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Abstract  

A detailed experimental investigation of wall fires in underground confined space was conducted 

to study the heat fluxes under the ceiling. Various burner aspect ratios and fire heat release rates were 

employed to simulate different wall fire scenarios. The effect of source-ceiling height was also 

examined. The results show that the distribution of heat flux under the ceiling from fires on  

rectangular burners was significantly influenced by the burner aspect ratio. As the burner aspect ratio 

increased, the heat flux under the ceiling at a given position perpendicular to the side wall increased. 

It was found that the existing heat flux correlation developed for a square burner could not capture 

such influence as it did not include the burner aspect ratio. A new predictive model based on the 

equivalent burner diameter concept was proposed incorporating the burner aspect ratio and was shown 

to predict well the heat flux for all the cases with different heat release rates, burner aspect ratios and 

source-ceiling heights. The model was also validated against available data in the literature which were 

not used in its derivation.  Further analysis was also conducted for the temperature contours 

constructed from the temperature measurements under the ceiling. 
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1. Introduction 

Fires in reduced scale channels are often used to mimic fire scenarios in tunnels [1, 2], corridors 

[3] and underground spaces [4, 5]. The safety and security problems for such fires have raised 

widespread concern. Among them, the problem of ceiling fire prevention is of particular importance 

[6-9]. Typical confined channel fires often result in wall fires and ceiling jets, the characteristics of 

which are significantly different from unconfined fires. 

Significant research has been carried out on the heat transfer mechanisms in ceiling jets [10-19]. 

Some pioneering work was performed by Alpert [10, 11], who conducted large-scale fire tests using 

an unconfined ceiling to investigate the ceiling jet characteristics of turbulent flames. You and Faeth 

[12, 13] also carried out experimental investigations of fire resulted ceiling jets in an unconfined 

environment. Using a square burner, they derived a correlation between the turbulent heat flux and the 

distance under the ceiling. Kokkala [14] tested natural gas fires under unconfined ceilings to measure 

ceiling heat flux. Chatterjee et al. [16] numerically simulated the ceiling flow under unconfined and 

inclined ceilings with FireFOAM, the large eddy simulation based fire solver within the frame of open 

source computational fluid dynamics code OpenFOAM. Johansson et al. [17] investigated the ceiling 

jet temperature and velocity profiles and proposed some correlations based on numerical experiments 

with the Fire Dynamics Simulator (FDS). Lattimer et al. [18, 19] conducted experiments on wall and 

corner flames to investigate the characteristics of flame heat flux when the walls were confined. More 

recently, Fan et al. [20] studied the temperature and heat flux characteristics of asymmetric hot plume 

channels with the restriction of sidewalls in small-scale tests. 

Previous studies mostly focused on the ceiling heat flux induced by free fire plume under 

unconstrained or tunnel-like ceilings. Relatively little research has been performed on ceiling heat flux 
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distribution induced by wall fires in a channel. Furthermore, square or round fire sources were used in 

most previous research. This excluded the effects of the burner aspect ratio. There are many types of 

fire sources in practice. The shape of the fire source has some influence on the actual fire hazard. 

Similar rectangular wall fires are likely to occur in practice, e.g. a full burning car close to the wall in 

the channel shown below can be approximated as a rectangular fire close to the wall. The plume 

evolution and heat flux distributions induced by a rectangular fire source are expected to have some 

different characteristics from those on a square or round fire source. It is of relevance to the design of 

fire detection and suppression systems to quantify such characteristics.    

2. Experiments 

Figure 1 shows the experimental setup, which is a 1: 8 reduced scale model. The tests were carried 

out in a tunnel-lie channel constructed from fireproof panels with dimensions of 8 m (length) × 2 m 

(width) × 1 m (height). Four rectangular burners having the same surface area, but different aspect 

ratios were used to simulate the fire source from axisymmetric (n=1) to line (n=10) burners. The gas 

burners were made of stainless steel with dimensions of 12 cm × 12 cm, 20.8 cm × 6.9 cm, 29.4 cm × 

4.9 cm and 38 cm × 3.8 cm, corresponding to aspect ratios of 1, 3, 6 and 10, respectively. The burner 

height was 15 cm. In the tests, the long side of the burner was aligned against the side wall to simulate 

wall fire under different conditions. The fuel was propane and the mass flow rate was controlled by a 

mass flow meter. 
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Fig. 1. The experimental setup.  

The instrumentation is shown in Fig. 2.  For heat flux measurements, six Gardon heat flux 

gauges were placed from above the ceiling by perforating it. The Gardon gauges were water-cooled 

and their measurement uncertainty was estimated to be ±3%. In order to measure the temperature 

distributions in the ceiling jet, 100 K-type thermocouples of 1 mm diameter were placed at 

below the ceiling.  
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Fig. 2. The heat flux gauges and temperature measurement arrangements below the ceiling. 

 

Table 1 summarizes the test conditions. All tests were performed in ambient temperatures of 25 

± 5 °C. The heat release rates (HRR), source-ceiling heights (H), and burner aspect ratios (n) were 

systematically varied to facilitate the investigations. The heat release rate was between 13.4 kW to 
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42.0 kW to ensure that the flames can reach the ceiling and spread along it in all conditions. Based on 

the Froude similarity criterion [21], the selected channel model size (1: 8) is equivalent to the full scale 

channel size of 64 m (length) × 16 m (width) × 8 m (height), which is in line with the size of the 4-

lane channel in reality. The corresponding full-scale fire heat release rate is from 2.42 MW to 7.60 

MW, which is also in line with the actual car fires. Considering all the experimental conditions, the 

Reynolds number ranged from 7.35 ×103 to 1.54 ×104 to ensure that the flames generated in the 

experiment were turbulent. In the experiment, heat flux data was collected in the stable section and the 

measurement time was 2 minutes. Each test with the same conditions was repeated three times.  Very 

good repeatability was achieved with the differences between the original and repeated tests to be less 

than 10%. The average value of the measurements was taken as the measured value. 

 

Table1 Experimental conditions 

Test no. 
Burner size 
L×W (cm 

×cm) 

Aspect ratio 
n 

(n= L/W) 

Source-ceiling 
height H (m) HRR (kW) Re 

1-18 12×12   1 0.28, 0.38, 0.48 13.4, 20.2, 25.2, 
30.2, 35.3, 42.0 

7.35×103 ~ 

1.54×104 

19-36 20.8×6.9  3 0.28, 0.38, 0.48 13.4, 20.2, 25.2, 
30.2, 35.3, 42.0 

7.35×103 ~ 

1.54×104 

37-54 29.4×4.9  6 0.28, 0.38, 0.48 13.4, 20.2, 25.2, 
30.2, 35.3, 42.0 

7.35×103 ~ 

1.54×104 

55-72 38×3.8   10 0.28, 0.38, 0.48 13.4, 20.2, 25.2, 
30.2, 35.3, 42.0 

7.35×103 ~ 

1.54×104 

 

3. Results and discussion 

3.1 Heat flux distribution under the ceiling induced by wall fires with the square burner 

Figure 3 shows the total heat flux distribution under the ceiling induced by wall fires with the 
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square burner under different source-ceiling heights and heat release rates. The total heat flux under 

the ceiling was found to increase with the increase of the heat release rate and decrease with the 

increase of the distance to the side wall. For different source-ceiling heights under the same heat release 

rate, the heat flux was found to decrease with the increase of the source-ceiling height. 
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Fig. 3. The lateral heat flux distribution under the ceiling for wall fires induced by a square burner: 

(a) H=0.28 m; (b) H=0.38 m; (c) H=0.48 m. 

It can be clearly seen from Fig. 3 that there are three factors influencing the heat flux distribution 

under the ceiling induced by a square burner wall fire, i.e. the distance to the side wall, the heat release 

rate and the source-ceiling height as noted in Eq. (1): 

, ,q f H Q r                                      (1) 

where q  is the total heat flux (kW/m2), H  is the source-ceiling height (m), Q  is the total heat 
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release rate (kW), and r  is the distance to the side wall (m). 

Following [12, 13], heat flux and distance to the side wall can be cast into their dimensionless 

forms using the heat release rate and source-ceiling height as: 

                                   

 

The above equation was originally deduced for an open fire under the ceiling [12,13]. For a wall 

fire under the ceiling, Hasemi and Tokunaga [22] proposed the "mirror fire source" approach. They  

assumed that for restricted wall fires there was an "imaginary fire source" with the same intensity as 

the actual fire source on the other side of the wall. Comparing with the mass flow of the unconfined 

flame, the mass flow of the wall fire and the corner fire should be taken as 1/2 and 1/4 of the unconfined 

fire, respectively. With such assumption, they considered that the relationship represented by Eq. (2) 

could still hold for heat flux in the ceiling jet induced from a wall fire. 

Figure 4 plots the dimensionless heat flux against the dimensionless distance to the side wall for 

all the cases with the square burner. Applying Eq. 2 for the data points and by fitting the data, the 

following equation can be obtained: 

        
-1.5252

=0.063 0.2
q H r r

Q H H
                                 (3) 

The measurements of You and Faeth [12], which were not used in fitting the above correlations, 

were also included in Fig. 4 for comparison. The agreement between the measurements and predictions 

of the correlation is generally good. The measurements of You and Faeth [12] were generally smaller 

than the present measurements and the fitted correlation. This was thought to be due to the fact that 

there was no side-wall restriction in those tests[12], which only involved free fire impinging on the 
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ceiling. The presence of the side wall can influence the heat flux on the ceiling due to a combination 

of the resulting change in flame shapes as well as the changes in radiative and convective heat transfer.  
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Fig. 4. Heat flux under the ceiling of wall fire induced by a square burner. 
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Fig. 5. Heat flux distribution under the ceiling induced by wall fires with different burner aspect 

ratios for a given heat release rates (HRR= 13.4 kW) but different source-ceiling heights. 
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3.2 Heat flux under the ceiling induced by wall fires with various burner aspect ratios 

Figure 5 shows the total heat flux under the ceiling induced by wall fires with different burner 

aspect ratios at the same heat release rates but different source-ceiling heights. It was found that the 

lateral heat flux under the ceiling gradually increased as the burner aspect ratio increased. When the 

source-ceiling height increased, the change of the burner aspect ratio still affected the total heat flux 

but to a less extent. 

Figure 6 shows the flame appearance probability contour of burners with different aspect ratios 

from the front and side view. An image processing program was constructed to obtain the flame 

appearance probability. Firstly, the transient flame evolutions were captured by the CCD camera with 

1920 ×1080 pixels and 25 frames per second. For each test, 30 s of the original videos with a constant 

heat release rate were decompressed into 750 consecutive frames. Then the OTSU method [23], which 

is a threshold selection method from grey-level histogram, was programmed through MATLAB and 

used to convert the original frames into the grey scale images. The threshold obtained was used to 

identify the flame area in each image. By averaging all the captured frames, the visible flame 

appearance probability was obtained. Finally, the colour contours were obtained by changing the 

colour scheme.  For a strong plume impinging upon the ceiling, the variation of the flame extension 

length along the side view direction is not obvious for a given HRR and source-ceiling height. The fire 

plume can be divided into the vertical sections against the side wall and the horizontal diffusion stage 

on the ceiling. It can be further assumed that the flame surface area is the sum of the flame area against 

the sidewall and ceiling flame spread area. The flame area against the sidewall can be approximated  

as of rectangular shape as shown in Fig. 6b. It increased with the increase of the burner aspect ratio in 

the front view direction, which is an important factor causing the difference in heat flux under the 
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ceiling. However, thermal radiation from the main flame volume would have greater influence on the 

heat flux on the ceiling along the side view than the front view direction. Hence, the lateral heat flux 

under the ceiling gradually increased with the increase of the burner aspect ratio. 

 

Fig. 6. Flame appearance probability contour for burners with different aspect ratios from the front 

and side view. 

 

Following the same procedure for the square burner case, Equation 2 was applied to these 

measurements involving different aspect ratios. As shown in Fig. 7, the data points can no longer 

collapse to one curve. The relationships between the dimensionless heat flux and distance to the wall 

change with the burner aspect ratio. In addition, the fitted curves for different burners also showed 

some irregularity. As the burner aspect ratio increases, the fitted curve becomes more gentle. In order 

to consider the effect of burner aspect ratio, it was hence decided to introduce a dimensionless size 

factor. 



12 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.966 20.132 , 0.891y x R

1.0 20.123 , 0.897y x R

1.131 20.102 , 0.910y x R

1.525 2y 0.063 , 0.954x R
2q H

Q

Aspect ratio

r

H

n=6 n=10
 HRR= 13.4 kW 
 HRR= 20.2 kW
 HRR= 25.2 kW
 HRR= 30.2 kW
 HRR= 35.3 kW
 HRR= 42.0 kW

 HRR= 13.4 kW 
 HRR= 20.2 kW
 HRR= 25.2 kW
 HRR= 30.2 kW
 HRR= 35.3 kW
 HRR= 42.0 kW

 HRR= 13.4 kW 
 HRR= 20.2 kW
 HRR= 25.2 kW
 HRR= 30.2 kW
 HRR= 35.3 kW
 HRR= 42.0 kW

 HRR= 13.4 kW 
 HRR= 20.2 kW
 HRR= 25.2 kW
 HRR= 30.2 kW
 HRR= 35.3 kW
 HRR= 42.0 kW

n=1 n=3

n=1

n=10

n=6

n=3

 

Fig. 7. The relationship between dimensionless heat flux and dimensionless distance for burners with 

various aspect ratios. 

 

The hydraulic diameter D is often used to characterize rectangular sources. The relationship 

between the hydraulic diameter D, the area of the fire source S and the aspect ratio (n=L/W) is as 

follows: 

1/2

1/2 1/2

4 4 2
D=

2( ) ( )

S S S

p L W n n
                             (4) 

Consequently, the total heat flux under ceiling induced by wall fire plume can be expressed as: 

, , ,q f H Q r D                            (5) 

Following You and Faeth [12], the left-hand side of Eq. (5) can be simplified to
2q H

Q
, then the 

right side of the Eq. (5) would be dimensionless. Thus, Eq. (5) can be further simplified as:  

2q H r D
f

Q H H
                               (6a) 

 

or, 
2 1/2

1/2 1/2

2

( )

q H S
f r H H

n nQ
                 (6b) 
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Examining Fig. 7 in detail, it can be seen that the second parameter on the right-hand side of Eq.6, 

i.e. the aspect ratio of rectangular burner, plays a key role in the relationship. In order to account for 

the effect of burner aspect ratio (or equivalently of the aspect ratio), an empirical factor 10
exp

3

D

H
 

was introduced following Lee et al. [24], who studied flame height and heat flux on facades and 

proposed a correlation of heat fluxes on facades by including an empirical correction 

3 1exp 0.6 H  to account for a residue effect of the aspect ratio, where H3 is the opening height 

and 1  is characteristic radius of opening involving the aspect ratio of opening. Finally, all the current 

measurements for rectangular burners with different aspect ratios were plotted in Fig. 8. The data 

points collapsed to one curve. For comparison, measurements from previous work of Lattimer et al. 

[19] studying heat fluxes under ceiling with various heat release rates and source-ceiling heights (H) 

were also plotted in Fig. 8. The comparison confirms that the correlation determined in this work is 

valid when the abscissa ( r H ) is greater than 0.2. Although further validation against more 

measurements would also be desirable.  
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Fig. 8. A new correlation of dimensionless heat flux under ceiling accounting for burner aspect ratios 

in a channel. 
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3.3 Temperature distribution under the ceiling of wall fire induced by burners of different 

aspect ratios 

Figure 9 shows the temperature contours from measurements  for the 

burners with different aspect ratios. For the temperature measurements, each test was repeated 3 times. 

The measurement time for temperature was 2 minutes; the measurements were conducted in the stable 

section. It can be clearly seen that as the burner aspect ratio increases, the temperature in the y-axis 

direction of the ceiling (i.e. perpendicular to the direction of the side wall) also increases. This trend 

is consistent with the finding in the ceiling heat flux. 

Since the heat flux is linked with the temperature, the relationship between the ceiling heat flux 

and the burner aspect ratio can also be inferred from the obtained temperature contour map. In the 

direction perpendicular to the side wall, the heat flux and temperature under the ceiling increase as the 

aspect ratio of the burner increases. In the direction along the side wall, the temperature under the 

ceiling tends to decrease as the aspect ratio of the burner increases. 
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Fig. 9. Temperature contour map with different burner aspect ratio under the ceiling 

(H= 0.38 m, HRR= 30.2 kW). 
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4. Conclusions 

The heat flux distribution induced by wall fires with various burner aspect ratios in a channel 

were experimentally investigated with a specially designed test rig. A series of tests were conducted 

by systematically changing the fire heat release rate, source-ceiling height and the burner aspect ratio. 

Measurements were taken for the heat flux and the temperature under the ceiling. It was found that the 

impinging ceiling jet resulted from the wall fire induced by a rectangular burner with larger aspect 

ratios were significantly different from previously wall fires on square burners. The main findings can 

be summarized as follows: 

(1) For the square burner, the heat flux under the ceiling increased as the heat release rate of the 

fire source increased, whereas it decreased as the distance to the side wall increased. The source-ceiling 

height also affected the heat flux under the ceiling. As the source-ceiling height increased, the heat 

flux decreased. 

(2) For burners with different aspect ratios, the heat flux under the ceiling gradually increased as 

the burner aspect ratio increased, indicating that the aspect ratio of the fire source had some influence 

on the heat flux distribution under the ceiling.  

(3) Considering the differences in the measurements for different burner aspect ratios, a new 

correlation was proposed for the heat fluxes under the ceiling induced by wall fires with different  

burner aspect ratios in a channel. The temperature contours under the ceiling were also analysed and 

compared with the heat flux distribution field map to verify the findings. 
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