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Graphical abstract 

 

Highlights 

 Solar AOPs effectively degraded organic matter in Jordanian greywater. 

 Solar excitation increased degradation rates for ozone and peroxonation. 

 Solar peroxonation reduced the TOC of GW by 59% with 3 hours. 
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Reclaiming non-conventional water sources such as greywater is gaining more attention in the light 

of current and expected water shortage due to the global trend of continued population growth, 

urbanization, and the impact of climate change. In this work, the degradation of organic matter 

measured as total organic carbon (TOC) and biochemical oxygen demand (BOD5) in real greywater 

samples using different ozone-based oxidation and solar advanced oxidation treatments was 

investigated in a custom-built glass tube reactor combined with a concentrated parabolic collector 

(CPC). The evaluated processes included ozonation (O3), solar ozonation (O3/solar irradiation), 

hydrogen peroxide oxidation (H2O2), hydrogen peroxide under solar irradiation (H2O2/solar 

irradiation), peroxonation (H2O2/O3), and solar peroxonation (H2O2/O3/solar irradiation). Combining 

different treatment methods with/without exposure to solar irradiation enhanced overall treatment 

efficiency. The efficiency of the examined processes followed the order: solar peroxonation > solar 

ozonation > peroxonation > ozonation, while the other processes showed a negligible effect. The 

highest TOC reduction (58.6%) was observed using solar peroxonation at 41.7 mg O3/min and 0.2 

H2O2/O3 molar ratio; the highest BOD5 reduction (29.4%) was observed using solar peroxonation at 

41.7 mg O3/min and 0.4 H2O2/O3 molar ratio. We conclude that low-cost advanced oxidation 

technologies can be effective to remove organic materials providing efficient greywater remediation 

for reuse applications.  

 

Keywords: solar, greywater, ozonation, peroxonation, advanced oxidation processes  
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1. Introduction 

Nearly half of the world’s population are living in a potential water-scarce area for at least one 

month per year [1], with around 1.76 billion people living in regions facing drastic water shortage 

[2]. Whilst current water shortage is more crucial in developing countries [3], some developed 

countries, such as Australia and Japan, are also suffering from the same problem [4]. It has been 

predicted that water shortage will become more severe in future, based on the global trend of 

continued population growth and urbanization, in addition to the many impacts of climate change 

[5].  

The significance of the current and predicted water shortage in the context of sustainable 

development and the availability of new technologies has brought more attention to the potential to 

utilize non-conventional water sources [6]. Reclaiming greywater (GW), which represents 50 – 75 

percent of household water consumption [7], offers great potential to provide a local source of water 

for reuse [8]. GW is defined as the untreated domestic wastewater excluding the wastewater 

generated from toilet and, in most cases, the kitchen [8]. Reclaimed GW can be considered for a 

range of non-potable applications for both indoor or outdoor uses such as toilet flushing, irrigation, 

and washing vehicles [9]. Reuse could save from 40% up to 70% of household freshwater 

consumption [10], which consequently reduces the volume of generated wastewater and minimizes 

potential for water source pollution [11]. The quality and quantity of domestic GW are both affected 

by unlimited factors such as; the GW source, number and age distribution of residents occupying the 

house, in addition to their lifestyles and income level [12].  

In Jordan, practices to separate and collect GW are more common in villages and rural areas [13], 

where the GW is mainly used, without any treatment, for irrigation [14]. To control the quality for 

GW for reuse, Jordan Standards and Metrology Organization (JSMO) issued the second edition of 

GW standard JS1776:2013 in 2013, considering non-potable GW reuse for irrigation and toilet 

flushing [15]. Although use of reclaimed GW for non-potable applications reduces the treatment 

requirements [16], GW still need to be treated from environmental and health points of view [17], 

according to its physico-chemical characteristics and the recommended standard [12].  

GW typically contains a high BOD5/COD ratio [12], lacks macro or trace nutrients [18] and contains 

a range of bio-recalcitrant compounds [19], and coupled with the variations in production rate and 

organic load [20] provides a significant challenge for biological treatments - especially for low 

volume, distributed reuse applications [21]. On the other hand, AOPs such as UV/H2O2, O3/H2O2, 
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UV/O3, TiO2/UV, and photo-Fenton, produce hydroxyl radicals (𝑂𝐻•) in sufficient quantity to 

oxidize pollutants in water [16] representing a practical complementary treatment option for GW 

remediation. The advantages of AOPs over biological and other ‘traditional’ treatment methods 

include (i) AOP’s destroy pollutants rather than transferring them to another phase [16], (ii) they can 

oxidize a wide range of materials without restrictions to specific compounds [22], and (iii) AOPs can 

effectively disinfect water [23]. 

Despite the long list of GW treatment methods and a similar long list of advanced oxidation 

processes (AOPs) with the potential to remediate water and wastewater, a limited number of studies 

have considered the application of single or combined AOPs specifically for GW treatment. TiO2 

photocatalysis has gained attention [5], but studies on ozone-based AOPs which utilize solar 

irradiation are limited. Whilst ozone itself has been widely used in water and wastewater treatment, 

for remediation of color, taste, odor and disinfection [24], it is not recommended as a standalone 

process for organic content reduction [25]. Enhancing O3 efficiency and suitability through 

combination with solar irradiation (solar ozonation) [26-28], hydrogen peroxide (peroxonation) [29, 

30] or with both hydrogen peroxide and solar irradiation (solar peroxonation) [28] offers promise for 

remediation of domestic [26, 29] and industrial wastewaters [30, 31] and landfill leachate [28, 32]. 

Nonetheless, large number of published ozone-based AOP studies have been carried out using a 

simulated solar source [26, 27] and/or simulated synthetic wastewater [26, 27, 29]. 

The study forms part of a larger body of work to co-develop sustainable GW re-use systems with 

local communities in Jordan; in this paper, we focus on the implementation of a simple low-cost 

photoreactor to study solar enhancement of ozone-based AOPs - solar ozonation and solar 

peroxonation (H2O2/O3) - for the removal of organic content from real GW sampled from homes in 

Jordanian cities. 

2. Material and methods 

2.1. Greywater selection and characteristics  

In order to reduce the error associated with the variation in GW characteristics, initial samples were 

undertaken over a five month period from 4 houses in different Jordanian cities, the site at Irbid was 

selected for consistency in biological load and GW subsequently collected for experiments. As is 

traditional in the country, the GW collection system in this house was installed by the homeowner 

during the house construction ensuring only the wastewater generated from the laundry, hand 

washing basins and showers was collected by a series of pipes joining a main pipe connected to a 
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200 L collection tank. The GW collection tank was fitted with a level switch that turns on an 

electrical pump on when the tank is full providing irrigation of crops without treatment. The GW 

retention time in the collection tank was typically 48 hours. The average GW characteristics of this 

house during the monitoring period are summarized in Table 1 and compared to Jordanian standard 

JS1776:2013 (GW analysis was carried out in the Royal Scientific Society laboratories according to 

the international standards [33]). 

2.2. Grey water collection and storage 

GW samples were collected manually from the GW collection tank in a 20 L polyethylene container, 

transferred to the laboratory within 1-2 hours, and stored at 3-5 ̊C to minimize any changes that 

might occur in GW properties before the experiments. To ensure results from each technology could 

be accurately compared, each set of experiments was conducted with a single batch of the collected 

GW. 

Table 1. Characteristics of the GW from Irbid and the Jordan GW standard 

Parameter 

(in mg/l unless otherwise stated) 

 Jordan GW standard JS1776:2013 for different 

applications [15] 
 

 

 Irrigating vegetables that are  Toilet 

flushing 

 Measured 

Mean ± SD  Eaten cooked  Eaten raw   

BOD5  60  60  < 10  347 ± 31.2 

𝐶𝑂𝐷  120  120  < 20  380 ± 28.6 

TOC  -  -  -  126.4 ± 13.2 

TSS  100  100  < 10  45.3 ± 7.42 

𝑝𝐻 (-)  6-9  6-9  6-9  7.72 ± 0.14 

𝑁𝑂3  70  70  70  0.375 ± 0.12 

Total nitrogen(𝑇𝑁)  50  50  50  24.1 ± 2.27 

Turbidity (𝑁𝑇𝑈)  -  -  <5  57.8 ± 3.52 

E. coli (𝐶𝐹𝑈/100 𝑚𝑙)  104  103  < 10  1.1×104 ± 1.89×103 

Intestinal helminths egg (-)  < 1  < 1  < 1  0 

Fat Oil and Grease (𝐹𝑂𝐺)  8  8  8  8.8 ± 1.5 

𝐶𝑙−  500  500  500  425.3 ± 22.57 

𝑆𝑂4
−2  500  500  500  114.1 ± 8.72 

𝑁𝑂2 as N        0.067 ± 0.08 

Total phosphorous (TP)  15  15  15  1.36 ± 0.37 

Conductivity (µS/cm)  -  -  −  724.6 ± 0.27 

 

2.3. Experimental set-up  

All experiments were carried out in a custom-built borosilicate glass tube photoreactor with 

concentrated parabolic collectors installed facing south at a 30° angle on the roof of the Faculty of 

Natural Resources and Environment at the Hashemite University, Jordan. The photoreactor was 
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designed and fabricated by the research team to ensure it was robust and suitable for rural 

geographical locations, and in particular considering low cost materials, simple construction 

techniques and flexibility in adjusting the inclination and the focal distance. The reactor layout and 

dimensions are depicted in Fig. 1. Each collector was made from polished stainless steel sheet type 

304. The aperture width was set to 40 cm for all experiments, and the focal distance was determined 

at 8 cm from the center of the parabolic reflector using basic green laser ray-tracing experiments.  

 

Fig. 1. Schematic of the glass tubes photoreactor with concentrated parabolic collectors. 

 

In each experiment the volume of GW treated per tube was 1.5 L. The experiments under solar 

irradiation were carried out for 3 hours between 10:30 and 13:30 during May and June 2017. Figure 

S1 shows global radiation data taken from the photovoltaic Solar Station (LP02 pyranometer 

(Hukseflux Thermal Sensors, Netherlands)) at the Hashemite University with the hourly averaged 

global radiation measured on the hour at 11:00, 12:00, 13:00 and 14:00 each day during the 

experimental period. The incident radiation during the experiments was very consistent such that the 

average global radiation (AGR) between 10:00 and 14:00 during days of the solar experiments was 

1.00 kW/m2 ± 0.013 kW/m2 (Max. 1.067 kW/m2, Min. 0.939 kW/m2). The average final water 

temperature of the treated GW was 37.71°C ± 2.79°C (Max. 41.60°C, Min. 34.01°C).  

For experiments with no irradiation (dark experiments), the glass tubes were wrapped with aluminum 

foil. Depending on the purpose of the experiments, air or air with ozone were continuously fed at the 

Jo
ur

na
l P

re
-p

ro
of



7 

 

bottom of the tube reactor using ozone generator (OZ-3G, Ozonefac Ltd., china) with air input; the 

generator has variable outlet ozone concentration from 0 - 2.5 g/hr and constant air flow rate at 5 

L/min. At regular intervals, samples (6 mL) were withdrawn for TOC measurement. For BOD5 

analysis, a 500 mL sample was taken from the initial greywater, with the same volume removed from 

the tubes and at the end of each experiment. 

2.4. Analytical methods 

The evaluation of mineralization was determined by measuring the total organic carbon (TOC) of 

GW samples rather than chemical oxygen demand (COD) in order to avoid the interference of H2O2 

with COD measurement [34]. TOC was analyzed using Shimadzu 5000 TOC/V (Total Organic 

Carbon and Total Nitrogen Analyzer) with solid sample combustion unit SSM-5000A employing 

regular sensitivity Pt catalyst. The biodegradable organic content of the water was determined by 

measuring the biochemical oxygen demand (BOD5) with BOD5 EVO System 6 (VELP Scientifica, 

Inc). All BOD5 samples were subjected to extended aeration for 15 min in the dark before BOD5 

measuring in order to remove any residue ozone that may interfere with BOD5 measurements. All 

samples in this study were analyzed in triplicate unless otherwise stated. 

2.5. Calculations 

TOC and BOD5 percentage of removal was calculated as follow: 

𝑇𝑂𝐶 removal % = 100 ×
𝑇𝑂𝐶0 − 𝑇𝑂𝐶

𝑇𝑂𝐶0
 Eq. 1 

𝐵𝑂𝐷5 removal % = 100 ×
(𝐵𝑂𝐷5)0 − 𝐵𝑂𝐷5

(𝐵𝑂𝐷5)0
 Eq. 2 

Where the (0) notation represents the initially measured values before the treatment. 

The kinetics of TOC reduction was fitted using the pseudo-first-order rate equation as follow [35]:  

𝑑(𝑇𝑂𝐶)

𝑑𝑡
= 𝑘(𝑇𝑂𝐶) → 𝑙𝑛

(𝑇𝑂𝐶)

(𝑇𝑂𝐶)0
= 𝑘𝑡 Eq. 3 

Where k represents the apparent rate constant (min-1) and t the time (min). 

The biodegradability was represented by the ratio of BOD5 to TOC [36] as follow: 

𝐵𝑖𝑜𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐵𝑂𝐷5

𝑇𝑂𝐶
 Eq. 4 

Jo
ur

na
l P

re
-p

ro
of



8 

 

The results shown in this study are the average of triplicate measurements, and the error bars 

represent the standard deviation from the mean. 

3. Results and discussion  

3.1. Control experiments 

Two control experiments were performed where GW was aerated for 3 hours a) in the dark and b) 

under solar irradiation (Fig. 2). As can be observed, aeration in the dark had a minimal effect on the 

GW organic content and biodegradability; perhaps due to the presence of a small fraction of volatile 

organic compounds in the GW or the escape of volatile compounds in the early stage in the GW 

collection tank before the sample collection.  

100 105 110 115 120 125 130 135 140 145

 Solar aeration

 Dark aeration

 Initial

TOC (mg/L)

300 305 310 315 320 325 330 335 340 345 350

BOD5 (mg/L)

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Biodegradability  

Fig. 2. Solar and dark aeration control experiments. Experimental time = 3 h; air flow rate = 5 L/min. 

AGR during solar aeration = 0.957 kW/m2. 

 

When GW was exposed to aeration coupled with solar irradiation, TOC and BOD5 were reduced by 

5.4 % and 3.0 %, respectively. The low reduction in TOC and BOD5 values is likely attributed to the 

absence of the photosensitizers that can absorb radiated energy in the solar spectrum and initiate 

ROS production and subsequent organic pollutant mineralization [37]. One such photosensitizer, 

nitrate, which is plays a key role in solar treatment [37], was measured at very low concentrations in 

the GW (0.375 ± 0.12 mg/L). Similar findings of low organic matter photodegradation in different 

water sources have been reported [38]. For GW photodegradation, Chin et al. [39] observed no 
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reduction in TOC by direct photolysis using a low wavelength irradiation sources (15W UVC) 

lamps. In general, organic compound photodegradation is profoundly affected by a) the nature of 

pollutants in water, b) pollutants absorbance spectrum, and c) the employed light source wavelength 

and intensity [40]. According to the literature, organic compounds in water may go through a series 

of photo-induced reactions that may lead to, changes in molecular weight distribution (MWD) [41], 

complete degradation of particular compound [42], the formation of intermediates [43], 

transformation in aromaticity degree [41] or change in absorbance [39], but not necessarily to 

mineralization and significant change of organic content. The results above show small changes in 

BOD5, suggesting minimal structural changes to the organics present in the GW.  

3.2. Ozonation and solar ozonation  

Ozonation and solar ozonation experiments were carried out by applying various ozone flow rates 

ranging from 0 to 41.7 mg O3/min, flow rate as reported for previous treatment of GW [44] and 

wastewater studies [45].  

As shown in Fig. 3, exposing GW to ozone enhanced treatment performance compared to aeration 

alone (zero ozone flow rate) either both dark or under solar irradiation. This enhancement is expected 

as ozone is not only a more potent oxidant than oxygen (E° = 2.07 V) [7] but also can attack the 

organic material through the generation of hydroxyl radicals from O3 decomposition [46], and/or O3 

photolysis [47, 48]. The O3 decomposition reactions are initiated by the hydroxide ions as follow 

([49] and references therein): 

 3𝑂3 + 𝑂𝐻− → 𝑂𝐻• +  𝑂3
•−  + 3𝑂2 Eq. 5 

If pH < ≈ 8   𝑂3
•− + 𝐻+ ↔ 𝐻𝑂3

• → 𝑂𝐻•  + 𝑂2 Eq. 6 

If pH > ≈ 8  𝑂3
•− ↔ 𝑂•−  + 𝑂2 Eq. 7 

 𝑂•− + 𝐻2𝑂 → 𝑂𝐻•  + 𝑂𝐻− Eq. 8 
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Fig. 3. TOC and BOD5 removal in GW by ozonation and solar ozonation by different O3 flow rates 

with inset showing resultant biodegradability. Experimental time = 3 h; air flow rate = 5 L/min. AGR 

= 1.016 kW/m2 ± 0.042 kW/m2. 

 

The treatment performance was strongly enhanced under solar irradiation, a trend previously 

reported [45]. According to Oturan and Aaron [47], ozone can absorb energy in the range of 200 – 

360 nm increasing the production of 𝑂𝐻• [48] and subsequent treatment efficiency (Eq. 9).  

𝑂3 + 𝐻2𝑂 + ℎ𝑣 → 2 𝑂𝐻• + 𝑂2 Eq. 9 

Photolysis during solar ozonation is not considered to significantly affect the TOC given that 

carboxylic acid, which is the primary intermediate from ozonation, does not absorb radiation higher 

than 313 nm [35].  

Regardless of the ozone flow rate in this study, only partial reduction in organic content was 

achieved (maximum 44.4% and 15.1% for TOC and BOD5, respectively, by solar ozonation) a trend 

previously reported in the literature for ozonation [46, 50] and solar ozone treatment [35]. The 

enhancement in biodegradability, as shown in the inset of Fig. 3 can be considered in the light of the 

direct and indirect modes of action associated with ozone chemistry [51]. In the direct mode, ozone 

selectively oxidizes organic compounds that have nucleophilic moieties (such as; carbon-carbon 

double bond, aromatic rings, and specific functional groups) [46], and produces saturated 

intermediates (mainly carboxylic acids) with low reactivity toward ozone [35, 49]. This mode of 

ozone attack is expected to increase the BOD5 rather than reduce the TOC (i.e. transforming the non-
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biodegradable organic matter to biodegradable forms). On the other hand, the indirect attack by the 

hydroxyl radicals, generated from O3 decomposition or O3 photolysis, can completely mineralize 

organic compounds into CO2 and H2O [51]. As a result, the reduction in TOC is mainly attributed to 

oxidation by the limited number of hydroxyl radicals. In contrast, the change in the BOD5 represents 

the net difference between the formation of the intermediates by direct O3 oxidation and the 

mineralization of the biodegradable organics by the hydroxyl radicals. According to Gunten, the rate 

of intermediates formed by direct O3 attack is higher than their rate of oxidation by the 𝑂𝐻• [49], 

which dictates that the reduction in the BOD5 will be lower than that for TOC.  

Unfortunately, increasing O3 flow rate will not necessarily produce a greater concentration of 

hydroxyl radicals as ozone is reported to have an inhibitory effect at high dose [7], through 

scavenging the reactive hydroxyl radicals (𝑂𝐻• E°= 2.8 V) [52] producing the less reactive 

hydroperoxyl radical (𝐻𝑂2
• E°= 1.7 V) [53] according to Eq. 10 [7]. 

𝑂3  +  𝑂𝐻• → 𝐻𝑂2
•  + 𝑂2 Eq. 10 

Hydroxyl radical scavenging by ozone, and generation of the weak hydroperoxyl radicals, in addition 

to the accumulation of the intermediates during the ozonation process, could result in the decrease in 

TOC removal and the decline in BOD5 observed at O3 flow rates higher than 25 mg/min. Gracia and 

coworkers [54] observed such an effect with no more than 33% TOC reduction evident in their work 

using a very high O3 dosage (4.5 g O3/1 g TOC). 

3.3. H2O2 and H2O2/solar irradiation 

H2O2 is considered as a relatively inexpensive and environmentally friendly oxidant as it can 

dissociate into harmless products [55]. Even though it has a weak oxidation potential of 1.78 V [47], 

which limits its use for organic compounds degradation.  

The efficiency of H2O2 for GW treatment, using up to 100 mg H2O2/L, was tested with and without 

solar irradiation, and no significant enhancement in the treatment performance was observed 

compared to the controls in Fig. 2 (results not shown). Reported studies regarding sole H2O2 

efficiency in the treatment of different water pollutants classified the resultant effect as negligible 

[56], intermediate [57] and high [58]. 

H2O2 can be activated by energy within the 200 to 300 nm range generating hydroxyl radicals, 

according to Eq. 11 [47].  
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𝐻2𝑂2 + ℎ𝑣 → 2 𝑂𝐻• Eq. 11 

As such, H2O2 can be combined with high energy irradiation sources such as UVC [5], UV-ABC 

[59], VUV [60] and UVAB [61]. Previous studies regarding H2O2 photolysis (UV/H2O2) using short-

wavelength light source have reported high COD or TOC removal efficiency, with reports using 

longer wavelengths finding similar efficiencies to those reported in this work [53, 56]. 

3.4. Peroxonation and Solar peroxonation 

Peroxonation [47], often referred to as wet peroxide ozonation [62] and perozonation [37], couples 

O3 with H2O2 for water treatment. In this study, we examine GW treatment efficiency by 

peroxonation (in the dark) and solar peroxonation (under solar irradiation), three O3 flow rates (8.3, 

25, and 41.7 mg O3/min) in combination with H2O2 in different H2O2/O3 molar ratios (ranging from 

0 - 0.7) – in line with parameters from previous research [47, 63, 64]. The results of those 

experiments are represented in Fig. 4, by two-dimensional contour plots to find the optimal process 

conditions.  
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Fig. 4. TOC and BOD5 percentage removal and biodegradability by solar peroxonation (left) and 

peroxonation (right) under different O3 flow rates and different H2O2/O3 molar ratios, ozone flow 

rate (8.3 - 41.7 mg/min), H2O2/O3 molar ratio (0 - 0.7). Experimental time = 3 h; air flow rate = 5 

L/min. AGR = 1.003 kW/m2 ± 0.024 kW/m2. 
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Coupling H2O2 with O3 significantly enhanced treatment efficiency compared to ozonation alone. 

Similar findings have been reported in the literature [5, 62] and accredited to the increased 

concentration of hydroxyl radicals generated via Eq. 12 [62, 65]. 

2𝑂3 + 𝐻2𝑂2 → 2𝑂𝐻• + 3𝑂2 Eq. 12 

It is noteworthy that the formation of the hydroxyl radicals in peroxonation (Eq. 12) is much faster 

than from ozone decomposition (Eq. 5 - Eq. 8) [50]. 

According to the literature, combining peroxonation with UV irradiation (UV peroxonation) can 

further enhance treatment efficiency through further generation of 𝑂𝐻• [5, 62]. Given the available 

solar wavelength range entering the reactor and the findings in the previous section, the increase in 

𝑂𝐻• concentration during solar peroxonation could be attributed to O3 photolysis but not to H2O2 

photolysis. Consistent with findings in literature, solar peroxonation in this work intensified the TOC 

and BOD5 reduction and therefore enhanced the GW biodegradability compared to dark 

peroxonation (Fig. 4).  

One of the critical parameters in peroxonation and UV peroxonation processes is the H2O2 to O3 

ratio. It is well understood that excessive concentration of O3 [7] or H2O2 [32]can quench the 

hydroxyl radicals and form the less reactive hydroperoxyl radicals (Eq. 13) [34]. 

𝐻2𝑂2 + 𝑂𝐻• → 𝐻𝑂2
• + 𝐻2𝑂 Eq. 13 

In previous studies, a range of H2O2/O3 molar ratios have been described as optimal for water 

treatment, such as 0.3 [65], 0.14 [64], 0.08 [66]; the largest recommended being 0.5 [63]. As can be 

seen from Fig. 4, we observed an optimal range for the ratio rather than a single value. As 

summarized in Table 2, the range being affected by the parameter of interest (TOC, BOD5, or the 

biodegradability) and the O3 flow rate.  

Table 2. Optimum conditions in peroxonation and solar peroxonation treatment for TOC and BOD5 

reduction and for biodegradability. 

 Peroxonation  Solar peroxonation 

Parameter of interest 

TOC 

removal 

BOD5 

removal Biodegradability  

TOC 

removal 

BOD5 

removal Biodegradability 

Maximum value 39.83% 18.22% 5.01  58.57% 29.4% 3.65 

O3 flowrate (mg/min)        

Optimum range 33 - 41.7 20 - 33 33 - 41.7  25 - 41.7 8.3 - 33 33- 41.7 

Optimal value 41.7 25 41.7  41.7 25 41.7 

H2O2/O3 molar ratio        

Optimum range  0.2 - 0.5 0.4 - 0.5 0.15 - 0.25  0.2 - 0.3 0.3 - 0.5 0.10 - 0.00 

Optimal value 0.4 0.4 0.2  0.2 0.4 0.2 
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For TOC reduction by peroxonation, effective treatment was observed within the range of H2O2/O3 

molar ratio (0.2 - 0.5) and a high range of O3 flow rate (33 - 41.7 mg/min). In this region, hydroxyl 

radicals generated from O3 decomposition (Eq. 5 - Eq. 8) and from O3 reaction with H2O2 (Eq. 12) 

resulted in mineralization of organics. Outside this region, organic degradation is reduced by 

hydroxyl radical scavenging. Below the optimum ratio range, hydroxyl radical scavenging due to the 

extra O3 (Eq. 10); however, above the range, scavenging results from extra H2O2 (Eq. 13). 

For TOC reduction by solar peroxonation, the enhanced availability of hydroxyl radicals is expected 

to intensify the inhibition effect of H2O2 and shift the H2O2/O3 ratio to values lower than 0.5.  

According to Gunten, the rate of intermediate formation by direct O3 attack is higher than their rate 

of oxidation by the 𝑂𝐻• [49], and therefore BOD5 reduction favored low O3 flow rate and middle-

range H2O2/O3 ratios.  

3.5. Mineralization kinetics 

Based upon the above results, four systems were selected for a study the TOC reduction kinetics: (i) 

ozonation with 41.7 mg O3/min in the dark, (ii) solar ozonation with 41.7 mg O3/min under solar 

irradiation, (iii) peroxonation with 41.7 mg O3/min and 0.4 H2O2: O3 molar ratio in the dark, and (iv) 

solar peroxonation with 41.7 mg O3/min and 0.2 H2O2: O3 molar ratio under solar irradiation (Fig. 5). 
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Fig. 5. Kinetics of TOC reduction by different treatment methods under the optimal conditions. Solar 

ozonation (AGR 0.973 kW/m2), peroxonation at 0.4 H2O2/O3 molar ratio, solar peroxonation at 0.2 
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H2O2/O3 molar ratio (AGR 0.949 kW/m2). All experiments at 41.7 mg O3/min and air flow rate = 5 

L/min. 

 

TOC reduction in all experiments can be represented by the pseudo-first-order rate, whereas the 

experiments under solar irradiation fall into a single kinetic regime, and the dark experiments fall 

into two distinct kinetic regimes (from 0-30 min, and > 30 min) (Fig. 6).  
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Fig. 6. Pseudo-first-order kinetics of TOC reduction by different treatment methods under the 

optimal conditions. Experimental conditions as shown in Fig. 5. 

 

The theory behind the pseudo-first-order rate in ozone based treatment considers a steady rate of 

hydroxyl radicals formation by different means (i.e., O3 decomposition, O3 photolysis, and O3 

reaction with H2O2), and 𝑂𝐻• scavenging [49]. For experiments under solar irradiation (solar 

ozonation and solar peroxonation) O3 introduced to the system is involved in 𝑂𝐻• formation, 

resulting in negligible remaining O3 for 𝑂𝐻• scavenging. In contrast, in the dark experiments 

(ozonation and peroxonation), all O3 introduced to the system, at the beginning of the experiment, is 

involved in 𝑂𝐻• formation, but when there is more O3 in the system (after 30 min in this case), 𝑂𝐻• 

scavenging starts to be more dominant and a new steady rate starts to be established between 𝑂𝐻• 

formation and scavenging. To further investigate the previous 𝑂𝐻• formation and scavenging 

hypothesis, further experiments with lower O3 flow rate were performed (Fig. 7) with one kinetic 

regime observed. Additionally, for a higher O3 flow rate, a new kinetic regime is apparent. The first 
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regime duration can be positively correlated to O3 flow rate, which indicates that TOC reduction is 

more a function of ozone exposure (O3 flow rate × Time) rather than the time alone. Similar 

observations have been reported in literature [26]. 
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Fig. 7. Pseudo-first-order kinetics for ozonation at different O3 flow rates. Air flow rate = 5 L/min. 

4. Conclusion 

A series of solar AOPs were shown to be effective the degradation of organic matter in greywater 

obtained from households in Jordan using a low-cost, concentrated parabolic collector reactor. 

Through analysis of the total organic carbon (TOC) and biochemical oxygen demand (BOD5) the 

operating parameter ranges and kinetics for ozone-based oxidation and peroxonation advanced 

oxidation were deduced. All treatment methods were enhanced by solar irradiation, with solar 

peroxonation showing the highest TOC reduction (58.6%) (at 41.7 mg O3/min and 0.2 H2O2/O3 

molar ratio) and the highest BOD5 reduction (29.4%) (41.7 mg O3/min and 0.4 H2O2/O3 molar ratio). 

Although the organic load of the GW was significantly reduced, further work is required to increase 

both the kinetics and volumes of water treated before the solar AOP treatments could be coupled to 

the household GW recycling systems.  
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Figure S1 Hourly averaged global radiation (measured on the hour at 11:00, 12:00, 13:00 and 14:00) 

each day during the experimental period (May and June 2017). Jo
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