. 

35. Ierano C, Portella L, Lusa S, et al. CXCR4-antagonist Peptide R-liposomes for 

combined therapy against lung metastasis. Nanoscale. 2016 Apr 14;8(14):7562-

71. 

36. Roy B, Guha P, Bhattarai R, et al. Influence of Lipid Composition, pH, and 

Temperature on Physicochemical Properties of Liposomes with Curcumin as 

Model Drug. Journal of oleo science. 2016;65(5):399-411. 

37. Dharmalingam SR, Ramamurthy S, Chidambaram K, et al. A simple HPLC 

bioanalytical method for the determination of doxorubicin hydrochloride in rat 

plasma: application to pharmacokinetic studies. Tropical journal of 

pharmaceutical research. 2014;13(3):409-415. 

38. Haggag YA, Ibrahim RR, Hafiz AA. Design, Formulation and in vivo Evaluation of 

Novel Honokiol-Loaded PEGylated PLGA Nanocapsules for Treatment of Breast 

Cancer. International journal of nanomedicine. 2020;15:1625-1642. 

39. Haggag Y, Elshikh M, El-Tanani M, et al. Nanoencapsulation of sophorolipids in 

PEGylated poly(lactide-co-glycolide) as a novel approach to target colon 

carcinoma in the murine model. Drug Deliv Transl Res. 2020 Apr 1. 

40. Haggag Y, Elshikh M, El-Tanani M, et al. Nanoencapsulation of sophorolipids in 

PEGylated poly(lactide-co-glycolide) as a novel approach to target colon 

carcinoma in the murine model. Drug Delivery and Translational Research. 2020 

2020/04/01. 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

41. Yuen HF, Chan KK, Platt-Higgins A, et al. Ran GTPase promotes cancer 

progression via Met receptormediated downstream signaling. Oncotarget. 2016 

Oct 03. 

42. Haggag YA, Osman MA, El-Gizawy SA, et al. Polymeric nano-encapsulation of 

5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid 

Ehrlich Carcinoma-bearing mice. Biomedicine & Pharmacotherapy. 

2018;105:215-224. 

43. Papadopoulos D, Kimler BF, Estes NC, et al. Growth delay effect of combined 

interstitial hyperthermia and brachytherapy in a rat solid tumor model. Anticancer 

research. 1989 Jan-Feb;9(1):45-7. 

44. Yoshioka T, Kawada K, Shimada T, et al. Lipid peroxidation in maternal and cord 

blood and protective mechanism against activated-oxygen toxicity in the blood. 

American journal of obstetrics and gynecology. 1979 Oct 1;135(3):372-6. 

45. Buhl SN, Jackson KY. Optimal conditions and comparison of lactate 

dehydrogenase catalysis of the lactate-to-pyruvate and pyruvate-to-lactate 

reactions in human serum at 25, 30, and 37 degrees C. Clinical chemistry. 1978 

May;24(5):828-31. 

46. Rosalki SB. An improved procedure for serum creatine phosphokinase 

determination. The Journal of Laboratory and Clinical Medicine. 1967;69(4):696-

705. 

47. Zhang H. Thin-Film Hydration Followed by Extrusion Method for Liposome 

Preparation. Methods in molecular biology (Clifton, NJ). 2017;1522:17-22. 

48. Ai X, Zhong L, Niu H, et al. Thin-film hydration preparation method and stability 

test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol 

succinate nanomicelles. Asian Journal of Pharmaceutical Sciences. 2014 

2014/10/01/;9(5):244-250. 

49. Garidel P, Johann C, Mennicke L, et al. The mixing behavior of pseudobinary 

phosphatidylcholine-phosphatidylglycerol mixtures as a function of pH and chain 

length. European biophysics journal. 1997;26(6):447-459. 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

50. Sułkowski W, Pentak D, Nowak K, et al. The influence of temperature, 

cholesterol content and pH on liposome stability. Journal of Molecular Structure. 

2005;744:737-747. 

51. Brgles M, Jurasin D, Sikiric MD, et al. Entrapment of ovalbumin into liposomes--

factors affecting entrapment efficiency, liposome size, and zeta potential. Journal 

of liposome research. 2008;18(3):235-48. 

52. Chountoulesi M, Naziris N, Pippa N, et al. The significance of drug-to-lipid ratio to 

the development of optimized liposomal formulation. Journal of liposome 

research. 2018 Sep;28(3):249-258. 

53. Johnston MJ, Edwards K, Karlsson G, et al. Influence of drug-to-lipid ratio on 

drug release properties and liposome integrity in liposomal doxorubicin 

formulations. Journal of liposome research. 2008;18(2):145-57. 

54. Tefas LR, Sylvester B, Tomuta I, et al. Development of antiproliferative long-

circulating liposomes co-encapsulating doxorubicin and curcumin, through the 

use of a quality-by-design approach. Drug design, development and therapy. 

2017;11:1605. 

55. Li J, Wang X, Zhang T, et al. A review on phospholipids and their main 

applications in drug delivery systems. Asian Journal of Pharmaceutical Sciences. 

2015 2015/04/01/;10(2):81-98. 

56. Marinello PC, Panis C, Silva TNX, et al. Metformin prevention of doxorubicin 

resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and 

modulation of cell adaptation genes. Scientific Reports. 2019 

2019/04/10;9(1):5864. 

57. Xu L, Li H, Wang Y, et al. Enhanced activity of doxorubicin in drug resistant A549 

tumor cells by encapsulation of P-glycoprotein inhibitor in PLGA-based 

nanovectors. Oncol Lett. 2014;7(2):387-392. 

58. Lao J, Madani J, Pu, et al. Liposomal Doxorubicin in the Treatment of Breast 

Cancer Patients: A Review. Journal of Drug Delivery. 2013;2013:12. 

59. Mishra S, Tamta AK, Sarikhani M, et al. Subcutaneous Ehrlich Ascites 

Carcinoma mice model for studying cancer-induced cardiomyopathy. Scientific 

reports. 2018;8(1):5599-5599. 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

60. Nielsen D, Maare C, Eriksen J, et al. Characterisation of multidrug-resistant 

Ehrlich ascites tumour cells selected in vivo for resistance to etoposide. 

Biochemical pharmacology. 2000 Aug 1;60(3):353-61. 

61. Nielsen D, Eriksen J, Maare C, et al. P-glycoprotein expression in Ehrlich ascites 

tumour cells after in vitro and in vivo selection with daunorubicin. British journal of 

cancer. 1998 Nov;78(9):1175-80. 

62. Nielsen D, Eriksen J, Maare C, et al. Characterisation of non-P-glycoprotein 

multidrug-resistant Ehrlich ascites tumour cells selected for resistance to 

mitoxantrone. Biochemical pharmacology. 2000 Aug 1;60(3):363-70. 

63. Volm M, Mattern J, Pommerenke E. Time course of MDR gene amplification 

during in vivo selection for doxorubicin-resistance and during reversal in murine 

leukemia L 1210. Anticancer research. 1991;11(2):579. 

64. Chevillard S, Vielh P, Bastian G, et al. A single 24h contact time with adriamycin 

provokes the emergence of resistant cells expressing the Gp 170 protein. 

Anticancer research. 1992;12(2):495-499. 

65. Landen CN, Merritt WM, Mangala LS, et al. Intraperitoneal delivery of liposomal 

siRNA for therapy of advanced ovarian cancer. Cancer biology & therapy. 

2006;5(12):1708-1713. 

66. Sadzuka Y, Hirama R, Sonobe T. Effects of intraperitoneal administration of 

liposomes and methods of preparing liposomes for local therapy. Toxicology 

letters. 2002 Jan 25;126(2):83-90. 

 

 

  

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

Figure 1. Effect of pH of the dispersion medium on peptide in vitro release (A), 

effect of peptide loading on peptide in vitro release (B) and effects of DOX 

addition on peptide in vitro release (C). Values are mean ± SD for (n = 3).   

 

Figure 2. TEM images of dual-loaded liposome (F11) after preparation (A). Particle 

size measurements of the F11 liposome formulation over 28 days of storage at 

4oC. Values are mean ± SD for (n = 3).  *p < 0.05 compared to day 0 (B). 
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Figure 3. Cell viability results of different doses of peptide-loaded liposomes in 

MDA-MB-231 (A), MCF-7 (B) and A549 (C) after 24, 48 and 72 h. 
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Figure 5. Tumor volume recorded for the studied animal groups treated with 

different peptide-loaded liposome. Results were reordered every 2 days from the 

1st day of the treatment to the last record at the 16th day (the end of the 

experiment). Values are mean ± SEM for (n = 6).   
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Table 1. Process variables for peptide-loaded, DOX-loaded and dual-loaded liposomes and 
corresponding identifiers 

 

Formulation 
identifier 

Encapsulated drug pH of  
dispersion  
media 

Drug loading 

F1 NT 3-12 peptide 6.0 3% w/w 

F2 NT 3-12 peptide 6.8 3% w/w 

F3 NT 3-12 peptide 7.4 3% w/w 

F4 NT 3-12 peptide 6.0 5% w/w 

F5 NT 3-12 peptide 6.8 5% w/w 

F6 NT 3-12 peptide 7.4 5% w/w 

F7 NT 3-12 peptide 6.0 7% w/w 

F8 NT 3-12 peptide 6.8 7% w/w 

F9 NT 3-12 peptide 7.4 7% w/w 

F10 DOX  7.4 5% w/w 

F11 NT 3-12 peptide and DOX 7.4 3% w/w of peptide and 5% w/w of DOX 
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Table 2. Physicochemical characterizations of peptide-loaded, DOX-loaded and dual-
loaded liposomes  

 

Formulation 
identifier 

Size (nm) Zeta potential
(mV) 

% Encapsulation  
Efficiency  

F1 138.47 ± 21.11 -27.55 ± 3.44 52.13 ± 7.96 

F2 119.50 ± 10.69 -28.11 ± 5.69 54.17 ± 5.89 

F3 80.55 ± 11.23 ⃰  ⃰ -26.21 ± 2.58 93.15 ± 6.10 ⃰  ⃰  ⃰ 

F4 185.56 ± 16.33 -29.11 ± 4.23 41.25 ± 4.58 

F5 177.22 ± 13.44 -26.39 ± 3.12 43.47 ± 6.11 

F6 116.75 ± 11.99 Δ -25.22 ± 3.69 72.36 ± 7.89 Δ 

F7 244.88 ± 9.78  -27.16 ± 4.55 32.15 ± 4.19 

F8 226.75 ± 13.74 -28.14 ± 5.37 30.36 ± 9.74 

F9 127.51 ± 14.35 ΔΔ -28.21 ± 1.36 64.78 ± 2.14 ΔΔ 

F10 105.66 ± 17.95 -29.64 ± 4.87 83.77 ± 8.85 

F11 91.75 ± 18.27 -20.23 ± 1.54 Δ 
85.12 ± 7.68 for peptide 
80.60 ± 5.36 for DOX 

Values were represented as mean ± SD (n=3), **p < 0.01, ***p < 0.001 compared with (F1), Δ p < 0.05, 
ΔΔ p < 0.01, compared with (F3). 
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Table 3. Study design and animal treatment protocol 

 

Group 
No 

Group  
ID 

Intraperitoneal treatment   

1 Control saline 

2 Blank Liposomes blank liposomes  

3 Free peptide free peptide (10 mg kg-1) 

4 Free DOX free DOX (5 mg kg-1)  

5 Peptide-loaded liposomes peptide-loaded liposomes (10 mg kg-1) 

6 DOX-loaded liposomes DOX-loaded liposomes (5 mg kg-1)   

7 Peptide liposome+ DOX liposome 
Peptide-loaded liposomes (10 mg kg-1) and DOX-loaded liposomes 
(5 mg kg-1).   

8 Dual-loaded liposomes (1X) dual-loaded liposomes (peptide 5 mg kg-1 and DOX 2.5 mg kg-1).   

9 Dual-loaded liposomes (2X) dual-loaded liposomes (peptide 10mg kg-1 and DOX 5 mg kg-1).   

10 Dual-loaded liposomes (3X) dual-loaded liposomes (peptide 15 mg kg-1 and DOX 7.5 mg kg-1).   
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Table 4. Effect of peptide-loaded liposomes on cardiac MDA and serum level of cardiac 
biomarkers 

 

 

Values are mean ± SEM (n = 6).*p < 0.05, **p < 0.01 compared to control group 

 

 

Group ID Cardiac MDA
(nmole per g 
tissue) 

LDH
(uKat l

-1
) 

CK-MB 
(uKat l

-1
) 

 
 

Normal animals 90.25± 28.16 3.05 ± 0.297 0.31± 0.11 

Control 99.654 ± 17.265 3.99 ± 0.458 0.35 ± 0.045 

Blank Liposome 105.23 ± 11.236 4.125 ± 0.998 0.42 ± 0.031 

Free peptide 109.774 ± 14.265 3.751 ± 0.898 0.405 ± 0.15 

Free DOX 145.998 ± 21.45 ⃰⃰ ⃰⃰ 6.025 ± 0.108⃰⃰ ⃰⃰ 1.52 ± 0.13⃰⃰ ⃰⃰ 

Peptide liposome 111.244 ± 9.265 4.139 ± 0.058 0.39 ± 0.05 

DOX liposome 134.23 ± 19.556 ⃰ 5.725 ± 0.098 ⃰ 1.29 ± 0.45 ⃰ 

Peptide liposome+ DOX liposome 139.794 ± 7.265 ⃰ 4.99 ± 0.968 ⃰ 1.15 ± 0.65 ⃰ ⃰ 

Double-loaded liposome (1X) 105.023 ± 8.996 4.105 ± 0.218 0.79 ± 0.33 

Double-loaded liposome (2X) 112.56 ± 19.88 4.34 ± 0.83 0.82 ± 0.48 

Double-loaded liposome (3X) 117.32 ± 21.452 5.05 ± 0.79 0.69 ± 0.52 
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