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ABSTRACT

Loss function plays an important role in CNNs. However,
the recent loss functions either do not apply weight and fea-
ture normalisation or do not explicitly follow the two targets
of improving discriminative ability: minimising intra-class
variance and maximising inter-class variance. Besides, all of
them consider only the feedback information from the cur-
rent mini-batch instead of the distribution information from
the whole training set. In this paper, we propose a novel
loss function – Global Information-based Cosine Optimal loss
(Gico loss). Gico loss is applied with weight and feature
normalisation, designed explicitly following the aforemen-
tioned two targets of improving discriminative ability, and is
guided by the distribution information from the whole train-
ing set. Extensive experiments are conducted on multiple
public datasets, which confirms the effectiveness of the pro-
posed Gico loss and shows that we achieve state-of-the-art
performance.

Index Terms— Face recognition, Deep learning, CNNs,
Loss function, Discriminative ability.

1. INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated
impressive performance on face recognition, where the loss
function plays an important role in this process. To learn
highly discriminative features, many different loss functions
are proposed in recent years [1–9]. Currently, the best per-
forming loss functions in face recognition can be divided
into two types – the loss functions based on Euclidean dis-
tance [1–5] and the loss functions based on cosine similar-
ity [6–9].

Typical Euclidean distance-based losses include Centre
loss [3], Marginal loss [4] and Range loss [5]. All of them
add another penalty to implement the joint supervision with
softmax loss and are designed based on the following two tar-
gets: minimising intra-class variance and maximising inter-
class variance. From the relevant experimental results of the
methods above [1–5], it can be found that both two targets
contribute to performance. The loss functions based on Co-
sine similarity include L-Softmax loss [6], A-Softmax loss [7]
and AM-Softmax loss [8]. They are derived from softmax

Table 1. Properties of different losses in deep face recog-
nition.

Optimise
Intra-class
Variance

Optimise
Inter-class
Variance

WN FN Feedback
Source

Contrastive loss [1] Yes Yes No No mini-batch
Triplet loss [2] Yes Yes No No mini-batch
Centre loss [3] Yes No No No mini-batch
Marginal loss [4] Yes Yes No No mini-batch
Range loss [5] Yes Yes No No mini-batch
L-Softmax loss [6] No Yes No No mini-batch
A-Softmax loss [7] No Yes Yes No mini-batch
AM-Softmax loss [8] No Yes Yes Yes mini-batch
ArcFace loss [9] No Yes Yes Yes mini-batch
Gico loss* Yes Yes Yes Yes global info

1 WN: weight normalisation. FN: feature normalisation.

loss by adding additional margin constraints. The experi-
ments in [7] demonstrate that L2 weight normalisation im-
proves the performance, though the improvement is very lim-
ited. Feature normalisation brings advantages including better
performance and better geometrical interpretation, which are
revealed in [10–13].

Table 1 summarises the properties of the most recent and
best performing loss functions. However, these loss func-
tions either do not apply weight and feature normalisation
like Contrastive loss, Triplet loss, Centre loss, Range loss
and Marginal loss; or do not explicitly follow the two targets
of improving discriminative ability, like L-Softmax loss, A-
Softmax loss, AM-Softmax loss and ArcFace. In this paper,
we propose a new loss function, namely Global Information-
based Cosine Optimal loss (Gico loss). The deep model
trained with Gico loss is named GicoFace. The relevant prop-
erties of Gico loss are also shown in Table 1 where Gico loss
possesses all four properties of optimising intra-class and
inter-class variance, and weight and feature normalisation.
Different from the other losses, Gico loss is guided by the
distribution information from the whole training set.

The main contributions of this paper are summarised as
follows: (a). We propose a novel loss function to improve the
discriminative ability of the deep features. To the best of our
knowledge, it is the first loss that simultaneously satisfies all
the first four properties in Table 1 and also the first attempt to
use global information as the feedback information. (b). We
propose and implement three different versions of Gico loss
and analyse their performance variation on multiple datasets.
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To develop Gico loss, we propose an algorithm to learn the
cosine similarity between the class centre and the class edge.
(c). We conduct extensive experiments on multiple public
benchmark datasets including LFW [14], SLLFW [15] and
YTF [16] datasets. Experimental results presented in Section
3 demonstrate the state-of-the-art performance of GicoFace.

2. FROM SOFTMAX LOSS TO GICO LOSS

2.1. Softmax Loss and Centre Loss

Softmax loss is the most commonly used loss function in deep
learning, which can be formulated as:

LS = − 1

N

N∑
i=1

log
e
WT

yi
fi+byi∑P

j=1 e
WT

j fi+bj
(1)

where N denotes batch size, P represents the number of
classes in the whole training set, fi ∈ Rd is the feature vec-
tor of the ith sample belonging to the yith class, Wj ∈ Rd

is the jth column of the weight matrix W in the final fully
connected layer and bj is the bias term of the jth class1. From
Eq(1), we can see that Softmax loss is essentially the cross-
entropy between the predicted label and the true label, which
means Softmax loss focuses only on the correctness of clas-
sification. In other words, Softmax loss aims at separating
the samples of different classes instead of learning discrimi-
native features and enlarging the margin between neighbour
classes. This approach is appropriate for closed-set tasks, like
most cases in object recognition and behaviour recognition,
where all the testing classes are predefined in the training set.
However, most of the application scenarios of face recogni-
tion are open-set tasks, as it is almost impossible to collect
all the faces that may appear in the test stage. To improve
the discriminative ability of the features, Wen et al. [3] pro-
posed Centre loss to minimize the intra-class distance whose
formulation is shown below:

LC =
1

2

N∑
i=1

||fi − cyi ||
2
2 (2)

where cyi
denotes the class centre of the yith class. Cen-

tre loss is the sum of all the distances between each sample
and its class centre. Centre loss is used in conjunction with
Softmax loss:

L = LS + λLC (3)

where λ is the hyper-parameter for adjusting the impact of
these two losses. Centre loss optimises only the intra-class
variance and it doesn’t apply weight and feature normalisa-
tion.

2.2. Variants of Softmax Loss based on Cosine Similarity

L-Softmax loss, A-Softmax loss, AM-Softmax loss and Arc-
Face loss are variants of Softmax loss based on cosine sim-
ilarity. All of them are derived from the original Softmax

1To save space, we just define the mathematical symbols once and then
use them following the initial definition without additional explanation.

loss in Eq.(1), replacing the distance measurement from Eu-
clidean distance to cosine similarity. They transform the FC
layer formulation from WT

yi
fi + byi

to ‖Wyi
‖‖fi‖cosθyi

by
setting the bias byi

to 0, where θyi
is the angle between Wyi

and fi. However, they have different choices for weight and
feature normalisation, and use different ways to add marginal
constraints.

In L-Softmax loss and A-Softmax loss, the marginal con-
straints are added by a multiplier m on the angle, namely re-
placing cosθyi

with cos(mθyi
). So we say that L-Softmax

loss and A-Softmax loss apply the multiplicative angular mar-
gin. Different from L-Softmax loss, weight normalisation is
introduced in A-Softmax loss, which sets ‖Wyi

‖ = 1 by L2
normalisation. AM-Softmax loss further applies feature nor-
malisation and replaces the multiplicative angular margin by
the additive cosine margin, which is formulated as:

LAM = − 1

N

N∑
i=1

log
es(cos(θyi )−m)

es(cos(θyi )−m) +
∑P
j=1,j 6=yi e

scos(θj)
(4)

where ‖fi‖ is fixed by L2 normalisation and is re-scaled
to s. So ‖fi‖ is replaced with s in Eq.(4). Based on AM-
Softmax loss, ArcFace loss further replaces cos(θyi

)−mwith
cos(θyi

+m) enabling m to have better geometric meaning.

2.3. The Proposed Gico Loss

In this section we propose a new loss function to integrate the
advantages of existing losses with some important new prop-
erties. Firstly, we apply L2 weight normalisation by fixing
bj = 0 and ||Wj || = 1. We also apply L2 normalisation on
the feature vector fi and re-scale ‖fi‖ to s. Similar to Cen-
tre loss, Gico loss is used in conjunction with AM-Softmax
loss. Here we do not adopt Softmax loss like Centre loss,
because AM-Softmax loss shows slightly better performance
than Softmax loss. The total loss is thus:

L = LAM + λLG (5)

In designing the Gico loss, two aspects are considered:
minimising the intra-class variance and maximising the inter-
class variance. These two aspects correspond to two “lite”
versions of Gico loss, respectively. Finally, we construct a
standard version of Gico loss which is the combination of the
two lite versions. To minimise the intra-class variance, we
propose a “lite” version of Gico loss (Gico Lite A), which is
formulated as below:

LGA =
P∑P

j=1
R(j)+1

2

R(j) = cos(cj , ej)

(6)

where P is the number of classes in the whole training set,
cj is the centre of class j, and ej denotes the edge of class j
(i.e. the farthest sample of class j). R(j) represents the co-
sine range of class j, namely the cosine similarity between the
class centre and the edge of class j. During the training, the
deep features are changing after each mini-batch, which also
leads to the change of cj and ej . Ideally, cj and ej should be
calculated by traversing the entire training set and should be
updated after each mini-batch. However, this would require



massive computing power that is completely impractical for
the existing hardware. Currently, a deep neural network is
trained by iteratively updating the network parameters based
on the feedback information from each mini-batch. This is
a practical solution due to two constraints: the computing
power and the memory size of GPU, TPU or other similar
processing units. Without the computing power constraint,
the deep neural network could be trained with the entire train-
ing set as the source of feedback information and would di-
rectly optimise the sample distribution of the entire training
set. Without the memory size constraint, the deep neural net-
work would input the entire training set into the memory in-
stead of processing the data mini-batch by mini-batch. Per-
haps just because of the above two constraints, there is no
loss that uses the entire dataset as the source of feedback in-
formation to optimise the CNNs in face recognition.

Here we break through the first constraint by two approxi-
mate solutions. From Eq(4), we can see that the key optimisa-
tion object of the AM-Softmax loss is actually minimising θyi

while maximising θj . θyi
is the angle betweenWyi

and fi. θj
is the angle between Wj and fi where j 6= yi. In other words,
AM-Softmax loss tries to reduce the distances between Wj

and the sample features in the jth class (j = 1, 2, ..., P ). As
the training goes on, Wj is automatically optimised to the
centre of class j (j = 1, 2, ..., P ), because this leads to the
minimum distance sum between Wj and the sample features
in the jth class. Therefore, we can simply use Wj as the sub-
stitution of cj , which does not require any additional comput-
ing power. For ej and R(j), we propose a learning algorithm
to recursively update the range of each class. At the begin-
ning, R(j) is initialised to 1. Then we update R(j) using the
following iterations:

R(j)t+1 = R(j)t +

N∑
i=1

φ(yi, j) ·∆Ri, j = 1, 2, ..., P. (7)

∆Ri =

{
cos(Wyi , fi)−R(yi)

t, R(yi)
t > cos(Wyi , fi)

β · (cos(Wyi , fi)−R(yi)
t), R(yi)

t ≤ cos(Wyi , fi)

(8)
where φ(yi, j) = 1 when yi = j, otherwise φ(yi, j) = 0. β is
the shrink rate which is used to adjust the shrink speed of the
learned class range. The basic idea of the learning algorithm
includes two cases: (a). if the cosine similarity between the
input sample and its corresponding class centre is smaller than
the recorded class range, replace the class range directly with
their cosine similarity; (b). on the contrary, let the class range
shrink by scaling their cosine similarities with β. Case (a)
keeps the learned class range up to date. However, as the
training goes on, the real class range will become smaller and
smaller. So case (b) is used to help the learned class range
shrink to the real value.

To maximise the inter-class variance, we also propose an-
other “lite” version of Gico loss (Gico Lite B):

LGB =

∑
Top(A,K)

K

A = {cos(Wa,Wb) + 1

2
: a, b = 1, 2, 3, ..., P ; a > b}

(9)

where
∑

Top(A,K) denotes the sum of the K largest ele-
ments in set A. The purpose of Gico Lite B is to find K
pairs of nearest class centres in the entire training set and to
calculate the sum of their distances. Compared with the non-
adjacent class centres, the corresponding classes of the adja-
cent centres have a high probability to have small margins or
have overlaps. If all adjacent classes have proper margins, the
non-adjacent classes would have larger margins. Therefore,
it is not necessary to take all centre pairs into account. The
most effective way is to optimise the distances of all the adja-
cent centres. However, it is time-consuming to calculate how
many adjacent centre pairs exist in the hypersphere. Here we
adopt a conservative strategy, namely set the value of K to
P where P is the number of classes. Because the minimum
number of adjacent centre pairs is P which happens when all
the class centres line up in a circle on the surface of the hy-
persphere.

To achieve the best performance we integrate the above
two lite versions to create the standard version of Gico loss
(Gico Std):

LGstd = LGA ∗ LGB =
P ∗

∑
Top(A,K)

K ∗
∑P
j=1

R(j)+1
2

(10)

3. EXPERIMENTS

3.1. Experiment Settings

Our network models are implemented by Tensorflow2 with
Inception-ResNet-v1 [17] as the trunk network. We com-
bine Inception-ResNet-v1 with different losses resulting
in 5 different combinations: (1). ResNet+Softmax, (2).
ResNet+AM-Softmax, (3). ResNet+Gico Lite A, (4). ResNet
+Gico Lite B, and (5). ResNet+Gico Std. In all experiments,
we set 320 as the epoch size, 120 as the batch size, 5e-4
as the weight decay, 0.4 as the keep probability of the fully
connected layer, 512 as the embedding size and 0.01 as the
shrink rate. We manually optimise the hyper parameter λ.
Since it is not very sensitive to the performance, we just try
multiple different values on each testing set and choose the
value that leads to the best result. The initial learning rate
is set to 0.05 and is reduced by a factor of 10 every 100,000
iterations.

VGGFace2 [18] is the training data in our experiments. To
guarantee the reliability of the results, we removed the iden-
tities which might be overlapped with the testing sets from
VGGFace2, but we did not do data cleaning as VGGFace2
is a very clean dataset. Finally, the preprocessed training set
contains 3.05 million face images. We applied the same pre-
processing pipeline on the training set and the testing sets.
Firstly MTCNN [19] is employed for face detection. MTCNN
occasionally fails to detect the face. If this occurs for a train-
ing image, the image is simply abandoned. If it occurs for

2https://www.tensorflow.org/
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Table 2. Verification performance of state-of-the-art methods
on LFW and YTF datasets.

Methods Images LFW(%) YTF(%)
ICCV17’ Range Loss [5] 1.5M 99.52 93.7
CVPR15’ DeepID2+ [20] 99.47 93.2
CVPR14’ Deep Face [21] 4M 97.35 91.4
CVPR15’ Fusion [22] 500M 98.37
ICCV15’ FaceNet [2] 200M 99.63 95.1
ECCV16’ Centre Loss [3] 0.7M 99.28 94.9
NIPS16’ Multibatch [23] 2.6M 98.20
ECCV16’ Aug [24] 0.5M 98.06
ICML16’ L-Softmax [6] 0.5M 98.71
CVPR17’ A-Softmax [7] 0.5M 99.42 95.0
Softmax 3.05M 99.50 95.22
AM-Softmax 3.05M 99.57 95.62
Gico Lite A 3.05M 99.60 95.70
Gico Lite B 3.05M 99.62 95.78
Gico Std* 3.05M 99.63 95.82

Table 3. Verification performance of different methods on
SLLFW.

Method Images LFW(%) SLLFW(%)
Deep Face [21] 0.5M 92.87 78.78
DeepID2 [1] 0.2M 95.00 78.25
VGG Face [25] 2.6M 96.70 85.78
DCMN [26] 0.5M 98.03 91.00
Noisy Softmax [27] 0.5M 99.18 94.50
Softmax 3.05M 99.50 96.17
AM-Softmax 3.05M 99.57 98.02
Gico Lite A 3.05M 99.60 98.15
Gico Lite B 3.05M 99.62 98.13
Gico Std* 3.05M 99.63 98.17

a testing image, we use the provided official landmarks or
bounding boxes instead. All the face images are cropped to
the size of 160*160. Random horizontal flipping is performed
on the training image to enhance the randomness of the train-
ing data. The final features of a testing image are generated by
concatenating the features of the original image and the fea-
tures of its horizontally flipped counterpart so as to improve
the recognition accuracy.

3.2. Results on LFW, YTF and SLLFW

In this section we compare the proposed methods with
the state-of-the-art methods on LFW, YTF and SLLFW.
LFW [14], collected from the web, contains 13,233 face im-
ages with large variations in facial paraphernalia, pose and
expression. Following the standard experimental protocol of
“unrestricted with labelled outside data” [28], we test 6,000
face pairs according to the given pair list. YTF [16] contains
3,425 videos obtained from YouTube. We follow the standard
experimental protocol of “unrestricted with labelled outside
data” [16] to do the evaluation on the given 5,000 video pairs.

Table 2 shows the results of the proposed methods and the
state-of-the-art methods3 on LFW and YTF. The results of the

3ArcFace [9] is not included in Table 2 as it hasn’t been formally pub-

benchmark methods shown in the upper part of the table are
cited from their original papers. From Table 2, we can observe
the following. Gico Std shows higher verification accuracy
on LFW than Softmax, AM-Softmax, Gico Lite A and Gico
Lite B. Gico Std ties with FaceNet for first place on LFW.
However FaceNet uses 200 million images for training, whilst
Gico Std uses only 3.05 million images. Gico Std also beats
the other benchmarks methods on LFW, most of which are
published in leading computer vision conferences. On YTF
dataset the proposed Gico loss still has better performance
than the other benchmark methods, which demonstrates the
state-of-the-art performance of the Gico loss.

LFW is a popular face dataset. But more and more meth-
ods are gradually touching its theoretic upper limit. Conse-
quently, it becomes more and more difficult to differentiate
different methods on LFW. To confirm the performance of the
proposed methods, we conducted an additional experiment on
SLLFW [15]. SLLFW uses the same positive pairs as LFW
for testing, but in SLLFW, 3000 similar-looking face pairs are
deliberately selected out from LFW by human crowdsourcing
to replace the random negative pairs in LFW. SLLFW adds
more challenges to the testing, causing the accuracy of the
same state-of-the-art methods drops about 10-20%.

Table 3 shows the verification accuracy of different meth-
ods on SLLFW. The results of some benchmark methods are
shown in the top half of the table. These results are publicly
accessible4 and provided by the SLLFW team [26]. As can
be seen from Table 3, Gico loss achieves considerably better
performance than other methods on SLLFW. In the top half
of the table, the accuracy of the benchmark methods drops by
between 16.75% and 4.68% from LFW to SLLFW. By com-
parison, the accuracy of Gico loss drops by between 1.45%
and 1.49%. The results on SLLFW further confirm the per-
formance of the proposed methods. More experimental re-
sults on other datasets can be found in [29].

4. CONCLUSION

In this paper, we present a novel loss function – Global
Information-based Cosine Optimal loss (Gico loss). Gico
loss integrates the advantages of the best losses proposed in
recent years in face recognition. To the best of our knowl-
edge, Gico loss is the first attempt to use global information as
the feedback in face recognition. To make Gico loss possible,
we propose a novel algorithm to learn the cosine similarity
between the class centre and the class edge. Extensive ex-
periments are conducted on LFW, SLLFW and YTF datasets.
Results demonstrate the effectiveness of the proposed Gico
loss and show that we achieve state-of-the-art performance.

lished, which means it hasn’t passed the peer review. Additionally, after
reviewing the comments on the public codes of Arcface, we found that the
experimental methods and the results are still controversial.

4http://www.whdeng.cn/SLLFW/index.html#reference

https://github.com/deepinsight/insightface/issues?q=reproduce+sort%3Acomments-desc
https://github.com/deepinsight/insightface
http://www.whdeng.cn/SLLFW/index.html#reference
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