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ABSTRACT

Softmax loss is arguably one of the most widely used loss
functions in CNNs. In recent years some Softmax variants
have been proposed to enhance the discriminative ability of
the learned features by adding additional margin constraints,
which significantly improved the state-of-the-art performance
of face recognition. However, the ‘margin’ referenced in
these losses does not represent the real margin between the
different classes in the training set. Furthermore, they impose
a margin on all possible combinations of class pairs, which is
unnecessary. In this paper we propose the Precise Adjacent
Margin loss (PAM loss), which gives an accurate definition of
‘margin’ and has precise operations appropriate for different
cases. PAM loss has better geometrical interpretation than
the existing margin-based losses. Extensive experiments are
conducted on LFW, YTF, MegaFace and FaceScrub datasets,
and results show that the proposed method has state-of-the-art
performance.

Index Terms— Margin, Loss, Deep learning, Convolu-
tional neural networks, Face recognition.

1. INTRODUCTION

Over the past decade deep learning-based methods have made
great strides in various areas of computer vision. Among
these areas, the progress on face recognition is particularly
remarkable because of the development of CNNs and associ-
ated loss functions.

In face recognition the loss functions with the best per-
formance can be divided into two categories: loss functions
based on Euclidean distance and loss functions based on
cosine similarity. Most of the time, cosine similarity-based
losses show better performance than Euclidean distance-
based losses. Cosine similarity-based losses include L-
Softmax loss [1], A-Softmax loss [2], AM-Softmax loss [3]
and ArcFace loss [4]. These losses are all derived from the
commonly used Softmax loss by adding margin constraints
and applying feature or weight normalisation, and they have
achieved state-of-the-art performance in deep face recog-
nition. However, these loss functions have two common
defects. Firstly, the ‘margin’ referenced in the above losses
is the margin between the decision boundaries of Softmax,
which do not represent the real margin between the different

classes in the training set. Secondly, the above losses im-
pose a margin on all possible combinations of the class pairs,
which is unnecessary.

In this paper we propose the Precise Adjacent Margin loss
(PAM loss), which gives ‘margin’ a meaning that represents
the real margin between the different classes in the training
set. Differently from the above losses, PAM loss optimises
only the margin for a limited number of class pairs. Our main
contributions are as follows: (a) We propose PAM loss to im-
prove the discriminative ability of the deep features. To the
best of our knowledge, PAM loss is the first loss that uses
the real margin between the different classes in the training
set. (b) To implement PAM loss, we propose a learning al-
gorithm to obtain the range of each class (namely, the cosine
similarity between the class centre and the class edge). (c)
Extensive experiments are conducted on public datasets in-
cluding LFW [5], YTF [6], MegaFace [7] and FaceScrub [8]
datasets, and the results obtained verify the state-of-the-art
performance of PAM loss.

2. RELATED WORK

Currently Softmax loss is the most widely used loss function
in CNNs and is formulated as follows:

LS = − 1

N
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i=1

log
e
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yi
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j=1 e
WT

j fi+bj
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where N is the batch size, P is the number of classes in
the entire training set, fi ∈ Rd is the feature vector of the
ith sample in the mini-batch, yi is the class label of the ith
sample, Wj ∈ Rd is the jth column of the weight matrix W
in the final fully connected layer and bj represents the bias
term of the jth class1. Considering the definition of cross en-
tropy, we can find from Eq(1) that Softmax loss is actually the
cross entropy between the predicted label and the true label,
which means that Softmax loss focuses only on the correct-
ness of classification. Hence, the purpose of Softmax loss is
to separate samples of different classes, rather than learning
discriminative features.

To enhance the discriminative ability of the features, L-
Softmax loss, A-Softmax loss, AM-Softmax loss and Arc-
Face loss have been proposed successively over the past two

1To save space, we just define the mathematical symbols once and then
use them following the initial definition without additional explanation.
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years. Eq.(2) and Eq.(3) show the formulation of L-Softmax
loss and A-Softmax loss, respectively:
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whereψ(θyi) equals (−1)kcos(mθyi)−2k, θyi ∈ (kπm ,
(k+1)π
m ),

k ∈ (0,m − 1), and m is the size of margin. Here m ≥ 1,
which is used to adjust the target angular margin. Based
on the original Softmax loss in Eq.(1), L-Softmax loss
and A-Softmax loss modify the FC layer formulation from
WT
yifi + byi to ‖Wyi‖‖fi‖cosθyi by setting the bias byi to

0. As a result, the distance measurement is transferred from
the Euclidean distance to the cosine similarity. Differently
from L-Softmax loss, L2 weight normalisation is applied in
A-Softmax loss by setting ‖Wyi‖ = 1. Since m is introduced
as a multiplier on θyi , the corresponding margin is called
multiplicative angular margin.

On the basis of A-Softmax, AM-Softmax adopts L2 fea-
ture normalisation and replaces ψ(θyi) with cos(θyi) − m,
where m is called additive cosine margin:

LAM = − 1

N
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log
es(cos(θyi )−m)

es(cos(θyi )−m) +
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scos(θj)
. (4)

‖fi‖ is set by L2 normalisation and is re-scaled to s. After
AM-Softmax, Deng et al. [4] proposed ArcFace loss, which
further updates cos(θyi)−m by cos(θyi +m). Even though
ArcFace still uses the additive margin, it has better geometric
meaning asm corresponds directly to the angle of the margin.

3. THE PROPOSED PAM LOSS

Fig. 1 provides a 2D visualisation of the aforementioned loss
functions in the case of two classes. The blue and green ar-
eas represent the target areas of the two classes, respectively.
From the formulation of Softmax loss and the aforementioned
variants (including L-Softmax, A-Softmax, AM-Softmax and
ArcFace), it can be inferred that the target area is determined
by Wj in Softmax loss and by Wj and m in the variants. The
geometrical interpretation of Softmax loss is shown in Fig.
1(a), where WT

1 d0 = WT
2 d0. Therefore, class 1 and class 2

share the same decision boundary d0 and there is no margin
between the target areas of class 1 and class 2. Fig. 1(b) illus-
trates the case of the variants based on Softmax and margin
constraint. d1 and d2 are the corresponding decision bound-
aries of class 1 and class 2 and there is a margin between the
target area of the two classes. The size of the margin is de-
termined by m. For example, if the variant is AM-Softmax,
WT

1 d1−m =WT
2 d1 andWT

2 d2−m =WT
1 d2. If the variant

is ArcFace loss, ‖W1‖‖d1‖cos(θ1 +m) = ‖W2‖‖d1‖cosθ2.
Since ‖W1‖ = ‖d1‖ = 1, cos(θ1 + m) = cosθ2 and m =
θ2 − θ1, which is the angle of the margin.

However, the target area of a class is not its real area. Its
real area of a class is determined by the samples of the class
in the training set. Ideally, the real area is expected to con-
verge to the target area. However, during training, the real
area could be smaller or larger than the target area or even
has no overlap with the target area; the latter is common at
the early stage of training. A simple example is shown in
Fig. 1(c). In the training process, the parameters in CNNs are
learned by the class distribution information in the training
set. In other words, the feedback from the training set guides
the parameters in CNNs to update. Therefore, our approach
is motivated by the view that the feedback information should
be as precise as possible and so we try to introduce the real
margin into the loss function.

The aforementioned variants impose a margin on all pos-
sible combinations of the class pairs. This approach is sim-
ple and convenient but unnecessary. The original purpose of
training is to separate the overlapping classes. The second
purpose is to enlarge the margin between those classes which
are close to each other. For those classes which are already far
from each other, there is no need to optimise the parameters to
separate them even farther (as they have satisfied the require-
ment of classification). As the expressive power of a neural
network is not unlimited, optimising the parameters to satisfy
the requirements for some of the classes will inevitably have
an influence on the distribution of other classes.

Motivated by the considerations above, we propose the
Precise Adjacent Margin loss (PAM loss). PAM loss is used
along with the AM-Softmax loss (see Eq. (5)) and has two
versions, whose formulations are shown in Eq. (6) and Eq.
(7), respectively.

L = LAM + λLP (5)

LP v1 =

∑
Top(S, P )

P

S = {ϕ(cos(θij)) : i, j = 1, 2, 3, ..., P ; i > j}
(6)

LP v2 =

∑P
i=1

∑
Top(Si, 2)

2P

Si = {ϕ(cos(θij)) : j = 1, 2, 3, ..., P}
(7)

where λ is the hyper-parameter for adjusting the impact
of introducing the PAM loss, θij is the real margin an-
gle between class i and class j as illustrated in Fig. 1(c).
ϕ(cos(θij)) = cos(θij) if θij > 0. When θij ≤ 0,
ϕ(cos(θij)) = −cos(θij) + 2, which adds more penalty
to the overlapping classes and ensures the continuity of
ϕ(cos(θij)). S and Si are sets of values of ϕ(cos(θij)).∑
Top(S, P ) denotes the sum of the P largest elements in

set S. Both versions of PAM loss aim to optimise the mar-
gins between different classes. The ideal approach would
optimise the margins of all the adjacent classes. However, it
is extremely time-consuming to select out all these adjacent
classes in the hypersphere. In PAM loss v1, a conservative
strategy is adopted, which penalises P pairs of classes that
have the largest ϕ(cos(θij)) values. This is because the min-
imum number of pairs of the adjacent classes is P , which
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Fig. 1. Geometrical interpretation of different losses. The three sub-figures show the case of 2D feature space. The blue and
green areas represent the target areas of two classes, respectively. W1 andW2 are the corresponding weights of class 1 and class
2 in the FC layer. As described in Fig. 6 of [9], W1 and W2 will converge to the centres of their corresponding classes, and
therefore W1 and W2 can be regarded as the approximate centres of class 1 and class 2, respectively. In (a), d0 is the decision
boundary between class 1 and class 2. In (b), d1 and d2 are the corresponding decision boundaries of class 1 and class 2.

occurs when all the classes line up in a circle on the surface
of the hypersphere. In PAM loss v2, we pay attention to every
class. PAM loss v2 finds the nearest neighbour class of each
class and penalises the margin between them.

Calculating cos(θij) is the key aspect of implementing the
PAM loss. To calculate cos(θij), two parts are needed: the
class centre and the cosine range of the class, where the cosine
range of the class means the cosine similarity between the
class centre and the farthest sample of the class. As training
goes on, Wj gradually converges to the centre of class j (j =
1, 2, ..., P ) [9]. Wj is easily obtained from the FC layer, so we
useWj as the approximation of the centre of the jth class. For
the cosine range of class j we propose the following learning
algorithm to update it recursively. R(j) is initialised to 1 and
is then updated using the following iterations:

R(j)t+1 = R(j)t +

N∑
i=1

φ(yi, j) ·∆Ri, j = 1, 2, ..., P. (8)

∆Ri =

{
cos(Wyi , fi)−R(yi)

t, R(yi)
t > cos(Wyi , fi)

β · (cos(Wyi , fi)−R(yi)
t), R(yi)

t ≤ cos(Wyi , fi)

(9)
where φ(yi, j) = 1 if yi = j, φ(yi, j) = 0 if yi 6= j, β

is named shrink rate which is used to adjust the shrink speed
of the class range. Eq. (9) contains two cases: (a) if the co-
sine similarity between the input sample and the correspond-
ing class centre is less than the current recorded class range,
the class range is replaced directly by their cosine similarity;
(b) otherwise, the class range shrinks by the product of β and
their cosine similarity. Case (a) keeps the range of the class
up to date, but as training goes on, the real class range tends to
become smaller and smaller. Therefore, case (b) is designed
to help the learned class range shrink to the real value.

With the class centre and the cosine range of the class,
cos(θij) can be calculated. Let R(i) = cos(θi), R(j) =
cos(θj), and Wi · Wj = cos(θ), then cos(θij) = cos(θ −
θi − θj). By solving this equation, we get:

cos(θij) =WiWjR(i)R(j)−WiWj(
√

(1−R(i)2)(1−R(j)2)

+
√

(1− (WiWj)2)(1−R(i)2)R(j)

+
√

1− (WiWj)2R(i)R(j).
(10)

In our implementation, we do a more efficient one-time cal-

Table 1. Parameter settings for the training and the testing.
Parameter Value Parameter Value
batch size 120 moving average decay 0.9999
image size 160*160 AM-Softmax scalar 40.0
epoch size: 1000 AM-Softmax margin 0.3
embedding size 512 PAM loss shrink rate 0.01
random flip True LR of epoch 0∼99 0.05
keep probability 0.4 LR of epoch 100∼199 0.005
optimizer ADAM LR of epoch 200∼360 0.0005
weight decay 0.0005 Note: LR denotes learning rate.

culation to obtain all cos(θij) values (i, j = 1, 2, 3, ..., P ; i >
j) by matrix manipulation between W and [R(1), ..., R(P )],
where W is the weight matrix in the final FC layer.

4. EXPERIMENTS

4.1. Implementation Details

We implement four schemes with Tensorflow2 by combin-
ing Inception-ResNet-v1 [10] with different loss functions:
ResNet + Softmax, ResNet + AM-Softmax, ResNet + AM-
Softmax + PAM loss v1, and ResNet + AM-Softmax + PAM
loss v2. For convenience, we use “Softmax”, “AM-Softmax”,
“PAM loss v1” and “PAM loss v2” to represent these four
schemes, respectively, in the experimental results.

VGGFace2 [11] is used as the training set in all experi-
ments. We removed the face images in VGGFace2 that might
overlap with the benchmark testing sets to ensure the relia-
bility of the experimental results. The resulting training set
consists of 3.05 million facial images from more than 8,000
identities. For all face datasets used in our experiments, we
apply MTCNN [12] for face detection. If MTCNN detection
fails on a training image, we just remove the image from the
training set. If MTCNN fails on a testing image, we use the
landmarks or the bounding boxes provided by the authorities.
As the learned class range is not steady in the early stage, the
hyper parameter λ is set to 0 in the first 275 epochs. After
that, we manually optimise λ. Since it is not very sensitive to
the performance, we just try multiple different values on each
testing set and choose the value that leads to the best result.

2https://www.tensorflow.org/



Table 2. Verification accuracy of state-of-the-art methods on
LFW and YTF datasets.

Methods Images LFW YTF
ICCV17’ Range Loss [13] 1.5M 99.52 93.7
CVPR17’ Marginal Loss [14] 4M 99.48 96.0
CVPR15’ DeepID2+ [15] 99.47 93.2
CVPR14’ Deep Face [16] 4M 97.35 91.4
CVPR15’ Fusion [17] 500M 98.37
ICCV15’ FaceNet [18] 200M 99.63 95.1
ECCV16’ Centre Loss [19] 0.7M 99.28 94.9
NIPS16’ Multibatch [20] 2.6M 98.20
ECCV16’ Aug [21] 0.5M 98.06
ICML16’ L-Softmax [1] 0.5M 98.71
CVPR17’ A-Softmax [2] 0.5M 99.42 95.0
Softmax 3.05M 99.50 95.22
AM-Softmax 3.05M 99.57 95.62
PAM loss v1 3.05M 99.63 96.14
PAM loss v2 3.05M 99.62 96.00

The detailed parameter settings for the training and the testing
are shown in Table 1.

4.2. Results on LFW and YTF

We have compared the proposed PAM loss with the state-
of-the-art methods3 on two benchmark datasets – LFW [5]
and YTF [6]. In our experiments we follow the standard
experimental protocol of “unrestricted with labelled outside
data” [22]. Table 2 shows the results of the proposed methods
and the state-of-the-art methods on LFW and YTF datasets,
from which we can observe the following. On LFW, both
versions of PAM loss outperform the related methods: Soft-
max, L-Softmax, A-Softmax and AM-Softmax. FaceNet has
the same accuracy as the proposed PAM loss v1. However,
FaceNet [18] uses 200 million images for training whilst
the PAM loss only uses 3.05 million images for training.
Compared with the other state-of-the-art methods, PAM loss
has the highest verification accuracy. On YTF dataset, PAM
loss v1 has an accuracy of 96.14%, which is higher than all
the other methods. PAM loss v2 is similar on accuracy to
Marginal loss, but Marginal loss uses a larger training set and
has poorer performance on LFW. The results on LFW and
YTF datasets demonstrate the effectiveness and the state-of-
the-art performance of the proposed methods.

4.3. MegaFace Challenge 1 on FaceScrub

In this section, experiments are conducted on the MegaFace
dataset [7] and the FaceScrub dataset [8]. We follow the
experimental protocol of MegaFace Challenge 1, where
MegaFace is set as the distractor set and FaceScrub is set
as the testing set. The evaluation code [7] is provided by the

3ArcFace [4] is not included in Table 2 as it hasn’t been formally pub-
lished, which means it hasn’t passed the peer review. Additionally, after
reviewing the comments on the public codes of Arcface, we found that its
experimental methods and the results were still controversial.

Fig. 2. The CMC curves of different methods with 1 million
distractors on MegaFace Set 1.
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Fig. 3. The ROC curves of different methods with 1 million
distractors on MegaFace Set 1.
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MegaFace team. More details about the experimental proto-
col can be found in [7]. Fig. 2 and Fig. 3 show the CMC
curves and the ROC curves with 1 million distractors on
MegaFace Set 1, respectively. The results of the benchmark
methods (including Barebones FR, SIAT MMLAB, Vocord
and Faceall) are generated from the features provided by the
MegaFace team4. It can be seen from Fig. 2 and Fig. 3 that
PAM loss v1 and PAM loss v2 have better identification and
verification performance than Softmax, AM-Softmax, and the
other benchmark methods. PAM loss v2 outperforms PAM
loss v1 in both figures, which indicates that PAM loss v2
has stronger ability in the case of 1 million distractors. The
results on the MegaFace and the FaceScrub datasets confirm
the effectiveness of the proposed methods.

5. CONCLUSION

In this paper, we have proposed the PAM loss, which gives
‘margin’ a meaning that represents the real margin between
the different classes in the training set. To implement PAM
loss, we also propose a learning algorithm to obtain the range
of each class. Extensive experiments are conducted on LFW
[5], YTF [6], MegaFace [7] and FaceScrub [8] datasets. Re-
sults demonstrate the effectiveness of the proposed methods
and confirm the state-of-the-art performance of PAM loss.

4The download link of features provided by MegaFace team:
http://megaface.cs.washington.edu/participate/challenge.html

https://github.com/deepinsight/insightface/issues?q=reproduce+sort%3Acomments-desc
https://github.com/deepinsight/insightface
http://megaface.cs.washington.edu/participate/challenge.html
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