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Abstract 
Introduction: Electrode misplacement and interchange errors are known problems when recording 
the 12-lead electrocardiogram (ECG). Automatic detection of these errors could play an important role 
for improving clinical decision making and outcomes in cardiac care. The objectives of this systematic 
review and meta-analysis is to 1) study the impact of electrode misplacement on ECG signals and ECG 
interpretation, 2) to determine the most challenging electrode misplacements to detect using 
machine learning (ML), 3) to analyse the ML performance of algorithms that detect electrode 
misplacement or interchange according to sensitivity and specificity and 4) to identify the most 
commonly used ML technique for detecting electrode misplacement/interchange. This review 
analysed the current literature regarding electrode misplacement/interchange recognition accuracy 
using machine learning techniques. Method: A search of three online databases including IEEE, 
PubMed and ScienceDirect identified 228 articles, while 3 articles were included from additional 
sources from co-authors. According to the eligibility criteria, 14 articles were selected. The selected 
articles were considered for qualitative analysis and meta-analysis. Results: The articles showed the 
effect of lead interchange on ECG morphology and as a consequence on patient diagnoses. Statistical 
analysis of the included articles found that machine learning performance is high in detecting 
electrode misplacement/interchange except left arm/left leg interchange. Conclusion: This review 
emphasises the importance of detecting electrode misplacement detection in ECG diagnosis and the 
effects on decision making. Machine learning shows promise in detecting lead 
misplacement/interchange and highlights an opportunity for developing and operationalising deep 
learning algorithms such as convolutional neural network (CNN) to detect electrode 
misplacement/interchange.  
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1. Introduction 
The Electrocardiogram (ECG) represents the electrical activity of the heart as it is sensed by electrodes 
that are placed on the surface of the torso and limbs. The standard 12-lead ECG is the most commonly 
used method for heart rhythm analysis and it remains a cost-effective and efficient diagnostic tool [1].  
Precise electrode placement when recording an ECG is very important as it is directly linked to the 
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reliability and integrity of the signals that are interpreted to inform patients diagnostics and treatment 
[2-4]. There are two types of electrode placement errors, namely 1) electrode misplacement (e.g. 
precordial electrodes are misplaced in the wrong intercostal space) and 2) electrode interchange (e.g. 
the left arm electrode is placed on the right arm and vice versa). 

ECG signals that are recorded using misplaced electrodes can lead to significant diagnostic errors made 
by physicians or computer-based algorithms that can exhibit false positive diagnoses of anterior 
infarction, ventricular hypertrophy, ischemia, or Brugada syndrome [5]. One study suggests that’s 
electrode misplacement can lead to false diagnoses in 17–24 % of patients [6]. Tomasic et al. [7] 
reported that 12-lead ECGs are less reliable if electrodes were misplaced, but also suggest that 
misplacement of up to 1 cm does not have a significant effect on the ECG. However, further work is 
needed to assess the impact of misplaced electrodes on the diagnostic sensitivity and specificity. The 
12-lead ECG has a limited sensitivity (30–70 %) and specificity (70–95 %) to detect acute coronary 
syndromes (ACS), which can look normal in most ACS for many reasons, one of which is electrode 
misplacement which can arises from mistakes made by clinicians [2][4]. Misplacement effects on 
synthesized 12-lead ECGs have been shown to cause differences in ECG interpretation.  Body surface 
potential maps (BSPM) were used for the purpose of mimicking electrode misplacement in the 12-
lead ECG, for example Kania et al. [2] focused on studying the influence of precordial electrodes 
misplacement on P-wave morphology.  ECG electrode interchange has been extensively studied for 
limb leads, such as the recognition of left leg (LL) and left arm (LA) reversal which is the most 
challenging limb lead interchange to detect. This lead interchange can conceal ECG abnormalities and 
might influence wrong therapy decisions [8]. The right arm (RA)/LL reversal in normal patients can 
create an ECG pattern suggestive of inferior wall MI and a non-sinus atrial rhythm. The RA/right leg 
(RL) reversal has been reported to create a unique pattern of low voltage in the limb leads [9]. 
Electrode misplacement can conceal myocardial infarction or simulate a lateral wall MI in a true case 
of inferior wall MI [10]. Some of the aforementioned scenarios can lead to inappropriate diagnoses of 
STEMI patients [11].  Electrode misplacement is common even among experienced ECG technicians 
[12]. Finlay et al. [13] studied the effect of electrode misplacement on the EASI-derived 12-lead ECG 
system. They considered healthy, MI, and LVH subjects. They found that the EASI leads are less 
sensitive to electrode misplacement than the standard precordial leads.  

Several methods have been suggested to improve electrode placement such as the electrode 
misplacement simulator (EMS), which is a web-based simulation that was developed to help train 
healthcare professionals in placing electrodes and to assist researchers to find new criteria or features 
that helps in the detection of electrode misplacement [14]. Beyond better training, researchers have 
also suggested the use of electrode belts, for example Bond et al. [15] evaluated the Cardio Quick 
Patch or CQP to help clinicians to accurately positioning chest electrodes during ECG acquisition 
recording. CQP significantly improved the accuracy of placing precordial electrodes V1, V3–V6 with 
little additional effort.  Van Dam et al. [16] developed camera-based system using a KINECT depth 
camera to record the electrode positions. However, a large database is needed to calculate the 
sensitivity and specificity to determine accurately misplaced leads. Ultimately, to place the ECG 
electrodes correctly, a computed tomography (CT) can be used while recording and ECG but this 
requires a costly CT scan and an increase in radiation dose [2][3].In this paper, we conduct the first 
systematic review and meta-analysis on the topic of electrode misplacement/interchange detection 
using machine learning to show the importance of electrode misplacement/interchange detection and 
the performance of machine learning (ML) to detect misplacement. This paper addresses the following 
research questions: 



1. Why detecting electrodes misplacement is important? and how interpretation could be affected 
by electrode misplacement/interchange?  

2. What are the most sensitive electrodes regarding misplacement and what are the most frequently 
misplaced electrodes?  

3. How ML has performed to detect misplacement? And what are the most frequently used ML 
techniques used to detect electrode misplacement?  

4. What is the best ML algorithm to detect misplacement? And what are the most challenging 
electrode misplacements to detect using ML? 

2. Methods 
2.1 Literature search strategy  

This systematic review paper was carried out according to the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) guidelines to identify all relevant studies. The 
literature search strategy was designed to investigate ECG electrode misplacement or lead 
interchange recognition using machine learning techniques. Online searches were performed using 
PubMed, IEEE and ScienceDirect databases from their dates of inception to September 2019 by 
two independent reviewers (Rjoob, Iftikhar). Search terms "ECG", "lead", "electrode", "cable", 
"displacement", "misplacement", and "interchange" were combined as keywords in different 
sequence of combination in order to achieve maximal search sensitivity. 
 

2.2 Selection criteria 
To screen all downloaded articles, inclusion criteria were used with the following conditions: 1) 
original studies in ECG lead misplacement recognition that are written in English, 2) clearly defined 
ECG dataset, features, method for misplacement detection, 3) type of electrode misplacement 
(vertical chest electrode misplacement, chest electrode switching or limb leads 
reversal/interchange). Studies were excluded if they did not use machine learning to detect 
misplacement or if the study did not clarify the ECG dataset or patient diagnosis. Two reviewers 
applied screening to avoid bias in the inclusion or exclusion process. 
 

2.3 Data extraction 
Data were extracted from each article using texts, figures and tables with any assessment made 
based on the extracted data. Two reviewers (Rjoob, Iftikhar) reviewed each article; any inconsistency 
was resolved by discussion to reach unanimity. Primary outcomes consisted of ECG types, features, 
machine learning algorithm, and the database details. Secondary outcomes included performance 
outcomes as measured by sensitivity and specificity. 
 

3. Results 
3.1 Literature search 

The database searches identified a total of 228 articles, while 3 articles were included from additional 
sources. A total of 98 duplicate articles were removed and the remaining studies were subject to 
primary screening based on title and abstract. After the first primary screening, 105 articles were 
removed, and 28 studies underwent full review. Fourteen articles were included in the final 
qualitative synthesis and quantitative synthesis. There are differences between studies based on the 
type of electrode placement error (chest or limb) and the features and machine learning algorithms 
being used. Figure 1 shows literature search using PRISMA guidelines. The included 14 studies for 
review are divided between four regions: 1) The USA (n=4), 2) Sweden (n=3), 3) Switzerland and 
Bulgaria (n=3), 4) UK (n=2) and 5) Netherlands (n=2). The individual characteristics of included 
studies are summarized in Table 1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. PRISMA flow diagram of literature search strategy and selection. 

3.2 Study characteristics 
The fourteen studies used and evaluated ML based algorithms to detect electrode 
misplacement/interchange, and four ML models included artificial neural networks (ANNs) (n = 3) 
[17-19], decision trees (DT) (n=5) [20-24], correlation (n=3) [25-27], amplitude threshold (n=1) [28], 
haisty (n=1) [29] and support vector machines (SVM) (n = 3) [23-24][30]. The plurality of the studies 
(n=7) focused on both limb and chest lead interchanges while other studies (n=4) focused on limb 
lead interchanges only, two studies considered vertical misplacement of chest electrodes and one 
study considered chest lead interchange only.  The majority of the studies (n=12) used time domain 
(morphological) features as inputs to the machine learning, while other studies (n=2) used time 
domain features, statistical features and time-frequency features. Ten studies used data that were 
extracted from 12 lead ECGs, while four studies considered body surface potential maps (BSPMs) 
and 12 leads ECGs.  All articles could be divided into three domains: 1) chest electrode interchanges, 
2) chest electrode misplacement and 3) limb electrode interchange. Results on the performance, 
methodological details and statistical measures used for the evaluation of performance of ML were 
provided for each study. 
 

3.3 Quality assessment 
The quality of an article was evaluated based on scoring system: 1) paper structure, 2) identify 
research objective clearly, 3) provide sufficient background information, 4) include suitable and 
acceptable practical experiment, 5) identify dataset clearly, 6) identify and report the results of the 
experiments clearly, 7) use appropriate methods to analyse the results. Cohen’s kappa (at K=0.85) was 
computed to evaluate the agreement between the two reviewers, and there was an almost perfect 
agreement for eligibility of studies to be included in the review. Differences between the two 
reviewers were resolved with discussion between reviewers. Risk of bias in the included 14 studies 
was evaluated using quadas2 [31]. 



  
Table 1: Comparison between studies. 

 

   

REF Dataset Leads Feature  Method  Sensitivity Specificity 
HAN C. ET AL., 
[22] 

Body surface potential maps 
and Physionet PTB diagnostic 
ECG database 

LA-RA and RA-LL using 
conventional and Mason 
Likar electrode 
placements 

P-wave frontal axis, P-wave 
clockwise vector loop rotation 
direction, QRS frontal axis, QRS 
clockwise vector loop rotation 
direction, R-wave amplitude 
and T-wave amplitude from 
lead I and lead II. 

DT Conventional ECGs (LA-
RA=91.3%, RA-LL=72.8%) and 
ML ECGs (LA-RA=88.9%, RA-
LL=75.9%) 

Conventional ECGs (LA-
RA=97.9%, RA-LL=97.5%) and 
ML ECGs (LA-RA=96.5%, RA-
LL=98.5%) 

GREGG R.  ET AL., 
[29] 

Adult 12-lead ECGs from a 
single teaching hospital  

RA-RL and LA-RL Maximum and minimum QRS 
and T-wave voltages for ECG 
leads I, II and III. 

DT 
 
Haisty 

RA-RL 84.2%  
LA-RL 86.6%  
RA-RL=93.5%  
LA-RL=N/A 

RA-RL 99.9% 
LA-RL 99.9% 
RA-RL=99.4% 
LA-RL=N/A 

JEKOVA I.  ET AL., 
[26] 

PTB diagnostic ECG database 
and the Common Standards for 
Electrocardiography (CSE) 
database 

Precordial lead swaps 
over V1-V6 

QRS boundaries and QRS-T 
pattern (QRS onset to QRS 
offset + 3S0 ms)  

Correlation  95.7% (training) and 95% 
(testing) 

93.5% (training) and 91% 
(testing) 
 

HEDEN B. ET AL., 
[17] 

ECGs recorded at the 
emergency department at the 
University hospital in Lund 

LA-LL and RA-LL ECG signal ANN  LA-LL 57.6%  
RA-LL 80.5%  

LA-LL 99.97% 
RA-LL 99.95%  

JEKOVA I.  ET AL., 
[25] 

CinC Challenge 2011 dataset 
available from PhysioNet 

Chest leads and for 
peripheral leads 

P-QRS-T amplitudes and 
polarities in I, II, III 

Correlation 96.8% for peripheral leads and 
87% for chest leads 

97.8% for peripheral and chest 
leads 

JAN A. ET AL., [21] The CSE database RA-LA   V1-V2   V5-V6 
RA-LL   V1-V3   V3-V4 
LA-LL   V2-V3    V4-V5 
LL-RA-LA   LA-LL-RA 
V4-V5-V6-V1-V2-V3 
V6-V5-V4-V-3V2-V1 

Correlations between leads DT Chest leads 93.2% and limb 
leads 81.5% 

Chest leads 99.8% and limb 
leads 99.8% 

HAN C.  ET AL., 
[30] 

Body surface potential maps 
and Physionet PTB diagnostic 
ECG database 

LA–RA, RA–LL, V1–V2, 
V1–V3, V2–V3, V3–V4, 
V4–V5, V4–V6, V5–V6, 
and no lead swap) 

Including both morphology 
features and redundancy 
features 

SVM Precordial cables interchanges 
were 56.5% and limb cable 
interchange (excluding left 
arm-left leg interchange) were 
93.8% 

Precordial cable interchange 
was 99.9%, and limb cable 
interchange (excluding left 
arm-left leg interchange) was 
99.9%. 

JEKOVA I.  ET AL., 
[27] 

Database from the Basel 
University Hospital, Physionet 
PTB diagnostic ECG database 
and the CSE diagnostic 
database 

15 possible pairwise 
reversals in standard 
precordial leads 

Morphology features Correlation Chest electrodes 97.9% and 
limb electrodes 97.4%  

Chest electrodes 97.4% and 
limb electrodes 99.2% 



 Table 1 continued 
BIE J.  ET AL., [28] Large (N18,000) hospital 

database for which serial ECG's 
were available and was based 
on simulated juxtaposition 

RA–LA, V1–V2 
LA–LL, V2–V3  
RA–LL, V3–V4  
LA–RL, V4–V5 
RA–RL, V5–V6 

P, Q, R, and S amplitudes Algorithm is based on QRS 
axis and P amplitudes for 
limb electrode reversals, and 
PQ-RS amplitude distances 

Chest electrodes 88.7% and 
limb electrodes 54.6% 

Chest electrodes 99.8% and 
limb electrodes 99.6% 

KORS J. ET AL., 
[20] 

Database of1,220 standard 12-
lead ECGs collected in the 
Common Standards for 
Quantitative ECG project 

RA-LA, V1-V2, V3-V4, V5-
V6 
RA-LL, V1-V3, V4-V5  
LA-LL, V2-V3, V4-V6 

Averaged representative beats  DT 
 
 
 
 

RA-LA 99.3%, V3-V4 99.3% 
RA-LL 98,3%, V4-V5 98.3% 
LA-LL 53.6%, V4-V6 87.2% 
V 1 -V2 98.3%, V5-V6 90.6%  
V1-V3 97.5%, V2-V3 95.6% 

RA-LA 100%, V3-V4 100% 
RA-LL 100%, V4-V5 100% 
LA-LL 95.6%, V4-V6 99.5% 
V1-V2 100%, V5-V6 99.8% 
V1-V3 100%, V2-V3 99.5% 

HEDEN B. ET AL., 
[18] 

The study was based on 11,432 
ECGs  

RA-LA P, QRS, and ST-T measurement ANNs 95% 99.95% 

HEDEN B. ET AL., 
[19] 

11,432 ECGs, The emergency 
department at the University 
Hospital in Lund 

LA-LL, V3-V4 
V 1 -V2, V4-V5   
V2-V3, V5-V6  

QRS amplitude and Area ANNs LA-LL 57.6%, V3-V4 77.5% 
V1-V2 80.6%, V4-V5 83.0%  
V2-V3 44.5%, V5-V6 73.2% 

LA-LL 99.97%, V3-V4 99.95%   
V1-V2 99.9%, V4-V5 99.95 % 
V2-V3 99.87%, V5-V6 99.88% 

RJOOB K. ET AL., 
[23] 

Body surface potential maps 
and Physionet PTB diagnostic 
ECG database 

V1 and V2 vertical 
misplacement 

Morphological features (P, Q, R, 
S and T amplitudes), statistical 
features and WT 

SVM, DT and logistic 
regression  

V1 89.8% 
V2 86.6% 

V1 88.5% 
V2 86.6% 

RJOOB K. ET AL., 
[24] 

Body surface potential maps 
and Physionet PTB diagnostic 
ECG database 

V1 and V2 vertical 
misplacement 

Morphological features (P, Q, R, 
S and T amplitudes), statistical 
features, correlation 
coefficients and WT 

SVM, DT, logistic regression 
and bagged decision tree 

V1 and V2 93.3% V1 and V2 92.0% 

 
Decision tree (DT), Support vector machine (SVM), Artificial neural networks (ANN), Electrocardiogram (ECG), Right arm (RA), Left arm (LA), Left leg (LL), Right leg (RL), Common standards for electrocardiography 
(CSE), Computing in cardiology (CinC)  
 



3.4 Descriptive summary of results  
Sensitivity and specificity were the most frequently used measures to evaluate the performance of ML 
algorithms to detect misplaced electrodes (where the outcome is binary, i.e. correct electrode position 
or incorrect electrode position). Sensitivity was used in all studies while specificity was not available 
in two studies.  In the five studies that used DT, the sensitivity ranged from 17.9% to 99.3% and 
specificity ranged from 86.6% to 100%. When using ANNs, the sensitivity ranged from 44.5% to 99.9%) 
and specificity ranged from 99.8% to 99.9%. In the three other studies that used correlation; the 
sensitivity ranged from 87.0% to 97.8% while specificity was not provided in these two studies but was 
mentioned in one study as 91.0%. SVM was used in three studies, and the sensitivity ranged from 
56.5% to 93.8% and specificity ranged from 86.6% to 99.9%. A new amplitude threshold algorithm was 
used in one study, the sensitivity was 20.0%-90.0% and specificity was ~99.8%. Bagged tree was used 
in two studies, the sensitivity was 84.2%-93.3% and specificity was 92.0%-99.9% and Haisty was used 
in one study, and the sensitivity was 84.2% and specificity was 99.9%. For chest electrode 
interchanges, the sensitivity between the studies varied from 44.5% to 99.95% and specificity varied 
from 91% to 100%. While in limb electrode interchanges, the sensitivity between the studies varied 
from 20% to 99.3% and specificity varying from 95.6% to 100%. All included studies were divided into 
three groups: 1) chest electrode interchanges, 2) chest electrode misplacement and 3) limb electrode 
interchanges (lead reversal). Table 2 below shows mean sensitivity and mean specificity of each group.  
 

Table 2: Mean sensitivity and specificity of each group. 

 Ref Mean Se SD Mean Sp SD F1 
A Jekova I.  et al., [26] 97.9% ±0.31 99.1% ±0.19 98.5% 

Kors J. et al., [20] 95.2% ±4.25 99.8% ±0.21 97.4% 
Jan A. et al., [21] 93.2% ±6.4 99.8% ±0.11 96.4% 
Bie J. et al., [28] 88.7% ±8.80 99.8% ±0.08 93.9% 
Heden B. et al., [19] 71.6% ±14.01 99.91% ±0.03 93.8% 
Jekova I. et al., [27] 95.3% ±0.35 92.2% ±1.25 93.8% 
Jekova I.  et al., [25] 87.0% ±0.00 97.8% ±0.00 92.0% 
Han C. et al., [30] 56.1% ±27.7 99.9% ±0.04 71.8% 
 Average =85.6% SD=±13.5 Average =98.5% SD=±2.5  

B Rjoob K. et al., [23] 79.6% ±8.6 84.6% ±5.9 81.6% 
Rjoob K. et al., [24] 81.5% ±11.5 81.0% ±11.0 81.3% 
 Average =80.5% SD=±0.95 Average =82.8% SD=±1.8  

C Jekova I. et al., [26] 97.4% ±1.88 99.2% ±0.35 98.3% 
Heden B. et al., [18] 95.0% ±0.00 99.95% ±0.00 97.4% 
Jekova I. et al., [25] 96.8% ±0.00 97.8% ±0.00 97.3% 
Han C. et al., [30] 93.4% ±1.05 99.9% ±0.05 96.5% 
Gregg R.  et al., [29] 88.1% ±3.90 99.7% ±0.20 93.5% 
Kors J.  et al., [20] 83.7% ±21.31 98.5% ±2.07 90.4% 
Jan A. et al., [21] 81.5% ±31.8 99.8% ±0.18 89.7% 
Han C. et al., [22] 82.5% ±9.25 97.7% ±0.20 89.3% 
Heden B. et al., [17] 69.0% ±11.45 99.9% ±0.01 81.6% 
Heden B. et al., [19] 57.6% ±0.00 99.97% ±0.00 73.1% 
Bie J.  et al., [28] 54.6% ±28.09 99.6% ±0.15 70.5% 
 Average =81.7% SD=±14.5 Average =99.2% SD=±0.82  

A Represents chest electrode interchanges, B represents chest electrode vertical misplacement and C 
represents limb electrode interchanges. 

 



In each group, ML performance in electrode misplacement/interchanges was evaluated for each 
possible electrode misplacement/interchanges according to sensitivity and specificity as shown in 
figure 2 and F1 score as shown in figure 3.  While figure 4 shows each ML algorithm performance 
particularly in each scenario.   

 
 
 
 
 

Figure 2: ML performance in each possible electrode misplacement/interchanges, a: represents 
limb electrode interchanges, b: represents chest electrodes interchanges and c: represents vertical 
misplacement of V1 and V2.  Right arm (RA), left arm (LA), left leg (LL), right leg (RL). 
 
 

 
Figure 3: F1 score of ML for each possible electrode misplacement/interchanges. Right arm (RA), 
left arm (LA), left leg (LL), right leg (RL). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: ML algorithms performance in each scenario of common electrode 
interchange/misplacement, blue circles represent sensitivity and red circles represent specificity. 
Decision Tree (DT), correlation (Corr), support vector machine (SVM), artificial neural networks 
(ANNs), amplitude (Amp), right arm (RA), left arm (LA), left leg (LL), right leg (RL). 
 

4. Discussion 
The aim of this systematic review and meta-analysis paper is to identify and analyse articles that 
implement machine learning in the area of automated lead misplacement or interchange recognition. 
Different articles show the implications of electrode interchanges on decision making in cardiac care 
and intensive care units which have the highest figures reported for electrode misplacement and how 
this error can mimic different types of cardiac diseases which could result in a false diagnosis 
[5][12][32]. Bupp et al. [33], found that electrode misplacement can occur between 40% to 60% of the 
time. And according to Wegner et al. [34], 36% of chest electrodes are placed outside a radius of 1.25 
in.  Various methods were developed to prevent lead misplacement, but only 14 articles used ML to 
detect electrode interchange/misplacement. None of 14 articles considered deep learning (DL) to 
detect lead interchange/misplacement, while they used traditional ML. The 14 articles were divided 
into various groups for each analysis to provide accurate results. According to meta-analysis, ML 
obtained the highest sensitivity and specificity when detecting chest electrode interchanges 
(switching) compared to limb electrode interchanges and chest electrode misplacement (vertically). 
Classical ML can detect limb lead interchange with a high degree of performance based on sensitivity 
and specificity except LA/LL interchange, which is still unresolved with currently low performance 



(sensitivity<57%) [17][19][20][26]. At the time of writing, there has been no research using deep 
learning to detect lead misplacement or to improve the performance of LA/LL detection. Changes in 
P-wave morphology were found to be statistically significant if precordial leads V1 and V2 were 
misplaced by 2 cm, while morphology changes were not prominent when precordial leads V3, V4 and 
V5 were misplaced by up to 5 cm from their gold standard location. In addition, the precordial lead V1 
was found to be more sensitive to vertical than to horizontal misplacements which is in contrary to 
other leads which can result in false diagnoses or false negatives [2][5]. Furthermore, Misplacement 
of V1 and V2 can change the amplitude of R-waves in these leads as per intercostal space away from 
the correct position, which can result in an interpretation of old anterior myocardial infarction [5] [12]. 
Hence, healthcare providers should take this into account when recording ECGs [4][6].  Table 3 below 
shows answers of all key research questions that have been investigated in this study.   

Table 3: Key research questions that have been answered by this systematic review. 

Question Answer 
1. Why detecting electrodes 
misplacement is important? and 
how interpretation could be 
affected by electrode 
misplacement/interchange? 

ECGs with electrode misplacement can simulate abnormalities such as 
ectopic rhythm, chamber enlargement or myocardial infarction, which 
can lead to significant diagnostic errors such as false positive diagnoses 
of anterior infarction, ventricular hypertrophy, ischemia, or Brugada 
syndrome [5][32].  Also, vertical misplacement of V1 and V2 can show 
a spurious rSr´ pattern [35]. 

2. What are the most sensitive 
electrodes regarding 
misplacement and what are the 
most frequently misplaced 
electrodes? 

V2 is the most sensitive misplaced electrode with regards to the change 
in the signal followed by V3, V4 and V1 [4]. While V1 and V2 are the 
most frequent misplaced electrode (>50%) [34]. 

3. How ML has performed to detect 
misplacement? And what are the 
most frequently used ML 
techniques used to detect 
electrode misplacement? 

According to meta-analysis, ML showed a high sensitivity and specificity 
to detect electrode misplacement/interchanges, except LA-LL 
interchange. DT was the most commonly used ML algorithm to detect 
lead misplacement/interchange (5 out of 14, 35.7%).  While the other 
ML algorithms were used less than four times in the 14 articles (21.4%).  

4. What is the best ML algorithm to 
detect misplacement? And what 
are the most challenging electrode 
misplacements to detect using ML?
  

According to the ten most common lead misplacement/interchange 
scenarios as shown in figure 4, DT obtained the best performance five 
times out of the ten scenarios. While other ML algorithms obtained the 
best performance less than 4 times. However, as shown in the meta-
analysis, LA-LL is the most challenging electrode 
misplacement/interchange scenario for ML to solve, it’s challenging in 
intensive care units, especially in the absence of a comparative ECG 
[36]. 

 
5. Conclusion 

This systematic review was conducted to evaluate the performance of published lead interchange 
detection algorithms. Our findings highlight opportunities for enhancing ECG data quality and clinical 
decision making through the accurate detection of lead misplacement. Precordial lead waveform 
changes with the vertical misplacement of the precordial electrodes can cause implications on ECG 
interpretation. Incorrect electrode placement could change the diagnostic interpretation of the 12-
lead ECG and consequently patient treatment. These findings highlight the importance of developing 
new algorithms such as deep learning to detect electrode misplacement and interchange errors with 
a high sensitivity and specificity, especially to detect LA-LL interchange. 
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