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Abstract 

The reuse of building components can decrease the embodied energy and greenhouse gases of 

the construction activities and help get closer to a circular economy using fewer virgin materials. 

Part of the recent efforts to promote the reuse rates includes estimating the reusability of the 

load-bearing building components to assist the stakeholders in making sound judgements of 

the reuse potentials at the end-of-life of a building and alleviate the uncertainties and perceived 

risks. This study develops probabilistic models using advanced supervised machine learning 

techniques to predict the reuse potential of structural elements at the end-of-life of a building, 

from technical, economic, and social perspectives. 

After performing a thorough literature search and identifying, analysing, and categorising the 

independent variables affecting the reusability of building structural elements, these factors 

were used to develop an online questionnaire. This questionnaire was then shared with a 

representative sample of practitioners in the construction industry, including managers, CEOs, 

architects, engineers, consultants, and deconstruction experts with previous experience in 

reusing recovered building structural components. The received questionnaires were reviewed, 

and the initial dataset was split into three separate datasets to address the technical, economic, 

and social aspects of the study. Then, the missing values were estimated, and the class 

imbalances were addressed using advanced techniques. In the next stage, and for each dataset, 

a total number of thirteen predictive models were developed in the R software using 13 

advanced supervised machine learning methods. The performance and transparency of these 

models were compared to choose the best-practice Building Structural Elements Reusability 

Predictive Models (BSE-RPMs), which provide reliable predictions. 

Random Forest (RF) models were selected as the best practice BSE-RPMs for all three datasets, 

with a considerable overall accuracy of 96%, 89%, and 94% for the technical, economic, and 

social models, respectively. Since RF models are known as black-box models, advanced 

supervised machine learning methods such as sensitivity analysis and visualisation techniques 

were employed to open the selected RF BSE-RPMs. Eventually, using advanced rule extraction 

methods, three easy-to-understand predictive models (learners) were developed for assessing 

the technical, economic, and social reusability of the load-bearing building components, with 

an overall accuracy of 85%, 82%, and 91%, respectively. 

This research has contributed to promoting the reuse of building structural elements in two 

ways. First, using advanced supervised machine learning techniques such as the Boruta method 

and recursive feature elimination technique, this research identifies and ranks the main 

reusability factors based on the experience of the stakeholders with the recovered building 

structural elements in the building sector. Second, for the first time, it develops three sets of 

easy-to-understand learners (predictive rules) that can be used by practitioners to have an 

initial assessment of the technical, economic, and social reusability of the load-bearing 

components. The developed learners can be easily used by various stakeholders and have the 

potential to promote the reuse rate of the structural elements of the existing buildings, which 

were not designed for deconstruction. These sets of rules can also encourage more 

deconstruction projects since the developers would have a better judgment about the 

reusability of the structure of an existing building at its end-of-life, which, in turn, can accelerate 

the growth of reuse markets.
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Chapter 1 – Introduction  

1.1 Background 

The construction industry is a leading economic sector that employs around 2.8% of the global 

workforce (around 97.5 million employees) (Statista 2019, The World Bank 2019) and accounts 

for 1.7% to 10.5% of the Gross Domestic Product (GDP) in European countries (UNECE 2020). In 

2019, 2.7 million careers in the UK (equal to 7.8% of the total labour force based on The World 

Bank Data) were related to the construction industry (Statista 2021a, The World Bank 2019). 

Also, the construction activities in the UK (comprising of commercial and social, residential, and 

infrastructure subsectors (Government Construction Strategy 2011)) accounted for £118 billion, 

equal to 6.02% of the total GDP in 2020 (Statista 2021a, 2021b). The global value of construction 

activities in 2020 was around £9.1 trillion and is expected to reach £11.6 trillion by 20301 

(Designing Buildings Wiki 2021). According to (Barbosa et al. 2017), the expected growth in the 

construction industry spending is approximately 3.6% per year, expecting to reach 14% of the 

global GDP by 2025. The International Finance Corporation (a member of the World Bank 

Group) forecasts that this growth takes place mostly in residential, non-residential, and 

infrastructure projects (International Finance Corporation 2018). 

The construction industry is also a leader in the consumption of resources and the emission of 

greenhouse gases (GHG) (UNEP 2020, OECD 2019, International Finance Corporation 2018, 

World Economic Forum 2016). According to (OECD 2019), this sector is the largest consumer of 

raw materials, and construction-related activities account for 25% to 40% of the total CO2 

emissions globally (World Economic Forum 2016, UNEP 2020). It is not surprising because, 

according to (Guo et al. 2019), there is a strong positive linear relationship between the GDP 

and the embodied energy use and direct energy use in the construction sector. According to 

(Statista 2021c), 52% of the global steel production in 2019 (978 Mt) is used in the construction 

sector (Statista 2021d). The extraction of raw materials such as limestone and iron ore and the 

production of construction materials like cement and steel are energy and carbon-intensive 

processes (Vitale and Arena 2017, Hammond and Jones 2008). For instance, the production of 

the steel sections used in the construction sector (buildings and infrastructure) accounts for 

around 3.5% of the annual CO2 emissions worldwide (WSA 2012). It is noteworthy that globally, 

the iron and steel sector accounted for 2.6 gigatons of direct CO2 emissions in 2019, or 7% of 

 
1 Considering a conversion rate of 1.277 based on the average monthly exchange rates of GBP to USD in 
2020 (UK Government 2020). 
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total energy sector emissions (International Energy Agency 2020). Likewise, cement, another 

ingredient of many constructions worldwide (Vitale and Arena 2017), is accountable for around 

7% of the world energy sector CO2 emissions (International Energy Agency 2020). 

Besides, construction activities produce the highest amount of waste among all other sectors 

(Defra 2019, Eurostat 2016, Clark, Jambeck, and Townsend 2006, UNEP 2015). In the UK, among 

the 223 million tons of waste generated in 2016, around 61% belonged to construction, 

demolition, and excavation activities (Defra 2019). The construction and demolition waste 

(CDW) in some parts of the world constitutes up to 40% of the total waste stream (Hoornweg 

and Bhada-Tata 2012). As an instance, CDW is accountable for around 36% of the total waste 

generated in the EU-27 (Eurostat 2020). In the OECD countries, CDW accounts for around 36% 

of the total waste generated annually (UNEP 2015). It is noteworthy that the OECD countries 

are responsible for the production of approximately 44% of the global waste (Hoornweg and 

Bhada-Tata 2012). 

In the light of the Paris Agreement and to maintain the global temperature increase well below 

two degrees Centigrade, the need to decreasing the amount of CO2 and other greenhouse gases 

(GHG) has become inevitable in all sectors (UN 2015). According to (International Finance 

Corporation 2016), 101 of the signatories of the Paris Agreement highlighted that waste is a 

crucial sector for fulfilling the targets set by the agreement. Moreover, 66 of the countries in 

the Paris Agreement confirmed that buildings are another pivotal sector for achieving the 

targets of sustainable development (International Finance Corporation 2016). Therefore, 

acknowledging the share of the construction industry in the global GDP, raw materials and 

energy consumption, and GHG production, it is evident that the building sector has a 

considerable potential to fulfil the Paris Agreement targets by improving its overall 

sustainability footprint. Since most of the embodied energy and CO2 impacts of buildings are 

related to the load-bearing systems (Kaethner and Burridge 2012), methods for extending the 

life of the structure of buildings seems promising. 

In recent years, new design and construction methods such as design for deconstruction (DfD) 

(Akinade et al. 2017, Tingley and Davison 2011), design for manufacture and assembly (DfMA) 

(Kalyun and Wodajo 2012), and Modular Construction (Thai, Ngo, and Uy 2020) are introduced 

to decrease waste and promote the reuse of the load-bearing components at the end-of-life of 

a building. However, most of the existing buildings are not designed based on the above 

techniques, which results in the generation of a considerable amount of wastes during the 

refurbishment or demolition phases (Chileshe et al. 2016, Rose and Stegemann 2018, Chileshe, 
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Rameezdeen, and Hosseini 2015). Moreover, a considerable focus of the research body is on 

the adaptive reuse of the existing buildings (Nevzat and Atakara 2015, Sfakianaki and 

Moutsatsou 2015, Tan, Shen, and Langston 2014, Sanchez and Haas 2018, Bullen 2007). While 

adaptive reuse is the most promising option to prevent waste and promote the sustainability 

of the structure of a building, in many instances, it is not practical, and the removal of a building 

at its end-of-life becomes inevitable. In this case, if the structure of the building is not recovered 

and reused, it results in the loss of valuable resources (Fujita and Iwata 2008). 

Reusing the recovered load-bearing building components in new constructions for aesthetic or 

environmental purposes has attracted different clients worldwide in the last two decades, 

which have resulted in various successful case-study projects. For instance, in 1997, the Udden 

project reused several components such as 73 concrete wall elements and 41 concrete floor 

beams recovered from buildings built in the 1960s. Moreover, in 2001, the Nya Udden project 

recovered several load-bearing building components such as 72 concrete outer-wall elements 

and 224 concrete beams from various 1970s buildings and reused them in new student 

accommodation (Addis 2006). In 2002, and in an attempt to develop an ultra-green residential 

and office complex, various reclaimed building components and materials were used in the 

construction of the Beddington Zero Energy Development, London, UK (Lazarus 2003). These 

include reclaimed, reused, and recycled building components such as steel (95% of the steel 

structure), timber for internal and external studwork, floorboards, bollards, paving slabs, and 

shuttering ply. While these projects show that the reuse of load-bearing building components 

is practical, this practice is still not mainstream due to the amplitude of prohibiting factors 

(Section 2.3.2) (for other examples of such case study buildings, please refer to (Addis 2006, 

Gorgolewski et al. 2008, Gorgolewski 2008)). 

The reuse of load-bearing building components at the end-of-life of existing buildings, and the 

factors affecting its uptake in new constructions has been the focus of research for several 

years. Researchers have identified various economic, environmental, organisational, 

regulatory, social, and technical barriers to reuse in the building sector. From an economic 

perspective, barriers such as lack of an established reuse market, additional costs, and revenue 

were among the main factors prohibiting the reuse uptake (da Rocha and Sattler 2009, 

Rameezdeen et al. 2016, Dantata, Touran, and Wang 2005, Chileshe et al. 2016). From an 

organisational aspect, factors related to the lack of infrastructure to perform deconstruction 

and reuse, lack of experienced contractors, and managerial problems such as lack of ownership 

or systems thinking are prohibiting reuse (Arif et al. 2012, Rose and Stegemann 2018, Dunant 

et al. 2018, Yeung, Walbridge, and Haas 2015). From a regulatory perspective, factors such as 
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the requirement to comply with the latest norms and standards and lack of regulatory 

incentives were identified as the main barriers to reuse (Rose and Stegemann 2018, Huang et 

al. 2018, Shaurette 2006, Chini and Acquaye 2001). On a social dimension, lack of awareness of 

the stakeholders, negative perception of the practitioners and clients, and various perceived 

risks associated with reuse were among the main barriers to reuse (Chileshe, Rameezdeen, and 

Hosseini 2015, Ajayi et al. 2015, Tingley et al. 2017). And from a technical perspective, lack of 

design for deconstruction in the existing buildings, several design challenges, and unavailability 

of information and details about the recovered building components were among the main 

factors identified as barriers to reuse (Rose and Stegemann 2018, Chini and Acquaye 2001, 

Sansom and Avery 2014, Gorgolewski et al. 2008) (see Chapter 2 for a complete list of factors 

affecting reuse). 

According to (Akinade et al. 2016), the existing research on construction waste management is 

focused on the management strategies (waste hierarchies), waste generation (quantification, 

sources, etc.), performance measurement, stakeholders’ attitude, regulatory environment 

(policies, charges, etc.), and management tools. While all the above research themes attempt 

to promote the success of construction waste management practices, according to Akinade et 

al. (2016), the waste management tools are pivotal in this endeavour. Akinade et al. (2016) 

identify thirty-two tools and categorise them into six groups. These include waste management 

plan templates and guides, waste data collection tools, waste quantification models, waste 

prediction tools, and Geographic Information System (GIS)-enabled waste tools. A review of 

these tools reveals that most of them are intended for the new buildings. An exception is a 

waste prediction tool developed by (Cheng and Ma 2013), where the authors explain a BIM-

based system for the estimation and planning of the demolition and renovation wastes. 

Notwithstanding, none of the existing waste management tools provides instructions for the 

stakeholders on how to evaluate the reusability of building structural components at the end-

of-life of the existing buildings. 

1.2 Concept of the circular economy 

The circular economy is a new paradigm that is focused on the management of resources to 

decrease (and eventually eliminate) the impact of the anthropogenic activities on the 

environment by decoupling the continuous economic growth from the exploitation of natural 

resources (Pomponi and Moncaster 2017). 

The concept of the circular economy has been continuously evolving for the last sixty years. 

While the knowledge of the negative consequences of human inventions goes back to the 
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ancient Greek myths (Frosch and Gallopoulos 1989), the initial effort to change the linear 

industrial models (take-make-waste) took place in the 60s. In 1966, Boulding (Boulding 2013) 

made the first attempt to increase the awareness of the need for a paradigm shift from a linear 

economy to an early version of the circular economy, which he called a closed sphere. In 1976, 

Walter Stahel and Genevieve Reday introduced the economy in loops (or the circular economy) 

in their report “The Potential for Substituting Manpower for Energy” to the European 

Commission in Brussels (The Product-Life Institute n.d.). In their work, the authors reviewed the 

impact of their proposed model on “job creation, economic competitiveness, resource savings, 

and waste prevention”(The Product-Life Institute n.d.). Next, in 1989, Frosch and Gallopoulos 

(Frosch and Gallopoulos 1989) called for a shift from the linear industrial model to an industrial 

ecosystem in which “the consumption of energy and materials is optimized, waste generation 

is minimized, and the effluents of one process, …, serve as the raw material for another 

process.” They further clarified that their proposed industrial ecosystem “would function as an 

analogue of biological ecosystems.” (Frosch and Gallopoulos 1989). Based on the concept of 

biological ecosystems, biomimicry (Benyus 1997) and biomimetics (Bhushan 2009) were 

introduced in 1997 and 2009, respectively. These new industrial concepts can be interpreted as 

the innovation and design of products inspired by nature (Benyus 1997, Bhushan 2009). 

As a result, the Ellen MacArthur Foundation defines the circular economy as “an industrial 

system that is restorative or regenerative by intention and design” (Ellen MacArthur Foundation 

2013, 2015). They further elaborate that the circular economy “replaces the ‘end-of-life’ 

concept with restoration, shifts towards the use of renewable energy, eliminates the use of 

toxic chemicals, which impair reuse, and aims for the elimination of waste through the superior 

design of materials, products, systems, and, within this, business models” (Ellen MacArthur 

Foundation 2013). Therefore, its principles lie on “designing out waste and pollution, keeping 

products and materials in use, and regenerating natural systems” (Ellen MacArthur Foundation 

n.d.). 

1.3 Justification of the study 

The construction industry consumes between 30% to 50% of the natural resources (Anink et al. 

1996, Herczeg et al. 2014, WSA 2012), produces up to 40% of the total waste stream (excluding 

the excavation waste) (Eurostat 2016, Clark, Jambeck, and Townsend 2006, Defra 2019, UNEP 

2015), and generates around 39% of the world’s greenhouse gas emissions (Abergel, Dean, and 

Dulac 2017). The above facts are alarming due to the urgent need to decrease the GHGs 
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(UNFCCC 2015) and because we are facing landfilling restrictions (Brewer and Mooney 2008) 

and resource deficiency globally (Ellen MacArthur Foundation 2013, Chen et al. 2010). 

The depletion of the earth’s resources as a result of fast economic expansion, continuous 

population growth, and the drastic increase in demand for products and services has led the 

governments to run resource-efficient economies (Ellen MacArthur Foundation 2013). 

Therefore, the regulatory authorities worldwide, such as the European Commission Waste 

Framework Directive 2008/98/EC (European Union 2008) and the Demolition Protocol (ICE 

2008), introduce waste hierarchies to improve the material efficiency across all the economic 

sectors, including the building industry (Figure 1.1). According to these regulations, preparing 

for reuse (or reuse) is the second-best solution after prevention to decrease the high level of 

waste generation, and to decouple the economic growth from resource consumption 

(European Union 2008, ICE 2008). 

 

Figure 1.1 The waste hierarchy (European Union 2008, ICE 2008). 

According to the waste hierarchies, reuse is preferred to recycling. However, most of the 

recovery of CDW happens in the form of recycling and not reuse. For example, in the UK, nearly 

91% of the non-hazardous CDW is recovered through recycling (Defra 2019). While recycling 

can divert waste from landfills, the processes involved are energy and resource-intensive and 

impose a noticeable pressure on the environment in terms of GHGs and other sorts of emissions 

(Addis 2006, WRAP 2008). Contrarily, reused load-bearing building components (beams, 

Waste Prevention 

Preparing for Re-Use 
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Other recovery (e.g. energy 
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columns, truss, etc.) have far lower environmental impacts when compared with recycled 

materials (Geyer, Jackson, and Clift 2002). For instance, when new steel sections that have 

around 60% recycled content are used, their environmental impacts are still twenty-five times 

more than reusing the equivalent reclaimed steel sections (WRAP 2008). According to (Lazarus 

2003), reusing reclaimed structural steel and timber sections can decrease the environmental 

impacts by 96% and 83%, respectively. It is primarily due to significantly lower treatment and 

reprocessing required for reusing the load-bearing building components in comparison with 

recycling (Gorgolewski et al. 2008). 

Although efforts have been made to increase the reuse rates of building structural elements in 

recent years, there are yet no signs of improvements. Contrarily, the reuse rates in the building 

sector have declined in the last two decades in countries like the UK, and only a fraction of load-

bearing components at the end-of-life of a building are reused (Addis 2006, Sansom and Avery 

2014). For instance, only 5% of the reclaimed steel sections in the UK are reused, and the 

remaining are recycled (Sansom and Avery 2014). Part of the recent efforts to promote the 

reuse rates includes predicting the reusability of the load-bearing building components to assist 

the stakeholders in making sound judgements of the reuse potentials at the end-of-life of a 

building and alleviate the uncertainties and perceived risks (Yeung, Walbridge, and Haas 2015, 

Keller et al. 2019, Fujita and Kuki 2016, Cavalli et al. 2016, Smith et al. 2013, Fujita and Masuda 

2014). However, the continuous decline in reusing the structural elements of buildings shows 

that there is a need for the development of robust interdisciplinary reusability prediction tools 

to improve the reuse rates. 

1.4 Research problem and gap in knowledge 

While the reviewed articles (Section 1.1 and Chapter 2) show that a wide range of studies has 

extensively tried to identify the barriers ahead of the widespread reuse of building structural 

elements, they did not provide any indication of the reusability of these components based on 

the identified barriers. In the lack of an evaluation material to synthesise the identified barriers, 

find the correlations between them, and estimate the reusability of the load-bearing building 

components, the reuse of these elements will not grow in the building industry. It is because 

the fragmented body of knowledge available in the literature is unable to direct the 

stakeholders to take progressive steps towards the circularity of materials in this sector. Some 

authors recognised this gap but attempted to fill it by estimating the physical properties 

(dimensional or mechanical) of the recovered building structural elements as an indication of 

their reusability and ignored the impact of other variables. In this light, determining the 
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reusability of the load-bearing building elements has introduced a new paradigm in the field of 

reuse and has been the focus of research recently (Yeung, Walbridge, and Haas 2015, Keller et 

al. 2019, Fujita and Kuki 2016, Cavalli et al. 2016, Smith et al. 2013, Fujita and Masuda 2014). 

For instance, focusing on the dimensional aspect, (Yeung, Walbridge, and Haas 2015) studied 

the impact of accurate geometric characterisation of the steel structure of a building at its end-

of-life on the decision process for reusing the structural components. The authors initially 

developed a decision-making framework to facilitate the stakeholders in identifying the reuse 

potentials for recovered building structural steel. They then presented an automated object 

recognition algorithm to identify the member cross-sections. They eventually performed a 

reliability analysis to evaluate the performance of the proposed geometric identification 

method. Based on the results of the reliability analysis, the authors proposed a semi-automatic 

geometric identification method to enable designers to integrate the reused structural 

elements in new buildings at their full capacity. 

In another study focused on determining the physical properties of the structural steel, the 

authors developed a performance evaluation procedure to estimate the mechanical properties 

of reused structural elements using non-destructive testing (NDT) (Fujita and Kuki 2016). They 

estimated the Vickers hardness using portable ultrasonic hardness testers and rebound type 

portable hardness meters. They then used the estimated values as the basis to calculate the 

mechanical properties of the reusable elements. The results of the test specimens showed good 

agreement with the standard values. 

Similarly, (Keller et al. 2019) used wireless sensors to monitor the stresses induced during the 

construction of a steel-framed building to evaluate the reusability of steel members. According 

to this study, the authors observed that the maximum measured stresses were almost half of 

the nominal yield strength, confirming that the current design practices allow the reuse of 

structural steel (see also (Farsi et al. 2020) for similar studies in different systems and 

industries). 

In a relevant study focused on estimating the mechanical properties of timber, (Cavalli et al. 

2016) developed linear regression models to predict the Modulus of Elasticity and Modulus of 

Rupture of in-use and recovered timber sections based on the NDT methods. According to this 

study, the developed models can be used to assess the reusability of timber structures on site. 

Notwithstanding, the proposed linear regression-based models are too simple to model the 

complex system described above, and the predicted values are not accurate. Therefore, the 

derived results using the linear regression models are not reliable, and considerable care should 
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be taken to use the outcomes of this study. However, this study shows the substantial potential 

of the machine learning techniques in determining the reusability of the load-bearing building 

components. 

The above studies concentrate on discovering the technical reusability of the building structure 

by focusing on one aspect, like determining the mechanical properties or dimensional details of 

potential structural components for reuse and ignored the impact of other variables. The only 

exception is a study performed by (Hradil et al. 2017), in which the authors developed an 

indicator for estimating the technical reusability of steel-framed buildings considering a 

combination of variables. These variables include the impact of disassembly technique, 

handling, availability of the earlier design documents, potential new deployment (same purpose 

or repurposing), and the need for quality and dimensional checks. In another study, the authors 

also considered the marketability of the structure and extended the index by integrating the 

economic prospect of the recovered components (Hradil, Fülöp, and Ungureanu 2019). 

Nevertheless, these two studies are limited to steel-framed industrial buildings, and the 

developed predictive method is not based on actual reused components. Moreover, they 

considered only one economic factor, ignored the impact of other variables, and did not 

consider the interdependencies between the affecting variables. 

In brief, the deficiencies of the methods used to evaluate or predict the reusability of load-

bearing building elements include: 

i. Most of these methods are focused on one aspect of reusability, which is determining 

the mechanical properties of the elements. 

ii. They are limited to a specific material. 

iii. They do not consider the economic and social reusability of the elements (as essential 

dimensions of sustainability). 

iv. Most of them are not based on real projects with reused structural components. 

v. The complexity of the interactions of the affecting variables is ignored. 

vi. None of these studies used advanced data analysis methods such as novel/advanced 

supervised machine learning techniques to reveal the sophisticated relationship 

between the variables and then predict the reusability of the elements using the 

developed probabilistic models. 

The above shortcomings and the low reuse rates of the load-bearing building elements 

emphasise the need for the development of better tools to provide a first-hand idea about the 

reusability of the structural components of the buildings. Any such tool should consider the 
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interdependencies of the multitude of factors affecting the reuse of load-bearing building 

components at its core and should be easy to understand and implement. 

1.5 Research questions 

The research questions of this study are developed considering the research problem and gap 

in knowledge in Section 1.4. These questions are as follows: 

1) What are the factors affecting the reusability of the load-bearing building components? 

2) What are the weightage and impact of the identified factors on the reusability of the 

building structural elements? 

3) What combination of factors can contribute to the efficient development of a predictive 

model to assess the reusability of the load-bearing building components? 

4) Which supervised machine learning technique can then be selected to accurately 

predict the reusability of the load-bearing building components? 

1.6 Aim and objectives 

This research aims to develop a model that can predict the reuse potential of structural 

elements at the end-of-life of a building based on professional experience. The following 

objectives are then considered to answer the research questions and fulfil the aim of this study. 

1) To identify and assess factors affecting the reusability of a building’s structural elements 

(reusability factors) through literature review. 

2) To quantify the weightage and impact of the reusability factors based on the experience 

and expertise of the professionals elicited using questionnaires. 

3) To determine the best combination of the identified factors (model structure) to 

develop the Building Structural Elements Reusability Predictive Models (BSE-RPMs). 

4) To develop a best-practice of BSE-RPM using advanced supervised machine learning 

techniques, which provides reliable predictions. 

1.7 Unit of analysis 

While performing research, it is crucial to know the unit on which the data needs to be collected 

and analysed. The purpose of collecting data on this unit is fulfilling the aim of the research by 

addressing the research questions. Therefore, this unit is called the unit of analysis (Salkind 

2010). According to (Addelman 1970), the unit of analysis or the experimental unit “is that entity 

that is allocated to a treatment 'independently' of other entities.” Moreover, to collect the 
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necessary data for research, a unit is observed, which is called the unit of observation. This 

entity can be similar to or different from the unit of analysis (Salkind 2010). 

This research aims to develop a reliable probabilistic model using supervised machine learning 

techniques that can predict the reuse potential of structural elements (beams, columns, slabs, 

truss, etc.) at the end-of-life of a building. For this purpose, this study collects data on the factors 

affecting the reusability of these elements. Hence, the unit of analysis of this research is the 

load-bearing building components. While this research intends to consult the reuse experts to 

quantify the reusability factors, because it is observing the reused load-bearing building 

components through the senses of the experts, its unit of observation and analysis are equal. 

Further discussion on the unit of analysis could be found in Section 4.2. 

1.8 Methodology 

The first objective of this research was to identify factors affecting the reuse of load-bearing 

building components. Various studies have attempted to identify these factors using different 

methods such as interviews (da Rocha and Sattler 2009), questionnaire surveys (Chileshe et al. 

2016), literature review (Tingley et al. 2017), etc. (see Tables 2.1 and 2.2 of Chapter 2 for a 

complete list of methods used in the literature). Moreover, most of the studies in this area are 

published after 2000, reflecting contemporary issues in the field of reuse. Therefore, the factors 

affecting the reuse of load-bearing building components can be derived from the existing body 

of knowledge. All these meant that there was no need to conduct interviews with the experts 

in this field, and a literature review could fulfil the first aim of this study. Hence, as the first step, 

a systematic literature review was performed to identify the reusability factors. Next, the results 

of the systematic review were used to develop an online questionnaire survey to fulfil the 

second objective of this research. In the next stage, the outcome of the survey was used to 

develop the BSE-RPMs. 

The above discussion reveals that since the required knowledge to develop the BSE-RPMs is 

acquirable (first and second objectives of this research); hence, the data collection and 

communication approaches embrace the realism ontology (see Section 3.2.1) (Saunders, Lewis, 

and Thornhill 2016, Burrell and Morgan 2016). Moreover, it reveals that knowledge is objective, 

and the researcher is value-free because this research uses a questionnaire survey (a 

quantitative method) for its data collection (see Section 3.2.1) (Burrell and Morgan 2016, Chilisa 

and Kawulich 2012). Likewise, this study seeks generalisations by developing BSE-RPMs; hence, 

its approach to theory development follows a deductive pattern. Therefore, this research 

follows positivism as its research philosophy (Burrell and Morgan 2016). According to Crotty 
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(Crotty 1998), “positivism is objectivist through and through”. In the following paragraphs, the 

sample, data collection method, and analysis techniques used in this research are briefly 

discussed. 

Sample: Since the unit of analysis of this research is the structural components of a building, 

the sample population was comprised of all recovered load-bearing building components 

intended for reuse (regardless of success). However, because there was no record available on 

the sample population, and because access to company documents was not possible, this study 

sought experts’ knowledge about the reused elements to develop the BSE-RPMs. Nevertheless, 

because there was no way to identify based on what structural element the reuse experts would 

complete the questionnaire, all the reused components had an equal chance for selection by 

the potential respondents. Hence, the sample population was the professionals with reuse 

experience working in construction, deconstruction, demolition, or reuse companies. The 

sampling methods are discussed in Chapter 4. 

Literature review: A systematic literature review of the studies dealing with the factors 

affecting the adoption of component reuse in the building sector was performed to fulfil the 

first objective of this research. The identified factors from the systematic review were then used 

to develop an online questionnaire survey to accomplish the second objective of this research. 

The details of the systematic literature review are presented in Chapter 2. 

Online questionnaire: The experts’ opinions were elicited by developing a comprehensive 

online questionnaire survey research methodology to provide a numeric description of the 

reusability factors and a primary evaluation of the relationship between the variables. Using the 

Online Surveys (Jisc 2019), an online questionnaire survey was developed based on the results 

of the systematic literature review (Chapter 2), and its link was shared with the potential 

respondents. In this research, the variables (reusability factors) identified in the questionnaire 

(both independent and dependent) were in the form of closed questions with the Likert-style 

ratings (Likert 1932). While the Likert response sets can include four or more points, this study 

used a five points system, which is more common (Lavrakas 2008). In total, 481 invitations were 

sent to the experts to complete the online questionnaire, and 90 completed surveys were 

received, yielding a response rate of 18.7%. 

Analysis of data: The received questionnaires were initially assessed for completeness, 

reliability, and relevance. Next, the acceptable received questionnaires were split into three 

sections to develop technical, economic, and social datasets. After removing irrelevant and 

highly incomplete questionnaires, there were still unanswered questions in the datasets. Since 
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these data were missing completely at random, the Multiple Imputation technique was used to 

estimate the missing values. Next, and after addressing the imbalance in the datasets, a three-

stage feature selection using filter and wrapper methods was performed to identify the best 

combination of the variables to develop BSE-RPMs. This stage fulfilled the third objective of this 

research by identifying the list of independent variables required for developing the BSE-RPMs 

for each of the datasets. Then, using 70% of the data in each dataset, which was selected 

randomly, thirteen different supervised machine learning methods were employed to develop 

13 BSE-RPMs. Next, a 10-fold Cross-Validation method was used to evaluate the performance 

of the models. The results show that interpretable/transparent models such as Logistic 

Regression and Decision Trees have poor performances (Section 6.3). Therefore, the best-

practice model was selected based on their predictive performances. The result was the 

selection of random forest models for all three datasets as the best-practice models. Next, using 

sensitivity analysis and visualisation techniques, the selected black-box random forest models 

were opened to improve their transparency. Eventually, using rule extraction techniques, three 

easy-to-understand predictive models were developed that can reliably estimate the technical, 

economic, and social reusability of the load-bearing building components (4th objective). 

1.9 Novelty of research 

This research, which aimed to develop BSE-RPMs to estimate the reuse potential of the 

structural elements of a building at its end-of-life to promote the reuse rates in the building 

sector, is novel in several ways. It is the first study that uses advanced supervised machine 

learning techniques such as random forests, K-Nearest Neighbours algorithm, Gaussian 

processes, support vector machines, adaptive boosting, BART machine, etc., (Section 5.5) to 

develop models that predict the reusability of the structural elements from technical, social, 

and economic perspectives. Also, it is the first study that uses advanced machine learning 

methods to rank the factors affecting the reuse of building structural components. A look at the 

literature shows that the publications in this field limit themselves to ordinary descriptive 

statistics and ignore the possible interdependencies of the variables. This project reveals that 

the relationships between variables are not linear. Moreover, it is the first study that identifies 

the best combination of variables to develop the BSE-RPMs. Furthermore, it is the first study 

that uses sensitivity analysis and visualisation techniques to interpret the selected black-box 

best-practice BSE-RPMs. Likewise, for the first time, this research develops a set of predictive 

rules that can be used by professionals in the building sector for estimating the technical, 

economic, and social reusability of the structural components effectively. 
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This research resulted in the publication of the first systematic literature review on the factors 

affecting the reuse of the load-bearing building components. This systematic review has 

contributed to identifying, categorising, and prioritising the factors affecting the reuse of 

components of the superstructure of a building at its end-of-life. The results of this systematic 

review were used to identify the reusability factors for the development of a questionnaire 

survey to fulfil the second objective of this research. 

The easy-to-understand predictive tools developed during this research have several 

advantages, as follows. First, they can be used by any practitioner in the building sector, and 

they do not need a machine learning background. Second, they give a first-hand idea about the 

reusability of structural components by collecting the necessary data. Third, they have the 

potential to promoting reuse by increasing the reuse rates, which, in turn, can accelerate the 

growth of reuse markets. Considering the UK economy post-Brexit and the impact of the COVID-

19 outbreak on the employment rate, the results of this project can provide new job 

opportunities in the building sector in the UK. 

1.10 Scope and limitation 

The scope of a project is dictated by its aim, objectives, unit of analysis, and unit of 

generalisation. This project focuses on load-bearing building component reuse, and other types 

of reuse, such as adaptive reuse, recycling, and non-load-bearing building material reuse, are 

out of the scope of this study. While adaptive reuse is the most preferred option to prevent 

waste, because this research focuses on the management of CDW after generation (as the result 

of construction, refurbishment, and demolition/deconstruction), adaptive reuse is out of the 

scope of this study. As explained in Section 1.1, other waste treatment options such as recycling 

are energy and resource-intensive (Addis 2006, WRAP 2008); therefore, not considered in the 

scope of this study. 

The terms load-bearing building component(s) and element(s) are used interchangeably in this 

research. These are restricted to sections forming the superstructure of a building as defined 

by (BCIS 2012) that can be dismantled (through demolition, deconstruction, or selective 

demolition) and reused for the same function with minimum (or zero) treatments (Addis 2006, 

Parker and Deegan 2007). Therefore, this research does not consider substructure (foundation), 

plinth, finishes, fittings, furnishings, equipment, and services in its scope (BCIS 2012). 

As discussed in Section 1.1, new design and construction techniques such as design for 

deconstruction (DfD) (Akinade et al. 2017, Tingley and Davison 2011), design for manufacture 
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and assembly (DfMA) (Kalyun and Wodajo 2012), and Modular Construction (Thai, Ngo, and Uy 

2020) could potentially promote the reuse of load-bearing building components in the long run. 

However, existing buildings are not designed and constructed based on these methods. Since 

the focus of this research is promoting the reusability of the load-bearing components of the 

existing buildings, buildings designed and constructed using these novel techniques are out of 

the scope of this research. Therefore, the results of this research could not be used to evaluate 

the reusability of the load-bearing structural elements of such buildings. 

The most important limitation in this research is the low rate of reuse in the building sector that 

restricts access to more experts with such experience. Moreover, while the researcher tried to 

decrease error by considering a wide range of machine learning methods to develop the 

predictive models, there still might be some errors due to a missing key factor that has not been 

integrated into the questionnaire. 

Likewise, the questionnaire is developed based on a systematic literature review focused on 

the superstructure of a building. Therefore, the results of this study cannot be generalised to 

the substructures. Also, while the questionnaire was not limited to any material, the responses 

provided were restricted to timber, steel, and concrete. Hence, the developed predictive tools 

in Chapter 6 can be used to determine the reusability of timber, steel, and concrete load-

bearing building components. 

Moreover, less than 10% of the received questionnaires used demolition to recover the 

structural element, out of which only one component was reusable. The remaining elements 

were recovered using deconstruction and components specific recovery (87.5%) or were 

surplus (1.4%) or reused in-situ (1.4%). Therefore, the results of this research could not be 

extended to evaluate the reusability of components recovered through demolition. It should be 

noted that while this research focuses on the building sector, the approaches used can be 

adapted to perform similar studies in other subsectors of the construction industry, as well. 

1.11 Thesis structure 

This thesis consists of seven chapters. Chapter one introduces the background, justification for 

the study, and the gap in the knowledge, and portrays the aim and objectives of this research. 

In Chapter Two, a systematic literature review focused on the factors affecting the reuse of 

load-bearing building components is presented. Chapter three discusses the philosophical 

assumptions of the research and scrutinises the potential theoretical perspectives to identify 

the research philosophy, and eventually identifies and justifies the choices for research 
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methodologies and research methods. Chapter four deals with the data collection in this 

project. Chapter five deals with analysing the collected data using advanced supervised machine 

learning techniques such as random forests, K-Nearest Neighbours algorithm, Gaussian 

processes, support vector machines, adaptive boosting, BART machine, etc., (Section 5.5) to 

develop the BSE-RPMs. Chapter six is focused on selecting the best-practice technical, 

economic, and social BSE-RPMs and developing three easy-to-understand predictive models 

that can be used by the practitioners in the building sector to assess the reusability of the load-

bearing building components. Findings are discussed in Chapter 6 as well. And finally, Chapter 

seven concludes this research (Figure 1.2). 

 

Figure 1.2 Thesis structure. 

1.12 Key achievements 

A significant achievement of this research is the development of three easy-to-understand 

predictive tools using advanced machine learning methods that can be used by practitioners in 

the building sector to determine the technical, economic, and social reusability of the load-

bearing building components. There is only one study in this field that has tried to develop a set 
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of rules to estimate the technical and partially economic reusability of such components (Hradil, 

Fülöp, and Ungureanu 2019). However, this study is not based on real reused elements and is 

limited to steel-framed industrial buildings. Moreover, it considers only a limited number of 

variables for the technical reusability assessment, has only one economic variable, and ignores 

the impact of other variables. Likewise, it does not integrate any social factors in its rules and 

does not consider the interdependencies of the affecting factors. 

Another accomplishment of this research is identifying the most significant factors affecting the 

reuse of structural elements of a building and ranking them using advanced supervised machine 

learning techniques such as the Boruta method and recursive feature elimination technique. 

While other studies tried to identify and prioritise these factors using ordinary descriptive 

statistics, none used advanced machine learning techniques for this purpose. 

Another achievement of this study is the successful use of advanced supervised machine 

learning techniques such as random forests, K-Nearest Neighbours algorithm, Gaussian 

processes, support vector machines, adaptive boosting, BART machine, etc., (Section 5.5) to 

develop BSE-RPMs. No other study has ever used such methods to predict the technical, 

economic, and social reusability of the load-bearing building components. 

Finally, using the random forests method, this study developed best practice BSE-RPMs with a 

considerable overall accuracy of 96%, 89%, and 94% for the technical, economic, and social 

models, respectively. 

1.13 Chapter summary 

This chapter provided a background of the position of the construction industry in the global 

economy and discussed that this sector is not sustainable. Next, this chapter identified that 

reusing the load-bearing building components has a high potential for improving the overall 

sustainability footprint of the construction industry. This chapter then justified the need for this 

research based on the low reuse rates in the UK, and globally. The gap in the knowledge showed 

that the available reusability assessment tools are oversimplified. They are also limited to 

identifying the mechanical properties of the structural components, not considering the 

interdependencies between the variables, and ignoring important technical, economic, and 

social factors. It also showed that none of such studies used advanced data analysis methods 

such as supervised machine learning techniques to develop reusability assessment tools. 

This chapter revealed that the unit of analysis is all load-bearing building components. This 

chapter further discussed the methodology adopted in this research and explained how 
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positivism is the philosophical underpinning of the study and justified the quantitative method 

approach used for data collection and analysis. 

The novelty of the research section highlighted that it is the first study that uses advanced 

supervised machine learning techniques to develop predictive models to assess the reusability 

of the structural elements from technical, social, and economic perspectives. Also, it shows that 

this research is the first study that develops three easy-to-understand predictive tools, which 

could assist practitioners in the building sector in evaluating the technical, economic, and social 

reusability of load-bearing building components. 
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Chapter 2 – Systematic review of factors affecting the reuse of 

load-bearing building components 

2.1 Chapter introduction 

This research aims to develop probabilistic predictive models to evaluate the reusability of the 

structural elements of a building at its end-of-life. In this chapter, a systematic literature review 

is performed to identify factors affecting the reuse of load-bearing building elements. The 

outcome of this chapter fulfils the first objective of this research (Section 1.6). Kindly note that 

the systematic literature review performed in this chapter is focused on the construction 

engineering journal articles and not machine learning papers. Relevant machine learning 

articles are referred to and discussed in Chapters 4, 5, and 6. 

The scope of this chapter is limited to peer-reviewed journal articles because these types of 

research works are considered of high quality and validity (Schlosser 2007). This approach is in 

line with the advice of (Yi and Chan 2014) to investigate top-tier construction journals while 

performing literature reviews. As discussed in Section 1.10, the scope of this research is limited 

to the load-bearing building components reuse, and other types of reuse, such as adaptive 

reuse, recycling, and building material reuse are not considered. This trend is followed while 

selecting the proper search words, as well (Section 2.2). Two major examinations are performed 

to scrutinise the articles reviewed in this chapter. The first method (Section 2.3) is focused on 

identifying and analysing reuse drivers and barriers (cumulatively called factors), and the 

second method (Section 2.4) is focused on correlations and the possible inter-relationships 

between reuse barriers. This chapter concludes with the chapter summary in Section 2.5. 

It is noteworthy that this chapter is published in the journal of Waste Management & Research 

as the first systematic literature review in this field (Rakhshan et al. 2020). 

2.2 Systematic literature review approach 

This chapter uses a systematic literature review method to identify various factors (drivers and 

barriers) affecting the reuse of load-bearing building components on a global scale. A systematic 

review is a comprehensive and reliable process for locating the existing body of knowledge 

(published scientific work) regarding a very particular research question (GET-IT Glossary n.d., 

Denyer and Tranfield 2009). Because this process is based on a defined search strategy with 

clearly specified objective(s), it can be used to analyse, synthesise and critically evaluate the 

existing literature identified within the context of the research question (Section 1.5) (Denyer 

and Tranfield 2009, Bettany-Saltikov 2016). This methodology provides a strong basis for 
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reliable judgments about “what works” the best (Petrosino and Lavenberg 2007) and finds gaps 

in the literature for further research (Denyer and Tranfield 2009). The systematic literature 

review is a well-known methodology for the study of the existing knowledge in medical sciences 

because of its unique properties, as expressed above (Tranfield, Denyer, and Smart 2003). 

Nevertheless, the systematic literature review is acquiring its position among other research 

areas such as engineering and management (Hosseini et al. 2015, Alaka et al. 2018, 2016, 

Charef, Alaka, and Emmitt 2018).  

The complete process of the systematic literature review is presented in Figure 2.1. In this 

research, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

(PRISMA 2018) checklist is used to step-by-step perform and record the methodology. PRISMA 

checklist is widely used by researchers while performing systematic literature reviews (Moher 

et al. 2009). 

A pre-requisite to conducting a systematic review is a clear research question (question 1 of 

Section 1.5) as well as knowing the proper keywords to perform an effective search. Because a 

building at the end of its lifecycle is removed through demolition (with some other variations 

such as selective demolition and deconstruction), to identify the proper keywords, the 

researcher performed an initial literature search using "deconstruction" and "demolition" 

search words at stage 1. Through this initial search, 11 relevant papers were identified, which 

helped in the selection of the search words listed in Figure 2.1 (stage 2). 

At stage 2, a Boolean search criterion is followed to answer the research question of this study 

(question 1 of Section 1.5). At this stage, the search is limited to the “titles” of the articles. The 

initial search in Scopus showed that studies containing discussions on the reuse of building 

components focus on construction and demolition waste management. Therefore, the first set 

of search words intends to ensure that any article containing these words are considered. The 

AND combination with the second set of search words guarantees that all relevant articles 

dealing with reuse in the building sector are included in the search. Because the scope of this 

research is load-bearing building components (BCR) reuse and not building reuse or building 

material reuse, keywords such as “refurbish” or “refurbishment”, which primarily deal with 

adaptive reuse of existing buildings (particularly historic buildings) or “material”, which deals 

with material reuse are not included in the search words (Figure 2.1). 

The cut-off date for stages 1 and 2 of the literature reviews is March 2019, whereas the cut-off 

date for stage 3 is January 2020. Because this research only focuses on peer-reviewed journal 

papers, following (Yi and Chan 2014), all other types of publications (book chapters, conference 
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papers, trade journals, etc.) are excluded. Hence, only “Articles” and “Articles in press” 

published in peer-reviewed journals are considered for this research. Likewise, to limit the 

number of unwanted articles, irrelevant subject areas, as listed in Figure 2.1 at stage 2, are 

excluded from the search criterion. It is because search words such as “building”, 

“construction”, “structure”, “reuse”, and “recover” are found in a broad range of scientific 

publications. Furthermore, since most of the publications in this area are published post-2000, 

stage 2 considers the range of articles published between 2000 and March 2019. 

Among the 2,387 article titles screened at stage two, 2,162 articles were found irrelevant and 

excluded. Figure 2.2 depicts the percentage of the subject areas of the excluded papers during 

the screening stage. The appearance of articles in areas like medical sciences (while was 

excluded from the subject areas) could be because of the interdisciplinary nature of some 

papers. The researcher then reviewed the abstracts of the remaining 226 articles during the 

eligibility check of stage 2 (PRISMA 2018) (Figure 2.1). At this stage, irrelevant papers such as 

those focusing on construction waste management other than reuse (Guo 2016, Jin et al. 2017), 

concentrating on other sectors like reverse logistics in the electronics industry (Sirisawat and 

Kiatcharoenpol 2019), or talking about reuse but dealing with recycling or down-cycling 

(Migliore et al. 2015) are identified and excluded. The result is the exclusion of 141 more papers 

from the full-text review. The researcher eventually reviewed 85 full-text articles from which 

54 papers were found relevant to the objective of this chapter.  

The search results from stages 1 and 2 indicate that the journal of Resources, Conservation and 

Recycling (RCR) has the highest number of publications (16 papers) among all other reviewed 

journals. Hence, following the framework pursued by Yi and Chan (2014), a third stage 

systematic literature review was performed considering all the ten first-tier construction 

journals plus Resources, Conservation and Recycling (RCR). The complete list of all these journals 

are Automation in Construction (AIC); Building and Environment (BE); Building Research and 

Information (BRI); Canadian Journal of Civil Engineering (CJCE); Construction Management and 

Economics (CME); Engineering, Construction and Architectural Management (ECAM); 

International Journal of Project Management (IJPM); Journal of Computing in Civil Engineering 

(JCCE); Journal of Construction Engineering and Management (JCEM); Journal of Management 

in Engineering (JME); Resources, Conservation and Recycling (RCR). At this stage, the identified 

search words were used to perform a Boolean search in the ‘title/abstract/keywords’ of each 

of the journals separately. Moreover, the year 2000 restriction was lifted at this stage (Figure 

2.1). All the above was to overcome the restrictive nature of the stage 2 limitations (Figure 2.1), 
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as well as to make sure that articles published in high-impact journals related to the built 

environment are considered. 

During this process, 490 articles were excluded from abstract review for similar reasons 

observed in stage 2. For instance, while (Ling and Leo 2000) focuses on identifying drivers to 

promote timber formwork reuse, it is out of the scope of this study, which is the superstructure 

of a building. After reviewing 609 abstracts during the eligibility check, only 28 papers were 

identified for full-text review. While the reviewed full texts contained a combination of the 

search words, the focus of the rejected papers was not in line with the aim of this chapter. 

Following the same protocol pursued at stage 2, a total number of 11 more papers were 

identified at this stage. According to what mentioned earlier and combining the identified 

papers at all three stages, 76 articles were found relevant to the objective of this chapter and 

reviewed. Nonetheless, the identified new articles, as the result of the third stage systematic 

review, were all published after the year 2000, which validates the initial decision in restricting 

the publication date. 

The presented systematic literature review framework in Figure 2.1 is highly reproducible and 

suitably matches objectivism, which is the epistemological stance of this research (Section 

3.2.1).  Nevertheless, there is always a risk of not locating some relevant articles due to the 

restrictions considered in performing a systematic literature review. Therefore, the researcher 

looked for the “grey literature” by carefully reviewing the references of the identified articles. 

While according to (Adams et al. 2016), “grey literature includes a range of documents not 

controlled by commercial publishing organisations”, in this research, this term is extended to 

those articles that are missed out as the result of defined restrictions in the process of 

performing the systematic literature review (Figure 2.1). 

While reviewing the references of each paper, the researcher identified potential papers for 

further review. Next, the researcher checked if these potential papers were already identified 

during the systematic literature review and excluded them with a reason (Figures 2.1 and 2.2). 

In most of the cases, the identified papers were already reviewed and excluded. For instance, 

while reviewing the references of (Chileshe, Rameezdeen, and Hosseini 2016), the authors 

identified seven potential papers. However, after checking the excluded papers during the 

systematic review process, it was observed that those papers were excluded for a reason 

(Figure 2.2). As an example, (Leigh and Patterson 2006) was initially identified as a potential 

paper. However, after reviewing the notes, it was observed that this paper was focused on 

identifying means that could be used by the local government to promote deconstruction. 
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Notwithstanding, there were still some papers that were not identified during the process of 

the systematic review. For instance, (Kuehlen, Thompson, and Schultmann 2014) is a relevant 

paper, which was identified during reviewing the references of (Dunant et al. 2018). However, 

this is a conference paper, and as discussed earlier, this systematic review did not include 

conference papers and only focused on peer-reviewed journal articles. Nevertheless, a careful 

review of such conference papers revealed that they were the basis for most of the articles 

reviewed during the systematic literature review in this chapter. For instance,  the paper by 

(Kuehlen, Thompson, and Schultmann 2014) was referred to in (Dunant et al. 2017), which is 

another identified paper for review in this chapter. Another example is a CIB Report, Publication 

252 (Kibert and Chini 2000), which is cited in different articles identified during the systematic 

literature review in this chapter, such as (Huuhka et al. 2015, Shaurette 2006, Diyamandoglu 

and Fortuna 2015, Chileshe et al. 2016), among others. 

Therefore, the review of the grey literature revealed that no important journal articles were 

missing, and the located papers during the systematic literature review represent the state-of-

the-art in this field. 
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Figure 2.1 Systematic literature review framework (inspired by (Charef, Alaka, and Emmitt 2018, PRISMA 2018, Yi 
and Chan 2014)) 
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Figure 2.2 Subject area of the excluded papers during the screening process at stage 2 

2.3 Results of the systematic literature review 

Figure 2.3 shows the distribution of the papers reviewed in this chapter by the year of 

publication. According to this figure, the number of peer-reviewed journal articles has been 

increasing since 2014, which indicates an increasing focus on construction and demolition waste 

treatment through reuse. However, there is a decline in the number of publications in 2019, 

which needs further investigations to identify the root causes. 

 

Figure 2.3 Publications by year. 
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Figure 2.4 shows the geographic location of the reviewed articles in this chapter. According to 

this figure, waste management in buildings through reuse is an international trend. It should be 

noted that the split of the reviewed articles based on their geographic locations is based on the 

focus of the research paper on the construction context of the listed countries.  

 

Figure 2.4 Publications by location. 
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Throughout the systematic literature review process, the researcher identified 57 drivers and 

130 barriers affecting the reuse of building components. From a sustainability perspective, the 

reuse of building components has social, environmental, and economic advantages (Jaillon and 

Poon 2014); hence, certain factors can be categorised under these three groups. However, the 

successful implementation of any intervention (here, the reuse of building components) to 

promote sustainability in the building sector highly depends on the technical feasibility (such as 

durability), the regulatory enforcement (minimum performance requirements set by 

regulations), and competency and willingness of the organisations engaged (knowledge, skills, 

infrastructure, innovation, etc.)(Nußholz, Nygaard Rasmussen, and Milios 2019). Therefore, an 

interdisciplinary approach towards sustainability becomes crucial while addressing the 

shortcomings in the body of knowledge on reuse (Kajikawa, Tacoa, and Yamaguchi 2014). On 

this basis and following (Pomponi and Moncaster 2017, Tingley et al. 2017), the identified reuse 

drivers and barriers were grouped under economic, environmental, social, technical, 

regulatory, and organisational categories (Tables 2.1 and 2.2). 

Besides, to better present the identified reuse drivers and barriers and to avoid congested 

tables, under each major category, the factors were further grouped into sub-categories, as 

shown in Tables 2.1 and 2.2. These sub-categories are defined based on the common 

characteristics of groups of factors. For instance, “Lower cost of reused components” and 

“Increased cost of landfilling” are economic drivers and are grouped under the sub-category 

“Cost” in Table 2.1. It is because in the case of the former, the lower cost of the component can 

decrease the total cost of the project and in the case of the latter, landfilling is expensive and 

reusing the element can reduce additional costs. This approach has been pursued in the case of 

barriers to BCR, as well. 

2.3.1 Reuse drivers 

The complete list of identified reuse drivers is available in Appendix A (Table A.1). Figure 2.5 

shows the distribution of the observed drivers in the reviewed papers. According to this figure, 

the principal identified drivers are economic (25%), organisational (23%), environmental (17%), 

and social (15%). The sub-categories of the factors shown in this figure present a similar trend 

between main categories and sub-categories. Among the drivers, “cost” is the most reported 

sub-category, followed by “energy and GHG”, “organisational sustainability”, and “willingness” 

sub-category of drivers. These observations are discussed further in the following subsections. 
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Figure 2.5 Distribution of the observed reuse drivers (eco: economic; env: environmental; org: organisational; reg: 
regulatory; soc: social; tec: technical) 
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to reuse. The study is performed in China, where cheap landfilling discourages choosing other 

waste treatment options such as reuse or recycling. 

2.3.1.2 Organisational drivers 

According to the literature, reducing CDW generated by the firms (Pun, Liu, and Langston 2006, 

Guy 2006, Schultmann and Sunke 2007, Densley Tingley et al. 2012, Aye et al. 2012) (among 

others2) and promoting the green image of the companies to improve competitiveness (Rogers 

2011, Durão et al. 2014, Chileshe et al. 2016, Chinda and Ammarapala 2016, Chileshe, 

Rameezdeen, and Hosseini 2016) (among others) rank the highest among all other 

organisational drivers. 

One method to increase the reuse rates by the organisations is through integrating reuse in the 

design process of new projects (Gorgolewski et al. 2008, Gorgolewski 2008, Rogers 2011, 

Tingley et al. 2017) (among others). As a result and to support this idea, some articles suggest 

that by integrating reuse in the contractual requirements, reuse rates will increase (MacKinnon 

2000, Gorgolewski et al. 2008, Gorgolewski 2008). Also, the existence of a reclaimed 

components management coordinator (Gorgolewski 2008, Tingley et al. 2017), and the 

knowledge of a known list of structural components to reuse early on in the design phase are 

suggested to potentially increase the adoption of reuse by the firms (Gorgolewski 2008, Rose 

and Stegemann 2018). The latter can be facilitated by the coordination between the owners of 

the demolition site and the new building. However, in many instances, this coordination never 

happens (Dunant et al. 2018, Nußholz, Nygaard Rasmussen, and Milios 2019). One solution, as 

observed by (Nußholz, Nygaard Rasmussen, and Milios 2019), is companies’ entrepreneurial 

activities to integrate circular principles. According to this study, a Danish company involved in 

brick reuse could overcome certain limitations by changing its business model by integrating 

deconstruction into its scope to safeguard a more sustainable supply of the reused bricks. 

Training operators for effective deconstruction (Dantata, Touran, and Wang 2005, Shaurette 

2006, Elias Özkan 2012), availability of space for the storage of the reusable components after 

deconstruction (Rogers 2011), and the knowledge and experience in using reused components 

(Tingley et al. 2017), as well as proper separation of the reusable components after 

deconstruction (Rogers 2011, Elias Özkan 2012, Ding et al. 2016, Ajayi et al. 2017) are among 

other factors driving reuse. 

 
2 This term indicates that there are other references identifying the same factor (Appendix A). 
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2.3.1.3 Social drivers 

Factors such as society's environmental concerns (Chileshe, Rameezdeen, and Hosseini 2016), 

or the increased awareness of the full benefits of reuse among the stakeholders (MacKinnon 

2000) are identified as drivers to reuse. Nußholz et al. (2019) report recognition of reuse in the 

public debate can enhance public awareness and promote reuse.  

Besides, from a social perspective, the positive perception and willingness of the stakeholders 

such as clients (Shaurette 2006, Gorgolewski et al. 2008, Gorgolewski 2008, Arif et al. 2012, 

Sansom and Avery 2014, Dunant et al. 2017, 2018), designers (Gorgolewski et al. 2008, 

Gorgolewski 2008, Rameezdeen et al. 2016, Dunant et al. 2017, Tingley et al. 2017, Dunant et 

al. 2018), and contractors (Gorgolewski et al. 2008, Rogers 2011, Chileshe et al. 2016, Dunant 

et al. 2017, Chileshe et al. 2018) to integrate reused components into their projects are 

determining.  

Unlike new building components that can be sourced from the market with proper quality 

certificates, salvaged building components are usually not available off the shelf and cannot be 

trusted. However, according to a few articles, informality, and good relationship among the 

stakeholders is reported to overcome this challenge and promote reuse (Shaurette 2006, da 

Rocha and Sattler 2009, Chileshe et al. 2016).
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Table 2.1 Summary of reuse drivers 
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1 (MacKinnon 2000) US DR; GI; I(4); OBS 1     1        1        

2 (Sára, Antonini, and Tarantini 2001) IT CS(1); LIR    1 1                 

3 (Li, Chen, and Wong 2003) HK CS(2); S            1          

4 (Klang, Vikman, and Brattebø 2003) US CS(1); I(10); Q(10/10) 2 1 1 1                  

5 (Dantata, Touran, and Wang 2005) US CS(5); LIR 1  1    1               

6 (Pun and Liu 2006) AU TF                   1   

7 (Pun, Liu, and Langston 2006) AU CS(1)   2       1         1   

8 (Shaurette 2006) US Q(296/83)       1      1    1 1    

9 (Guy 2006) US CS(4)          1            

10 (Schultmann and Sunke 2007) DE T          1         1   

11 (Gorgolewski et al. 2008) CA AR; CS(3) 3     1   1         3 1 2 1 

12 (Gorgolewski 2008) CA AR; CS(2) 3     1   3    1     2  1 1 

13 (Tam and Tam 2008) HK CS(1); I(20)            1  1        

14 
(da Rocha and Sattler 2009) BR CD; CS(1); DO(5); GM(4); 

SSI(27) 
2 1 1              1     

15 (Nordby et al. 2009) NO CS(1)                     1 

16 (Dewulf et al. 2009) BE CS(1)     1                 

17 (Denhart 2010) US CS(4)   1                1   

18 (Rogers 2011) AE CS(1)        2 1 2     1   1    

19 (Forsythe 2011) AU CS(9); DO; UI   1                1   

20 (Chau et al. 2012) HK CS(13)    1 1                 

21 (Arif et al. 2012) IN CS(2); SSI(15) 1                 1    

22 (Lachimpadi et al. 2012) MY CS(8)                   1   

23 (Boyd, Stevenson, and Augenbraun 2012) US CS(2)    1                  

24 (Densley Tingley et al. 2012) GB CS(1); LIR     1     1         1   

25 (Coelho, de Brito, and Brito 2012) PT CS(15)    1     1             

26 (Aye et al. 2012) AU CS(1)    1 1     1            

27 (Elias Özkan 2012) TR AR; CS; DO(21); I       1 1              

28 (Hglmeier et al. 2013) DE CS(1)                   1   

29 (Sansom and Avery 2014) GB Q(160/32)                  1    

30 (Elias-Ozkan 2014) TR CS(2)   1 1 1     1            

31 (Pongiglione and Calderini 2014) IT AR; CS(1) 1                  1 1 1 

32 (Durão et al. 2014) PT CS(2)          1            

33 (Diyamandoglu and Fortuna 2015) US CS(1) 1 1 1 1                  

34 (Yeung, Walbridge, and Haas 2015) CA DO(4)                   1   

35 (Wu et al. 2016) CN CA             1         
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36 (Cooper et al. 2016) GB CS(2); LIR; SSI(17) 1  1                   

37 (Rameezdeen et al. 2016) AU SSI(8)                  1    

38 (Ding et al. 2016) CN CS(1); LIR; SSI(12)        1              

39 (Chileshe et al. 2016) AU LIR; Q(539/49); SSI(6)          2       1 1    

40 (Ajayi et al. 2016) GB FGI(23)                   1   

41 (Chinda and Ammarapala 2016) TH CS(2); I(6); LIR 1    1     1   1         

42 (Chileshe, Rameezdeen, and Hosseini 2016) AU LIR; SSI(8) 1         1      1      

43 (Tatiya et al. 2017) US CS(1); LIR; SI(3) 1                     

44 (Ajayi et al. 2017) GB FS; Q(200/131)        1 1             

45 (Surahman, Higashi, and Kubota 2017) ID CS(2)    1      1            

46 (Chau et al. 2017) HK CS(1)    1                  

47 (Dunant et al. 2017) GB I(30); Q(24) 1  1               3    

48 (Faleschini et al. 2017) IT CS(1)    1                  

49 (Tingley et al. 2017) GB LIR; SSI(13) 1 1  1 1  1  2 1        1    

50 (Yeung et al. 2017) CA CS(1)    1 1                 

51 (Machado, de Souza, and Veríssimo 2018) BR LIR    1                1 1 

52 (Gottsche and Kelly 2018) IE ACT(1); CS(5)   1 1      1            

53 (Gálvez-Martos et al. 2018) EU CA          1            

54 (Brütting et al. 2019) CH CS(2) 2   1                  

55 (Chileshe et al. 2018) AU Q(260/26) 1  1       2 2 2 1     1    

56 (Sea-Lim et al. 2018) TH SD   1                   

57 (Mahpour and Mortaheb 2018) IR CS(1); Q(81/81)            1          

58 (Rose and Stegemann 2018) GB CD; CS(6); DO; SSI(21)         1 1            

59 (Dunant et al. 2018) GB I(30) 2                 2    

60 (Zaman et al. 2018) NZ CS(1)    1                  

61 (Dunant et al. 2019) GB ECOM    1                  

62 
(Nußholz, Nygaard Rasmussen, and Milios 
2019) 

DK CS(3); Q(3); SSI(3) 
1  1 1 1    1  1  1 1    1    

63 (Brambilla et al. 2019) GB CS(1)    1                  

64 (Eberhardt, Birgisdóttir, and Birkved 2019) DK CS(1)    1                  

  Total numbers: 27 4 15 21 10 3 4 5 11 20 3 5 6 3 1 1 3 19 12 5 5 
a Country: According to ISO 3166  
b Research Method: (ACT) Action Research (n = number of case(s), if provided); (AR) Archival research (n = number of case(s), if provided); (CA) Comparative analysis; (CD) Company documentation; (CS) Case study (n = number of case(s)); (DO) Direct 
observation (n = number of case(s)); (DR) Document review; (ECOM) Economic models; (EX) Experiment; (FGI) Focused-group interview (n = number of interviewee(s)); (FS) Field study; (GI) Group Interview; (GM) Group meetings (n = number of attendant(s)); 
(I) Unspecified type Interviews (n = number of interviewee(s)); (LIR) Literature review; (OBS) Observation; (Q) Questionnaire (n = number of sent Q / m = number of completed Q); (S) Survey (i.e. empirical survey, etc.); (SD) System dynamics; (SI) Structured 
interviews (n = number of interviewee(s)); (SSI) Semi-structured interviews (n = number of interviewee(s)); (T) Theoretical study; (TF) Theoretical framework; (UI) Unstructured interview 
c The numbers in the table corresponds to the number of drivers grouped under each sub-category. 
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2.3.1.4 Environmental drivers 

One potential reuse driver is the scarcity of landfilling sites, which helps the environment by 

avoiding dumping the reusable waste into landfills (Chinda and Ammarapala 2016, Chau et al. 

2012). According to the literature, reuse can decrease the use of virgin materials and water 

consumption (Tingley et al. 2017, Sára, Antonini, and Tarantini 2001, Densley Tingley et al. 2012, 

Aye et al. 2012, Yeung et al. 2017). As mentioned in Section 1.1, because of the considerable 

advantages of reuse, components reuse can improve the environmental footprint of buildings 

worldwide. By reusing building components embodied energy and carbon of construction can 

be decreased (Klang, Vikman, and Brattebø 2003, Tingley et al. 2017, Yeung et al. 2017, Brütting 

et al. 2019) (among others). Brütting et al. (2019) show that a structure made with the reused 

steel sections have considerably lower embodied energy and CO2. In their study, the authors 

developed a discrete structural optimisation method to reuse the existing stock of the steel 

sections. They used LCA to compare the environmental impacts of conventional design with the 

proposed method (Brütting et al. 2019). 

2.3.1.5 Other drivers 

Based on the reviewed articles, deconstruction instead of demolition can enhance the 

reusability of the recovered components (Gorgolewski et al. 2008, Hglmeier et al. 2013, 

Pongiglione and Calderini 2014, Yeung, Walbridge, and Haas 2015) (among others). According 

to (Gorgolewski et al. 2008, Gorgolewski 2008, Pongiglione and Calderini 2014), the availability 

of information about the characteristics, details, certificates, and drawings of the recovered 

building components can positively contribute to increasing the reuse rates, as well. 

In projects with recovered building components, the proper estimation of the required sizes 

and lengths at the beginning of the design phase is reported to promote reuse (Gorgolewski et 

al. 2008). Some articles advise that reusing the recovered components, such as the structural 

components, to serve the same purpose (for instance, similar loads) has a positive impact on 

the success of this intervention (Gorgolewski et al. 2008, Gorgolewski 2008, Pongiglione and 

Calderini 2014). 

The environmental policies (Chileshe et al. 2018) and green building rating systems such as 

BREEAM and LEED are reported to have a positive impact on reuse rates (Shaurette 2006, 

Gorgolewski 2008). The availability of regulatory and financial incentives to encourage 

deconstruction and reuse, as well as the existence of regulations supporting these interventions 

can potentially promote reuse (Chileshe et al. 2018). However, according to the reviewed 

articles, such ordinances are currently not available (Yeung, Walbridge, and Haas 2015, Chileshe 
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et al. 2016, Chileshe, Rameezdeen, and Hosseini 2016, Tingley et al. 2017, Rose and Stegemann 

2018). 

2.3.2 Reuse barriers 

The complete list of identified reuse barriers is available in Appendix A (Table A.2). Figure 2.6 

shows the distribution of the observed barriers in the reviewed papers. According to this figure, 

the identified barriers are primarily economic barriers (39%), followed by technical (23%), and 

social barriers (15%). The sub-category of the factors shown in this figure reveals additional 

information about the observations. Among the identified factors, “cost” is the most reported 

sub-category of barriers followed by “design challenges”, “compliance”, “market”, 

“deconstruction”, and “perception”. However, unlike the main categories, the third rank in sub-

categories, “compliance”, is a regulatory barrier. These observations are discussed further in 

the following sections. 

 

Figure 2.6 Distribution of the observed reuse barriers (eco: economic; env: environmental; org: organisational; reg: 
regulatory; soc: social; tec: technical). 

2.3.2.1 Economic barriers 

While deconstruction can increase the reusability of the recovered building components (Addis 

2006, Munroe, Hatamiya, and Westwind 2006), it is associated with extra efforts (Gorgolewski 

et al. 2008, Chileshe, Rameezdeen, and Hosseini 2015, Rameezdeen et al. 2016). Dantata et al. 

(2005) highlight that the time required to deconstruct a 1000 to 2000 square foot building is 
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three to five times higher than the time needed for the demolition of the same building. 

According to the reviewed articles, the time required for deconstruction and reuse, and the 

consequent project scheduling is one of the main barriers to reuse (MacKinnon 2000, Dantata, 

Touran, and Wang 2005, Shaurette 2006, Gorgolewski et al. 2008, Gorgolewski 2008) (among 

others). It is because there is usually a high pressure to complete construction projects as early 

as possible (Chinda and Ammarapala 2016). The tight project schedule negatively affects the 

efficient disassembly of the existing buildings and lowers the chance for the recovery of 

reusable building components (Sansom and Avery 2014). 

During the deconstruction phase, more time is required to carefully remove and sort the 

recovered building components (Gorgolewski 2008), which increases the cost of sorting 

(Rameezdeen et al. 2016). Sometimes the deconstruction time extends beyond anticipations 

because of issues such as the lack of space for the equipment, complexity of the building design, 

and the geographic location of the building (Tatiya et al. 2017). These extra charges can yield in 

higher deconstruction cost (when compared to the demolition of the same building) (Dantata, 

Touran, and Wang 2005, Chileshe, Rameezdeen, and Hosseini 2015, Yeung, Walbridge, and 

Haas 2015, Tingley et al. 2017, Rose and Stegemann 2018, Dunant et al. 2018) and eventually 

increase the price of the recovered components (Shaurette 2006, Chileshe, Rameezdeen, and 

Hosseini 2015, Rameezdeen et al. 2016, Chileshe, Rameezdeen, and Hosseini 2016, Tingley et 

al. 2017, Dunant et al. 2018). 

Another economic barrier to the BCR is the higher cost of design with the reused components 

(Gorgolewski et al. 2008, Gorgolewski 2008, Dunant et al. 2017). It is because the design team 

needs to put extra efforts to find the reused elements (Gorgolewski et al. 2008), and the design 

needs to remain as flexible as possible (Gorgolewski et al. 2008). Sometimes it is required to 

purchase the identified reused components early in the project (Gorgolewski et al. 2008, 

Gorgolewski 2008) to cope with the uncertainty about the timely availability of the desired 

elements (Gorgolewski et al. 2008, Chileshe, Rameezdeen, and Hosseini 2015). Consequently, 

this practice may raise cash flow problems and increase the overall cost of the project due to 

additional storage costs, which is another barrier to the BCR (Gorgolewski et al. 2008, 

Gorgolewski 2008, da Rocha and Sattler 2009, Yeung, Walbridge, and Haas 2015, Chinda and 

Ammarapala 2016) (among others).  

All the above explain the increased labour cost (Klang, Vikman, and Brattebø 2003, Dantata, 

Touran, and Wang 2005, Shaurette 2006, Gorgolewski et al. 2008, Rameezdeen et al. 2016, 

Chinda and Ammarapala 2016) (among others), transportation cost (Gorgolewski et al. 2008, 
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Gorgolewski 2008, da Rocha and Sattler 2009, Pongiglione and Calderini 2014, Yeung, 

Walbridge, and Haas 2015, Rameezdeen et al. 2016) (among others), and storage cost 

associated with deconstruction and reuse which are identified as barriers to the BCR in several 

articles. 

In some cases, the fabrication cost of the recovered building components might be higher than 

the fabrication cost of the new elements (Dunant et al. 2017, Tingley et al. 2017, Dunant et al. 

2018). Dunant et al. (2017) explain that because reused steel components are associated with 

existing connections, holes, stiffeners, welds, end-plates, etc., the preparation of these 

components might increase the overall cost of fabrication because of the extra time, labour and 

machinery required. Other additional charges which can increase the overall price of the 

recovered components are the cost of testing (Gorgolewski 2008, Yeung, Walbridge, and Haas 

2015, Rameezdeen et al. 2016, Tingley et al. 2017, Dunant et al. 2018), cost of treatment of the 

salvaged parts (Chini and Acquaye 2001, Huuhka and Hakanen 2015, Dunant et al. 2018), cost 

of insurance (Tingley et al. 2017), and cost of marketing for the recovered building components 

(Dantata, Touran, and Wang 2005). 

Another barrier to reuse, as reported in several articles, is the lack of an established market for 

the reused building components (Shaurette 2006, Gorgolewski et al. 2008, Gorgolewski 2008, 

Chileshe et al. 2016, Rameezdeen et al. 2016, Chinda and Ammarapala 2016, Chileshe, 

Rameezdeen, and Hosseini 2016) (among others). This factor, which is partially the outcome of 

the tight project schedules (Tatiya et al. 2017), results in the lack of sufficient supply for the 

reused components with the desired characteristics (dimension, quality, etc.) (Gorgolewski 

2008, da Rocha and Sattler 2009, Dunant et al. 2017, Tingley et al. 2017, Brütting et al. 2019, 

Rose and Stegemann 2018). According to (Dunant et al. 2018), the above restriction encourages 

the contractors to sell their reusable waste to the recycling companies regardless of their high 

quality (Sansom and Avery 2014, Huuhka and Hakanen 2015, Yeung, Walbridge, and Haas 2015, 

Tingley et al. 2017, Yeung et al. 2017). If the demand for the reused building components 

increases (Chileshe et al. 2016), the market for these products can grow sustainably. In contrast, 

lack of demand (Shaurette 2006, Rogers 2011, Huuhka and Hakanen 2015, Chileshe et al. 2016, 

Tingley et al. 2017) or uncertainty about the need for the reused components (Rose and 

Stegemann 2018) causes the scepticism about the revenue from the reused components resale 

(Yeung, Walbridge, and Haas 2015, Chileshe, Rameezdeen, and Hosseini 2016, Rose and 

Stegemann 2018, Dunant et al. 2018). All the above negatively affects the chance for the growth 

of a reuse market. With an underdeveloped reuse market, the supply chain remains 

fragmented, and the information about the supply and demand cannot be shared, which further 
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decreases the reuse rates (Gorgolewski et al. 2008, Rameezdeen et al. 2016, Rose and 

Stegemann 2018). 

According to the literature, higher deconstruction costs can hinder its application (Dantata, 

Touran, and Wang 2005, Chileshe, Rameezdeen, and Hosseini 2015, Yeung, Walbridge, and 

Haas 2015, Tingley et al. 2017, Rose and Stegemann 2018, Dunant et al. 2018, Tatiya et al. 2017) 

and might elevate the financial risks associated with deconstruction and reuse (Rameezdeen et 

al. 2016). However, this finding is in contrast with the observations in (da Rocha and Sattler 

2009). According to this study, in Brazil, the cost of deconstruction is lower than demolition due 

to the low cost of manual labour and the high demand for demolition products (da Rocha and 

Sattler 2009). In a separate study, Dantata et al. (2005) suggest that if the productivity of the 

deconstruction team increases or the wages decreases or the disposal cost rises, the overall 

cost of deconstruction decreases, and it becomes a desirable option in Massachusetts. 

Therefore, it can be concluded that the socio-economic context of the location of a building can 

convert some barriers to drivers and vice-versa. 

2.3.2.2 Technical barriers 

Ajayi et al. (2015) suggest that by integrating design for deconstruction (DfD) during the design 

stage of a building, recovery of building components for reuse would be facilitated. According 

to the literature, the lack of such intervention is a barrier to reuse (Chileshe, Rameezdeen, and 

Hosseini 2015, Huuhka and Hakanen 2015, Ajayi et al. 2015, Chileshe et al. 2016, Tatiya et al. 

2017, Dunant et al. 2017) (among others). Some outcomes of this design gap are permanent 

joints (welding, etc.) (Gorgolewski 2008, Pongiglione and Calderini 2014, Tingley et al. 2017), 

composite joints (Tingley et al. 2017), and hard to access connections (Tingley et al. 2017), which 

can negatively affect deconstruction and make the recovery of the building components 

challenging (Huuhka et al. 2015). 

Because deconstruction is not considered at the design stage, building components are prone 

to more damage during the deconstruction phase (Chini and Acquaye 2001, Gorgolewski 2008, 

Pongiglione and Calderini 2014). Damages to the reused building components can decrease the 

quality of the elements and affect their reusability (da Rocha and Sattler 2009, Durão et al. 2014, 

Huuhka and Hakanen 2015, Tatiya et al. 2017). Damages can also happen as the result of 

corrosion (Chini and Acquaye 2001, Huuhka et al. 2015, Yeung, Walbridge, and Haas 2015), 

post-production modifications (holes for ductwork, etc.) (Chini and Acquaye 2001, Yeung, 

Walbridge, and Haas 2015), presence of water (Yeung, Walbridge, and Haas 2015, Tatiya et al. 

2017), exposure to weather conditions (Huuhka and Hakanen 2015), fire (Yeung, Walbridge, 
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and Haas 2015, Tatiya et al. 2017), during refurbishment (nail removal, etc.) (Chini and Acquaye 

2001), by the living organisms (termite, bacterial attack, etc.) (Chini and Acquaye 2001), fatigue 

(Yeung, Walbridge, and Haas 2015), frost (Huuhka et al. 2015), degradation (Durão et al. 2014), 

type of joints (Gorgolewski 2008), during storage and transportation of the recovered 

components (Gorgolewski 2008), and due to impact (Yeung, Walbridge, and Haas 2015), etc. 

Difficulty in designing with the reused components is another barrier to the widespread reuse 

of the building components (Gorgolewski et al. 2008, Pongiglione and Calderini 2014, Tingley et 

al. 2017, Brütting et al. 2019). As discussed earlier, the design of the new buildings with reused 

building components needs to remain flexible. It is because the design should be able to 

accommodate alternative dimensions of the reused components due to the uncertainty in the 

availability of the desired sections (Gorgolewski et al. 2008, Gorgolewski 2008). Brütting et al. 

(2019) argue that unlike structures made out of new steel sections where components with 

different cross-sections and lengths can be fabricated to the required shape, in the case of the 

reused steel sections, this luxury doesn’t exist and the properties of the available components 

dictate the structure geometry. 

Pongiglione and Calderini (2014) discuss that in the process of designing a new structure using 

the recovered components, due to architectural and structural reasons, new structural 

elements should be used as well. However, to secure the safety of such structures, the new 

components should be over-dimensioned, which eventually results in overdesigned structures 

(Gorgolewski et al. 2008, Gorgolewski 2008, Pongiglione and Calderini 2014, Brütting et al. 

2019). It is either because of the lower strength of the reused components or when the 

remaining capacity of the reused components is unknown (Huuhka and Hakanen 2015, Yeung, 

Walbridge, and Haas 2015). The latter happens when the information about the characteristics, 

details, certificates, and drawings of the reused components are not available (Gorgolewski et 

al. 2008, Gorgolewski 2008, Huuhka and Hakanen 2015, Yeung, Walbridge, and Haas 2015, 

Tingley et al. 2017, Rose and Stegemann 2018). Other design challenges while reusing recovered 

building components are designing with long spans (because such elements might not be 

readily available) (Gorgolewski et al. 2008, Huuhka and Hakanen 2015, Brütting et al. 2019), the 

difference in the loading requirements of the old and the new buildings (Gorgolewski et al. 

2008), and the mismatch between the old spans and the new features (Huuhka and Hakanen 

2015). 

Additional health and safety precautions necessary for deconstruction, component recovery, 

and reuse are some other technical barriers to reuse (Sansom and Avery 2014, Chileshe, 
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Rameezdeen, and Hosseini 2015, Huuhka and Hakanen 2015, Yeung, Walbridge, and Haas 2015, 

Rameezdeen et al. 2016, Chileshe, Rameezdeen, and Hosseini 2016, Tingley et al. 2017). It is 

because, during the deconstruction of a building, or while treating a component for reuse, there 

is a risk of encountering hazardous, banned or contaminating coatings on the reused 

components (Rameezdeen et al. 2016, Tatiya et al. 2017, Tingley et al. 2017). In case of facing 

hazardous materials such as lead or asbestos, specific procedures and licensed contractors are 

required (Rameezdeen et al. 2016). 

2.3.2.3 Social barriers 

The negative perception of the stakeholders about the reused building components can act as 

a barrier to reuse (MacKinnon 2000, Klang, Vikman, and Brattebø 2003, Chileshe, Rameezdeen, 

and Hosseini 2015, Huuhka and Hakanen 2015, Rameezdeen et al. 2016, Chileshe, Rameezdeen, 

and Hosseini 2016) (among others). One reason behind this is the visual appearance of the 

reused components that might be interpreted as lower quality when compared with a new 

element (Durão et al. 2014, Tingley et al. 2017, Dunant et al. 2017). For instance, Durão et al. 

(2014) report that the architects refuse to use recovered wood in visible places due to its poor 

appearance. However, the visual appearance can be a point of further discussion since it is 

highly subjective and can be attractive to some people (Nußholz, Nygaard Rasmussen, and 

Milios 2019). Another reason behind this negative perception, and at a larger scale the 

construction sector resistance against reuse (Gorgolewski 2008, Durão et al. 2014, Rameezdeen 

et al. 2016, Tingley et al. 2017), stems from the potential risks perceived by the stakeholders 

during deconstruction or while using the recovered building components (Shaurette 2006, 

Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 2015, Rameezdeen et al. 2016, Dunant 

et al. 2017, Tingley et al. 2017). 

The occupational health concerns (Klang, Vikman, and Brattebø 2003, Rameezdeen et al. 2016), 

liability and fear (da Rocha and Sattler 2009), lack of trust in the supplier of the reused 

components (Dunant et al. 2017, 2018), and unsatisfactory working environment during the 

treatment of the reused components (Klang, Vikman, and Brattebø 2003) can all worsen the 

lack of interest to integrate the reused components in the projects (Chileshe et al. 2016, 

Rameezdeen et al. 2016). Among the stakeholders, perception of clients (da Rocha and Sattler 

2009, Chileshe, Rameezdeen, and Hosseini 2015, Dunant et al. 2017, Rose and Stegemann 

2018), contractors (Shaurette 2006, Gorgolewski 2008), and designers (Gorgolewski 2008) have 

a higher impact on the successful integration of recovered components into a new building. 

However, if the client does not support reuse (Huuhka and Hakanen 2015, Rameezdeen et al. 
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2016, Tingley et al. 2017, Rose and Stegemann 2018), there is very little chance that designers 

or contractors risk the project by introducing such components. On the other hand, according 

to (Gorgolewski 2008), if the client is motivated to use the reused building components, the 

barriers such as the unwillingness of the design team (Chileshe, Rameezdeen, and Hosseini 

2015, Rameezdeen et al. 2016) or the contractors (Gorgolewski 2008) can be handled 

effectively. Nevertheless, the inequality in the distribution of risk among the stakeholders 

(Dunant et al. 2018) can yet challenge motivated clients and architects. 

Gorgolewski (2008) argues that while choosing deconstruction to remove the existing buildings 

improves the supply of the reused components, due to the perceived economic and 

programming reasons, it is not yet a preferred option among the contractors (Gorgolewski 

2008). One reason for such reluctance is because the stakeholders are unaware of the full 

benefits of deconstruction and reuse (Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 

2015, Huuhka and Hakanen 2015, Chileshe et al. 2016, Rameezdeen et al. 2016). As mentioned 

earlier, some of the benefits of deconstruction and reuse are cost savings and less pollution to 

the environment. Therefore, educating the stakeholders on the advantages of deconstruction 

and reuse, as identified by (Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 2015), could 

be an effective measure to cope with some social resistance against reuse. 

2.3.2.4 Regulatory barriers 

One of the challenges ahead of reuse is that the existing regulations do not support 

deconstruction and reuse (Gorgolewski 2008, Hglmeier et al. 2013, Chileshe, Rameezdeen, and 

Hosseini 2015, Huuhka and Hakanen 2015, Huuhka et al. 2015, Chileshe et al. 2016, 

Rameezdeen et al. 2016) (among others). Rameezdeen et al. (2016) argue that bureaucracy is a 

barrier ahead of necessary approvals for deconstruction projects in South Australia. According 

to this study, even after getting approvals for deconstruction, since existing regulations do not 

allow the storage of the salvaged components and consider them as waste (Rameezdeen et al. 

2016), the reuse of the recovered components is hindered. This study suggests that 

governments should support the reuse of recovered components in the new constructions 

(Rameezdeen et al. 2016); however, in reality, it is not the case (Chileshe et al. 2016, Chileshe, 

Rameezdeen, and Hosseini 2016). Rameezdeen et al. (2016) further discuss that, while 

regulations support recycled-content products, due to the inconsistency and the lack of 

coordination among the regulatory bodies (Rameezdeen et al. 2016, Chileshe, Rameezdeen, 

and Hosseini 2016), regulatory agencies have a prohibitive approach towards deconstruction 

and reuse. It should be noted that these studies focus on the Australian construction sector, 
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and the results should be considered cautiously (Chileshe et al. 2016, Rameezdeen et al. 2016, 

Chileshe, Rameezdeen, and Hosseini 2016). 

Lack of quality certificates for the reused components can negatively affect reuse (Chini and 

Acquaye 2001). Dunant et al. (2017) explore this barrier by highlighting the need for the 

traceability of the steel sections, which is essential to certify, fabricate, and erect the segments. 

Usually, the traceability of the reused steel sections cannot be guaranteed (Dunant et al. 2017, 

Tingley et al. 2017), and in many instances, all the segments need to be tested to certify their 

properties and assure the quality. However, according to this study, in case of stricter 

requirements on CE marking (Dunant et al. 2017, Tingley et al. 2017), even the individual testing 

fails to certify the reused components. 

Lack of confidence in the quality of the reused components negatively affects reuse in new 

constructions (Shaurette 2006, Chileshe, Rameezdeen, and Hosseini 2015, Ajayi et al. 2015, 

Chileshe et al. 2016, Chileshe, Rameezdeen, and Hosseini 2016) (among others). Huang et al. 

(2018) observed that there is a negative attitude towards using recovered construction and 

demolition waste among the building construction companies because of the lack of guarantees 

for these components. According to the reviewed articles, currently, there are no standards to 

certify the quality of the reused components (Chini and Acquaye 2001, Dunant et al. 2017, 

Huang et al. 2018). Therefore, the lack of procedures to evaluate and guarantee the 

performance of reused components (Shaurette 2006, Tingley et al. 2017), and the fact that the 

existing codes, standards, and procedures do not consider BCR (Gorgolewski 2008, Huuhka and 

Hakanen 2015, Rameezdeen et al. 2016, Tingley et al. 2017) further decrease the reuse rate in 

buildings.
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Table 2.2 Summary of reuse barriers 
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1 (MacKinnon 2000) US DR; GI; I(4); OBS 1           1         

2 (Chini and Acquaye 2001) US EX 1        2         5   

3 (Klang, Vikman, and Brattebø 2003) US CS(1); I(10); Q(10/10) 1           1 1 1       

4 (Dantata, Touran, and Wang 2005) US CS(5); LIR 4                    

5 (Pun and Liu 2006) AU TF  3                   

6 (Pun, Liu, and Langston 2006) AU CS(1) 4 3       1  1        1  

7 (Shaurette 2006) US Q(296/83) 3 2    1 2  1   1 1        

8 (Guy 2006) US CS(4) 4        2         5 1  

9 (Gorgolewski et al. 2008) CA AR; CS(3) 8 2      1          5  1 

10 (Gorgolewski 2008) CA AR; CS(2) 6 2    1 1  2  1 3 1   2 1 5  1 

11 (da Rocha and Sattler 2009) BR CD; CS(1); DO(5); GM(4); SSI(27) 2 1       2   1 1     1   

12 (Nordby et al. 2009) NO CS(1) 2        1     1   2 1   

13 (Jaillon and Poon 2010) HK AR; CS(7); DO(7); I(35); Q(84)                 1    

14 (Rogers 2011) AE CS(1)  1                   

15 (Forsythe 2011) AU CS(9); DO; UI 3  1               1 2  

16 (Arif et al. 2012) IN CS(2); SSI(15)        2  1           

17 (Coelho, de Brito, and Brito 2012) PT CS(15)      1               

18 (Elias Özkan 2012) TR AR; CS; DO(21); I       2  1        1    

19 (Hglmeier et al. 2013) DE CS(1)         1            

20 (Gangolells et al. 2014) ES Q(658/74)      1               

21 (Sansom and Avery 2014) GB Q(160/32) 2                  1  

22 (Jaillon and Poon 2014) HK CS(2); LIR                 2    

23 (Pongiglione and Calderini 2014) IT AR; CS(1) 1                1 3   

24 (Durão et al. 2014) PT CS(2)            1    1  2   

25 (Chileshe, Rameezdeen, and Hosseini 2015) AU LIR; Q(539/49); S 4     1  1 2  1 3 1   2 1  1  

26 (Ferreira, Duarte Pinheiro, and De Brito 2015) PT CS(1); LIR                  2   

27 (Huuhka and Hakanen 2015) FI Q(11/11) 3 2  1     5  1 1 1   1 1 3 1 2 

28 (Huuhka et al. 2015) FI AR(276); LIR         1        1 2   

29 (Yeung, Walbridge, and Haas 2015) CA DO(4) 6  1   1  1  1        5 1 2 

30 (Ajayi et al. 2015) GB FGI(25); LIR             1    1    

31 (Cooper et al. 2016) GB CS(2); LIR; SSI(17) 5                    

32 (Rameezdeen et al. 2016) AU SSI(8) 9 2       5  2 1 2   4   2  

33 (Chileshe et al. 2016) AU LIR; Q(539/49); SSI(6)  2    2 1  3 2 3     1 1    

34 (Chinda and Ammarapala 2016) TH CS(2); I(6); LIR 4 1     2              

35 (Chileshe, Rameezdeen, and Hosseini 2016) AU LIR; SSI(8) 4 1 1      2 1  1 1      1  

36 (Tatiya et al. 2017) US CS(1); LIR; SI(3) 5 1               1 2 1  
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37 (Dunant et al. 2017) GB I(30); Q(24) 5 2    1 1  6   2 1  1  1    

38 (Tingley et al. 2017) GB LIR; SSI(13) 9 3 1  1    6 2 1 2 1   2 3 1 3 1 

39 (Yeung et al. 2017) CA CS(1) 2                1    

40 (Machado, de Souza, and Veríssimo 2018) BR LIR       1          1 3   

41 (Gálvez-Martos et al. 2018) EU CA  2                   

42 (Huang et al. 2018) CN CD; LIR; SSI(40) 1 1       2            

43 (Brütting et al. 2019) CH CS(2)  1                3   

44 (Sea-Lim et al. 2018) TH SD 2      1              

45 (Rose and Stegemann 2018) GB CD; CS(6); DO; SSI(21) 3 4 1    1 2 1 1  1    1 1   1 

46 (Dunant et al. 2018) GB I(30) 9 1 1   1 1 1     2  1      

47 (Mahpour 2018) IR LIR; Q(6/6)            1         

48 (Zaman et al. 2018) NZ CS(1) 1  1   1 1  1            

49 
(Nußholz, Nygaard Rasmussen, and Milios 
2019) 

DK CS(3); Q(3); SSI(3) 
1 3  1   1 1 2 1      1     

50 (Brambilla et al. 2019) GB CS(1)    2             1    

51 (Basta, Serror, and Marzouk 2020) EG CS(1); TF                 2 1   

   Total number: 115 40 7 4 1 11 15 9 49 9 10 20 14 2 2 15 24 50 15 8 
 a Country: According to ISO 3166  

b Research Method: (ACT) Action Research (n = number of case(s), if provided); (AR) Archival research (n = number of case(s), if provided); (CA) Comparative analysis; (CD) Company documentation; (CS) Case study (n = number of case(s)); (DO) Direct 
observation (n = number of case(s)); (DR) Document review; (ECOM) Economic models; (EX) Experiment; (FGI) Focused-group interview (n = number of interviewee(s)); (FS) Field study; (GI) Group Interview; (GM) Group meetings (n = number of 
attendant(s)); (I) Unspecified type Interviews (n = number of interviewee(s)); (LIR) Literature review; (OBS) Observation; (Q) Questionnaire (n = number of sent Q / m = number of completed Q); (S) Survey (i.e. empirical survey, etc.); (SD) System dynamics; 
(SI) Structured interviews (n = number of interviewee(s)); (SSI) Semi-structured interviews (n = number of interviewee(s)); (T) Theoretical study; (TF) Theoretical framework; (UI) Unstructured interview 
c The numbers in the table corresponds to the number of drivers grouped under each sub-category. 
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2.3.2.5 Organisational barriers 

Because deconstruction and reuse are still uncommon practices (Dunant et al. 2017, 2018), the 

number of companies with experience in deconstruction and reuse is low (Chileshe et al. 2016). 

According to the literature, the lack of skills, experience, and knowledge in deconstruction, 

salvage, and using reused components negatively affect the reuse of the building components 

(Shaurette 2006, Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 2015, Yeung, 

Walbridge, and Haas 2015, Chileshe et al. 2016). Unlike demolition, deconstruction requires 

enough space for the storage, sorting, and treatment of the recovered building components. 

However, an inexperienced contractor cannot correctly estimate the space required for the 

storage of the recovered components after deconstruction. This lack of space for storage 

(Shaurette 2006, Gorgolewski 2008, Chinda and Ammarapala 2016, Dunant et al. 2017, Rose 

and Stegemann 2018, Dunant et al. 2018) results in the transportation and storage of the 

recovered components at a different location and would increase the overall cost of the reused 

elements.  

Lack of systems thinking (Rose and Stegemann 2018), ownership (Arif et al. 2012), and 

integration of reuse in the design process of the new projects (Rose and Stegemann 2018) are 

identified to decrease the reuse rates in the building sector. Yeung et al. (2015) highlight the 

importance of a decision-making framework in informing the contractors and the client 

regarding when alternative reuse options should be investigated. According to this study, this 

decision-making framework helps in making informed decisions about deconstruction and 

reuse and maximises the advantages of potential reuse by identifying the necessary steps to be 

taken by the stakeholders (Yeung, Walbridge, and Haas 2015). Other observed organisational 

barriers are proprietary lock-in (Tingley et al. 2017), the need for infrastructure and equipment 

to perform deconstruction (Shaurette 2006, Chileshe et al. 2016, Sea-Lim et al. 2018), and 

inconsistency in waste management practices (Arif et al. 2012). 

2.3.2.6 Environmental barriers 

While component reuse is identified as a sustainable end-of-life treatment of the 

superstructure of a building (Klang, Vikman, and Brattebø 2003, Tingley et al. 2017, Yeung et al. 

2017, Brütting et al. 2019), there are concerns regarding the adverse effects of this practice due 

to increased GHG emissions related to deconstruction activities and transportation of the 

recovered elements (Brambilla et al. 2019, Nußholz, Nygaard Rasmussen, and Milios 2019, 

Huuhka and Hakanen 2015). 
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Brambilla et al. (2019) performed a study to evaluate the environmental impacts of various 

steel-concrete composite floor systems. In this study, the authors performed a comparative LCA 

and compared the four composite connections, including a novel demountable steel-concrete 

composite floor system and three conventional systems. The authors concluded that a 

transport distance between 20 km and 200 km has no significant impact on environmental 

advantages achieved by the demountable system. However, they concluded that a distance of 

1000 km could diminish the environmental benefits achieved by this system. The authors also 

discussed that deconstruction of the demountable composite structure takes more time 

compared to demolition, which results in the emission of higher amounts of GHGs since the 

heavy machinery and equipment need to operate longer (Brambilla et al. 2019). 

2.4 Prioritising reuse barriers 

Previous observations in Section 2.3.2 provide an insight into the challenges ahead of 

component reuse in the building sector; however, prioritising them needs a further 

investigation about the inter-dependency of these factors. Reviewing the co-occurrences of 

data is a way to identify the impact of various variables of a research topic on one another and 

to reveal their potential correlations. And identifying the correlation between the key variables 

helps in better devising solutions to achieve the objectives of the research (Rameezdeen et al. 

2016, Eck and Waltman 2009). The next section develops the co-occurrence of all the 19 sub-

categories available in Table 2.2 to analyse the relationship between identified barriers. 

2.4.1 Co-occurrence of reuse barriers 

In this section, a binary approach for the presence (1) or the absence (0) of the sub-category of 

barriers in Table 2.2 is considered to identify their co-occurrences and eventually develop their 

correlations. It means that if in Table 2.2, under a particular sub-category for a specific paper, 

no barrier is observed, value 0, which means absence, is considered. On the other hand, the 

available observations (regardless of their number) are converted to 1. 

Table 2.3 shows the co-occurrence of the sub-categories of reuse barriers in the reviewed 

articles. For example, sub-category A & sub-category B (AB) appear 15 times together in all the 

articles reviewed in this chapter. To analyse the correlation between the sub-categories, the 

researcher also developed the co-occurrence index (C-Index) of the pairs of the sub-categories. 

In this section, the C-Index is calculated using the software “R” (R Core Team 2020) through the 

“jaccard” package (Chung et al. 2018), which is based on Eq. (2.1) (Atlas.ti 2014). In Eq. (2.1), 

𝑛12 is the co-occurrence frequency of the two sub-categories (the number of times the two sub-
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categories show up together; hence is not equal to 𝑛1 + 𝑛2), and 𝑛1 & 𝑛2 are the total numbers 

of occurrences of each of the sub-categories in all the studies. C-Index varies from 0 to 1, with 

1 showing the highest correlation and 0 indicating no relationship. The null hypothesis is that 

there is no correlation between the pairs of the sub-categories. To test the null hypothesis, the 

p-value through the embedded test in the “jaccard” package (jaccard.test.exact) is used (Chung 

et al. 2018). If the p-value is less than 0.05, then the null hypothesis is false, and statistically, 

there is a correlation between the pairs of the sub-categories (James et al. 2017). 

𝐶 − 𝐼𝑛𝑑𝑒𝑥 =  
𝑛12

(𝑛1 + 𝑛2) − 𝑛12
 (2.1) 

In Table 2.3, the highlighted cells represent the high levels of co-occurrence between the sub-

categories. The corresponding C-Index of these pairs of sub-categories of the barriers are sorted 

and listed in Table 2.4. Also, the p-value, which indicates if the correlation is significant or not 

(James et al. 2017), is listed against each of the pairs. 

According to Table 2.4, there is a significant correlation between perception and risk, with the 

C-Index of 0.63, ranking the highest among other sub-categories. It indicates that the 

perception of the stakeholders about reuse is affected by the potential risks associated with 

this intervention. Perception co-occurs with compliance, cost, and market, as well (all are 

significant with p-values 0.004, 0.02, and 0.02, respectively). It reveals the importance of 

addressing the economic and regulatory obstacles to promote reuse among the stakeholders. 

The second and third highest ranks belong to the cost and compliance as well as market and 

compliance, with the C-Indices of 0.49 and 0.45, respectively. It shows that an established reuse 

market requires to offer products at reasonable prices complying with state-of-the-art codes 

and regulations. On the other hand, the existence of ordinances, as well as the best practices 

on the reused components, would help the growth of a reuse market. 

Table 2.3 Co-occurrence of sub-categories of reuse barriers 
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A - 16 7 2 1 7 9 6 17 5 6 12 11 2 2 7 10 12 11 6 

B  - 4 2 1 5 8 4 13 5 6 9 9 0 2 7 7 7 6 5 

C   - 0 1 3 3 3 4 4 1 3 3 0 1 2 2 3 4 3 

D    - 0 0 1 1 2 1 1 1 1 0 0 2 2 1 1 1 

F     - 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 
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G      - 6 3 6 2 3 4 5 0 2 3 4 2 2 2 

H       - 3 8 3 2 4 4 0 2 4 6 2 0 2 

J        - 3 4 1 2 2 0 1 3 2 2 2 3 

L         - 5 7 10 9 1 1 8 10 8 7 4 

M          - 2 3 2 0 0 4 3 2 3 3 

O           - 5 5 0 0 6 5 3 5 3 

P            - 10 1 1 7 6 5 5 4 

Q             - 1 2 5 6 4 5 3 

R              - 0 0 1 1 0 0 

S               - 0 1 0 0 0 

T                - 6 4 4 4 

U                 - 9 4 4 

V                  - 6 5 

W                   - 3 

 

Table 2.4 C-Indices of the correlation between major sub-categories. 

Seq. No Code Sub-category pair C-Index P-value 

1 PQ Perception & Risk 0.63 <0.00001* 

2 AL Cost & Compliance 0.49 0.007* 

3 BL Market & Compliance 0.45 0.006* 

4 AB Cost & Market 0.44 0.04* 

5 LP Compliance & Perception 0.40 0.004* 

6 BQ Market & Risk 0.38 0.004* 

7 LQ Compliance & Risk 0.38 0.004* 

8 AP Cost & Perception 0.36 0.02* 

9 AW Cost & Health and safety 0.35 0.001* 

10 BP Market & Perception 0.35 0.02* 

11 AQ Cost & Risk 0.34 0.007* 

12 LU Compliance & Deconstruction 0.33 0.2 

13 AV Cost & Design challenges 0.32 0.5 

14 
UV 

Deconstruction & Design 
challenges 

0.32 
0.1 

15 AH Cost & Infrastructure 0.26 0.2 

16 AU Cost & Deconstruction 0.25 0.4 
*Denotes a significant correlation (less than 0.05) 

 

The fourth highest rank belongs to cost and market with a C-Index of 0.44. It indicates that 

without a competitive price, a well-established market for reused elements is unlikely to grow. 
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Moreover, it depicts that the growth of the reused components market can help to make the 

cost of reused components more competitive. However, the correlation between these two 

sub-categories is not very significant (p-value close to 0.05). It is interesting because, in most of 

the reviewed papers, both sub-categories are repeated. It can be further interpreted that these 

two sub-categories are similar, and no special consideration for prioritising this pair is required 

as the improvement in one promotes the other one. 

From Table 2.4, it can be observed that the social, economic, and regulatory barriers co-occur 

frequently. Therefore, it seems that any further action to promote reuse should prioritise 

actions to be taken under these themes. Notwithstanding, this result is different from the initial 

observation in Figure 2.6, where the economic factors were ranked the highest, followed by the 

technical, social, regulatory, and organisational barriers. 

2.4.2 Discussion 

The observed environmental advantages of reuse indicate that this intervention is an effective 

strategy that should receive more attention to reduce the environmental footprint of the 

building sector. 

From an economic perspective, the advantages of reuse in terms of cost savings and profit are 

key drivers. According to the reviewed articles, economic barriers can be categorised into 

supply chain level, component level, and project level. At the supply chain level, in the absence 

of a mature reuse market, the sustainable supply of recovered components for use in the 

superstructure of a building is challenging. While some innovative companies such as Gamle 

Mursten in Denmark integrate deconstruction into their core business (Nußholz, Nygaard 

Rasmussen, and Milios 2019), most companies are reluctant to change their business model. 

Hence, as advised by (Dunant et al. 2018, Nußholz, Nygaard Rasmussen, and Milios 2019), close 

cooperation between construction and demolition companies can address this barrier. At the 

component and project levels, a strict financial risk assessment at the beginning of the project 

should be performed. Because this intervention is rather new, the availability of resources to 

decrease the financial risks would be helpful (Gorgolewski 2008, Tingley et al. 2017). Such 

financial incentives have the potential to promote deconstruction and reuse activities and could 

help the growth of reuse markets, and potentially make the price of the recovered elements 

more competitive (Table 2.4). 

Notwithstanding, other attempts could be made to make the cost of the recovered components 

competitive. One possible solution is following the successful example of increasing the 

landfilling tax in the UK (Defra 2007, 2019). Considering the waste hierarchy, if the cost of other 
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waste treatment options increases in favour of reuse, the additional costs due to 

deconstruction, treatment, and testing could be compensated. However, there are reports of 

illegal landfilling in reaction to the increased landfilling taxes (da Rocha and Sattler 2009, 

Rameezdeen et al. 2016). Therefore, further research in different geographical locations should 

be conducted to recognise the mechanisms leading to such behaviour and provide guidelines 

to prevent it. 

From a social perspective, the factors affecting reuse can be categorised into perception, 

awareness, and risks. Most of the discussions in the literature from a social perspective are 

focused on the perception and willingness of the stakeholders regarding reuse and are less 

focused on the advantages of reuse for the general public. Therefore, further research should 

be conducted to establish the benefits of reuse for society. Nevertheless, the negative 

perception of the stakeholders towards reuse is recognised in the literature as an impediment 

to its adoption in the building sector. Based on Table 2.4, this negative perception is associated 

with the perceived risks at different stages of projects with recovered building components as 

well as the need for compliance to the regulatory requirements and is fuelled by the concerns 

about the health and safety of the stakeholders. Therefore, steps should be taken to improve 

the perception of the stakeholders about the recovered building components. For instance, the 

development of standard test procedures to test, evaluate, and certify the recovered building 

components can positively contribute to this attempt. Such standards and guidelines can 

address the reported concerns and resistances in the construction sector against the recovered 

building components and help the growth of a reuse market by offering quality products. 

The regulatory barriers can be categorised into incentive level and compliance level, for which, 

the advantages of the availability of regulatory incentives were discussed earlier. At the policy 

level, the reported regulatory barriers highlight that the existing codes and regulations do not 

consider deconstruction and reuse, which, in the long run, inhibits the integration of the 

recovered building components in the superstructure of the buildings. Moreover, as discussed 

earlier, the existing standards only certify new components and not the recovered elements. 

According to Section 2.4.1, the capability of suppliers in offering second-hand components with 

proper quality certificates and guarantees could potentially help the growth of a reuse market 

(Table 2.4). In this regard, one possible solution is the development of new standards to certify 

recovered building components. An example of the successful development of certifying 

standards is provided by (Nußholz, Nygaard Rasmussen, and Milios 2019). In this study, the case 

study companies developed certifying standards to assure the quality of their products. 

Moreover, proper standards and procedures should be developed for the effective 
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deconstruction of the existing buildings and guide designers to integrate the recovered building 

components into the design of new buildings. Because of the variety of building designs in 

different periods and locations, proper databases for the existing buildings should be developed 

to assist such guidelines. These databases should contain the historical reports for each 

building, including the refurbishments, fire, extensions, and potential end-of-life treatment 

plans. 

According to the literature, the advantages of reuse in reducing the CDW and increasing the 

competitiveness of the firms are key organisational drivers. However, most of the companies in 

the building sector do not have enough experience in deconstruction and reuse, which results 

in following other end-of-life treatment options such as demolition and recycling. Therefore, 

companies should take necessary actions to train the workforce to improve the productivity of 

their deconstruction activities and increase the reusability of the recovered building 

components. As discussed earlier, one possible driver to encourage companies to change their 

business model is the availability of regulatory incentives. However, further research should be 

performed to analyse the driving forces, which would help companies to integrate circularity in 

their business models. 

The technical barriers can be categorised into deconstruction level, performance level, and 

health and safety level. As observed in the reviewed literature, at the deconstruction level, the 

biggest challenge to recover building components is that buildings are not designed for 

deconstruction. While innovative design techniques can address this barrier in new buildings, it 

remains a significant challenge ahead of deconstruction of the existing built stock. At the 

performance level, one of the barriers to the reuse of building components after recovery is the 

reusability of the element (due to damages, availability of information, design challenges, etc.). 

According to the definition of reuse, reusability can be defined as the extent to which the 

recovered building component in its new life could perform similarly to its earlier life. It is 

because most of the existing buildings are not designed for deconstruction, details about the 

existing buildings are unavailable, and proper guidelines and skills for effective deconstruction 

do not exist. As mentioned earlier, deconstruction can increase the reuse rate; however, there 

is no available guideline to help the practitioners to estimate the reuse potential of the building 

components before deconstruction. Therefore, further research to develop cheap and reliable 

techniques to investigate the reusability of building components is necessary. Moreover, while 

the DfD is identified as a solution to the end-of-life treatment of buildings, this design method 

is based on new building components. Hence, further research should be conducted to 

integrate the recovered building components into this design technique. At the health and 
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safety level, as observed in Table 2.4, there is a strong correlation between cost and health and 

safety requirements of a project with deconstruction and reuse. It indicates that the increased 

health and safety precautions necessary for deconstruction and reuse activities (as the result of 

the presence of hazardous materials, etc.) could potentially increase the overall cost of the 

project. 

2.5 Chapter summary 

Chapter 2 fulfilled the first objective of this research by identifying factors affecting the reuse 

of load-bearing building components through a systematic literature review. Initially, a Boolean 

search focused on peer-reviewed articles in top-tier journals was performed in Scopus to 

identify the papers for review. This stage resulted in identifying 76 journal papers. Since these 

papers are derived from top-tier construction journals, they represent the state-of-art in the 

body of knowledge. Next, these papers were scrutinised to identify the factors affecting reuse. 

In total, 57 drivers and 130 barriers were recognised in these articles. Consequently, these 

factors were classified into six major categories and twenty-three sub-categories. Then, the 

inter-dependencies between the barriers were studied by developing the correlation indices 

between the sub-categories. Results indicate that addressing the economic and social barriers 

should be prioritised. According to this chapter, the impact of barriers under perception, risk, 

compliance, and market sub-categories are very pronounced. However, perception and risk 

show the highest inter-dependency among the sub-categories of variables. This observation 

suggests that the stakeholders' perceptions are affected by the potential risks of reusing load-

bearing building components. 
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Chapter 3 – Research methodology 

3.1 Chapter introduction 

This research aims to develop a model that can predict the reuse potential of the structural 

elements at the end-of-life of a building. Therefore, it is essential to identify what information 

is required, plan to collect them, and eventually analyse the collected data to fulfil the aim of 

the study through the development of the first Building Structural Elements Reusability 

Predictive Model (BSE-RPM). Crotty (1998) emphasises the need to develop a research process 

that fulfils the aim of the research and answers the associated research questions. However, 

because research is done by human beings, the approach adopted by the researcher is 

inevitably affected by the assumptions he/she makes throughout the process of knowledge 

development (Burrell and Morgan 2016). These assumptions, which are affected by the 

researcher’s knowledge, values and beliefs, form his/her conception about the nature of being 

(ontological assumptions (Oxford English Dictionary n.d.)), reflect his/her understandings about 

the nature, limitation and validity of knowledge (epistemological assumptions (Merriam-

Webster Dictionary n.d.)), and explain the extent the researcher believes his/her values should 

and might affect the research process (axiological assumptions (Saunders, Lewis, and Thornhill 

2016)). It is these assumptions and beliefs that shape the researcher’s theory for the study at 

hand and consequently form his/her philosophy of how to performing the research (Crotty 

1998). The research philosophy then shapes the research strategies (Crotty 1998), which lead 

the researcher to his/her choices of data collection techniques and analysis approaches (Crotty 

1998), and eventually, develops his/her research design that is coherent at all the stages 

(Saunders, Lewis, and Thornhill 2016). 

This chapter, therefore, discusses the philosophical assumptions underpinning the research 

(Section 3.2), introduces the strategies (or methodologies) and methods adopted (Sections 3.3 

& 3.4, respectively), and elaborates the reasons behind these decisions (Crotty 1998). It is 

noteworthy that the path followed in this chapter is in the reverse order of the approach 

suggested by Crotty (1998). However, it serves the same purpose and makes this study sound 

and credible. 

3.2 Research Philosophy 

The research philosophy is the backbone of the methodological choice(s) a researcher makes 

to conduct research (Crotty 1998). Therefore, justifying the choice of the research philosophy 

among the available alternatives becomes a crucial aspect of any study (Crotty 1998, Johnson 
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and Clark 2006). Moreover, as explained earlier, the research philosophy is the reflection of the 

ontological, epistemological, and axiological assumptions made by the researcher at the onset 

of the research (Crotty 1998). The combination of these philosophical assumptions underlies 

the theoretical perspective (or paradigm) of a study which represents “the frame of reference, 

mode of theorising and ways of working in which a group operates” (Burrell and Morgan 2016). 

Therefore, this section initially discusses the theoretical assumptions of the study, then it 

introduces different research philosophies and evaluates their suitability to this study, and 

eventually justifies the selected research philosophy based on the assumptions made. 

3.2.1 Theoretical assumptions 

In the approach to performing research, a researcher has certain ontological assumptions about 

the nature of the events under investigation (Burrell and Morgan 2016). Ontology is the science 

or study of being (Crotty 1998, Burrell and Morgan 2016). According to the Oxford English 

Dictionary (Oxford English Dictionary n.d.), it is a “branch of metaphysics concerned with the 

nature or essence of being or existence”. Ontology means whether there exists a unique and 

generalisable reality or different realities that are socially constructed coexist (Patton 2002). 

Burrel and Morgan (2016) explain the challenge ahead of a social scientist to distinguish if the 

“reality” under investigation is external to the individual, i.e., it is real, objective, and exists 

regardless of personal awareness, or it is the result of the social consciousness or perceptions 

and therefore is relative. 

In this study, to understand the underlying ontological assumptions of the research, it is 

necessary to have a thorough understanding of the status of the reuse of building elements in 

the body of knowledge. According to the literature, different studies use different approaches 

to analyse why the reuse of building elements is not a widespread practice. These studies list 

numerous factors in terms of drivers and barriers (Section 2.3) and discuss that by addressing 

specific barriers and providing proper incentives reuse rate of the building elements could be 

increased. On the other hand, some studies suggest that without radical changes in the design 

of the buildings (e.g. integration of interventions such as Design for Deconstruction (DfD), 

Design for Manufacture and Assembly (DfMA), etc.), the reuse of building structural elements 

(RBSE) cannot widespread (Iacovidou and Purnell 2016, Akinade et al. 2017, Tingley and Davison 

2011, Kalyun and Wodajo 2012). As discussed in Section 1.1, these design features are only 

suitable in the case of new buildings and fail the existing stock of buildings that do not have 

such interventions at their core. Moreover, several successful case-study buildings with reused 

building structural elements show that the RBSE is a reality and can happen even in the case of 
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buildings not designed for deconstruction (Section 1.1). The above discussion yield an 

assumption that there exists another approach (a reality) which have never been embarked on 

and can promote the RBSE within the scope of the existing buildings. Based on the above 

discussion, it can be concluded that the “reality” under investigation, i.e., an alternative 

approach to determine the reusability of the building structural elements at any time, is 

external to the individuals and is “real”. However, there might be alternative approaches to 

achieve this reality. 

The above ontological discussion is accompanied by a set of epistemological assumptions 

(Burrell and Morgan 2016). Epistemology, which is “the study or a theory of the nature and 

grounds of knowledge especially with reference to its limits and validity” (Merriam-Webster 

Dictionary n.d.), reveals the assumptions about the nature of knowledge and truth, and how 

this knowledge can and should be conveyed to the peer, and at a larger scale, to the world 

(Burrell and Morgan 2016). The researcher’s epistemologies, which reflect his/her ontological 

assumptions, discuss the reliable sources of knowledge and excavates if the knowledge is 

objective and can be collected by correct tools, or is subjective, and needs to be experienced 

(Burrell and Morgan 2016, Chilisa and Kawulich 2012). It means that if the researcher concludes 

that knowledge is acquirable, the data collection and communication approaches embrace 

realism, and the nature of the reality being investigated has a physical property that can be 

experienced by all the social actors equally (Saunders, Lewis, and Thornhill 2016, Burrell and 

Morgan 2016). This epistemology is known as objectivism. On the other hand, if the researcher 

reasons that knowledge is produced individually by the social actors (including the researcher), 

the data collection and communication techniques lean toward nominalism, and there is no 

unique truth but there exist multiple realities produced by the individuals (or groups of 

individuals) which cannot be experienced equally (Saunders, Lewis, and Thornhill 2016, Burrell 

and Morgan 2016). This epistemology is called subjectivism. 

This research considers objectivism as its epistemological ground of knowledge based on the 

ontological assumptions of the study. The epistemological stance of this study requires the 

results to be generalisable and reproducible, which suitably matches the aim of this study. 

While interviewing with the experts (which is a subjective approach) at the beginning of this 

study could provide an understanding of the underlying factors affecting reuse in the UK, it will 

be limited and cannot fulfil the global perspective of this study. It is because the reuse rates in 

the UK have been declining continuously (Addis 2006, Sansom and Avery 2014); hence, a 

sampling frame was developed to target a broader population to improve the response rate 

(see Sections 4.3 and 4.7). Therefore, in this study, a systematic literature review (SLR) at a 
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global scale is performed at the beginning of the research to provide a profound understanding 

of the factors affecting the reuse of building components (Chapter 2). This approach suitably 

matches objectivism epistemology because the SLR is a reproducible approach and can provide 

an in-depth understanding of the research subject (Denyer and Tranfield 2009, Bettany-Saltikov 

2016). 

The above discussion sheds light on the axiological assumptions of this study. Axiology, which 

is the role of ethics, the researcher’s values, and the values of the research participants in the 

process of research (Saunders, Lewis, and Thornhill 2016), plays a crucial role in guiding the 

researcher’s actions (Heron 1996). According to Heron (1996), the researcher’s axiological 

assumptions correlate his/her values to the research subject and the methodological choices 

(s)he makes. As discussed earlier, in this research, the researcher remains detached from the 

research participants through following an objective approach. Remaining value-free is of 

utmost importance in this research because it guarantees the generalisability of the research 

results (Saunders, Lewis, and Thornhill 2016). 

The above discussion clarifies the assumptions about the nature of the science (Figure 3.1) 

(Burrell and Morgan 2016). However, Burrell and Morgan (2016) suggest another bi-polar 

dimension, the sociology of regulation-sociology of radical change, which helps to better 

analyse different research philosophies by showing the political or ideological assumptions of 

the researchers about the nature of society (Saunders, Lewis, and Thornhill 2016). Briefly, the 

sociology of regulation tries to explain the reasons behind the success of a social entity (an 

organisation) and focuses on the improvement of the existing regulations (Saunders, Lewis, and 

Thornhill 2016). On the other hand, the sociology of radical change questions the existing 

regulations and focuses on finding alternatives (often Utopian) for the social unit under 

investigation (Saunders, Lewis, and Thornhill 2016). 

The current study deals with predicting the reusability of the building structural elements from 

social, economic, and technical perspectives. The successful development of various case-study 

buildings using reused structural components (Section 1.1) shows that the members of the 

construction sector can integrate these components in new buildings. Therefore, there is no 

need to radically change the way organisations work. Hence, this study embraces the sociology 

of regulation (or in short, regulation) as its ideological orientation. 
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Figure 3.1 Research paradigms (Burrell and Morgan 2016). 

3.2.2 Research paradigm 

Section 3.2.1 clarifies the theoretical assumptions of the research. These assumptions are then 

able to inform the theoretical perspectives (or paradigms) of the research (Crotty 1998). To 

develop a suitable research process, as is the ultimate goal of this chapter, understanding the 

existing philosophies and paradigms is of great help (Crotty 1998). It is because knowing these 

theoretical perspectives enlightens the research methodology and eventually justifies the 

research method. Crotty (1998) explains that the established paradigms should be used to 

describe and demonstrate the research philosophy. He argues that this approach makes the 

research process transparent and accountable (Crotty 1998). 

Burrell and Morgan (2016), combined the objectivist-subjectivist and regulation–radical change 

dimensions and developed their four research paradigms (Figure 3.1). These research 

paradigms are functionalist, interpretive, radical structuralist, and radical humanist (Burrell and 

Morgan 2016). Burrell and Morgan (2016) define a research paradigm as a set of assumptions 

which “underwrite the frame of reference, mode of theorising and modus operandi” (ways of 

working) in which a group of researchers work. This definition is more or less similar to the 

definition of Kuhn for paradigm which is “universally recognised scientific achievements that 

for a time provide model problems and solutions to a community of practitioners” (Kuhn 1970). 

Therefore, a paradigm organises similar types of assumptions that a group of researchers makes 

about the nature of science and society under investigation, which leads them to consider a 

specific mode of data collection, analysis, and validation to conduct their research. 

Objectivist Subjectivist 

Sociology of regulation 

Sociology of radical change 

Radical 

structuralist 

Radical 

humanist 

Functionalist Interpretive 
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The functionalist paradigm, which represents the objectivist-regulation dimensions, deals with 

the research subject from an objectivist perspective (Burrell and Morgan 2016). It tries to 

provide rational explanations for the existing social phenomena and seeks practical solutions 

for the real-world problems within the existing structures (Burrell and Morgan 2016). Positivism 

is the dominant research philosophy of the studies within this research paradigm (Saunders, 

Lewis, and Thornhill 2016). 

The interpretive paradigm, which is a product of subjectivist-regulation dimensions, concerns 

with understanding the reality of a social entity (for example an organisation) or in general the 

social world from the perspective of its members (Burrell and Morgan 2016). Interpretivism is 

the dominant research philosophy of the studies within this research paradigm (Saunders, 

Lewis, and Thornhill 2016). 

The radical structuralist paradigm, which represents the objectivist-radical change dimensions, 

focuses on radically changing the existing social structures through analysing the human 

relationships in social entities (organisations) such as structural power relationships and 

hierarchies from an objectivist perspective (Burrell and Morgan 2016). Critical realism is the 

dominant research philosophy of the studies within this research paradigm (Saunders, Lewis, 

and Thornhill 2016). 

The radical humanist paradigm, which results from the combination of subjectivist-radical 

change dimensions, concerns radically changing the existing social structures in organisations 

such as power relationships and hierarchies, however, from a subjectivist perspective 

emphasising human consciousness (Burrell and Morgan 2016). 

Based on these discussions, the next sections introduce the above mentioned three research 

philosophies, interpretivism, critical realism, and positivism, and discuss their suitability for the 

current research. 

3.2.3 Positivism 

Positivism, which deals with what is posited (given) (Crotty 1998), seeks to explain and predict 

the social phenomena through identifying regulations and cause-and-effect interactions 

between its constituent elements (Burrell and Morgan 2016). Positivists follow the scientific 

method approach and perform their research through direct experiences (Crotty 1998) to 

achieve data and facts about the subject of study, which is uninfluenced by human 

consciousness or bias (Saunders, Lewis, and Thornhill 2016). A positivist researcher may then 
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develop generalisations based on the observed causal relationships between the observed facts 

(Saunders, Lewis, and Thornhill 2016). 

The positivist’s ontology is real and independent and, he/she performs value-free research, and 

is detached from the subject of the study and keeps an objective stance throughout the study 

(Saunders, Lewis, and Thornhill 2016). The epistemology of the positivist researcher is, 

therefore, objectivism. According to Crotty (1998), “positivism is objectivist through and 

through”. Moreover, in addition to drawing generalised conclusions, positivists endeavour to 

verify or falsify the existing theories rather than seeking new hypotheses (Burrell and Morgan 

2016, Saunders, Lewis, and Thornhill 2016). On this basis, positivism tends towards deduction 

in its approach to theory development (Saunders, Lewis, and Thornhill 2016). Studies with 

positivism research philosophy might embrace survey research as their methodology and use 

quantitative research and statistical analysis tools to analyse the collected data (Crotty 1998). 

3.2.4 Critical realism 

Critical realism seeks the reality of an observable event by identifying the underlying structures 

and mechanisms resulting in the known regularity (Denzin  editor and Lincoln  editor 2018). 

Ontologically, critical realism recognises that there is a single, independent reality. However, 

this reality is different from empirical experiences and, there is a chance that it may never be 

fully understood because of the hidden aspects of the generative mechanisms of reality 

(Denzin  editor and Lincoln  editor 2018, Collier 1994). As such, since it is not possible to know 

the reality through senses and, one should return to his/her experiences and further investigate 

the root cause(s), critical realism tends towards induction (retroduction) in its approach to 

theory development (Reed 2005). As explained earlier, it is this generative mechanism that is 

the focus of critical realism (Collier 1994). Therefore, the ontology of the critical realism 

research philosophy is stratified (Collier 1994) and comprises of three layers: the empirical, the 

actual, and the real (Saunders, Lewis, and Thornhill 2016). Collier (1994) further explains that 

the ontology of critical realism emphasises that the world is comprised of transitive and 

intransitive objects. Transitive objects are the “theories about the nature of the world” at any 

given time that the researcher makes to deepen his/her knowledge about the intransitive 

objects (the reality), which exist independently of one’s consciousness (Collier 1994). 

From the above, it can be concluded that while ontologically critical realism acknowledges that 

there exists a single reality, epistemologically, it leans toward subjectivism because the nature 

of human beings’ knowledge is transitive, temporary, and challengeable and can change in the 

future. This conclusion is in agreement with Saunders et al. (2016) where they consider 
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relativism (a mildly subjectivist approach) as the epistemology of critical realism. The temporary 

nature of human knowledge means that the social realities change with time, and social facts 

are generated and agreed upon by the social members at any given time (Saunders, Lewis, and 

Thornhill 2016). Therefore, the subjective nature of the critical realism philosophy and its 

ontological assumption about truth allows using both qualitative and quantitative methods to 

arrive at reality (Reed 2005, Healy and Perry 2000, Given 2008). From an axiological perspective, 

while the objectivist epistemology urges the researcher to be value-free, because a critical 

realist engages with the members of a social entity (like an organisation) to uncover the 

underlying mechanisms leading to the reality, it cannot stay completely objective and there is 

a chance of bias based on the socio-cultural background of the researcher (Saunders, Lewis, and 

Thornhill 2016). 

3.2.5 Interpretivism 

Interpretivism seeks the realities about a social phenomenon through interpreting the cultural 

and historical perceptions of the society about that phenomenon (Crotty 1998, Denzin  editor 

and Lincoln  editor 2018). Ontologically, interpretivism declares that the reality is not absolute, 

but it is relative and is constructed by one’s actual experiences as well as through interactions 

with others in the society (Crotty 1998, Denzin  editor and Lincoln  editor 2018). Therefore, 

instead of a single, generalisable truth, there exist multiple realities about an event, a 

phenomenon, or a social entity. It means that the interpretivist researcher considers the 

perspectives of different members of a society or an organisation to create a new and richer 

understanding of the subject under investigation (Saunders, Lewis, and Thornhill 2016); hence, 

developing new theories. 

Epistemologically, interpretivism embraces subjectivism, and the researcher and the subjects 

interact closely to create knowledge (Burrell and Morgan 2016, Denzin  editor and 

Lincoln  editor 2018). Consequently, the interpretivist’s values play a crucial role during the 

research process and, from an axiological perspective, the researcher becomes a part of the 

research and stays reflexive throughout the study (Saunders, Lewis, and Thornhill 2016). On this 

basis, interpretive research is an inductive process in its approach to theory development, and 

researchers majorly use qualitative research methods to develop their theories (Crotty 1998, 

Saunders, Lewis, and Thornhill 2016). 

Crotty (1998) introduces various themes of interpretivism and emphasises that the participants’ 

lived experience (phenomenology), cultural artefacts such as texts and symbols (hermeneutics), 

and inter-subjectivity (symbolic interactionism) form the researcher’s knowledge about the 



60 
 

research subject. It is noteworthy that phenomenologists and symbolic interactionists act 

oppositely in dealing with culture as the former considers culture as a potential barrier for 

making new meanings in the social life and the latter considers culture as a guide to a 

comprehensive set of concepts (Crotty 1998).  

3.2.6 Research philosophy of the study 

Considering critical realism as the potential research philosophy, while it is epistemologically 

objective, it seeks the causal explanation of the underlying reasons for a phenomenon and does 

not intend to predict or generalise the results. Moreover, a critical realist, while tries to be as 

objective as possible, because of the transitive nature of the world he/she investigates cannot 

remain fully value-free in his/her research. Hence, the critical realism research philosophy does 

not match the requirements of this research because it contradicts the philosophical 

assumptions underpinning the study of BSE-RPM. 

Considering interpretivism as the potential research philosophy, because the study of BSE-RPM 

seeks the experts’ opinion to develop its predictive model(s), it depends on human beings 

during the data collection stage. However, this study investigates the reusability of the 

structural elements (physical objects), and the experts provide facts and figures about a 

component they reused in the past. Therefore, since these facts and figures are measurable and 

reproducible independently, the research philosophy of this study cannot follow interpretivism. 

In contrast, as discussed in Section 3.2.1, the study of developing BSE-RPM embraces realism 

(ontological assumption), objectivism (epistemological assumption), and remains value-free 

(axiological assumption). Moreover, this study seeks generalisations by developing predictive 

models; hence, its approach to theory development follows a deductive pattern. Likewise, 

based on Section 3.2.2, this study follows the sociology of regulation; and consequently, it falls 

under the functionalist paradigm. Therefore, positivism is the appropriate research philosophy 

for this study. 

3.3 Research Methodology 

Research methodology (or research strategy) refers to an overall framework determining the 

research strategy, plan of action, and direction which leads to the choice and rationale of 

research method(s), and analysis technique(s) to answer the research questions and meet the 

project objectives (Saunders, Lewis, and Thornhill 2016, Crotty 1998). This procedure that 

guides the researcher on how to collect data and how to analyse them depends on the 

theoretical perspectives (research philosophy) of the study, philosophical assumptions of the 
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research, and the type of research questions under investigation (Oxford English Dictionary n.d., 

Saunders, Lewis, and Thornhill 2016, Crotty 1998).  

While, as discussed in Section 3.2, there are some philosophical assumptions and several 

research philosophies, a considerable number of methodologies and countless methods exist 

in various textbooks (Crotty 1998, Burrell and Morgan 2016, Saunders, Lewis, and Thornhill 

2016). However, Section 3.3 limits itself to the discussion of those methodologies related to the 

philosophical stance of this research, which is positivism. Therefore, this section initially 

introduces the research strategies related to positivism, then evaluates their suitability to this 

study and eventually justifies the selected research strategy based on the philosophical 

assumptions, research philosophy, and research questions. 

3.3.1 Experimental research 

(Nesselroade and Cattell 1988) define experiment as “a recording of observations, quantitative 

or qualitative, made by defined and recorded operations and in defined conditions, followed by 

an examination of the data, by appropriate statistical and mathematical rules, for the existence 

of significant relations.” Experimental research, which is commonly used in various sciences 

such as natural sciences, sociology, and psychology, is a set of procedures in which a set of 

independent variables are manipulated to assess their effect on a dependent variable 

(Saunders, Lewis, and Thornhill 2016). The experimental research, which is a sub-division of 

empirical research (Cash, Stanković, and Štorga 2016), seeks verification (or falsification) of a 

prediction (the hypothesis) and generalisation; hence, looking for the causal relationship 

between the dependent and independent variables (Srinagesh 2006). Therefore, experimental 

research can address the exploratory and explanatory research question. 

The study of BSE-RPM looks for causal relationships between factors affecting reuse 

(independent variables), and the reusability of the structural elements (dependent variables) in 

terms of technical, social, and economic aspects. Moreover, the research questions are 

explanatory (see Section 1.5) for which makes experimental research a potential methodology 

for this study. 

However, experimental research, in terms of laboratory testing of the recovered structural 

elements, is limited to identifying their characteristics and cannot fulfil the aim of this project 

for the following reasons. Firstly, these types of tests can only determine the physical properties 

of an element and at the most can provide a narrow idea about the technical reusability of the 

component when compared to an equivalent new one (the control). Even in this case, because 

the researcher tests the element in a laboratory condition, and it is not going to be installed in 
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a new building, its technical reusability in combination with other components in a new 

installation cannot be verified. Secondly, experimental research requires a considerable 

number of reused structural elements for testing to provide enough data to develop a predictive 

model. However, considering the required time and the availability of funding, laboratory 

testing is not feasible. Thirdly, laboratory tests cannot provide any insights into the economic 

and social aspects of reusability as are within the scope of this research. Therefore, 

experimental research methodology is not pursued. 

3.3.2 Archival and documentary research 

Archives are a set of documents collected by an organisation, individual, or government (Frisch 

et al. 2012) which are a good source of secondary data for research (Saunders, Lewis, and 

Thornhill 2016). In archival and documentary research, the researcher looks for answers to the 

research questions using documents archived by organisations and individuals. Because 

organisations record all their activities in both digital and paper formats, it is possible to get a 

rich insight into the reusability of building structural elements by searching project documents 

such as test certificates, tender bulletins, standard specifications, etc. However, accessing such 

documents, if not impossible, would be very hard because most of them contain sensitive data 

(Saunders, Lewis, and Thornhill 2016). Therefore, in this study, archival research methodology 

is not considered. 

3.3.3 Case study research 

Case study research methodology is an in-depth investigation of a case (a phenomenon, event, 

an organisation, a group, etc. (Saunders, Lewis, and Thornhill 2016)) in its real-world settings 

(Yin 2018). A researcher may perform a case study research when he/she wants to investigate 

a real-life situation as well as when the distinction between the case and the context are not 

distinguishable (Yin 2018). Case study research may employ qualitative, quantitative, or mixed-

mode research to achieve an in-depth understanding of the phenomenon (Yin 2018, Saunders, 

Lewis, and Thornhill 2016). Moreover, case studies can be designed to answer exploratory, 

explanatory, and descriptive research questions (Yin 2018). 

While the study of BSE-RPM seeks the experts’ opinion on the reusability of building structural 

elements, case study research is unable to fulfil the aims of the project for the following reasons. 

The study of BSE-RPM would eventually develop a best practice predictive model based on 

statistical generalisations; however, in doing a case study research, the researcher looks for 

expanding and generalising the theories (Yin 2018). Moreover, a case study does not represent 

a population; however, the study of BSE-RPM develops predictive models from a representative 
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of the structural elements of a building (Section 4.2) based on the real experience of the experts 

from a global perspective (Yin 2018). Therefore, case study research methodology is not 

pursued. 

3.3.4 Survey research as the methodological choice of the study 

Survey research is “a systematic set of methods used to gather information to generate 

knowledge and to help make decisions” (Lavrakas 2008). It involves the collection of 

quantifiable data from a population by selecting a sample of individuals voluntarily answering 

a set of questions (Check and Schutt 2011, De Vaus 2014, Sapsford 2007). Therefore, the survey 

research methodology usually takes a deductive reasoning technique (Saunders, Lewis, and 

Thornhill 2016). Moreover, it can employ closed questions (like Likert scale questions) or open-

ended questions (that can be coded by the researcher later) or a combination of both in a 

questionnaire (Ponto 2015). 

Because surveys gather data with the intention to elaborating the characteristics, attitudes, 

experience or opinion of a group or population, or identifying standards to compare the existing 

conditions, as well as determining the potential correlations between specific events (Cohen, 

Manion, and Morrison 2018), they can address explanatory, exploratory, and descriptive 

research questions. While different types of surveys exist, survey research using self-

administered questionnaires (both online and paper-based) are widespread because they can 

collect standardised data from a wide range of population at a low cost (Saunders, Lewis, and 

Thornhill 2016) and allow generalisations of the results through statistical, or machine learning 

techniques (Yin 2018). 

The study of BSE-RPM seeks the experts’ opinion on the reusability of building structural 

elements and intends to develop a best-practice predictive model using machine learning 

techniques. Therefore, it needs input from a wide range of professionals to be able to perform 

generalisation. Moreover, the research questions are explanatory, and the research takes a 

deductive reasoning technique. Furthermore, this study aims to determine the reusability of 

the structural elements in technical, social, and economic aspects. Therefore, based on the 

above discussion, this study follows the survey research methodology as its research strategy. 

3.4 Research Method 

The philosophical assumptions of a study play a pivotal role in determining its philosophical 

stance, which leads to the methodological choice of the research (Crotty 1998). As discussed in 

Section 3.2, positivism is the research philosophy of this study, which leads to the selection of 
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the survey research as the methodological choice of the research (Section 3.3). In this section, 

the research design or the research method, which is the choice of the techniques and 

procedures to provide the required inputs (data collection) and analyse them, are introduced 

(Crotty 1998). However, the justification for the selection of the data collection and data 

analysis techniques are provided in Chapters 4 and 5, respectively. 

Depending on the research questions, research philosophy, and research methodology, the 

type of data necessary for a study may vary between numerical (numbers), non-numerical 

(texts, images, etc.), or a mixture of the two. Therefore, a quantitative method, a qualitative 

method, or a mixed-method research design might serve the aims and objectives of any 

research (Saunders, Lewis, and Thornhill 2016). This study seeks numerical data to develop the 

first BSE-RPM using advanced supervised machine learning techniques. Therefore, this study 

chooses a quantitative research method for its data collection and data analysis, because, this 

study aims to develop models that can efficiently and accurately predict the reuse potential of 

structural elements at the end-of-life of a building based on the experts’ opinions using several 

advanced supervised machine learning methods.  

Since this study seeks to quantify the qualitative variables affecting the reusability of the 

structural elements (independent variables) based on the experts’ opinions, there is a doubt 

whether a qualitative approach to identify these factors should be followed at the inception of 

the research. While the identification of the independent variables, which is an exploratory 

attempt, can be performed using various techniques such as literature review or interview with 

the experts in the form of unstructured (in-depth) individual or group meetings (Saunders, 

Lewis, and Thornhill 2016), interviewing does not suit this study for the following reasons. First, 

the study of BSE-RPM is objective from an epistemological perspective (Section 3.2.1) and has 

value-free axiology. However, in-depth interviewing is a purely subjective approach, and the 

researcher cannot stay value-free, which in turn increases the risk of bias in the research. 

Moreover, in-depth interviews are not reproducible; however, a systematic literature review 

approach, which is used in this study to explore the independent variables (Chapter 2), is a 

highly reproducible research method, which produces unbiased reports to enlighten the 

existing knowledge about the particular research question, provides a robust basis for reliable 

judgments about “what works” the best (Petrosino and Lavenberg 2007), and finds gaps in the 

literature for further research (Denyer and Tranfield 2009). Therefore, this study does not 

integrate a qualitative research method to identify the independent variables in its design. 
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3.4.1 Quantitative research method 

Quantitative research is “an approach for testing objective theories by examining the 

relationship among variables” (Creswell and Creswell 2018). However, quantitative research 

can be used to develop new theories, as well (Crotty 1998, Saunders, Lewis, and Thornhill 2016). 

Therefore, in the case of the former, where data are used to test the theories, quantitative 

research follows a deductive approach, and in the case of the latter, it is associated with 

inductive reasoning (Creswell and Creswell 2018, Saunders, Lewis, and Thornhill 2016). 

Moreover, the variables in quantitative research can be either measured experimentally (using 

instruments) or can be collected objectively using survey research (Section 3.3.1 and Section 

3.3.4) (Creswell and Creswell 2018, Saunders, Lewis, and Thornhill 2016). In either way, 

quantitative research embraces Objectivism as its epistemological assumption and positivism 

as its research philosophy  (Saunders, Lewis, and Thornhill 2016). Furthermore, in a quantitative 

study, the measured variables are mostly analysed using statistical and graphical procedures 

(Creswell and Creswell 2018, Saunders, Lewis, and Thornhill 2016). Since the survey research 

methodology for collecting data has an objective nature, the researcher remains value-free and 

has no impact on the respondents. 

According to Section 3.3.4, this study follows a survey research methodology as its research 

strategy. Survey research can provide a numeric description of the relationship between 

variables by studying a representative sample of the population (Creswell and Creswell 2018). 

While the survey research can be conducted in the form of questionnaires or structured 

interviews to collect necessary data with the intent of generalising the results (Fowler 2014), 

this study uses a questionnaire survey for its data collection. Eventually, this study uses 

statistical and supervised machine learning methods (using SPSS and R, respectively) to analyse 

the collected data and develop predictive models (R Core Team 2020). The justification for using 

supervised machine learning methods is discussed in Chapter 5. 

3.5 Chapter Summary 

According to Crotty (1998), at the inception of developing a research proposal, it is necessary 

that the researcher identifies and justifies the choices for research methodologies and research 

methods, which lead to choosing the data collection and analysis techniques. However, before 

discussing these crucial features, this chapter initially clarified the philosophical assumptions 

and scrutinised the potential theoretical perspectives to identify the research philosophy. 
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According to Section 3.2, this study follows realism as its ontology, embraces Objectivism as its 

epistemology, and the researcher remains value-free, which is essential to minimise the bias 

and guarantee the generalisability of the research results. In the next step, the four paradigms, 

as identified by Burrell and Morgan (2016), were introduced, and the researcher justified that, 

according to the philosophical assumptions of the research, this study follows the functionalist 

paradigm. It is noteworthy that the term “paradigm” is used in the concept defined by Burrell 

and Morgan (2016) because it adds a new philosophical assumption to the earlier assumptions 

discussed, which is the political or ideological assumptions of the researcher about nature of 

society. It is because ontology, epistemology, and axiology only deal with the nature of science 

and do not reveal the researcher’s assumptions about society. This approach, while on the 

surface deviates from most research books, does not differ in context. The reason is what is 

called a paradigm generally is called a research philosophy in this study. It is because there is 

no unanimity in the naming approaches in the social sciences. For instance, Crotty (1998) 

follows a different naming philosophy and uses the term “theoretical perspectives” for what is 

called research philosophies in this research. 

Next, the researcher introduced positivism, critical realism, and interpretivism and compared 

these research philosophies. In Section 3.2, it was concluded that positivism is the research 

philosophy of this study. Consequently, the researcher introduced the research methodologies 

embracing positivism and reasoned that this study follows survey research as its methodology. 

Moreover, by analysing the potential research designs (quantitative, qualitative, or mixed-

method), it was concluded that this study follows a quantitative research design and uses 

questionnaires to collect data. Likewise, the researcher introduced statistical (using SPSS) and 

supervised machine learning techniques (through R) as the methods used to analyse the data 

and develop the first building structural elements reusability predictive model. However, it was 

emphasised that the justification for the choice of data collection and analysis techniques would 

be provided in Chapters 4 and 5, respectively. The below table is the summary of all the above 

discussions that will be referred to throughout this work. 

Table 3.1 Research design essentials 

Title Potential options Selected options 

Theoretical assumptions: 
Ontology 

Realism 
Relativism 

Realism 

Theoretical assumptions: 
Epistemology 

Objectivism 
Subjectivism 

Objectivism 

Theoretical assumptions: 
Axiology 

Value-free 
Value-bounded 

Value-free 

Research approach Deduction Deduction 
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Title Potential options Selected options 

Induction 
Retroduction (abduction) 

Research paradigm Functionalist 
Interpretive 
Radical structuralist 
Radical humanist 

Functionalist 
 

Research philosophy Positivism 
Critical realism 
Interpretivism 

Positivism 

Research methodology Experimental 
Archival and documentary 
Case study 
Survey 

Survey 

Research method Quantitative 
Qualitative 
Mixed 

Quantitative 

Data collection Structured interview 
Questionnaire 

Questionnaire 

Data analysis tools Many Statistical 
Supervised machine learning 
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Chapter 4 – Quantitative study 

4.1 Chapter introduction 

In this chapter, the technique used to collect the required data to develop the first Building 

Structural Elements Reusability Predictive Model (BSE-RPM) is discussed in detail. As discussed 

in Section 3.4.1, this study uses a self-completed questionnaire as its data collection method. 

Online questionnaires are distributed among a sample of experts with previous experience in 

structural elements reuse at a global scale. The introduction section of this chapter includes the 

justification for using the questionnaire as the data collection technique, and the advantages 

and practical limitations of using questionnaires. Section 4.2 introduces the unit of analysis of 

this research. Section 4.3 discusses the sampling process, and the following sections discuss the 

process of designing and testing the questionnaire (Sections 4.4 and 4.5, respectively) before 

sharing it with the experts (Section 4.6). The study then discusses the response rate of the 

survey (Section 4.7), analyses the missing data (Section 4.8), reviews the validity and reliability 

of the questionnaire based on the received responses (Section 4.9), performs statistical analysis 

on the collected data (Sections 4.10 and 4.11) and concludes with the chapter summary (Section 

4.12).   

4.1.1 Justification for using a questionnaire 

Chapter four aims to quantify the weightage and impact of the reusability factors based on the 

experts' opinions using questionnaires, which is the second objective of this research (Section 

1.6). Because each expert (respondent) replies to the same set of questions, it is possible to 

approach a large sample to collect the necessary data (Saunders, Lewis, and Thornhill 2016). 

Moreover, using a questionnaire provides an efficient way of accessing and quantifying the 

professionals’ knowledge regarding the factors affecting the reusability of the structural 

element(s) that they reused in the past. Accordingly, this chapter enables achieving the second 

objective of this research (Section 1.6). Therefore, the variables (factors) identified in the 

questionnaire (both independent and dependent) are in the form of closed questions using a 

five-point Likert-scale rating, which enables quantifying the qualitative variables. Moreover, this 

feature facilitates the respondents with easy-to-understand questions and eventually increases 

the response rate. 

4.1.2 Advantages and disadvantages of questionnaire 

A self-administrated questionnaire, as used in this research, is very efficient because the 

respondent can spend enough time answering each question and can complete the survey at a 
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later time (Brace 2013). Even the respondent may refer to different documents and consult with 

others to provide more accurate answers. Moreover, the bias is reduced because firstly, the 

respondent remains anonymous, and he/she can feel very safe while answering the questions, 

and secondly, the researcher has no direct influence on the answers the respondent provides. 

Likewise, as discussed in Section 4.1.1, the web-based questionnaire can be shared with a large 

sample to increase the response rate. 

On the other hand, there is a limitation to the number of questions that a questionnaire can 

contain (Yin 2018). Therefore, the researcher needs to make sure that the questions can provide 

reliable answers to the research questions to fulfil the aim of the study (Saunders, Lewis, and 

Thornhill 2016). Moreover, the questionnaire provides only one chance to collect data from a 

potential respondent (Saunders, Lewis, and Thornhill 2016); hence, if any question is missing, 

or any parts of the survey is unclear or biased, there is no chance of going back to the 

respondent to rectify the error. Therefore, to overcome these limitations, the questions were 

re-written several times and discussed with the supervisory team to improve the quality of the 

survey. Moreover, the pilot study helped to achieve the final shape of the questionnaire, which 

will be discussed later in Section 4.5.  

4.2 Unit of analysis 

While performing research, it is critical to know the aim(s) and objective(s) of the study. It is 

because, throughout the research, the collected data need to be analysed continuously to 

ensure that the research question(s) can be addressed and eventually the project’s aim(s) can 

be achieved. Therefore, it is vital to distinguish the unit on which the researcher needs to collect 

the necessary data. 

The unit that the researcher collects data about and then performs his/her analyses is called 

the unit of statistical analysis, or simply the unit of analysis (Salkind 2010). Therefore, the unit 

of analysis of a study depends on the aim and objectives of the research. According to Addelman 

(1970), the unit of analysis or the experimental unit “is that entity that is allocated to a 

treatment 'independently' of other entities.” The unit of analysis may be the same or different 

from the unit of observation, the unit of sampling, the unit of generalisation, and the unit of 

measurement (Salkind 2010, Decarlo 2018). While the unit of analysis is the entity that the 

researcher collects data about, the unit of observation is the item that is observed to collect the 

required data for the study (Decarlo 2018). For instance, if the researcher intends to collect data 

about a neighbourhood based on observing people living there, the unit of analysis would be 

that neighbourhood while the unit of observation would be the residents (Lavrakas 2008). 
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Moreover, the unit of sampling is the entity the researcher chooses the samples to perform the 

observations. In addition, the unit of sampling is also directed by the unit of generalisations that 

the researcher generalises about (Salkind 2010). And last but not least, the unit of measurement 

is the unit on which the impacts of a measure is studied, which can be similar or different from 

the unit of generalisation or sampling (Salkind 2010).  

This study aims to develop a reliable model to predict the reuse potential of the structural 

elements of a building based on the experience of the professionals who worked with such 

components. Therefore, the focus of the study is on the reusability of the structural 

components used in a building such as beams, columns, slabs, truss, etc. Referring to Section 

1.5, the research questions concentrate on collecting data about the reused structural elements 

to determine the best combination of factors that can help in the development of a predictive 

model to assess the reusability of these elements at the end-of-life of a building. Therefore, in 

this study, the unit of analysis, which is the subject of advanced statistical and machine learning 

analyses, is the structural elements of a building (Salkind 2010). Moreover, the unit of 

observation is the same as the unit of analysis because the research intends to develop a robust 

predictive model to determine the reusability of the structural elements of a building. 

Consequently, the unit of sampling, the unit of generalisations, and the unit of measurement 

are the same as the unit of analysis. 

4.3 Sampling 

According to the unit of analysis of this study (Section 4.2), the population from which the 

sample needs to be selected is the structural elements of a building. Since this research intends 

to determine the reusability of the structural elements of a building and eventually generalise 

the results about them, the target population is all of the recovered building structural elements 

intended for reuse (regardless of success) (Figure 4.1). However, since this study seeks the 

experts’ knowledge about the reused elements to develop its predictive model(s), it is necessary 

to sample from the experts with experience in reusing building structural elements. 

Nevertheless, because there is no way to identify based on what structural element the 

potential respondent would complete the questionnaire, all the reused components have an 

equal chance for selection by an expert. 
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Figure 4.1 Population, sampling frame and sample at the structural elements level 

For sampling from the experts with reuse experience, the sampling frame is depicted in Figure 

4.2. As shown in this figure, the target population is professionals with reuse experience 

working in construction, deconstruction, demolition, or reuse companies in the construction 

sector. Moreover, the sample consists of all the identified experts in the target population. 

 

Figure 4.2 Population, sampling frame and sample at the construction professionals’ level 

In this study, the purposive sampling technique is used to select professionals from the target 

population. It is because reuse is not a commonplace practice, and no database or list of experts 

with reuse experience is available to perform a probability sampling. Therefore, the researcher 

developed a sampling frame to reach out to the target population. However, because the reuse 

rates have been continuously declining in the UK (Addis 2006, Sansom and Avery 2014), the 
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number of available professionals with the required profile is not sufficient in the UK. Hence, 

the sampling frame is developed with a global perspective. Therefore, this study uses the 

following resources for developing the sampling frame, which includes experts with experience 

in reusing building structural elements (Figure 4.2). The first reference referred to for 

developing the sampling frame is the list of top 100 demolition companies worldwide in 2018, 

which is used to locate the experts (KHL Group 2018). Moreover, using LinkedIn, a list of 

companies in the construction sector with experience in building component reuse or 

deconstruction is prepared. These two lists are then merged, and any duplications are removed. 

In this study, all the experts are located using the companies’ websites and LinkedIn. While a 

company’s website gives a general overview of the top management team (this depends on 

their privacy policy) and the types of services the company offers, most of the time, it does not 

provide any details about the employees recruited by the company. On the other hand, LinkedIn 

provides a platform for accessing the professionals and their profiles and level of experiences 

at no cost. According to (Duffy 2015), LinkedIn is “the most important cross-industry 

professional network around” with more than 645 million members from 200 countries 

worldwide (LinkedIn 2019) and a high growth rate in the number of experts joining this social 

media (Dusek, Yurova, and Ruppel 2015). After the sampling frame was developed, all the 

located experts were contacted (Figure 4.2). As a result, a total number of 481 invitations are 

sent to the experts to complete the online questionnaire. 

The limitation of developing the sampling frame using LinkedIn is that LinkedIn is not an 

exhaustive list of all the population of the professionals and if an expert is not registered online, 

he/she cannot be located and therefore, is not included in the sampling frame (Dusek, Yurova, 

and Ruppel 2015). Moreover, as discussed earlier, the limitation of using the Companies’ 

website as the other source for locating the experts is that they are not giving any details about 

their employees or their level of experiences. Therefore, to decrease bias, the snowballing 

technique to locate more respondents is used as well. It means that if an expert provided an 

email address after completing the questionnaire, he/she was requested to share the survey 

with the other experts that he/she knows. Nonetheless, since these experts did not provide any 

feedback on the number of times, they shared the questionnaire link, there is no way to judge 

the number of invitations sent based on the snowballing technique. 

4.4 Questionnaire design 

The theory behind this study is that by quantifying the impact of factors affecting the reusability 

of the building structural elements (the independent variables), it is possible to predict the 
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technical, economic, and social reusability of these components (the dependent variables) 

through developing predictive models using advanced supervised machine learning techniques. 

Therefore, after performing a thorough literature search (including a systematic literature 

review discussed in Chapter 2), and identifying, analysing, and categorising the independent 

variables, these factors are used to develop a self-completed online questionnaire. This 

questionnaire is then shared with a representative sample of the experts discussed in Section 

4.3. Therefore, this questionnaire aims to address the second objective of this study, and as 

discussed in Section 4.1.1, to provide the required data to achieve the third objective of this 

research. 

Initially, and based on the identified independent variables, a paper-based questionnaire was 

developed, which included 125 questions. However, after several rounds of reviewing the 

questionnaire, consulting with the supervisory team, conducting a self-check (Section 4.4.3 and 

Appendix B), and finally performing a pilot study (Section 4.5), the total number of questions 

decreased to 72. 

4.4.1 Sections of the questionnaire 

This questionnaire consists of six sections and 72 questions (see Appendix C). Section A contains 

demographic questions and asks five questions about the details of the respondents and the 

years of experience in the construction sector. While the initial purpose of this section is to 

acquire a general overview of the respondents, the details will be further used as an additional 

checkpoint to evaluate the validity of the responses (Section 4.9). 

Section B deals with the structural element that the respondent used in the past and would 

complete the rest of the questionnaire by referring to it. This section contains 11 questions and 

is in two parts. Questions 1 to 6 seek the details of the reused element, and questions 7 to 11 

compare the current use of the component (or use after deconstruction) with its previous 

deployment before it was removed/deconstructed from a building. The purpose of questions 7 

to 11 is twofold. First, to understand the current application of the element and second, to 

determine the changes in its performance. 

Section C is concerned with the barriers to reuse, as identified during the literature review. This 

section intends to quantify the impact of the identified barriers on the reusability of the 

structural elements from social, economic, and technical perspectives. Further details about the 

identified barriers are available in Section 2.3.2 and Appendix A. 
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Section D contains those factors that can act as either a barrier or a driver in different 

circumstances. For instance, according to Gorgolewski et al. (2008), the purchasing price of the 

reused building components is a driver to reuse; however, according to Tingley et al. (2017) and 

Dunant et al. (2018), the cost of these elements is a barrier to reuse. Therefore, Section D lists 

the variables for which their impact on the reusability of the structural elements are unknown. 

Like Section C, this section also includes technical, social, and economic variables that affect 

reuse. 

Section E inquires the reusability of the structural element that the respondent used before and 

based on that replied to the questions in Sections B, C & D. In total, there are three questions 

in this section, which together form the dependent variables of this study. These questions aim 

to understand the respondent's evaluation of the reusability of the structural element. These 

questions are very important to achieve the third objective of this study. Through using 

advanced supervised machine learning techniques, the impact of the independent variables 

(Sections B, C, & D) on the dependent variables (Section E) would be analysed, and the best 

combination of the independent variables that can predict the reusability of the structural 

elements of a building would be developed. 

In this questionnaire, to avoid any misinterpretation by the respondent, the dependent 

variables are defined before the questions as follows: 

Technical reusability: 

The extent to which the reused structural element in its new life could perform similarly to its 

earlier life. 

Economic reusability: 

The cost savings in the project as the result of using the reused structural element when 

compared to a similar project using a new structural element with the same performance. 

Social reusability: 

The acceptance level of the stakeholders (clients, CEO, designers, construction team, occupants, 

etc.) about using the reused structural element in the new building. 

After this section, the respondents are free to add any additional comments if they wish. 

Moreover, to incentivise the respondents to answer the questionnaire (as a bonus for taking 

part), the survey encourages the respondents to provide their contact details if they wish to 

receive the results of the study upon publication. Notwithstanding, all the above is optional. 
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4.4.2 Types of questions and scales 

Excluding Section A, which includes demographic questions, and except Section B, where the 

respondent has the option to respond other than the pre-determined answers for questions 1 

to 6, the rest of the questionnaire contains closed questions. Moreover, questions 1 to 6 in 

Section B seek the details of the reused element and are factual, while others inquire a fact 

based on the respondent’s experience about the impact of the variables on the reusability of 

the structural component. It is noteworthy that questions B1 to B6 are nominal, and the 

possible answers have no correct order. On the other hand, the rest of the questions are ordinal 

(or categorical), and the answers are ordered. For the details about nominal and ordinal 

variables, please refer to Section 12.2 of (Saunders, Lewis, and Thornhill 2016). In this research, 

ordinal and categorical variables are used interchangeably. 

For the closed questions in this questionnaire, the Likert-style ratings are used (Likert 1932). By 

developing this rating measurement system, Rensis Likert intended to measure different 

aspects of an attitude, opinion, or a belief by requiring the respondents to express their level of 

agreement or disagreement to a question or a statement (Brace 2013). While the Likert 

response sets can include four or more points (Lavrakas 2008), this study uses a five points 

system, which is more common (Lavrakas 2008). As discussed in Section 4.1.1, the above rating 

system is very important because it helps to quantify the independent variables identified 

during the literature review phase of this research. 

While, in this study, all the closed questions follow a five categories Likert scale, the wording 

labels and the purpose for different sets of questions vary. Table 4.1 summarises various Likert 

scale ratings used in this study. 

Table 4.1 Likert-style ratings used in this study 

Section Question(s) Reason 
Scale 

1 2 3 4 5 

B 7 to 9 To assess 
the 

physical 
changes 

Strongly 
disagree 

Disagree Neither 
agree nor 
disagree 

Agree Strongly 
agree 

B 10 to 11 To assess 
the 

functional 
changes 

Much 
lower 

Lower Equal Higher Much 
Higher 

C All To 
determine 
the level 

of the 

Very High High Moderate Low Very Low 
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Section Question(s) Reason 
Scale 

1 2 3 4 5 

negative 
impact of 

the 
barrier 

D All To 
determine 
the effect 

of the 
variable 

Very 
negatively 

Negatively No real 
effect 

Positively Very 
Positively 

E All To 
determine 

the 
reusability 

level 

Very low Low Moderate High Very 
High 

 

4.4.3 Self-checking the questionnaire 

Before launching the online questionnaire for pilot testing, the survey was thoroughly checked 

for layout, question order, and question-wording. For this purpose, three checklists (inspired by 

Saunders et al. (2016)) were prepared and used to develop the online survey for pilot testing 

(Appendix B). The checklists contain 5, 7, and 18 questions for checking the questionnaire 

layout, questions order, and questions wording, respectively. After self-checking, the 

questionnaire was reviewed for the wording and grammatical errors by an advisor at the Centre 

for Academic Writing (CAW) at Coventry University. Upon the incorporation of the comments 

by the CAW advisor, the questionnaire was launched online for pilot testing. 

4.5 Pilot study 

One of the problems with self-completed questionnaires is that, unlike in-depth or semi-

structured interviews, it is not possible to modify or alter it after it is launched (Saunders, Lewis, 

and Thornhill 2016). Therefore, if the information necessary to address the research objectives 

are missing, or if the questionnaire or the questions are biasing or biased, the collected data 

cannot be trusted, which can cause serious risk to the project (Brace 2013). Moreover, there is 

a risk that the researcher and the respondent might interpret the questions and answers in 

different ways, which again makes the collected data unreliable (Saunders, Lewis, and Thornhill 

2016). Therefore, care should be taken in designing the questionnaire and the questions to 

ensure the validity and reliability of the responses (Saunders, Lewis, and Thornhill 2016, Brace 

2013). While, according to Section 4.4.3, self-checking using the recommended checklist by 

Saunders et al. (2016), and grammar and wording review by an expert can mitigate some of the 
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above risks, it is always advised to pilot the questionnaire before performing the data collection 

(Saunders, Lewis, and Thornhill 2016, Brace 2013). 

Following the above discussion, the link for the online questionnaire was shared with a group 

of 12 experts and non-experts for pilot testing. Unlike the sampling process explained in Section 

4.3, the pilot study followed convenience sampling and snowballing techniques to locate the 

respondents, which is an acceptable approach (Saunders, Lewis, and Thornhill 2016). According 

to Saunders et al. (2016), non-probability sampling can be performed during the pilot testing of 

a questionnaire as well. Moreover, to collect the feedback of the participants, an online 

feedback form was also shared with the respondents. This feedback form contained the 

following questions as advised by (Bell and Waters 2014): 

• How long the questionnaire took to complete?  

• Were the instructions clear? If not, what are your suggestions to improve them?  

• Were any of the questions unclear or ambiguous? If yes, kindly provide more details 

(question number, etc.).  

• Were there any questions you felt uneasy about answering? If yes, kindly provide more 

details (question number, etc.).  

• In your opinion, were there any major topic omissions? If yes, please provide further 

details.  

• Was the layout clear and attractive? If not, what is your suggestion to improve it?  

• Are there any other comments you wish to share? 

Based on the completed feedback forms, the maximum time to complete the questionnaire was 

reported to be 15 minutes except for one respondent who reported one hour to complete the 

survey. The pilot study and the associated feedback forms helped in improving the quality of 

the questionnaire through rephrasing some questions, modifying the scales, and removal of 

some unnecessary questions. 

4.6 Data collection 

After improving the quality of the survey based on the feedback forms (Section 4.5), the final 

revision of the questionnaire was developed and shared online. The online questionnaire was 

developed using the Online surveys (formerly BOS) platform (Jisc 2019), and the link was shared 

with the potential respondents identified in Section 4.3. 

In this study, an online questionnaire is used to collect the required data, and other possible 

varieties such as post, delivery and collection, telephone, and structured interviews are not 
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used. The reason for this choice was because of the low cost of using the online questionnaire 

(a free account for using Online surveys was provided by the Coventry University) and its 

capability to be shared with a large sample (Saunders, Lewis, and Thornhill 2016). 

While face-to-face data collection (also known as structured interview), guarantees that the 

respondents represent the targeting population (Szolnoki and Hoffmann 2013), in this research, 

since the professionals are geographically dispersed and travel within the UK or abroad was not 

feasible, the researcher did not consider this method. Moreover, postal or telephone 

questionnaires were not considered because of the additional costs involved and the limited 

number of potential respondents within the UK. Likewise, for the respondents within the UK, it 

was possible to send the survey to their email addresses (see Appendix C for the sample email). 

Notwithstanding, whenever the email address of a potential respondent was not available, the 

messaging facility of LinkedIn was used. In total, 481 invitations are sent to the experts to 

complete the online questionnaire. 

4.7 Response rate 

To increase the response rate, the author sent out several reminders in fixed intervals to the 

potential respondents. As advised by Saunders et al. (2016), the first reminder was sent one 

week after sending the questionnaire link to the recipient. A second reminder was sent after 

three weeks, and, a third follow-up email was sent after another two weeks. After all the above 

steps, the total number of received questionnaires reached 90, yielding a response rate of 

18.7%. After careful review of the responses, 18 questionnaires disqualified due to either being 

irrelevant to the focus of the study or being incomplete. Based on the above, 72 questionnaires 

are used for statistical analysis and predictive model development. 

While the above response rate may look rather low, considering the nature of the data 

collection instrument (online questionnaire), the level of qualification expected from the 

respondents (Section 4.3) and that there is no way to force the experts to complete the 

questionnaire, this value is still within the threshold for online surveys performed outside an 

organisation (Saunders, Lewis, and Thornhill 2016). According to (Baruch and Holtom 2008), 

several reasons are contributing to the nonresponses including being too busy (28%), irrelevant 

(14%), unavailability of the return address (12%) (in the case of mail surveys), and company 

policy restrictions on participation (22%) (Johnson and Owens 2003). The first justification 

(being too busy) is a primary cause of nonresponse in this research based on several refusal 

emails received by the researcher declining due to the high workload. However, other reasons 

like the company’s privacy policy requirements and security reasons were among other 
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justifications provided by some respondents who declined to participate. One respondent, who 

is the Head of Agency at an overseas company, refused to take part with the following 

justification: “Sorry, but our codes of conduct for incoming items prevent us from clicking on 

unknown links”. Therefore, in the case of this research, being too busy, and company policy 

restrictions are identified to be the reasons for nonresponses. 

This chapter seeks the professional opinion of building experts with experience in reusing load-

bearing building components. In this research, an expert is defined as someone with six years 

and above of professional experience in the building sector. Hence, if a respondent does not 

match the required profile, he/she is automatically filtered out and could not complete the 

survey. As discussed in Section 4.4.1, these questions are highly technical and, the respondent 

needs in-depth knowledge about the element to complete the questionnaire. It means that if 

the respondent has not done this practice recently, then he/she may need to refer back to the 

archives or consult with colleagues, which can result in nonresponse. Considering the above 

facts about the potential respondents and the fact that the data collection happens at the 

international level (Section 4.3), the target population becomes a hard-to-reach population 

(Harzing 1997). According to Harzing (1997), the international sampling frame decreases the 

response rates of a survey. 

As shown in Table 4.2, 67.7% of the respondents are managers and top managers, 10.8% are 

architects, 7.7% are engineers, 4.6% are consultants, 4.6% are deconstruction experts, and 

others are reuse experts and construction waste prevention experts (7 respondents did not 

answer to this question). According to Table 4.3, 39.1% of the respondents work in 

deconstruction/demolition companies, 29% in consultancy, 8.7% in contracting organisations, 

and the rest in universities or supplier/stockiest firms (3 respondents did not answer this 

question) (Table 4.3). The respondents also worked in the construction sector from 6-10 years 

(33.3%) to over 40 years (11.1%), with 66.7% having above 10 years of experience (Table 4.4). 

Table 4.2 Position of the research respondents 

Position of the respondent Frequency Percentage (%) 

Architect 7 10.8 

Consultant 3 4.6 

Deconstruction expert 3 4.6 

Designer 1 1.5 

Engineer (Civil/Structural) 5 7.7 

Manager (e.g. project managers, design managers, 
marketing manager, etc.) 

15 23.1 

Reuse expert 1 1.5 
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Position of the respondent Frequency Percentage (%) 

Top manager (e.g. head managers, owner of 
companies, executive managers, managing director, 
CEO, etc.) 

29 44.6 

Waste prevention specialist 1 1.5 

The above percentages are based on 65 respondents. 
 

 

Table 4.3 Type of organisation the research respondents work in 

Type of the organisation Frequency Percentage (%) 

Client 3 4.3 

Consultancy (architectural, 
structural, etc.) 

20 29 

Contractor 6 8.7 

Deconstruction/Demolition 27 39.1 

Supplier/Stockiest 5 7.2 

University/Academic 
institution 

2 2.9 

Other 6 8.7 

The above percentages are based on 69 respondents. 
 

 

Table 4.4 Years of experience of the research respondents in the construction sector 

Years of experience Frequency Percentage (%) 

6-10 24 33.3 

11-15 10 13.9 

16-20 10 13.9 

21-25 8 11.1 

26-30 9 12.5 

31-35 3 4.2 

36-40 0 0 

over 40 8 11.1 

 

4.8 Missing data analysis 

Missing values or item nonresponse in survey research happens when a respondent does not 

provide an answer to one or more questions of a questionnaire (Allison 2001, Graham 2012). 

While there are several reasons for item nonresponse in survey research (Graham 2012), the 

missing values can have a significant impact on the conclusions of the research (Graham 2009). 

It should be noted that almost all of the statistical and machine learning methods do not 

consider missing values in a dataset while analysing research data. Therefore, item nonresponse 

can decrease the statistical power of the research in testing the null hypothesis correctly. 

Moreover, it can cause bias in both the dependent (DV) and independent variables (IV), 
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negatively affect the representativeness of the sample, and result in inaccurate conclusions 

(Kang 2013, Allison 2001). It is because as defined by (Little and Rubin 2019), ‘missing data are 

unobserved values that would be meaningful for analysis if observed; in other words, a missing 

value hides a meaningful value‘. Therefore, missing data analysis is a crucial aspect of any 

research (Graham 2009). 

There are different assumptions on the pattern of item nonresponse in survey research, and 

the researcher should identify the dominant assumption before adopting any technique to 

rectifying the missing values. According to Graham (2012), depending on reasons for the item 

nonresponse, the missing data can be categorised into missing completely at random (MCAR), 

missing at random (MAR), and not missing at random (NMAR). Allison (2001) considers the first 

two missing data mechanisms as ‘ignorable’ and the third one as nonignorable. In the case of 

MCAR, the probability of a missing value on any of the variables (both dependent and 

independent) is completely at random and is unrelated to the value of the variable itself, nor 

any other variable in the dataset. This pattern is ideal for any research because there is no bias 

in the analysis of the estimated values (Kang 2013, Allison 2001). However, MCAR does not 

happen all the time (Allison 2001). A more realistic missingness mechanism is when data are 

missing at random (MAR) (Allison 2001). In this case, the probability of missing data on a given 

variable can be determined based on one or more predictors (variables), and within the 

categories of each predictor, the probability of missing data is at random and is unrelated to 

the value of the variable itself (Allison 2001). If the missingness is neither MCAR nor MAR, it is 

said that the data is not missing at random (NMAR) (Murphy 2012). In this case, the missing 

data mechanism must be either modelled (following the definition of ‘missing data creation 

model’ in (Graham 2012) and considering that item nonresponse mechanism in NMAR is 

nonignorable) or deleted to avoid bias (Kang 2013, Allison 2001). 

There are various techniques to handle missingness including listwise deletion, pairwise 

deletion, dummy variable adjustment, marginal mean imputation, regression imputation, 

maximum likelihood estimation (MLE), and multiple imputation (MI) (Kang 2013, Allison 2001). 

According to Allison (2001), if the missing data mechanism depends on the values of the 

independent variables only, then the listwise deletion technique results in unbiased 

estimations. (Allison 2001, Kang 2013, Graham 2012) advise using MLE and MI techniques to 

tackle the missing values in survey research. According to (Graham and Schafer 1999), the MI 

technique provides very good results with sample sizes as small as 50 cases. In this research, no 

dependent variable is missing. Moreover, the respondents provided their answers to the 

questionnaire before reaching the dependent variables, meaning that if any independent 
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variable was missing, it was regardless of their response to the dependent variables (Appendix 

C.2). Therefore, listwise deletion was initially used to remove responses with high number of 

missing values. Next, MI technique was used to estimate the value of the remaining missing 

values in the dataset. 

Before implementing MI, and after performing the listwise deletion, the SPSS expectation-

maximisation (EM) algorithm (a type of MLE method (Dempster, Laird, and Rubin 1977)) was 

used to evaluate the mechanism of missingness. In this study, 90 completed questionnaires 

were initially received (Section 4.7). After a careful review, 7 responses were found irrelevant 

(talking about material reuse such as recycled concrete aggregate, etc.), and 11 were removed 

due to the high number of missing values (above 20% of the independent variables were 

missing), leaving 72 questionnaires for further analysis. This research aims to develop models 

to predict the reusability of the structural elements of a building in terms of technical, 

economic, and social aspects (Section 1.6). So, the survey collected the necessary data to fulfil 

the aims of the study. In the next stage, and to analyse the responses, the questionnaires were 

split into three separate datasets (each containing 72 cases) focusing on technical, economic, 

and social reusability of the structural elements (the dependent variables) based on the relevant 

independent variables. These datasets are called technical (TEC), economic (ECO), and social 

(SOC) focusing on technical, economic, and social aspects of this study, respectively. Then, 

Little’s MCAR test using IBM SPSS version 25 with EM algorithm was performed for the complete 

list of dependent and independent variables for each dataset. The null hypothesis was that the 

data were missing completely at random. To reject the null hypothesis, the chi-square should 

be significant at 0.05. However, the significance of the chi-square test for all datasets was higher 

than the 0.05 threshold (insignificant), meaning that the null hypothesis cannot be rejected, 

and the missing values were MCAR (see Appendix D for the test results). 

The TEC dataset contains 42 IV and 1 DV and has 2% of values missing, involving 29% of 

respondents. The ECO dataset contains 12 IV and 1 DV and has 1% of values missing, involving 

11% of respondents. The SOC dataset contains 10 IV and 1 DV and has 2% of values missing, 

involving 18% of respondents. In this research, to perform MI for the missing variables, R system 

packages ‘MissMDA’ and ‘mice’ were employed (see Appendix E, Script E.1 for a copy of the R 

code used) (Josse and Husson 2016, Audigier, Husson, and Josse 2017, van Buuren and 

Groothuis-Oudshoorn 2011, R Core Team 2020). In the data augmentation process, as advised 

by Allison (2001), both independent and dependent variables were used to impute the missing 

independent variables. Each dataset was handled separately and the updated datasets with no 

missing values were extracted for further analysis. 
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4.9 Validity and reliability 

The quality of the collected data is one of the major concerns of a researcher. Therefore, the 

data collection instrument, as well as the collected data, should be verified in terms of validity 

and reliability. 

In this study, the validity of the questionnaire is evaluated through self-checking the 

questionnaire (Section 4.4.3) and the pilot study (Section 4.5). According to the feedback forms 

(Section 4.5), the average time for answering the questions was less than 15 minutes, which is 

a reasonable time for completing a technical questionnaire. Moreover, there were a few 

comments about the clarity of the instructions that were rectified. In Section E of the 

questionnaire, the definitions were initially after the questions; however, most of the 

respondents suggested moving the definitions before the questions. Furthermore, one 

respondent recommended clarifying the focus of the questionnaire on the front page of the 

survey. And finally, few respondents recommended making shorter questions. However, all of 

the respondents agreed that there were no missing questions/sections in the questionnaire. 

After incorporating the comments, the questionnaire was shared with the available 

respondents (those known by the researcher and were accessible), and they all agreed with the 

final design and content of the online survey. 

The reliability of the responses refers to the capacity of the results to be reproduced by other 

researchers. Therefore, reliability is linked with the respondents being representative of the 

targeting population. While one of the indicators of reliability is the response rate, it is still 

possible to have a low response rate with a sample that is representative of the population 

(Dusek, Yurova, and Ruppel 2015). Because this study targets experts with previous experience 

in reusing the structural elements of a building, the chance that the questionnaire is completed 

by an inexperienced respondent is low. Moreover, at the beginning of the online questionnaire, 

and after elaborating the focus of the research, the respondent should answer a question about 

his/her previous experience with reused building structural elements. All the respondents 

confirmed that they have this experience. Hence, they are representative of the target 

population. 

Another option to check the reliability of a questionnaire is through checking the internal 

consistency of the responses by calculating Cronbach’s alpha value (Saunders, Lewis, and 

Thornhill 2016). In this study, this is done by evaluating the consistency of the independent 

variables by calculating Cronbach’s alpha value using SPSS. If the Cronbach’s alpha value is equal 

to or greater than 0.7, then the combination of the questions measures the same thing 
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(Saunders, Lewis, and Thornhill 2016). Nevertheless, while 0.7 depicts acceptable reliability, 

higher values up to 0.9 are more desirable (Tavakol and Dennick 2011). 

This study assesses the reusability of the structural elements; hence, to calculate Cronbach’s 

alpha, all the items identified to have a potential impact on the dependent variables were 

considered. This has been performed and shown in Tables 4.5, 4.6, and 4.7 for TEC, ECO, and 

SOC datasets, respectively (Also discussed later in Section 4.11). These tables present the 

overall Cronbach’s alpha for each set of questions (depending on the scale used, see Section 

4.4.2). The value of Cronbach’s alpha when the item is deleted is listed against each variable in 

these tables, as well. When this value is higher than the overall Cronbach’s alpha value, it means 

that the variable does not contribute to the overall reliability of the questionnaire, and by its 

removal, the internal consistency of the data will increase (Field 2009). According to Field 

(2009), if a questionnaire is reliable, the removal of a variable should not considerably affect 

the reliability of the survey. 

For the TEC dataset, questions in Section B consist of details about the element and the state 

of the component in its new application (Section 4.4.1). Therefore, only questions B7 to B11 are 

checked for their internal consistency. Because questions B7 to B9 have different scales than 

questions B10 and B11, their internal consistencies were checked separately. It is because, as 

advised by Field (2009), for checking the reliability of a questionnaire, if different subscales exist 

in a survey (Table 4.1), the Cronbach’s alpha value should be calculated separately for these 

subscales. According to Table 4.5, while the Cronbach’s alpha for questions B7 to B9 is above 

the minimum threshold value of 0.7, by deleting question B9, the reliability of this section 

increases slightly by 0.03, which according to Field (2009) is not substantial and can be ignored. 

However, questions B10 & B11 have a Cronbach’s alpha of 0.263, which is below the minimum 

acceptable value of 0.7 (Field 2009). Hence, questions B10 and B11 will not be involved in model 

building. In Section C, removing question C12 improves the internal consistency of the TEC 

dataset slightly by a 0.001 increase in the overall Cronbach's alpha value. Nevertheless, since 

this increase is negligible, these questions will be included in model building. For the ECO 

dataset, the overall Cronbach’s alpha value for Section D is 0.916 and removing question D1 

increases the reliability of the dataset by 0.01, which is negligible (Table 4.6). Therefore, D1 will 

also be included in the model development. Regarding the SOC dataset (Table 4.7), Cronbach’s 

alpha value is above 0.8 for both Sections C & D, and the removal of none of the variables in 

this dataset will not increase the reliability. 
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4.10 Preliminary statistical analysis of the survey 

In this section, descriptive statistics are used to rank the technical (TEC dataset), economic (ECO 

dataset), and social (SOC dataset) factors based on the mean value of the variables. Descriptive 

statistics are a set of statistical approaches, including measures of central tendency (mean, 

median, mode, etc.) and measures of variability (standard deviation, variance, 

minimum/maximum, skewness, etc.), to quantitatively summarise a given data set (Field 2009, 

Bryman and Cramer 2005). 

The results of the descriptive statistics for the TEC, ECO, and SOC datasets are presented in 

Tables 4.5 to 4.7 and discussed in subsections 4.10.1, 4.10.2, and 4.10.3, respectively. While 

according to (Stevens 1946) the permissible statistics for ordinal scales (questions B7 to B11, 

Section C, D, and E of the questionnaire, See Appendix B.2) are the median and percentiles, 

other statisticians such as (Lord 1953, Labovitz 1970, Sauro and Lewis 2016) allow the use of 

statistics applicable to interval and ratio scales for ordinal values such as Likert scales used in 

this research. It is noteworthy that the latter has been adopted in this research. 

4.10.1 Descriptive statistics for TEC dataset 

Figures 4.3 to 4.8 show the distribution of the answers provided by the respondents to 

questions B1 to B6. 

 

Figure 4.3 Type of the structural element used to complete the questionnaire (question B1) 
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Figure 4.4 Material of the structural element used to complete the questionnaire (question B2) 

 

Figure 4.5 Age of building/element (question B3) 
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Figure 4.6 The recovery technique used to recover the element (question B4) 

 

Figure 4.7 The number of existing connections of the recovered element (question B5) 
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Figure 4.8 Type of the end-connections of the recovered element (question B6) 

The results of the descriptive statistics for the TEC dataset for questions B7 to B11 and Sections 

C & D of the questionnaire is available in Table 4.5. The mean, median, and standard deviations 
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are identified as the top technical factors negatively affecting the reusability of the building 
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4.10.2 Descriptive statistics for ECO dataset 

On the economic dimension, Table 4.6 shows the mean, median, and standard deviations of the 

factors affecting reuse. Section C comprises only one variable; hence, the rankings were only 

performed for Section D. 

According to Section D, the purchasing price of the reused element (variable D1) is the only 

driver to reuse, and the other variables act as reuse barriers. The rankings of these barriers are 

as follows: 

1- Cost of testing 

2- Cost of insurance 

3- Storage cost 

4- Cost of refurbishment (sandblasting, treatment, etc.) 

5- Cost of design with the reused element 

4.10.3 Descriptive statistics for SOC dataset 

On the social dimension, and based on the SOC dataset, Sections C and D contain two and eight 

variables, respectively (Table 4.7). The rankings of the barriers in Section C are as follows: 

1- Potential liability risks 

2- Potential health and safety risks 

In Section D, among the eight variables, five are drivers, and three are barriers. The rankings of 

these factors are as follows: 

Top drivers: 

1- Perception of the client/top management team about the element 

2- Perception of the end-users (when it is not the client) about the element 

3- Perception of the designers about the element 

4- Visual appearance 

5- Perception of the builders/contractors about the element 

Top barriers: 

1- Changes in the health and safety regulations (fire, etc.) 

2- Perception of the stockiest about the element 

3- Perception of the regulatory authorities about the element 
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4.11 Test for significant difference 

According to Section 4.2, the unit of analysis of this study is the structural elements of a building. 

Therefore, in this section, a non-parametric test is used to evaluate if there are statistically 

significant differences between the types of structural elements (question B1) regarding the 

ordinal independent and dependent variables asked in the questionnaires. Using SPSS version 

25, the Kruskal-Wallis H test is performed on each of the TEC, ECO, and SOC databases of this 

study (Section 4.8) at a 5% significance level (Field 2009, Bryman and Cramer 2005). The results 

of these tests are discussed in subsections 4.11.1, 4.11.2, and 4.11.3, respectively. The null 

hypothesis is that there is no difference between the groups of structural elements. The 

purpose of this test is to make sure that combining the responses for all the elements for further 

analysis will not affect the overall reliability of the TEC, ECO, and SOC datasets. 

4.11.1 Kruskal-Wallis H test on TEC dataset 

The Kruskal-Wallis H test was used on the technical factors (TEC dataset) to determine if the 

type of the element affects the scores provided for the factors affecting the reusability of the 

structural components. As presented in Table 4.5, the Kruskal-Wallis H test results indicate that 

none of the p-values of the technical factors is less than 0.05 and that there is not enough 

evidence to reject the null hypothesis. It means that the TEC dataset can be safely used to 

develop BSE-RPMs, which is the fourth objective of this study (Section 1.6). 

4.11.2 Kruskal-Wallis H test on ECO dataset 

The Kruskal-Wallis H test was performed to understand whether the variables affecting the 

economic reusability of the building structural elements, measured on an ordinal scale (Section 

3.3.4), differed based on the type of the component. The results indicate that there is no 

statistical difference between the groups of the structural elements at a 95% confidence level, 

which means that the null hypothesis discussed in Section 4.11 is valid (Table 4.6). Therefore, 

using the combination of the responses for further developing the predictive models does not 

affect the overall reliability of the ECO dataset. 

4.11.3 Kruskal-Wallis H test on SOC dataset 

Like the TEC and ECO datasets, the same non-parametric test was performed on the SOC 

dataset. The results indicate that the p-value of all applicable independent variables is more 

than 0.05, which means that there is no significant difference in the independent variables 

between the various group of the structural elements (Table 4.7). In other words, the data can 

be combined and used for further development of the predictive models. 
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Table 4.5 Preliminary statistical analysis of the survey: TEC dataset 

Section / 
Question 

Variables 

Cronbach’s 
alpha if 

item 
deleted 

Median Mean 
Standard 
Deviation 

Rank 

Kruskal-
Wallis 
H test 

p-value 

        

 Section B       

B Details about the reused 
structural element 

      

 Overall Cronbach’s alpha 
for Section B, questions B7 

to B9 = 0.780 

      

        

B7 The structural element is 
serving the same purpose 
(i.e. as a beam, slab, 
column, etc.) in its new 
installation as in its 
previous installation. 

0.648 4 3.71 1.192 2 0.480 

B8 The cross-
section/thickness 
dimensions of the 
structural element in its 
new installation are equal 
or nearly equal to the 
cross-section/thickness 
dimensions of the element 
in its previous installation. 

0.641 4 3.93 1.012 1 0.388 

B9 The length dimensions of 
the structural element in 
its new installation are 
equal or nearly equal to 
the length dimensions of 
the element in its previous 
installation. 

0.814a 3 3.25 1.207 3 0.085 

        

 Overall Cronbach’s alpha 
for Section B, questions 

B10 to B11 = 0.263 

      

        

B10 The amount of load 
supported by the 
structural element in its 
new installation compared 
to the amount of load 
supported by the element 
in its previous installation. 

N/Ab 2 2.31 0.762 2 0.720 
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Section / 
Question 

Variables 

Cronbach’s 
alpha if 

item 
deleted 

Median Mean 
Standard 
Deviation 

Rank 

Kruskal-
Wallis 
H test 

p-value 

B11 The life expectancy of the 
structural element in its 
new installation compared 
to the life expectancy of 
the element in its previous 
installation. 

N/Ab 3 2.88 0.821 1 0.386 

        

 Section C       

C Factors affecting the 
reusability of the 

structural element 

      

 Overall Cronbach’s alpha 
for Section C = 

0.891 

      

        

C1 Damage during 
deconstruction/demolition 

0.887 3 2.99 1.295 2 0.364 

C2 Damage due to fatigue 0.888 4 3.85 1.070 14 0.276 

C3 Damage due to fire 0.889 5 4.26 1.245 20 0.406 

C4 Damage during 
transportation 

0.888 5 4.31 0.944 21 0.635 

C5 Damage during storage 0.889 5 4.21 1.061 19 0.116 

C6 Damage due to the type of 
joints 

0.885 4 3.78 1.178 10 0.185 

C7 Damage due to corrosion 0.884 5 4.19 1.121 18 0.307 

C8 Damage due to frost 0.888 5 4.58 0.707 24 0.213 

C9 Damage due to water 
penetration/presence 

0.885 4 3.53 1.267 5 0.405 

C10 Damage during 
refurbishment (nail 
removal, etc.) 

0.887 4 3.85 1.016 13 0.342 

C11 Damage due to exposure 
to wind, acidic rain, etc. 

0.890 5 4.42 0.946 23 0.499 

C12 Damage caused by living 
organisms (termite, 
bacterial attack, etc.) 

0.892a 4 3.88 1.310 16 0.919 

C13 Damage due to 
earthquake 

0.891 5 4.85 0.494 25 0.559 

C14 Damage due to impact 0.888 5 4.35 1.064 22 0.160 

C15 Damage due to post-
production modifications 
(e.g. holes, etc.) 

0.888 4 3.76 1.081 9 0.322 

C16 Lack of certificates of 
quality for the element 
when acquired 

0.884 3 2.97 1.472 1 0.505 

C17 Lack of standards to 
certify the element 

0.886 3 3.04 1.505 3 0.652 
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Section / 
Question 

Variables 

Cronbach’s 
alpha if 

item 
deleted 

Median Mean 
Standard 
Deviation 

Rank 

Kruskal-
Wallis 
H test 

p-value 

C18 Lack of the original 
drawings 

0.881 5 3.76 1.477 8 0.130 

C19 Lack of the original design 
calculations 

0.885 5 3.81 1.469 12 0.351 

C20 Lack of earlier certificates 
(inspection, material, etc.) 

0.883 4.5 3.72 1.465 7 0.273 

C21 Lack of traceability of the 
element 

0.882 5 3.88 1.433 15 0.324 

C25 The potential risk 
associated with the 
structural integrity 

0.886 4 3.43 1.276 4 0.090 

C26 The potential risk of 
damage to the machinery 
(nails in timber, etc.) 

0.885 4 3.79 1.113 11 0.572 

C27 A potential problem with 
collateral warranties 

0.888 4 3.97 1.162 17 0.167 

C28 Presence of hazardous, 
banned or contaminating 
coatings 

0.885 4 3.6 1.241 6 0.875 

        

 Section D       

D Other factors affecting 
the reusability of the 

structural element 

      

 Overall Cronbach’s alpha 
for Section D = 

0.847 

      

        

D18 Presence of fire protection 
on the element 

0.820 3 2.72 1.129 5 0.325 

D19 Changes in the design 
codes (BS codes to 
Eurocodes, etc.) 

0.843 3 2.63 1.106 2 0.552 

D21 CE marking 0.814 3 2.64 1.104 3 0.884 

D22 Matching the original 
design with the 
dimensions of the reused 
element 

0.822 3 2.53 1.138 1 0.282 

D23 Matching the original 
design with the strength 
of the reused element 

0.795 3 2.71 1.261 4 0.761 

D24 Other design challenges 
with the reused element 

0.836 3 2.79 1.100 6 0.341 

a Since the Cronbach’s alpha value increases negligibly, this variable will be used for model 
development. 
b At least three variables are required to calculate this value. 
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Table 4.6 Preliminary statistical analysis of the survey: ECO dataset 

Section / 
Question 

Variables 

Cronbach’s 
alpha if 

item 
deleted 

Median Mean 
Standard 
Deviation 

Rank 
Kruskal-
Wallis 
H test 

        

 Section C       

C Factors affecting the 
reusability of the 

structural element 

      

 Cronbach’s alpha 
cannot be calculated 

because only one 
variable exists 

      

        

C24 Potential financial 
risks 

N/Aa 4 4.01 1.132 1 0.419 

        

 Section D       

D Other factors 
affecting the 

reusability of the 
structural element 

      

 Overall Cronbach’s 
alpha for Section D = 

0.916 

      

        

D1 The purchasing price 0.927b 4 3.68 1.265 1 0.684 

D2 Cost of insurance 0.907 3 2.69 0.959 2 0.664 

D3 Cost of testing 0.910 3 2.58 1.058 1 0.615 

D4 Cost of refurbishment 
(sandblasting, 
treatment, etc.) 

0.905 3 2.81 1.043 4 0.746 

D5 Cost of design with 
the reused element 

0.903 3 2.82 1.079 5 0.523 

D6 Storage cost 0.903 3 2.78 1.213 3 0.634 

D7 Transportation cost 0.906 3 2.82 1.179 6 0.828 

D8 Cost of labour 0.910 3 2.94 1.112 10 0.448 

D9 Cost of fabrication 0.904 3 2.89 1.082 9 0.459 

D10 Cash flow (need to 
purchase the element 
early, etc.) 

0.908 3 2.86 1.154 8 0.727 

D25 Sourcing/procurement 
process 

0.903 3 2.83 1.187 7 0.931 

a At least three variables are required to calculate this value. 
b Since the Cronbach’s alpha value increases negligibly, this variable will be used for model 
development. 
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Table 4.7 Preliminary statistical analysis of the survey: SOC dataset 

Section / 
Question 

Variables 

Cronbach’s 
alpha if 

item 
deleted 

Median Mean 
Standard 
Deviation 

Rank 
Kruskal-
Wallis H 

test 

        

 Section C       

C Factors affecting 
the reusability of 

the structural 
element 

      

 Overall Cronbach’s 
alpha for Section C 

= 
0.857 

      

        

C22 Potential liability 
risks 

N/Aa 3 3.24 1.399 1 0.572 

C23 Potential health and 
safety risks 

N/Aa 4 3.81 1.274 2 0.816 

        

 Section D       

D Other factors 
affecting the 

reusability of the 
structural element 

      

 Overall Cronbach’s 
alpha for Section D 

= 
0.899 

      

        

D11 Perception of the 
client/top 
management team 
about the element 

0.884 4 3.46 1.162 1 0.955 

D12 Perception of the 
designers about the 
element 

0.879 4 3.36 1.248 3 0.322 

D13 Perception of the 
builders/contractors 
about the element 

0.877 3 3.10 1.302 5 0.595 

D14 Perception of the 
end users (when it 
is not the client) 
about the element 

0.880 4 3.44 1.433 2 0.414 

D15 Perception of the 
stockiest about the 
element 

0.891 3 2.71 0.985 2 0.797 
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Section / 
Question 

Variables 

Cronbach’s 
alpha if 

item 
deleted 

Median Mean 
Standard 
Deviation 

Rank 
Kruskal-
Wallis H 

test 

D16 Perception of the 
regulatory 
authorities about 
the element 

0.894 3 2.97 1.150 3 0.638 

D17 Visual appearance 0.887 3 3.32 1.309 4 0.157 

D20 Changes in the 
health and safety 
regulations (fire, 
etc.) 

0.895 3 2.65 0.981 1 0.434 

a At least three variables are required to calculate this value. 

 

4.12 Chapter summary 

Using the results of the review of the literature (including a systematic review, see Chapter 2), 

a self-completed online questionnaire was developed, pilot tested and shared with the 

professionals with reuse experience to collect the data necessary to fulfil the aim of this 

research. Since this study seeks the experts’ opinions to identify the reusability factors, it 

followed the purposive sampling technique in choosing the professionals because there is no 

way to have access to all the population to perform probability sampling. Therefore, to develop 

a sampling frame, the list of top 100 demolition companies worldwide along with the list of 

construction companies experienced in deconstruction and reuse was used to locate the 

experts with reuse experience. To do so, companies’ website and LinkedIn were employed, and 

all the located experts were contacted through email or LinkedIn direct messaging service. 

Moreover, to facilitate the sampling technique and to access those who are not reachable using 

the internet, companies’ websites, or LinkedIn, the snowballing technique was used as well. In 

total, 481 questionnaires were sent, and 90 responses were received, yielding a response rate 

of 18.7%. After the evaluation of the responses, 72 valid questionnaires were identified and 

used for a preliminary statistical analysis. 

Since both above techniques fall under non-probability sampling, there might be a concern that 

the results of this study cannot be generalised. However, because the unit of analysis and the 

unit of generalisation are the structural elements of a building, this concern is not valid. It is 

because the generalisations happen at the elements’ level, and not the experts’ level. 

Moreover, while there might be a small level of subjectivity in answering the questions by the 

respondents, the variation in responses would be negligible because the respondents are asked 

to provide facts about a structural element they reused in the past. Nevertheless, checking the 



97 
 

reliability of the responses using Cronbach’s alpha value revealed high consistency and 

reliability of the received questionnaires.  
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Chapter 5 – Predictive models 

5.1 Chapter introduction 

This chapter discusses all steps taken to develop the BSE-RPMs based on the results of the 

quantitative study elaborated in the previous chapter. This chapter focuses on the third and 

fourth objectives of this study (Section 1.6). Sections 5.2 discusses the process of oversampling 

using the Synthetic Minority Oversampling Technique (SMOTE) to address the class-imbalances 

problem in the dependent variables (responses) of the TEC, ECO, and SOC datasets. Section 5.3 

describes the process of dividing the datasets into training and testing sets and the justifications 

behind it. Section 5.4 deals with the third objective of this project and focuses on determining 

the best combination of the identified factors to develop the BSE-RPM. And Section 5.5 applies 

the results of Sections 5.2 to 5.4 and focuses on the development of the predictive models using 

various powerful machine learning methods employing the software ‘R’ (version 4.0.2) (R Core 

Team 2020). Therefore, Section 5.5 partially fulfils the fourth objective of this study (Section 

1.6), whereas, the selection of the best-practice BSE-RPM is performed in Chapter 6. Finally, 

Section 5.6 summarises this chapter. 

5.1.1 Justification for using supervised machine learning techniques 

Statistical analysis of collected data in Chapter 4 provides an overview of the most significant 

factors affecting the reuse of load-bearing building components. However, to determine the 

reusability of these elements based on the affecting variables, which is the aim of this research 

(Section 1.6), it is essential to learn from the collected data. The intention of learning from data 

is to uncover the relationships among the affecting variables, “and understand what data says” 

(Hastie, Tibshirani, and Friedman 2009). The collection of data analysis methods that 

automatically learn from data is called machine learning (Murphy 2012). According to Murphy 

(2012), machine learning is defined as “a set of methods that can automatically detect patterns 

in data, and then use the uncovered patterns to predict future data, or to perform other kinds 

of decision making under uncertainty (such as planning how to collect more data!).” Since this 

research aims to predict the reusability of the load-bearing building components given factors 

affecting reuse, it adopts the prediction aspect of machine learning, which is known as 

supervised machine learning techniques (Hastie, Tibshirani, and Friedman 2009, Murphy 2012). 
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5.2 Oversampling 

This study comprises three datasets, and each dataset has a unique dependent variable 

(response). The responses for the TEC, ECO, and SOC datasets are the technical reusability (E1), 

economic reusability (E2), and social reusability (E3), respectively (please refer to Appendix C, 

Section C.2, for a copy of the questionnaire used in this research). E1, E2, and E3 are based on 

a five-point Likert scale (Table 4.1). This study aims to develop a model to predict the reusability 

of the structural elements of a building. Therefore, following the approach adopted by (Jang et 

al. 2015), the responses were converted to a binary scale with 0, non-reusable, and 1, reusable. 

The responses with Likert scale values of 1 to 3 are considered non-reusable (represented by 

0), and the remaining responses (Likert scale values 4 and 5) are identified as reusable 

(converted to 1). Consequently, the dependent variables are transformed from multi-scale 

responses to binary responses. While this conversion simplifies the interpretation of the results 

of the predictive models, the proposed methodology in this research can be conveniently 

generalised to multi-class response variables. Instead of relying on five points to decide if a 

component is reusable or not, the stakeholders have a straightforward basis for deciding on the 

fate of a structural element. Likewise, for a supervised machine learning method to perform 

effectively with a multi-class response, a large sample size is required. However, since the reuse 

of the load-bearing components of a building is not a widespread practice, collecting more data 

was not possible. Moreover, the uncertainties in the assessment of the reusability factors 

(features or independent variables), which is based on expert opinion, limits the effectiveness 

of a multi-scale response. 

After converting the multi-scale responses to binary values, it was observed that the new binary 

classes were considerably imbalanced. In the case of the TEC dataset, 24 elements are non-

reusable, and 48 are reusable. In the case of the ECO dataset, this imbalance changes to 22 non-

reusable and 50 reusable components. And in the case of the SOC dataset, these figures are 16 

and 56 for non-reusable and reusable elements, respectively. From the above figures, it is 

evident that the datasets are unbalanced and contain more reusable components than non-

reusable elements. Consequently, after the dataset is divided into training and testing sets, due 

to the different number of reusable and non-reusable elements in the original observations, the 

training and testing sets will also have imbalanced responses. It can be argued that the initial 

data collection could be continued to have more balanced responses; however, due to the time 

constraints, as well as the limitations explained in Sections 4.3 and 4.7, this option was not 

practical. Moreover, even if the data collection continues, since the respondents are free to 

choose any structural component with any level of reusability to complete the questionnaire, it 
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is impossible to guess the outcome of the new survey, which might end up with a similar 

imbalanced dataset. 

According to (Torgo 2016, He and Ma 2013, Fernández et al. 2018), imbalanced datasets 

negatively affect predictive methods during model development and performance assessment 

stages. One of the metrics used to assess the performance of a machine learning method is its 

accuracy in predicting correct answers (Chawla et al. 2002). When one class is dominant (due 

to the imbalance in the dataset), the predictions are inherently biased towards that, yielding an 

unrealistic accuracy (Torgo 2016). It is because the predictive methods look for the rules and 

regulations in a dataset, and imbalanced datasets make this task difficult (Torgo 2016). 

In supervised machine learning, different methods can be used to address the issues caused by 

an imbalanced dataset (He and Ma 2013, Fernández et al. 2018). These include cost-sensitive 

learning (manipulating the threshold values, etc.), pre-processing the imbalanced dataset 

(oversampling, under-sampling, SMOTE, etc.), algorithm level approaches (active learning, 

kernel modifications, etc.), and ensemble learning (cost-sensitive boosting, etc.) (Fernández et 

al. 2018). It should be noted that according to Fernández et al. (2018), there is no best strategy 

to deal with the issues caused by imbalanced datasets. For a comprehensive discussion over 

various methods to handle imbalanced datasets, please refer to (Fernández et al. 2018). 

In this study, the oversampling technique developed by Chawla et al. (2002) is employed to pre-

process the datasets and minimise the class imbalance impact. This technique is known as 

Synthetic Minority Over-sampling Technique (SMOTE). Unlike other oversampling techniques 

that rely on replacement in data space (Japkowicz 2000), SMOTE creates synthetic examples of 

the minority class in feature space using the k-nearest neighbours (KNN) algorithm (with the 

default value for k=5) without duplicating any data (Chawla et al. 2002, Bischl et al. 2016). 

In this study, following the approach adopted by (Agrawal et al. 2018, Naseriparsa and Kashani 

2013, Taft et al. 2009, Al-Bahrani, Agrawal, and Choudhary 2013), the SMOTE was performed 

on the TEC, ECO, and SOC datasets. The results of oversampling on these datasets are presented 

in Table 5.1. A comparison between the oversampled and the original datasets reveals the 

following. For the TEC dataset, the imbalance has improved from 34% (non-reusable) and 66% 

(reusable) to 50% (non-reusable) and 50% (reusable). For the ECO dataset, the imbalance has 

improved from 31% (non-reusable) and 69% (reusable) to 51% (non-reusable) and 49% 

(reusable). For the SOC dataset, the imbalance has improved from 23% (non-reusable) and 77% 

(reusable) to 53% (non-reusable) and 47% (reusable). Before developing the predictive models, 
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the oversampled datasets are split into training and testing data to assess the initial 

performance of the developed fits (Section 5.3). 

Table 5.1 Oversampled datasets 

 TEC dataset ECO dataset SOC dataset 

Non-reusable (0) 96 93 59 

Reusable (1) 96 91 53 

Total number of elements 192 184 112 

 

In this study, R package mlr (Bischl et al. 2016) is used to perform SMOTE-NC (Synthetic Minority 

Oversampling Technique for Nominal and Continuous) (Chawla et al. 2002) for each dataset 

separately. The script used to perform oversampling is available in Appendix E (Script E.2). 

5.3 Training and testing datasets 

The accuracy and interpretability of any machine learning model play an important role in 

choosing the best predictive model for the study at hand (James et al. 2017). The above two 

metrics are also used in Chapter 6 to further examine the thirteen BSE-RPMs that are developed 

in Chapter 5. In general, the machine learning methods are assessed in terms of their capability 

in predicting the responses to previously unseen data (test or out-of-sample data) (James et al. 

2017). In the current research, and as a preliminary metric, the validation set approach is 

employed for determining the performance of the developed predictive models by developing 

training and testing data for the TEC, ECO, and SOC datasets separately. The available data in 

each oversampled dataset from Section 5.2 is divided on a 70/30 basis considering 70% of the 

dataset for the training purpose and 30% for the testing purpose. Script E.3 (Appendix E) is used 

to perform the data split using the caTools package in R (Tuszynski 2020). For further details 

about the validation set approach, please refer to Section 6.2 and Chapter 5 of James et al. 

(2017). 

Table 5.2 shows the result of splitting the datasets into training and testing sets. However, 

before developing the predictive models, the available features need to be assessed to choose 

the best combination of the independent variables to generate the BSE-RPMs (Section 5.4). 

Table 5.2 Split of the oversampled data into training and testing sets 

 
TEC dataset ECO dataset SOC dataset 

Train Test Total Train Test Total Train Test Total 

Non-reusable (0) 67 29 96 65 28 93 41 18 59 

Reusable (1) 67 29 96 64 27 91 37 16 53 

Total number of 
elements 

134 58 192 129 55 184 78 34 112 
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5.4 Feature selection 

Feature selection is a vital stage in supervised machine learning (Torgo 2016). It includes 

selecting a subset of features (independent variables) in a dataset for efficient and optimum 

analysis of the problem at hand (Torgo 2016, Ding and Peng 2003). In supervised machine 

learning, there is always a chance that some variables are irrelevant to the response or 

redundant. In such cases, their presence negatively affects the performance of a predictive 

model. Proper feature selection results in the development of predictive models that perform 

optimally on both seen and unseen data. Therefore, feature selection focuses on identifying 

relevant features and discards irrelevant or redundant independent variables (Urbanowicz et 

al. 2018). This process fulfils the third objective of this research (Section 1.6), which is selecting 

the best combination of the identified factors to develop the BSE-RPMs. It is noteworthy that 

in the process of selecting variables, only the training datasets (Table 5.2) are considered to 

avoid inaccurate estimates of the test errors (James et al. 2017, Urbanowicz et al. 2018). 

There are three methods for selecting a subset of features (Guyon et al. 2006, Saeys, Inza, and 

Larrañaga 2007). Filter methods (or simply filters) use statistical properties of the features (like 

correlation coefficients, F-test, T-test, etc.) or information-theory based measures (such as 

mutual information, interaction information, etc.) to rank features based on their relevance to 

the response and other features (Torgo 2016, Guyon et al. 2006, McGill 1954, Iguyon and 

Elisseeff 2003). These methods can be grouped into univariate and multivariate filter methods. 

Univariate filter methods rank features only based on their relevance to the response, whereas 

multivariate filter methods consider the interaction between features as well (Guyon et al. 

2006). 

Wrappers are the second method for feature selection (Torgo 2016). In this group of 

techniques, a machine learning model is used to score subsets of features based on the 

predictive power of the method. The process of feature selection can be categorised into 

forward selection, backward elimination, and mixed selection (James et al. 2017). Forward 

selection methods start modelling with zero predictors (a base model), select features step-by-

step and evaluate the performance. Whereas, backward feature elimination methods start with 

the complete set of independent variables and look for an optimum subset of variables with 

the best performance through stepwise elimination of non-informative features (James et al. 

2017). Wrappers use cross-validation to optimise the performance of the learning method to 

select the optimum subset of variables (Guyon et al. 2006).  
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A third approach that is sometimes grouped with wrappers (Torgo 2016) is the embedded or 

intrinsic method (Guyon et al. 2006, Kuhn and Johnson 2020). Similar to wrappers that select a 

subset of variables based on a learning model, an embedded method embeds this process into 

its predictive model development (Guyon et al. 2006). For instance, if the variable importance 

measure of the random forest method is used to improve the performance of a random forest 

model, then it is an embedded method. Whereas, if this capacity is used to select features and 

develop predictive models with methods other than the random forest, then it is a wrapper 

method. In this research, the process of feature selection is not integrated with the model 

developments, so the embedded methods are not used. 

For the TEC dataset, feature selection is performed at three stages. At stage 1, features are 

ranked using various methods embedded in the mlr package in R (filter methods) (Bischl et al. 

2016). At stage 2, the “Boruta” method is used to select a subset of features (a backward 

variable elimination wrapper technique) (Kursa and Rudnicki 2010). This method will be 

explained in detail in Section 5.4.2. At stage 3, using recursive feature elimination (RFE) methods 

embedded in the caret package, subsets of variables are selected (wrapper methods with 

repeated cross-validation) (Kuhn 2008). Eventually, the results of the above three stages are 

compared to determine the final subset of variables for model development in the TEC dataset. 

In the case of the ECO and SOC datasets, the process of variable selection is limited to the first 

two stages used for the TEC dataset (see the previous paragraph). This decision was made based 

on the total number of variables in each dataset. The TEC dataset has a considerable number 

of thirty-nine predictors, whereas the ECO and SOC datasets comprise only twelve and ten 

features, respectively. 

Section 5.4.1 explains the first stage of feature selection (used for the TEC, ECO, and SOC 

datasets). Section 5.4.2 discusses the Boruta method (used for the TEC, ECO, and SOC datasets). 

And Section 5.4.3 introduces the RFE method that is only used for the TEC dataset. 

5.4.1 Features ranking methods 

In this research, ten methods are used to rank features in each dataset using the integrated 

filter methods in the mlr package (Bischl et al. 2016). Each of these methods is briefly introduced 

in the following sub-sections. 

5.4.1.1 cForest importance (cF) 

This method uses the permutation accuracy importance measure to determine the importance 

of variables using the cforest function in the party package (Strobl et al. 2007, Hothorn, Hornik, 
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and Zeileis 2006). In random forests, an ensemble of classification trees is generated from the 

original sample (training dataset). This is done either by bootstrapping (drawing several samples 

with replacement) or subsampling without replacement. Random forests assign a small random 

of features to each decision tree. In this method, the value of an independent variable in a 

decision tree is randomly permuted to separate its correlation from the dependent variable. It 

is the impact of the permuted variable on the prediction accuracy of the model that determines 

its importance (Strobl et al. 2007, 2008). 

5.4.1.2 Chi-squared (CHIS) 

The chi-squared (CHIS) method is a univariate filter that ranks features based on the strength 

of the association between the independent variables and the response. This correlation-based 

filter performs the feature ranking by evaluating Pearson’s χ² (Guyon et al. 2006). This method 

has a low accuracy because it makes simplistic assumptions about feature independence 

(Guyon et al. 2006, Saeys, Inza, and Larrañaga 2007). 

5.4.1.3 Information gain (IG) 

The information gain (IG) method is an entropy-based metric that quantifies the expected 

amount of information held in a random feature on the response. Information gain has two 

entropy measures. One is the class entropy, which is the information available on the response 

classes, and the other one is the conditional class entropy, which is the information available 

on the response classes given the values of a random feature. Information gain is calculated by 

subtracting the latter from the former (Torgo 2016, Cover and Thomas 2005). In this study, the 

information gain measure of the independent variables are used to rank features in each of the 

datasets through packages FSelector and mlr (Bischl et al. 2016, Romanski and Kotthoff 2018).  

5.4.1.4 Gain ratio (GR) 

This method is a variation of the information gain of a feature. This method has an additional 

entropy measure, which is the feature entropy. The gain ratio (GR) of an independent variable 

is determined by dividing the information gain of the feature by its entropy (Torgo 2016). In this 

study, the gain ratio of the independent variables are used to rank features in each of the 

datasets through packages FSelector and mlr (Bischl et al. 2016, Romanski and Kotthoff 2018). 

5.4.1.5 Kruskal test (KT) 

Similar to the chi-squared method, the Kruskal test (KT) is a univariate filter, as well (Saeys, Inza, 

and Larrañaga 2007). It is a non-parametric test and evaluates if the values of a feature affect 

the reusability of an element (Kruskal 1952, Kruskal and Wallis 1952, Ruxton and Beauchamp 
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2008). The null hypothesis is that the distribution of the values of a feature is the same for the 

response classes, based on a median rank. If the p-value is significant, it rejects the null 

hypothesis. In this method, features are ranked based on the significance of their p-values. The 

closer the p-value to zero, the higher the rank of a feature. 

5.4.1.6 Minimum-redundancy-maximum-relevance (MRMR) 

MRMR is a multivariate filter method developed by Ding and Peng (2003). This method provides 

a feature set with the highest relevance to the response and the lowest collinearity among the 

independent variables. Therefore, the identified feature set is a true representative of the 

original feature space covered by the dataset. This property improves the generalisability of the 

selected feature set, and it results in the selection of a smaller number of independent variables 

with the same performance. 

5.4.1.7 oneR 

One rule (oneR) method is a univariate filter that ranks features according to their classification 

error rate. It works by developing a base model by assigning the most frequent class of the 

response as the one rule to each of the values of a feature. This model is then used to predict 

the class of the response for each feature. The feature with the lowest error rate ranks the 

highest, followed by features with higher error rates (Jamjoom 2020). 

5.4.1.8 Random forest (RF) 

This method is like the cForest importance measure (subsection 5.4.1.1). However, it uses a 

different measure to assess the importance of a feature. This method uses the Gini importance 

measure, which is the outcome of the Gini impurity index used in the RandomForest package 

(Nembrini, König, and Wright 2018, Liaw and Wiener 2002, Breiman et al. 2017). Moreover, the 

method develops decorrelated trees, which result in a considerable decrease in the variance of 

the model compared to a single decision tree. A further explanation of the RF method is 

available in Section 5.5.1.7. 

5.4.1.9 Relief 

Relief is a non-parametric multivariate filter method that ranks individual features using an 

approach based on the K-Nearest-neighbour (KNN) method (Guyon et al. 2006, Urbanowicz et 

al. 2018, Kira and Rendell 1992). In this study, the RReliefF filter through packages FSelector and 

mlr is used to rank features (Bischl et al. 2016, Romanski and Kotthoff 2018). According to 

Urbanowicz et al. (2018), this method ranks features in the context of other features. However, 
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it does not remove redundant independent variables while ranking the features (Urbanowicz et 

al. 2018). A further explanation of the KNN method is available in Section 5.5.1.1. 

5.4.1.10 Symmetrical uncertainty (SU) 

Symmetrical uncertainty (SU) is an entropy-based measure and is a variation of the gain ratio 

method. This method has one additional entropy measure in its denominator, which is the class 

entropy. The symmetrical uncertainty of an independent variable is determined by dividing 

twice the information gain of the feature by the sum of its entropy and the class entropy 

(Sarhrouni, Hammouch, and Aboutajdine 2012). In this study, the symmetrical uncertainty of 

the independent variables are used to rank features in each of the datasets through packages 

FSelector and mlr (Bischl et al. 2016, Romanski and Kotthoff 2018). 

5.4.1.11 Implementation of the features ranking methods 

A filter method produces a score for each of the features in the datasets. The higher the score 

of a predictor, the more important is the variable according to the selected filter method. 

However, the raw values produced by different filters are not having the same scale and cannot 

be compared. Therefore, after identifying the raw scores of the features using a filter method, 

these values are converted into percentage values by dividing them by the sum of the quantities 

of all variables. These percentages represent the level of importance of each feature in a ranking 

method (filter) and provide a baseline for comparing the results of different techniques. For the 

final ranking, the percentage values of all ten filter methods for each independent variable are 

summed up together to create a new metric. This new metric is then used to rank the features 

in each dataset. Tables 5.3 to 5.6 are the results of the feature ranking methods for the TEC, 

ECO, and SOC datasets, respectively.  

The listed packages in Script E.4 (Appendix E) were initially installed to perform feature ranking 

methods discussed in this section. 

In the next stage, Script E.5 (Appendix E) was used to determine the rank of the features in each 

dataset based on the discussion in Section 5.4.1. 
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Table 5.3 Raw scores for the features’ ranks in the TEC dataset 

Var.1 cF CHIS IG GR KT MRMR oneR RF Relief SU 

B2 0.000 0.157 0.013 0.157 0.117 0.795 0.343 4.455 0.060 0.021 

B3 0.009 0.323 0.055 0.323 5.532 0.923 0.440 13.872 0.180 0.048 

B4 0.001 0.306 0.060 0.306 0.095 0.949 0.366 2.985 0.060 0.106 

B5 0.013 0.337 0.060 0.337 0.217 0.821 0.448 12.742 0.040 0.056 

B6 0.001 0.113 0.006 0.113 0.831 0.641 0.351 3.955 0.100 0.009 
B7 0.003 0.000 0.000 0.000 4.248 0.462 0.306 6.993 0.080 0.000 

B8 0.007 0.000 0.000 0.000 6.394 0.744 0.306 8.434 0.025 0.000 

B9 0.002 0.000 0.000 0.000 0.455 0.333 0.306 7.989 0.050 0.000 

C1 0.004 0.000 0.000 0.000 0.000 0.256 0.306 10.286 0.045 0.000 

C2 0.002 0.000 0.000 0.000 2.737 0.385 0.306 6.197 0.015 0.000 

C3 0.002 0.000 0.000 0.000 2.444 0.410 0.306 6.641 -0.004 0.000 

C4 0.002 0.000 0.000 0.000 0.309 0.359 0.306 4.904 -0.014 0.000 
C5 0.002 0.000 0.000 0.000 1.280 0.718 0.306 6.735 0.090 0.000 

C6 0.005 0.000 0.000 0.000 4.125 0.538 0.306 8.740 0.035 0.000 

C7 0.004 0.000 0.000 0.000 5.590 0.231 0.306 5.531 0.110 0.000 

C8 0.000 0.000 0.000 0.000 0.343 0.667 0.306 3.383 0.027 0.000 

C9 0.004 0.000 0.000 0.000 0.955 0.103 0.306 8.619 0.125 0.000 

C10 0.005 0.000 0.000 0.000 3.227 0.487 0.306 8.170 0.045 0.000 

C11 0.001 0.000 0.000 0.000 1.209 0.308 0.306 3.406 0.015 0.000 
C12 0.003 0.000 0.000 0.000 0.109 0.846 0.306 9.709 0.030 0.000 

C13 0.001 0.000 0.000 0.000 2.163 0.897 0.306 4.065 0.050 0.000 

C14 0.002 0.000 0.000 0.000 4.235 0.564 0.306 6.185 0.107 0.000 

C15 0.003 0.000 0.000 0.000 2.300 0.590 0.306 6.997 0.033 0.000 

C16 0.014 0.377 0.076 0.377 12.895 0.692 0.470 12.758 0.115 0.120 

C17 0.011 0.000 0.000 0.000 9.501 0.615 0.306 9.197 0.095 0.000 

C18 0.003 0.000 0.000 0.000 2.974 0.282 0.306 7.763 0.025 0.000 

C19 0.006 0.000 0.000 0.000 5.455 0.077 0.306 7.639 0.160 0.000 
C20 0.005 0.000 0.000 0.000 5.927 0.179 0.306 9.136 0.130 0.000 

C21 0.001 0.000 0.000 0.000 1.995 0.026 0.306 5.994 0.075 0.000 

C25 0.013 0.357 0.067 0.357 16.205 0.872 0.463 10.233 -0.009 0.106 

C26 0.002 0.000 0.000 0.000 4.646 0.128 0.306 7.265 -0.039 0.000 

C27 0.014 0.000 0.000 0.000 9.680 0.513 0.306 8.198 0.045 0.000 

C28 0.040 0.413 0.090 0.413 29.194 1.000 0.500 19.762 0.130 0.135 

D18 0.001 0.000 0.000 0.000 0.127 0.436 0.306 5.802 0.020 0.000 
D19 0.002 0.000 0.000 0.000 0.991 0.051 0.306 6.945 0.050 0.000 

D21 0.000 0.000 0.000 0.000 0.235 0.154 0.306 4.388 0.065 0.000 

D22 0.003 0.000 0.000 0.000 0.325 0.205 0.306 6.334 0.090 0.000 

D23 0.003 0.335 0.063 0.335 2.318 0.769 0.425 10.420 0.110 0.114 

D24 0.011 0.381 0.097 0.381 10.517 0.974 0.433 13.438 0.055 0.181 
1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 
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Table 5.4 Percentages, and the  final ranking of features in the TEC dataset 

Var.1 cF CHIS IG GR KT MRMR oneR RF Relief SU 
% sum 
(new 

metric) 

Final 
rank 

B2 0.0% 5.1% 2.2% 5.1% 0.1% 4.0% 2.6% 1.5% 2.5% 2.3% 25.2% 9 

B3 4.6% 10.4% 9.3% 10.4% 3.4% 4.6% 3.4% 4.5% 7.4% 5.4% 63.5% 5 
B4 0.3% 9.9% 10.3% 9.9% 0.1% 4.7% 2.8% 1.0% 2.5% 11.8% 53.2% 8 

B5 6.5% 10.9% 10.2% 10.9% 0.1% 4.1% 3.4% 4.2% 1.7% 6.3% 58.1% 7 

B6 0.4% 3.6% 1.1% 3.6% 0.5% 3.2% 2.7% 1.3% 4.1% 1.0% 21.6% 12 

B7 1.4% 0.0% 0.0% 0.0% 2.6% 2.3% 2.3% 2.3% 3.3% 0.0% 14.3% 19 

B8 3.5% 0.0% 0.0% 0.0% 3.9% 3.7% 2.3% 2.8% 1.0% 0.0% 17.3% 15 

B9 0.9% 0.0% 0.0% 0.0% 0.3% 1.7% 2.3% 2.6% 2.1% 0.0% 9.9% 29 

C1 1.9% 0.0% 0.0% 0.0% 0.0% 1.3% 2.3% 3.4% 1.9% 0.0% 10.7% 27 
C2 0.7% 0.0% 0.0% 0.0% 1.7% 1.9% 2.3% 2.0% 0.6% 0.0% 9.3% 30 

C3 0.9% 0.0% 0.0% 0.0% 1.5% 2.1% 2.3% 2.2% -0.2% 0.0% 8.7% 33 

C4 0.9% 0.0% 0.0% 0.0% 0.2% 1.8% 2.3% 1.6% -0.6% 0.0% 6.2% 39 

C5 1.1% 0.0% 0.0% 0.0% 0.8% 3.6% 2.3% 2.2% 3.7% 0.0% 13.8% 20 

C6 2.5% 0.0% 0.0% 0.0% 2.5% 2.7% 2.3% 2.9% 1.4% 0.0% 14.4% 18 

C7 2.0% 0.0% 0.0% 0.0% 3.5% 1.2% 2.3% 1.8% 4.6% 0.0% 15.3% 16 

C8 0.0% 0.0% 0.0% 0.0% 0.2% 3.3% 2.3% 1.1% 1.1% 0.0% 8.0% 34 
C9 1.8% 0.0% 0.0% 0.0% 0.6% 0.5% 2.3% 2.8% 5.2% 0.0% 13.2% 22 

C10 2.3% 0.0% 0.0% 0.0% 2.0% 2.4% 2.3% 2.7% 1.9% 0.0% 13.6% 21 

C11 0.4% 0.0% 0.0% 0.0% 0.7% 1.5% 2.3% 1.1% 0.6% 0.0% 6.8% 38 

C12 1.4% 0.0% 0.0% 0.0% 0.1% 4.2% 2.3% 3.2% 1.2% 0.0% 12.4% 23 

C13 0.3% 0.0% 0.0% 0.0% 1.3% 4.5% 2.3% 1.3% 2.1% 0.0% 11.8% 24 

C14 0.9% 0.0% 0.0% 0.0% 2.6% 2.8% 2.3% 2.0% 4.4% 0.0% 15.1% 17 

C15 1.5% 0.0% 0.0% 0.0% 1.4% 2.9% 2.3% 2.3% 1.4% 0.0% 11.8% 25 
C16 6.7% 12.2% 12.9% 12.2% 8.0% 3.5% 3.6% 4.2% 4.8% 13.4% 81.4% 3 

C17 5.3% 0.0% 0.0% 0.0% 5.9% 3.1% 2.3% 3.0% 3.9% 0.0% 23.6% 10 

C18 1.7% 0.0% 0.0% 0.0% 1.8% 1.4% 2.3% 2.5% 1.0% 0.0% 10.8% 26 

C19 2.9% 0.0% 0.0% 0.0% 3.4% 0.4% 2.3% 2.5% 6.6% 0.0% 18.1% 13 

C20 2.5% 0.0% 0.0% 0.0% 3.7% 0.9% 2.3% 3.0% 5.4% 0.0% 17.7% 14 

C21 0.5% 0.0% 0.0% 0.0% 1.2% 0.1% 2.3% 2.0% 3.1% 0.0% 9.3% 31 

C25 6.6% 11.5% 11.4% 11.5% 10.0% 4.4% 3.5% 3.3% -0.4% 11.8% 73.7% 4 

C26 0.8% 0.0% 0.0% 0.0% 2.9% 0.6% 2.3% 2.4% -1.7% 0.0% 7.4% 36 
C27 7.0% 0.0% 0.0% 0.0% 6.0% 2.6% 2.3% 2.7% 1.9% 0.0% 22.4% 11 

C28 19.9% 13.3% 15.3% 13.3% 18.0% 5.0% 3.8% 6.5% 5.4% 15.1% 115.6% 1 

D18 0.4% 0.0% 0.0% 0.0% 0.1% 2.2% 2.3% 1.9% 0.8% 0.0% 7.7% 35 

D19 1.2% 0.0% 0.0% 0.0% 0.6% 0.3% 2.3% 2.3% 2.1% 0.0% 8.7% 32 

D21 -0.1% 0.0% 0.0% 0.0% 0.1% 0.8% 2.3% 1.4% 2.7% 0.0% 7.3% 37 

D22 1.3% 0.0% 0.0% 0.0% 0.2% 1.0% 2.3% 2.1% 3.7% 0.0% 10.7% 28 

D23 1.5% 10.8% 10.8% 10.8% 1.4% 3.8% 3.2% 3.4% 4.6% 12.7% 63.1% 6 
D24 5.5% 12.3% 16.6% 12.3% 6.5% 4.9% 3.3% 4.4% 2.3% 20.2% 88.2% 2 

1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 
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Table 5.5 Raw scores, percentages, and the final ranking of features in the ECO dataset 

Var.1 Value cF CHIS IG GR KT MRMR oneR RF Relief SU 
% sum 
(new 

metric) 

Final 
rank 

C24 
raw 0.064 0.422 0.093 0.422 21.777 0.917 0.496 20.973 0.120 0.136 

216.2 1 
% 30.6 27.1 28.8 27.1 16.3 14.1 11.8 12.4 20.9 27.2 

D1 
raw 0.033 0.000 0.000 0.000 7.650 0.833 0.295 21.733 0.035 0.000 

60.1 5 
% 15.6 0.0 0.0 0.0 5.7 12.8 7.0 12.9 6.1 0.0 

D2 
raw 0.014 0.000 0.000 0.000 13.057 0.417 0.295 11.966 -0.014 0.000 

34.4 10 
% 6.7 0.0 0.0 0.0 9.8 6.4 7.0 7.1 -2.6 0.0 

D3 
raw 0.004 0.000 0.000 0.000 5.980 0.750 0.295 12.030 0.040 0.000 

39.2 8 
% 2.1 0.0 0.0 0.0 4.5 11.5 7.0 7.1 7.0 0.0 

D4 
raw 0.002 0.000 0.000 0.000 2.034 0.333 0.295 9.174 0.095 0.000 

36.4 9 
% 0.8 0.0 0.0 0.0 1.5 5.1 7.0 5.4 16.5 0.0 

D5 
raw 0.004 0.000 0.000 0.000 4.394 1.000 0.295 18.452 0.055 0.000 

47.9 6 
% 1.7 0.0 0.0 0.0 3.3 15.4 7.0 10.9 9.6 0.0 

D6 
raw 0.003 0.355 0.070 0.355 7.820 0.250 0.426 11.197 0.025 0.119 

123.4 4 
% 1.6 22.8 21.6 22.8 5.9 3.8 10.1 6.6 4.3 23.7 

D7 
raw 0.002 0.000 0.000 0.000 6.871 0.167 0.295 6.075 0.005 0.000 

20.0 12 
% 0.8 0.0 0.0 0.0 5.1 2.6 7.0 3.6 0.9 0.0 

D8 
raw 0.010 0.000 0.000 0.000 11.422 0.583 0.295 11.762 0.055 0.000 

45.7 7 
% 4.7 0.0 0.0 0.0 8.6 9.0 7.0 7.0 9.6 0.0 

D9 
raw 0.002 0.000 0.000 0.000 7.843 0.083 0.295 8.083 0.035 0.000 

26.2 11 
% 1.2 0.0 0.0 0.0 5.9 1.3 7.0 4.8 6.1 0.0 

D10 
raw 0.036 0.387 0.078 0.387 26.697 0.500 0.473 18.424 0.025 0.117 

168.6 3 
% 17.1 24.9 24.2 24.9 20.0 7.7 11.2 10.9 4.3 23.4 

D25 
raw 0.036 0.392 0.082 0.392 18.024 0.667 0.465 18.750 0.100 0.129 

181.9 2 
% 17.1 25.2 25.4 25.2 13.5 10.3 11.0 11.1 17.4 25.7 

1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 

 

Table 5.6 Raw scores, percentages, and the final ranking of features in the SOC dataset 

Var.1 Value cF CHIS IG GR KT MRMR oneR RF Relief SU 
% sum 
(new 

metric) 

Final 
rank 

C22 
raw 0.025 0.000 0.000 0.000 0.148 0.600 0.295 26.128 0.140 0.000 

75.0 5 
% 14.5 0.0 0.0 0.0 0.2 10.9 8.4 18.9 22.0 0.0 

C23 
raw 0.023 0.380 0.094 0.380 7.569 0.900 0.410 17.871 0.030 0.180 

160.6 3 
% 12.9 22.9 21.8 22.9 11.2 16.4 11.7 13.0 4.7 23.2 

D11 
raw 0.002 0.000 0.000 0.000 7.224 0.300 0.295 6.596 0.055 0.000 

39.0 8 
% 1.0 0.0 0.0 0.0 10.7 5.5 8.4 4.8 8.7 0.0 

D12 
raw 0.006 0.000 0.000 0.000 7.399 0.200 0.295 8.810 0.070 0.000 

43.8 7 
% 3.4 0.0 0.0 0.0 11.0 3.6 8.4 6.4 11.0 0.0 

D13 
raw 0.003 0.000 0.000 0.000 4.909 0.100 0.295 8.620 0.040 0.000 

31.8 10 
% 1.7 0.0 0.0 0.0 7.3 1.8 8.4 6.2 6.3 0.0 

D14 
raw 0.090 0.455 0.113 0.455 19.956 1.000 0.474 21.681 0.115 0.184 

250.9 1 
% 51.2 27.4 26.1 27.4 29.6 18.2 13.5 15.7 18.1 23.7 

D15 
raw 0.003 0.000 0.000 0.000 8.036 0.700 0.295 9.438 0.025 0.000 

45.5 6 
% 1.6 0.0 0.0 0.0 11.9 12.7 8.4 6.8 3.9 0.0 

D16 
raw 0.014 0.471 0.143 0.471 5.554 0.800 0.462 17.673 0.060 0.250 

187.9 2 
% 7.8 28.3 33.0 28.3 8.2 14.5 13.1 12.8 9.4 32.2 

D17 
raw 0.010 0.356 0.083 0.356 6.187 0.500 0.397 9.726 0.045 0.162 

132.5 4 
% 5.9 21.4 19.1 21.4 9.2 9.1 11.3 7.0 7.1 20.9 

D20 
raw 0.000 0.000 0.000 0.000 0.350 0.400 0.295 11.411 0.055 0.000 

33.0 9 
% -0.1 0.0 0.0 0.0 0.5 7.3 8.4 8.3 8.7 0.0 

1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 
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5.4.2 Feature selection using the Boruta method 

At this stage, the Boruta method through the Boruta package in R is used to identify relevant 

features in each of the datasets (Kursa and Rudnicki 2010). Filter methods mainly consider a 

direct correlation with the response as an essential step in feature selection. However, 

wrappers can find valuable features, even in the absence of such a correlation (Kursa and 

Rudnicki 2010). Unlike computationally inexpensive filter methods, wrappers use classifiers to 

rank features and take more time because they are more demanding (Kursa and Rudnicki 2010). 

Most of the wrapper methods use a random subset of features during variable selection. 

However, the Boruta method, which is a backward variable elimination wrapper, uses an all-

relevant feature selection method. It means that this method minimises the random selection 

of features (Kursa and Rudnicki 2010, Sarkar et al. 2020). 

The Boruta package uses a random forest classifier based on the RandomForest package in R 

(Kursa and Rudnicki 2010, Liaw and Wiener 2002). However, instead of using the Gini impurity 

index (Nembrini, König, and Wright 2018), it uses the permutation accuracy importance 

measure to determine the importance of variables (Kursa and Rudnicki 2010, Strobl et al. 2007). 

Initially, the original dataset is expanded by introducing a copy of all features in the dataset. 

Then, the values of the copied features are randomly manipulated to eliminate their correlation 

with the response. These shuffled independent variables are called shadows (Kursa and 

Rudnicki 2010). Next, the random forest classifier is applied to the extended dataset to gather 

the Z-statistics. The method then looks for the maximum Z-statistic among the shadow features 

(MZSF) and assigns a hit to the independent variables with higher z-score than the MZSF. If the 

importance of a feature is undecided, a two-sided test of equality with the MZSF will be 

performed. Features with z-scores considerably higher than MZSF are important (Confirmed), 

and those with significantly lower z-scores are unimportant (Rejected). For the undecided 

variables, the whole process is repeated. However, before reiterating, the shadow features 

created in the previous stage are removed. Nevertheless, if the model cannot decide to accept 

or reject some variables, their status will be reported as Tentative. In such circumstances, the 

researcher might choose to increase the maximum iterations or decide to reject or retain the 

variable based on his/her intuition or expert opinion. In the Boruta package (Kursa and Rudnicki 

2010), the former could be done by increasing the maximal number of importance source runs 

(the “maxRuns” argument in the Boruta function, see Script E.6, Appendix E). 

The results of feature selection using the Boruta method are presented in Figures 5.1 to 5.3 for 

the TEC, ECO, and SOC datasets, respectively. 
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Script E.6 (Appendix E) is used to derive the results of feature selection using the Boruta method 

for each of the datasets. 

 

 

Figure 5.1 Importance of the features in the TEC dataset using the Boruta method 

 

Figure 5.2 Importance of the features in the ECO dataset using the Boruta method 
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Figure 5.3 Importance of the features in the SOC dataset using the Boruta method 

In these figures, from left to right, the blue boxes represent the minimum, mean, and maximum 

Z-statistics among the shadow features, respectively. The variable boxes in red represent 

rejected variables, those in green are the confirmed variables, and the yellow boxes are 

tentative variables. In the case of ECO and SOC datasets, the choice of maxRuns equal to 10,000 

is to make sure no feature remains undecided (tentative). However, in the case of the TEC 

dataset, after increasing this value to 30,000, the method was still unable to categorise B6 and 

C4. 

5.4.3 Variable selection using recursive feature elimination (RFE) 

At this stage, recursive feature elimination (RFE) is performed using various methods through 

the caret package in R (Kuhn 2008). The methods used include Random Forests (randomForest 

package (Liaw and Wiener 2002)), Naïve Bayes (klaR package (Weihs et al. 2005)), Decision 

Trees (Bagging; ipred package (Peters and Hothorn 2019)), and Random Forests through the 

Caret Function (caret package (Kuhn 2008)). 

RFE is a backward variable selection wrapper technique (Kuhn and Johnson 2020). Initially, a 

dedicated method is used to develop a model with all available independent variables and rank 

the features based on a measure of importance. Next, the least important feature is eliminated, 

and a new model is developed based on a smaller number of variables. Then, the remaining 
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independent variables are re-ranked (Kuhn and Johnson 2020). In this method, the model 

identifies two parameters. The first parameter is the number of subsets to evaluate. The second 

parameter is the number of features in each subset. For each subset, the method continues to 

eliminate the least-important features until it reaches the determined subset size. Next, it 

compares the performance of each subset and determines the best subset size with the best 

accuracy (Kuhn and Johnson 2020). The latter is presented by plotting the number of features 

(based on their importance) against accuracy (Figures 5.4 to 5.7). In this section, the 

performance of the wrappers is assessed using k-fold cross-validation (k=10), which repeats five 

times. Script E.7 (Appendix E) is used to perform RFE. 

The results of variable selection in each dataset using RFE (as applicable), along with the results 

of the earlier feature selection methods presented in Sections 5.4.1 and 5.4.2, are displayed in 

Tables 5.7 to 5.9 for the TEC, ECO, and SOC training data, respectively. Moreover, Figures 5.4 to 

5.7 show the plots representing the performance of these RFE models based on the ranks of 

the variables for the TEC dataset. For instance, while in Figure 5.4, the model’s accuracy based 

on C28 only is around 65%, the accuracy improves by adding variables based on their rank (Table 

5.7). In the case of Figure 5.4, after adding D24, the accuracy increases to 71%, and so on. 

Table 5.7 Status and rank of the variables in the TEC training dataset using the RFE method, the Boruta method, 
and filters 

Variable 
Random 
Forests 

Naïve 
Bayes 

Decision 
Trees 

(Bagging) 

Caret 
Functions 
(Random 
Forests) 

The 
Boruta 

method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

B2 38 Rejected 26  Rejected Rejected 9  

B3 4 8 2 2 14 5 Selected 

B4 37 38 Rejected Rejected Rejected 8  

B5 5 33 3 3 20 7 Selected 

B6 28 27 20 29 Tentative 12 Selected 

B7 18 13 14 14 17 19 Selected 

B8 11 7 8 16 10 15 Selected 

B9 20 29 18 19 19 29 Selected 

C1 12 37 12 10 12 27 Selected 

C2 27 17 23 23 29 30 Selected 

C3 24 22 24 30 24 33 Selected 

C4 33 34 25 Rejected Tentative 39  

C5 29 26 28 28 27 20 Selected 

C6 16 14 9 13 11 18 Selected 

C7 30 11 Rejected 27 22 16  

C8 39 32 Rejected Rejected Rejected 34  

C9 15 25 19 15 16 22 Selected 

C10 14 15 15 17 13 21 Selected 
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Variable 
Random 
Forests 

Naïve 
Bayes 

Decision 
Trees 

(Bagging) 

Caret 
Functions 
(Random 
Forests) 

The 
Boruta 

method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

C11 35 24 Rejected 33 Rejected 38  

C12 9 36 16 11 9 23 Selected 

C13 32 28 Rejected Rejected 31 24  

C14 31 16 Rejected 34 25 17  

C15 21 20 17 22 21 25 Selected 

C16 3 3 5 4 3 3 Selected 

C17 7 5 11 7 5 10 Selected 

C18 19 18 27 21 18 26 Selected 

C19 17 10 22 20 15 13 Selected 

C20 10 9 13 12 7 14 Selected 

C21 26 21 Rejected 26 28 31  

C25 6 2 6 5 4 4 Selected 

C26 25 12 Rejected 24 30 36  

C27 13 6 10 9 8 11 Selected 

C28 1 1 1 1 1 1 Selected 

D18 34 35 Rejected 31 Rejected 35  

D19 23 23 Rejected 25 26 32  

D21 36 31 Rejected 32 Rejected 37  

D22 22 30 21 18 23 28 Selected 

D23 8 19 7 8 6 6 Selected 

D24 2 4 4 6 2 2 Selected 
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Figure 5.4 Performance of the RFE and Random Forests based on the ranks of the features (TEC dataset) 
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Figure 5.5 Performance of the RFE and Naïve Bayes based on the ranks of the features (TEC dataset) 
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Figure 5.6 Performance of the RFE and Decision Trees (Bagging) based on the ranks of the features (TEC dataset) 
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Figure 5.7 Performance of the RFE and Caret Function (Random Forests) based on the ranks of the features (TEC 
dataset) 

Table 5.8 Status and rank of the variables in the ECO training dataset using the Boruta method and filters 

Variable 

The Boruta 
method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

C24 1 1 Selected 

D1 4 5 Selected 

D2 8 10 Selected 

D3 6 8 Selected 

D4 11 9 Selected 

D5 5 6 Selected 

D6 7 4 Selected 

D7 12 12 Selected 

D8 9 7 Selected 

D9 10 11 Selected 

D10 2 3 Selected 
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Variable 

The Boruta 
method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

D25 3 2 Selected 
 

Table 5.9 Status and rank of the variables in the SOC training dataset using the RFE method, the Boruta method, 
and filters 

Variable 

The Boruta 
method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

C22 3 5 Selected 

C23 4 3 Selected 

D11 10 8 Selected 

D12 5 7 Selected 

D13 9 10 Selected 

D14 1 1 Selected 

D15 8 6 Selected 

D16 2 2 Selected 

D17 6 4 Selected 

D20 7 9 Selected 
 

5.4.4 The final list of features 

5.4.4.1 List of selected features for the TEC dataset 

A comparison between different variable selection techniques performed in Sections 5.4.1, 

5.4.2, and 5.4.3 for the TEC dataset reveals that the result of the rankings achieved from filter 

methods is slightly different from the other two techniques (Table 5.7). However, there is a 

good agreement between the Boruta method and the RFE variable selection methods. 

According to Figure 5.4, while the method selects all the available 39 variables, it can be 

observed that with as low as 19 variables, a high level of accuracy is attainable. More precisely, 

with the top 19 variables identified using RFE plus Random Forests (Table 5.7), an accuracy of 

94% is achievable, while with all 39 variables, this value improves to 96% (Figure 5.4). Similar 

trends can be observed in Figure 5.6, where the top 17 features result in an accuracy of 90%, 

which is equal to the performance of all 28 variables selected by the method. Figure 5.7 also 

shows the same trend with the top 18 variables selected by the method. Hence, referring to 

these figures, and based on Table 5.7, a list of all top variables was developed. It resulted in the 

selection of 16 variables that were common between all three RFE methods used to develop 

Figures 5.4, 5.6, and 5.7. Then, those variables that were not rejected by any of the methods 

were selected (Table 5.7), which was the result of comparing RFE methods and the Boruta 
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method. It yields in the selection of 10 more variables, resulting in a total number of 26 variables 

to be used for the development of BSE-RPMs for predicting the technical reusability of building 

structural elements. The complete list of all selected variables are as follows: B3; B5; B6; B7; B8; 

B9; C1; C2; C3; C5; C6; C9; C10; C12; C15; C16; C17; C18; C19; C20; C25; C27; C28; D22; D23; 

D24. The selected independent variables are marked in Table 5.7. 

While the rejection of B4 (the technique used to recover the element) seems counterintuitive, 

looking at the answers provided by the respondents (Figure 4.6) reveals that only less than 10% 

of the elements were recovered through demolition and the remaining were recovered using 

deconstruction (80.6%) and component-specific recovery (6.9%). The rest were reused in-situ 

(1.4%) or were surplus components (1.4%). Moreover, among the components recovered 

through demolition, only one (1) was reusable, and the remaining were non-reusable. 

Therefore, the results of this research would be limited to load-bearing building components 

recovered using deconstruction technique or its variations such as component-specific 

recovery.  

5.4.4.2 List of selected features for the ECO dataset 

For the ECO dataset, Tables 5.5 and 5.8 and Figure 5.2 show a good agreement between all the 

observations. According to Table 5.5, the least important feature is D7 (transportation cost), 

and the most affecting variable is C24 (potential financial risks). This trend is observed in Figure 

5.2 and Table 5.8. Moreover, according to Figure 5.2, all the variables are relevant. Therefore, 

all the predictors listed in Table 5.8 are considered for the development of predictive models. 

5.4.4.3 List of selected features for the SOC dataset 

Analysing the results of variable selection for the SOC dataset reveals that, according to Figure 

5.3, all the features are necessary. Therefore, all predictors listed in Table 5.9 will be considered 

for developing the predictive models for the SOC dataset. 

5.5 Models development 

The process of selecting an appropriate method for developing a predictive model using 

machine learning techniques is of ample importance because there is not a unique best model 

available for all problems (James et al. 2017). This study intends to develop BSE-RPMs to 

estimate the technical, economic, and social reusability of the structural elements at the end-

of-life of a building with the highest possible accuracy. While accuracy is a driving metric in 

choosing a model, the interpretability of the selected model plays an important role, as well 

(Guidotti et al. 2018). It is because this study intends to provide an easy-to-understand model 
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that can be used by various stakeholders in the building sector who necessarily might not be 

able to use complex predictive models (Guidotti et al. 2018). The above property is essential for 

the selected predictive model because it encourages the stakeholders to use the model 

effectively.  

Based on the above discussion, it seems reasonable to choose interpretable methods such as 

logistic regression to develop the BSE-RPMs (Molnar 2020). Nevertheless, interpretable models 

are not always accurate and might have a high bias in their predictions (James et al. 2017). It is 

because these models are mostly less flexible, and some of them consider a functional form for 

the relationship between the predictors and the response (parametric models) (James et al. 

2017). On the other hand, there are very flexible models such as the support vector machines 

or K-nearest neighbours (KNN) classifier (mostly, nonparametric methods) that produce very 

accurate models on the training dataset (James et al. 2017, Cortez and Embrechts 2013, Murphy 

2012). However, this flexibility comes at the cost of losing interpretability, high variance, and 

sometimes overfitting, which results in inaccurate predictions on unseen data (James et al. 

2017). Therefore, in selecting the proper method for developing a predictive model, this trade-

off between bias and variance should be considered (Murphy 2012, Hastie, Tibshirani, and 

Friedman 2009, Geman, Bienenstock, and Doursat 1992). 

Besides, constraints such as the limited number of observations in each dataset (Section 5.3), 

and unawareness of the nature of the relationship between the predictors and the responses 

brought new dimensions to the challenge of selecting a proper machine learning method. 

Therefore, it was decided to study a wide range of machine learning methods to develop an 

optimum predictive model that fulfils the fourth objective of this research (Section 1.6). The 

above decision is in line with the ‘no free-lunch’ theorems suggested by (Wolpert and Macready 

1997). These models are listed in Table 5.10. The listed packages in Script E.8 (Appendix E) were 

initially installed to develop the models listed in Table 5.10. 

 

Table 5.10 List of machine learning methods used to develop BSE-RPMs (Murphy 2012) 

Model 
Parametric / 

Non-parametric 
Section 

Script used 
(Appendix E) 

K-Nearest Neighbours (KNN) Non-parametric 5.5.1.1 E.9 

Logistic Regression (LR) Parametric 5.5.1.2  E.10 

Linear Discriminant Analysis (LDA) Parametric 5.5.1.3  E.11 

Quadratic Discriminant Analysis 
(QDA) 

Parametric 5.5.1.4  E.12 

Naïve Bayes (NB) Parametric 5.5.1.5  E.13 
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Model 
Parametric / 

Non-parametric 
Section 

Script used 
(Appendix E) 

Decision Trees (DT) Non-parametric 5.5.1.6  E.14 

Random Forests (RF) Non-parametric 5.5.1.7  E.15 

Adaptive Boosting (AB) Non-parametric 5.5.1.8  E.16 

BART Machine (BM) Non-parametric 5.5.1.9  E.17 

Artificial Neural Networks (ANN) Parametric 5.5.1.10  E.18 

Gaussian Processes (GP) Non-parametric 5.5.1.11  E.19 

Propositional Rule Learner (PRL) Non-parametric 5.5.1.12  E.20 

Support Vector Machine (SVM) Non-parametric 5.5.1.13  E.21 

 

5.5.1 Predictive models 

Due to the binary nature of the responses (either reusable or non-reusable), the process of 

predicting the reusability of the structural elements of a building is a classification problem. In 

a classification setting, the classifier would predict if an element is reusable (1) or not (0). An 

optimum classifier is one that can classify unseen observations with the minimum incorrect 

classifications (James et al. 2017). In this study, thirteen different methods are used to develop 

the BSE-RPMs (Table 5.10). These models are fitted to the training sets of the TEC, ECO, and 

SOC datasets (Section 5.5) and then used to predict the technical, economic, and social 

reusability of the elements in the testing sets to evaluate the performance of the fits. In the 

next subsections, each of these methods is discussed briefly. 

It should be noted that this research adopts a probabilistic approach, meaning that a predictive 

model selects the label with maximal probability given the features. This rule, which is known 

as conditional probability, is defined as follows. 

𝑝𝑟(𝐴|𝐵) =
𝑝𝑟(𝐴 ∩ 𝐵)

𝑝𝑟(𝐵)
 𝑖𝑓 𝑝𝑟(𝐵) > 0 

(5.1) 

In (5.1), 𝑝𝑟(𝐴|𝐵) is “the conditional probability of event 𝐴, given that event 𝐵 is true”, 𝑝𝑟(𝐴 ∩

𝐵) is the joint probability of both events, and 𝑝𝑟(𝐵) is the probability of event 𝐵 (Murphy 2012). 

It should be noted that this research considers the Bayes classifier threshold value of 0.5 for the 

probability of an element being reusable or not. It means that if the conditional probability of 

an element being reusable given the features is being calculated (i.e., 𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1|𝑿 =

𝒙)), the probabilities above 0.5 conclude that the item is reusable. Otherwise, it would be 

classified as non-reusable.  

The Bayes classifier is a very simple classifier that assigns an observation to the most probable 

response class based on the values of its feature (James et al. 2017). This classifier works based 

on the conditional distribution of the response given the features and results in the highest 
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theoretical accuracy (James et al. 2017). In this study, the conditional probability of the 

reusability (response) equal to one (reusable) can be presented as below: 

𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1│𝑿 = 𝒙) (5.2)  

In the conditional probability (5.2), 𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝑝) represents all applicable features in 

each dataset for every datapoint (Section 5.4.4). If the value of conditional probability given in 

(5.2) is higher than 0.5, then the Bayes classifier classifies the observation as reusable, 

otherwise, non-reusable (‘𝑝𝑟’ means probability) (James et al. 2017). The left-hand panel of 

Figure 5.8 shows a simplified classification problem with two features (𝑥1 & 𝑥2) using the Bayes 

theorem (Scutari and Denis 2015, Witten et al. 2017). The black dashed line is the Bayes decision 

boundary. The black circles correspond to reusable training structural elements, and the plus 

signs represent non-reusable training structural components. For each of the values of 𝑥1 and 

𝑥2, the probability of an element to be reusable or non-reusable is different. It is imagined that 

the exact location of the Bayes decision boundary is known because it is assumed that the 

conditional distribution of the reusability of the elements is known. For an unseen observation, 

based on the values of 𝑥1 and 𝑥2, if the element falls on the left-hand side of the Bayes decision 

boundary, the component is reusable; otherwise, it is non-reusable. For those elements falling 

on the decision boundary, the component is considered non-reusable. 

In theory we would always like to predict qualitative responses using the Bayes classifier. But 

for real data, we do not know the conditional distribution of Y given X, and so computing the 

Bayes classifier is impossible. Therefore, the Bayes classifier serves as an unattainable gold 

standard against which to compare other methods. Many approaches attempt to estimate the 

conditional distribution of Y given X, and then classify a given observation to the class with 

highest estimated probability. One such method is the K-nearest neighbours (KNN) classifier. 

5.5.1.1 K-Nearest Neighbours (KNN) 

The K-nearest neighbours (KNN) classifier is a method that attempts to estimate the Bayes 

classifier (James et al. 2017).  
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Figure 5.8 The Bayes classifier (left) and K-Nearest Neighbours (KNN) classifier (right) 

However, the conditional distributions of the technical, social, and economic reusability of the 

structural elements of a building are unknown. Therefore, for an unseen data point, the KNN 

classifier looks for the K closest data points to the new observation in the training set (K is an 

arbitrary positive integer) and classifies the test observation to the class with the highest 

probability (James et al. 2017, Hastie, Tibshirani, and Friedman 2009). The KNN method 

assumes that the reusability of a new recovered structural element is like its nearest neighbours 

in the training dataset. This process is shown on the right-hand panel of Figure 5.8. If K=3, then 

the KNN classifier classifies the new observation (shown with a cross sign) on the top-left corner 

as reusable because the three nearest neighbours in the training dataset are reusable, yielding 

a class probability of 100%. However, the new observation in the centre is adjacent to two non-

reusable and one reusable element in the training dataset. In this case, this new element would 

be classified as non-reusable since two-third of its nearest neighbours in the training dataset 

are non-reusable, and only one-third is reusable. 

The choice of the number of neighbours has a considerable impact on the prediction results 

(James et al. 2017, Hastie, Tibshirani, and Friedman 2009). While the number of K depends on 

the sample size, theoretically, it is possible to assign any positive integer to K (James et al. 2017). 

However, if K is too small (for instance, equal to one), the classifier would strictly follow the 

training observations and becomes highly flexible, it might overfit, and potentially results in a 

model with high variance and low bias (James et al. 2017). On the other hand, large values of K 

can potentially make the classifier less flexible, which results in a low variance model with a 

high bias (James et al. 2017). In this study, using the standard holdout method (equal to two-
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third of the training observations), the value of the number of neighbours was estimated. 

Accordingly, the value of K used for modelling is equal to six, five, and eight for the TEC, ECO, 

and SOC datasets, respectively (See Appendix E, Script E.9). 

In this study, the mlr and kknn packages are used to develop the predictive model based on the 

KNN classifier (Bischl et al. 2016, Schliep, Hechenbichler, and Lizee 2016, Hechenbichler and 

Schliep 2004). It is noteworthy that the KNN classifier is a nonparametric method and does not 

assume any functional form for the relationship between the response and features. 

5.5.1.2 Logistic Regression (LR) 

Logistic regression (LR) directly models the probability that an element is reusable or not (James 

et al. 2017). Unlike the KNN method, LR assumes a functional form for the relationship between 

the response and factors affecting reuse (features) in its attempt to predict the reusability; 

hence, it is a parametric machine learning approach (James et al. 2017, Murphy 2012). So, the 

conditional probability (5.2) can be written in the following form. 

𝑝(𝑿) = pr(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1|𝑿 = 𝒙) (5.3) 

LR uses (5.4), the logistic function, to calculate 𝑝(𝑿) and employs the Maximum Likelihood 

estimation method to fit the model based on the training observations (James et al. 2017, 

Murphy 2012). 

𝑝(𝑿) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝)
 

(5.4) 

It is noteworthy that the logistic function (5.4) results in values between zero and one. In (5.4), 

the 𝛽𝑝 (betas) are unknown constants that should be identified (James et al. 2017). Hence, in 

LR, the problem of identifying the relationship between 𝑝(𝑿) and 𝑿 in the training set is 

reduced to estimating these coefficients (James et al. 2017). In this case, the Maximum 

Likelihood (MLE) seeks estimates of these betas, so (5.4) yields a probability close to one for 

reusable elements, and to zero for non-reusable components (James et al. 2017). 

After estimating the unknown constants in (5.4) using the training data, this classifier assigns a 

new observation given its feature values to one of the two classes based on the quantity of 

𝑝(𝑿) and a threshold value (James et al. 2017, Murphy 2012). If the Bayes classifier threshold 

value of 0.5 is assumed, then for 𝑝(𝑿)  >  0.5, the classifier predicts the element reusable 

(James et al. 2017). However, a conservative designer might choose a higher threshold value to 

decrease the probability of making a false positive error (Section 5.5.2.3) (James et al. 2017). 



126 
 

In this study, the mlr package is used to develop the predictive model based on the LR classifier 

(Bischl et al. 2016). 

5.5.1.3 Linear Discriminant Analysis (LDA) 

Like the KNN method, linear discriminant analysis (LDA) attempts to estimate the Bayes 

classifier (James et al. 2017). The LDA method considers a functional form (the discriminant 

function) for the relationship between the response and factors affecting reuse; hence, like the 

logistic regression, it is a parametric machine learning approach (Murphy 2012). However, 

unlike the LR, LDA does not directly estimate the conditional probability (5.2) (James et al. 

2017). 

Using the Bayes’ theorem (Scutari and Denis 2015, Witten et al. 2017), (5.2) can be written as 

follows, where k corresponds to non-reusable (0) or reusable (1) classes. 

pr(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘|𝑿 = 𝒙) =
𝑝𝑟(𝑿 = 𝒙|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘)𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘)

𝑝𝑟(𝑿)
 

(5.5) 

In (5.5), 𝑝𝑟(𝑿|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) is known as the density function of 𝑿 for a structural element 

that belongs to class 𝑘, 𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) is the prior probability which is the probability 

that a given observation belongs to class 𝑘, and 𝑝𝑟(𝑿) is the overall probability of 𝑿 in the 

dataset (James et al. 2017). In (5.5), the prior probability is simply the result of the number of 

elements in each of the training classes divided by the total number of components in the 

training dataset (James et al. 2017). The conditional probability in (5.5) can be re-written as 

follows (James et al. 2017): 

𝑝ₖ(𝑿) =  
𝑓ₖ(𝒙)𝜋ₖ

∑ 𝜋ₛ𝑓ₛ(𝒙)𝑘
𝑠=1

 
(5.6) 

In (5.6), 𝑝𝑘(𝑿) is the posterior probability that an observation is reusable or not, given the 

values of its features (James et al. 2017). Therefore, the LDA classifier needs to estimate the 

value of 𝑓𝑘(𝒙) (the density function) and 𝜋𝑘 (the prior probability) and plug them into (5.6) to 

evaluate the posterior probability (James et al. 2017, Hastie, Tibshirani, and Friedman 2009). 

The LDA method assumes a one-dimensional normal distribution for each independent variable 

in (5.6) (a multivariate Gaussian distribution) and equal variance for the class responses (James 

et al. 2017). The density function in (5.6) can be then converted to the following (for further 

details, refer to (James et al. 2017, Hastie, Tibshirani, and Friedman 2009)): 

𝛿ₖ(𝒙) =  𝒙TƩ¯1𝜇ₖ −
1

2
𝜇ₖTƩ¯1𝜇ₖ + 𝑙𝑜𝑔 𝜋ₖ 

(5.7) 
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The above is known as the discriminant function (James et al. 2017, Hastie, Tibshirani, and 

Friedman 2009). The LDA method estimates Ʃ (the covariance matrix that is common to 

reusable and non-reusable components), and 𝜇𝑘 (mean vector of the features in each class) to 

evaluate 𝛿𝑘(𝒙) in the training dataset (James et al. 2017, Hastie, Tibshirani, and Friedman 

2009). The Bayes classifier then classifies a new observation as reusable or non-reusable for 

which the value of the corresponding 𝛿𝑘(𝒙) is higher (James et al. 2017, Hastie, Tibshirani, and 

Friedman 2009). The word ‘linear’ in this method stems from the fact that the discriminant 

function is a linear function of 𝒙 (James et al. 2017, Hastie, Tibshirani, and Friedman 2009). 

5.5.1.4 Quadratic Discriminant Analysis (QDA) 

Quadratic discriminant analysis (QDA) is a similar approach to the LDA with the exception that, 

in the QDA method, each class has its covariance matrix (James et al. 2017, Hastie, Tibshirani, 

and Friedman 2009). Moreover, in QDA, the discriminant function is a quadratic function of 

predictors 𝒙 (James et al. 2017, Hastie, Tibshirani, and Friedman 2009). The QDA method is 

more flexible and can handle the possible non-linear relationship between the features and the 

response in each dataset (James et al. 2017, Hastie, Tibshirani, and Friedman 2009). For further 

details, please refer to (James et al. 2017, Hastie, Tibshirani, and Friedman 2009). 

5.5.1.5 Naïve Bayes (NB) 

The Naïve Bayes (NB) classifier is a non-parametric method that attempts to estimate the 

conditional probability of the reusability of a structural element given its features by making 

the naïve assumption that these features are independent (Murphy 2012, Hastie, Tibshirani, 

and Friedman 2009). Considering a conditional probability where there is only one independent 

variable 𝑋, (5.2) can be written as: 

𝑝𝑟(𝑌 = 𝑘│𝑋 = 𝑥) (5.8)  

(5.8) can be calculated by identifying the portion of the response (a common area) for which 

the independent variable 𝑋 is equal to 𝑥 using the MLE method. 



128 
 

 

Figure 5.9 The independence of features assumed in the Naïve Bayes (NB) classifier   

However, considering all the applicable reusability factors in (5.2), this common area would be 

very close to zero; hence, the classifier cannot make predictions (Weinberger 2018). The NB 

method addresses this problem by using (5.5), the Bayes’ theorem (Scutari and Denis 2015, 

Witten et al. 2017), and making the naïve assumption that all the features are independent, 

given the response (Hastie, Tibshirani, and Friedman 2009, Witten et al. 2017). The 

independence of features assumed in the NB classifier is illustrated in Figure 5.9. Therefore, 

considering the above assumption, the density function 𝑝𝑟(𝑿 = 𝒙|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) in (5.5) 

can be written as follows. 

𝑝𝑟(𝑿 = 𝒙|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) = ∏ 𝑝𝑟(

𝑝

𝑎=1

𝑿 = 𝑥ₐ|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) 
(5.9) 

As discussed in Section 5.5.1.1, the Bayes classifier then assigns an observation to the most 

likely response label (here, reusable or non-reusable) using the Bayes’ theorem (5.5) (Scutari 

and Denis 2015, Witten et al. 2017). 

In this study, the mlr and e1071 packages are used to develop the predictive model based on 

the Naïve Bayes classifier (Bischl et al. 2016, Dimitriadou et al. 2019). 

5.5.1.6 Decision Trees (DT) 

Decision trees are machine learning methods that include stratifying the feature space of the 

training set into a smaller number of regions (known as terminal nodes or leaves) with similar 

class labels. In this method, to classify a new observation belonging to a terminal node, the 

mean or mode of the training observations in that leaf is considered (James et al. 2017). 

The set of possible values of the ‘𝑝’ predictors (𝑥1, 𝑥2, … , 𝑥𝑝) of the structural elements in the 

training data is divided into K number of leaves (𝑅1 𝑡𝑜 𝑅𝑘), which are not overlapping (James 

𝑌 

𝑥1 𝑥2 𝑥𝑝 

𝑝𝑟(𝑥1|𝑦) 𝑝𝑟(𝑥2|𝑦) 𝑝𝑟(𝑥𝑝|𝑦) 
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et al. 2017). Then, for an unseen observation that satisfies 𝑅𝑘, the DT classifier classifies a new 

structural element to the most commonly occurring class response of the training set in 𝑅𝑘 

(James et al. 2017). This process is shown in Figure 5.10. The left-hand panel of Figure 5.10 

shows the entire dataset with the class labels and splits. In this figure, the training observations 

are marked with black circles (reusable) and black plus signs (non-reusable). The complete 

dataset is the combination of regions 𝑅1.1, 𝑅1.2, 𝑅2.1, and 𝑅2.2. Initially, the dataset was split 

into two regions or leaves, 𝑅1 and 𝑅2 (James et al. 2017). Next, to increase the purity of the 

regions, 𝑅1 was divided into 𝑅1.1 and 𝑅1.2, and 𝑅2 was split into 𝑅2.1 and 𝑅2.2 (James et al. 2017). 

The DT method then classifies a new observation (shown as a cross) as reusable because it is 

the most frequent class label in region 𝑅1.1. The right-hand panel of Figure 5.10 shows the 

process of classifying a new observation using the DT method. 

 

Figure 5.10 The Decision Trees (DT) method 

The DT method attempt to create a set of leaves for which the resulting splits have the lowest 

class impurity (James et al. 2017). For this purpose, the DT method employs recursive binary 

splitting, which is a top-down greedy approach (James et al. 2017). At each stage, the recursive 

binary splitting method selects an independent variable 𝑥𝑗  with a cut-point value of 𝑠 (𝑠 is any 

value belong to 𝑥𝑗) and splits the feature space of an existing node into the new terminal nodes 

{𝑥 | 𝑥𝑗 < 𝑠} and {𝑥 | 𝑥𝑗 ≥ 𝑠} with the highest possible purity in response classification (James 

et al. 2017). It is noteworthy that the split happens on the training observations available in a 

region and not the entire training dataset. The DT method uses the Gini index or the entropy 

impurity function measures to assess the purity of the splits at each stage (James et al. 2017, 

Hastie, Tibshirani, and Friedman 2009). After each split, if the resulting purity of the new leaves 
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is not satisfactory, the splitting continues to decrease the impurity of the new terminal nodes 

(James et al. 2017). This process continues until no further improvement is possible, resulting 

in a deep tree (James et al. 2017). Alternatively, the process can be stopped by setting a 

termination condition, such as reaching a minimum number of observations in a region (James 

et al. 2017). For further details on Gini and entropy impurity functions, please refer to (James 

et al. 2017, Murphy 2012, Hastie, Tibshirani, and Friedman 2009). 

5.5.1.7 Random Forests (RF) 

Decision trees (DT) explained in section 5.5.1.6 suffer from high variance, which means any 

change in the training dataset can potentially affect the resulting predictions (James et al. 2017). 

One reason is that during the first split, the dataset is roughly divided into two sections (James 

et al. 2017, Cortez and Embrechts 2013). Hence, if a predictive model is fit to each of the splits, 

the resulting predictions are not necessarily the same (James et al. 2017). One way to address 

this problem is by decreasing the depth of a DT model (James et al. 2017). However, this method 

increases the bias in the model and consequently decreases its accuracy (James et al. 2017). 

Another solution is to create an ensemble of decision trees using different datasets drawn from 

a population and averaging the results to decrease the variance (James et al. 2017). This notion 

is the result of the weak law of large numbers (de Alencar and de Alencar 2016). According to 

this law, averaging various independent observations decreases variance (James et al. 2017). 

Ideally speaking, by increasing the number of observations to infinity, the variance should 

diminish (de Alencar and de Alencar 2016). Nonetheless, this method is also not practical 

because of the limited access to many training datasets (for this study, the reasons are 

explained in Section 4.7) (James et al. 2017). 

Random forests (Figure 5.11) are machine learning methods that try to address the above issue 

by creating many trees with maximum depth (yielding in low bias but high variance) and 

averaging the resulting variance through bagging (bootstrap aggregation) (James et al. 2017, 

Hastie, Tibshirani, and Friedman 2009). Bagging is an ensemble method that draws many 

samples with replacement from a dataset 𝐷 = (𝐷1, 𝐷2, … , 𝐷𝑚) (Murphy 2012, Hastie, 

Tibshirani, and Friedman 2009). The replacement in this process means that one structural 

element in the training set can appear more than once in the bootstrap dataset (Torgo 2016). 

Then, the RF method fits a decision tree with the maximum possible depth to each of the new 

datasets, creating an ensemble of bagged trees (James et al. 2017). Before dividing the feature 

space at every stage, a random number of 𝑚 ≈  𝑝1/2 (𝑝 is the number of predictors in the 

dataset) independent variables are selected as eligible predictors from which one is picked by 
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the method to split (without replacement) (James et al. 2017). The lack of replacement in this 

process makes sure that the method does not pick a specific predictor repeatedly. This 

approach is highly advantageous because it makes sure that the bagged trees remain 

uncorrelated (James et al. 2017, Murphy 2012). Whereas without this limitation, there is a high 

chance that all the developed trees become highly correlated, which results in a small 

improvement in the variance of the final model, compared to a single tree (James et al. 2017). 

It is because, in the presence of an influential independent variable, there is a high chance that 

each tree chooses that strong predictor as its root node, resulting in a similar and highly 

correlated ensemble of trees (James et al. 2017). 

The RF method uses the ensemble of bagged trees to make predictions (James et al. 2017). 

While the way every single tree predicts the class of a new observation is like the DT method 

(Section 5.5.1.6) (James et al. 2017), the RF method predicts if a new structural element is 

reusable or non-reusable based on the class label with the highest number of records. 
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Figure 5.11 A simplified Random Forest. Top: A Decision Tree (top right) divides the feature space (top left). Bottom: 
A Random Forest which is a group of Decision Trees (bottom right) divide the feature space (bottom left). The cross 

is a new observation. 

5.5.1.8 Adaptive Boosting (AB) 

Boosting methods can be employed to improve the predictions from any machine learning 

method with high bias and high training error rate (weak learners) (James et al. 2017, Murphy 

2012, Hastie, Tibshirani, and Friedman 2009). In this study, the ‘AdaBoost’ methods introduced 

by (Freund and Schapire 1997) is employed to decrease the bias in decision trees with a limited 

number of nodes (resulting in low variance and high bias) and increase the accuracy of 

predictions on unseen observations. Like random forests, adaptive boosting is an ensemble 

technique; however, it works quite differently (James et al. 2017). Instead of creating an 

ensemble of decision trees through bootstrapping, adaptive boosting creates 𝑀 − 1 new 

decision trees sequentially, resulting in 𝑀 number of ensembled decision trees (Hastie, 

Tibshirani, and Friedman 2009). The first classifier is a conventional decision tree, like the one 

explained in Section 5.5.1.6 (Hastie, Tibshirani, and Friedman 2009). However, in creating the 
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𝑀 − 1 decision trees, the AdaBoost method alters the original dataset by weighting 

observations in the main dataset so that the misclassified observations are weighted higher and 

the correctly predicted data points are weighted lower (Hastie, Tibshirani, and Friedman 2009). 

Hence, the next stage decision tree focuses on those observations with the wrong classification 

in the previous stage (Hastie, Tibshirani, and Friedman 2009). Finally, the predictions from the 

ensemble of the decision trees are weighted by the AdaBoost method, so those highly accurate 

decision trees on the training data are weighted higher than those with poor performance 

(Hastie, Tibshirani, and Friedman 2009). For further details on the AdaBoost method, refer to 

Section 16.4 of (Murphy 2012). 

5.5.1.9 BART Machine (BM) 

BART (Bayesian additive regression trees) is an ensemble of decision trees with an arbitrary 

number of trees to be decided by the researcher (Chipman, George, and McCulloch 2010). 

Unlike random forests (Section 5.5.1.7) or adaptive boosting (Section 5.5.1.8) where a structural 

element is classified based on the most commonly occurring class response, it relies on the 

Bayesian probability model (Murphy 2012, Chipman, George, and McCulloch 2010). Therefore, 

it consists of priors for the structure and the terminal node parameters and a likelihood for data 

in the leaves (Chipman, George, and McCulloch 2010). The priors considered guarantee no 

single decision tree dominates the total model; hence, regularising the ensemble of trees 

(Chipman, George, and McCulloch 2010). It is noteworthy that according to the developers, the 

optimum number of trees is around 200 (Chipman, George, and McCulloch 2010). To predict an 

observation, BART uses the posterior average probability to classify a structural element as 

reusable or not (Chipman, George, and McCulloch 2010, Kapelner and Bleich 2016). For further 

details on the BART method, refer to (Chipman, George, and McCulloch 2010). 

5.5.1.10 Artificial Neural Networks (ANN) 

Neural networks are machine learning methods working based on the way the human brain 

works (Ciaburro and Venkateswaran 2017). Neural networks attempt to develop new features 

based on linear combinations of the input variables (reusability factors) and then predict the 

probabilities of the responses (reusable or non-reusable) using a nonlinear function of the 

newly extracted predictors (Hastie, Tibshirani, and Friedman 2009). Therefore, neural networks 

can be categorised as nonlinear parametric models (Hastie, Tibshirani, and Friedman 2009, 

Murphy 2012). 

In machine learning, the architecture of any neural network (Figure 5.12) consists of a set of 

inputs (reusability factors), a processing unit (which includes a single or multiple hidden layers), 
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and output(s) (reusable or not-reusable) (Hastie, Tibshirani, and Friedman 2009). There are two 

main groups of neural networks, feed-forward, and feed-backward neural networks (Ciaburro 

and Venkateswaran 2017). In feed-forward neural networks, the signal can only move in one 

direction from the input layer to the hidden layer(s), and finally to the output layer. However, 

in feed-backward neural networks, before a signal reaches the next level, it can go back to the 

previous level (Ciaburro and Venkateswaran 2017). Artificial neural networks (ANNs) fall under 

the former category, while recurrent neural networks (RNNs) fall under the latter (Ciaburro and 

Venkateswaran 2017). In this study, the reusability of building structural elements are assessed 

using a special case of ANNs.  

An ANN can be a single layer perceptron (with only one hidden layer) or a multiple layer 

perceptron (Hastie, Tibshirani, and Friedman 2009). The architecture of a double layer 

perceptron is shown in Figure 5.12. According to this figure, the units in the middle layer (hidden 

units) develop new features. These new features are then used to determine the reusability 

probability of a structural element at the end-of-life of a building (5.10) (Hastie, Tibshirani, and 

Friedman 2009).  

𝐷𝑘 = 𝜎(𝛼0𝑘 + 𝛼𝑘
𝑇𝑋) 

𝑇𝑙 = 𝛽0𝑙 + 𝛽𝑙
𝑇𝐷 

𝑓𝑙(𝑋) = 𝑔𝑙 (𝑇) 

(5.10)  

In (5.10), 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝) denotes the input variables, 𝑘 = 1,2, … , 𝐾, 𝑙 = 1,2, … , 𝐿, 𝐷 =

(𝐷1, 𝐷2, … , 𝐷𝐾) represents the derived features, 𝑇 = (𝑇1, 𝑇2 , … , 𝑇𝐿) is the vector of outputs, 

and 𝛼0𝑘 and 𝛽0𝑙  are the intercepts. In (5.10), the output function 𝑔𝑙 (𝑇) is the softmax function, 

which transforms the vector of outputs 𝑇 and produces positive estimates that sum to one. 

Other than the three layers explained earlier (inputs layer, hidden layer(s), and output layer), 

an ANN consists of weights, biases, and an activation function, as well. In (5.10), 𝑓𝑙(𝑋) calculates 

the probability that a structural element is reusable or not, and 𝜎 is the activation function, 

which in the case of this study (classification problem), is a Sigmoid (Hastie, Tibshirani, and 

Friedman 2009). The weights are the unknowns in (5.10) and are summarised in (5.11) (Hastie, 

Tibshirani, and Friedman 2009). In (5.10) and (5.11), 𝑝 is the number of independent variables. 

The goal is to estimate these weights so that the ANN model fits the training dataset well 

(Hastie, Tibshirani, and Friedman 2009). Therefore, to guarantee an accurate model, a measure 

of fit is required to evaluate the quality of the model. The measure-of-fit is calculated using the 

squared error or cross-entropy (Hastie, Tibshirani, and Friedman 2009). For further details 

about the measure-of-fit please refer to (Hastie, Tibshirani, and Friedman 2009). 
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{𝛼0𝑘 , 𝛼𝑘; 𝑘 = 1,2, … , 𝐾} 𝐾(𝑝 + 1) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 

{𝛽0𝑙 , 𝛽𝑙; 𝑙 = 1,2, … , 𝐿} 𝐿(𝐾 + 1) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

(5.11)  

 

 

Figure 5.12 The Artificial Neural Networks (ANN) architecture (two hidden layers) 

The role of an ANN model is then reiterating two major stages until it reaches a minimum 

training set error rate. Firstly, estimating the reusability of the building structural elements 

based on weighted inputs, biases, and a specific activation function in the forward propagation 

stage. Next, determining the error rates and estimating the weights and biases using the 

backward propagation algorithm (Ciaburro and Venkateswaran 2017). One of the most 

common problems that one could encounter while training an ANN is overfitting (Murphy 

2012). Because the predicted responses/trends of an overfitted model do not follow the reality 

present in the data, such a model is inaccurate. There are various techniques to prevent 

overfitting while training neural networks. One of the widely used solutions is early stopping. 

Early stopping is a form of regularisation while training a model with an iterative method, such 

as gradient descent. This method updates the model to make it better fit the training data with 

each iteration. Up to a point, this improves the model’s performance on data on the test set. 

Past that point, however, improving the model’s fit to the training data leads to increased 

generalisation error. Regularisation is an alternative method that is commonly used to 

overcome the overfitting problem. This method introduces a weight decay (a penalty term) to 

the loss function to reduce the model’s complexity.  
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According to Hastie et al. (2009), training neural networks requires pre-processing and extra 

precautions. This can be done by determining an optimum weight decay, scaling of the inputs, 

and assigning the number of hidden layers and nodes. The neural network method employed 

in this study is a single layer perceptron that uses the Sigmoid function to activate the neurons 

in the network. Moreover, the input variables are scaled, and two hyperparameters (size of the 

hidden nodes, and weight decay) are evaluated using ten-fold cross-validation on the training 

set considering AUC as the determining metric. The estimated hyperparameters (size and 

decay) for each of the datasets are as follows: TEC (𝑠𝑖𝑧𝑒 = 9, 𝑑𝑒𝑐𝑎𝑦 = 0.09), ECO (𝑠𝑖𝑧𝑒 = 9, 

𝑑𝑒𝑐𝑎𝑦 = 0.08), SOC (𝑠𝑖𝑧𝑒 = 8, 𝑑𝑒𝑐𝑎𝑦 = 0.04) (Script E.18). 

In this study, the reusability of building structural elements is assessed using an ANN through 

the nnet and rminer packages (Venables and Ripley 2002, Cortez 2020). 

5.5.1.11 Gaussian Processes (GP) 

Gaussian processes are nonparametric supervised machine learning methods that can be used 

for both regression and classification problems. In this study, Gaussian processes for 

classification (GPC) are used to predict the reusability probabilities of the recovered building 

structural elements. A GPC is a function approximation task where instead of directly estimating 

the class probabilities considering a predetermined functional form (such as LDA), the 

functional relationship is determined through a multivariate Gaussian distribution. 

We consider a data set 𝐷={(𝑥𝑖 , 𝑦𝑖|𝑖 = 1,2, … , 𝑛}, consisting of 𝑛 samples, wherein 𝑥𝑖  denotes 

the vector of input data taken from the input space, and 𝑦𝑖 = 𝑓(𝑥𝑖) denotes the corresponding 

output (dependent variable) observation. Following (Rasmussen and Williams 2006), the GP 

prior model is given by (5.12): 

𝑓(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) (5.12) 

where 𝑚(𝒙) is the mean function, which is commonly and without loss of generality considered 

to be zero and the kernel function 𝑘(𝒙, 𝒙′); where 𝒙 represents the training datapoint in each 

dataset of the structural elements. We use the radial basis function (or squared exponential) as 

the kernel function, see (Rasmussen and Williams 2006, Daneshkhah, Hosseinian-Far, and 

Chatrabgoun 2017) for the details of this kernel, including the functional form, and how the 

hyperparameters (smoothness parameters) of this kernel can be estimated in the light of the 

observed data.    
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The joint prior distribution of the training outputs, 𝒇, and the predicted output 𝒇∗ 

(corresponding to the test input 𝒙∗), according to GP definition given in Eq. (5.12) and the 

properties of multivariate normal distribution, is given by (5.13): 

[
𝒇
𝒇∗

] ~𝑁(0, [
𝐾 𝐾∗

𝑇

𝐾∗ 𝐾∗∗
]) 

(5.13) 

Where 𝐾 = 𝑘(𝑿, 𝑿), 𝐾∗ = 𝑘(𝑿∗, 𝑿), 𝐾∗
𝑇 = 𝑘(𝑿, 𝑿∗), 𝐾∗∗ = 𝑘(𝑿∗, 𝑿∗), and 𝑿𝑛×𝑝 denotes an 

𝑛 × 𝑝 matrix of the training inputs {𝒙𝑖}𝑖
𝑛 (also known as the design matrix), 𝑝 stands for the 

dimension of input space 𝑿, and 𝑿∗ is the matrix of test inputs. We use the subscript ∗ to 

differentiate the test/predicted data from the training ones. 

The posterior distribution of 𝒇∗ can be obtained/derived by conditioning the joint prior 

distribution, given in Eq. (5.13) on the training datapoint (5.14): 

𝒇∗|𝒇, 𝑋, 𝑋∗~𝑁(𝐾∗
𝑇𝐾−1𝒇, 𝐾∗∗ − 𝐾∗𝐾−1𝐾∗

𝑇) (5.14) 

The mean and covariance of this posterior distribution can be used as an estimate of the 

predicted value of 𝒇∗ , and uncertainty/sensitivity (Daneshkhah and Bedford 2008). 

The GP that is briefly explained above, can be used as an efficient classifier by computing 

predictions in form of class probabilities of 𝑦∗ = 𝑓(𝒙∗) for the new test input 𝒙∗. This can be 

done by squashing the output of a regression model through a logistic function (e.g. sigmoid 

function, 𝜎(. )) to transform it from a domain of (−∞, +∞) to [0, 1] (Rasmussen and Williams 

2006). For a new observation 𝒙∗, the distribution of the latent variable 𝑓∗ is calculated using 

(5.15): 

𝑝𝑟(𝑓∗|𝑋, 𝒚, 𝒙∗) = ∫ 𝑝𝑟(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑝𝑟(𝒇|𝑋, 𝒚)𝑑𝒇 
(5.15) 

Then, using the above distribution, the probabilistic prediction is performed using (5.16): 

𝑝𝑟(𝑦∗ = 𝑟𝑒𝑢𝑠𝑎𝑏𝑙𝑒|𝑋, 𝒚, 𝒙∗) = ∫ 𝜎(𝑓∗)𝑝𝑟(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑑𝑓∗ 
(5.16) 

However, since (5.15) is non-Gaussian (response is discrete), the above integrals are 

approximated using the Laplace approximation method (Rasmussen and Williams 2006). 

5.5.1.12 Propositional Rule Learner (PRL) 

Propositional rule learner (PRL) is a classification machine learning method that finds patterns 

in each dataset and expresses them in terms of a set of if-then rules (Fürnkranz, Gamberger, 

and Lavrač 2012). These rules are then used to classify new structural elements that satisfy a 

rule condition. The method develops a predictive model in three stages. A PRL method first 
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converts the features in the training dataset into sets of binary features (Fürnkranz, Gamberger, 

and Lavrač 2012). Then it constructs the individual rules, each covering a part of the training 

dataset using a covering method (Fürnkranz, Gamberger, and Lavrač 2012). At this stage, the 

method learns a rule that covers a part of the training observations. Then it removes those 

covered datapoints and learns a new rule based on the remaining observations (Fürnkranz, 

Gamberger, and Lavrač 2012). The method recursively performs these tasks until all training 

observations are covered by a rule (Fürnkranz, Gamberger, and Lavrač 2012). Finally, it 

combines all the learned rules and forms the predictive model (Fürnkranz, Gamberger, and 

Lavrač 2012). For further details about this method please refer to (Fürnkranz, Gamberger, and 

Lavrač 2012). 

In this study, the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) method 

(Cohen 1995) through the RWeka package is used to develop the predictive rule learning model 

(Hornik, Buchta, and Zeileis 2009). 

5.5.1.13 Support Vector Machines (SVM) 

Support vector machines (SVM) are machine learning methods that convert a linear classifier 

(known as support vector classifier) in a way to produce a non-linear decision boundary 

between classes (two-class responses) (James et al. 2017). 

A support vector classifier is a computationally efficient method for developing linear decision 

boundaries between two-class responses (James et al. 2017). The support vector classifier 

develops a hyperplane to split the observations in the training dataset into two classes (Figure 

5.13) (James et al. 2017). This classifier depends only on the training observations close to the 

hyperplane known as the support vectors (James et al. 2017). In the left-hand panel of Figure 

5.13, the left-hand side of the hyperplane represents the circle responses (reusable), and the 

right-hand side of the decision boundary corresponds to the plus class (non-reusable). The 

dashed lines in this figure are margins for the hyperplane. In Figure 5.13, only the observations 

on the margin or crossing the margin but on the proper side of the decision boundary are the 

support vectors (James et al. 2017). Therefore, training data far from the margins (and the 

hyperplane) do not play any role in predicting the class response for a new observation (James 

et al. 2017). 
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Figure 5.13 The Support Vector Classifier 

The support vector classifier can be represented as follows (James et al. 2017): 

𝑓(𝑥) = 𝑏0 + ∑ 𝑎𝑖 < 𝑥, 𝑥𝑖 >

𝑖∊𝑆

,  

(𝑆 =  𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠)  

(5.17) 

In (5.17), < 𝑥, 𝑥𝑖 > is the inner product of the new observation 𝑥 with all support vectors, 𝑏0 is 

an intercept, and 𝑎𝑖 is a parameter required for each of the support vectors (James et al. 2017). 

Function (5.17) is the solution function for an optimisation problem for the support vectors. The 

details of the optimisation problem are available in Section 9.2.2 of (James et al. 2017). 

Moreover, the solution to the optimisation problem can be found in Section 12.2.1 of (Hastie, 

Tibshirani, and Friedman 2009). 

The left-hand panel of Figure 5.13 represents a classification problem with separable (almost) 

class responses where the hyperplane does a reasonable job in classifying the non-reusable and 

reusable classes. However, in many instances, the relationship between the predictors and the 

responses are not linear (James et al. 2017). The right-hand panel of this figure shows an 

example of such a problem. As can be observed, the separating hyperplane is useless in this 

situation. In this case, no linear classifier can effectively separate the two classes, as the 

relationship between the predictors and the responses are non-linear. 

The support vector machine method attempts to overcome the above limitation by enlarging 

the feature space using kernel functions; hence, creating non-linear decision boundaries (James 
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et al. 2017). Kernel functions quantify the similarity of two observations and can have various 

forms, including radial, polynomial, hyperbolic, Laplacian, etc. (James et al. 2017). By replacing 

the inner product in (5.17) with the kernel, the solution function (5.17) can be re-written as 

(5.18), where 𝐾(𝑥, 𝑥𝑖) is the kernel function (James et al. 2017):  

𝑓(𝑥) = 𝑏0 + ∑ 𝑎𝑖𝐾(𝑥, 𝑥𝑖)

𝑖∊𝑆

,  

(𝑆 =  𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠)  

(5.18) 

In this study, a radial kernel is used to expand the feature space, and eventually develop non-

linear decision boundaries between the classes. Therefore, (5.19) formulates the radial kernel. 

𝐾(𝑥𝑖 , 𝑥𝑖′) = exp (−𝜎 ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2

𝑝

𝑗=1

), 

 𝑤ℎ𝑒𝑟𝑒 𝜎 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

(5.19) 

In (5.19), 𝑥𝑖  and 𝑥𝑖′ indicate two different observations in the training set, 𝑝 is the number of 

predictors, and 𝜎 (sigma) controls the non-linearity of the kernel function (James et al. 2017). 

By increasing the value of 𝜎, the fit becomes more non-linear (James et al. 2017). While this 

increased non-linearity can decrease the variance on the training dataset, it might increase the 

chance of overfitting (James et al. 2017). Hence, care must be taken while choosing the correct 

value for 𝜎 (James et al. 2017). Another hyperparameter that is required to be selected is known 

as cost (represented by C) (James et al. 2017). This quantity determines the width of the margin 

in Figure 5.13, and correspondingly the number of support vectors (James et al. 2017). This 

tuning parameter is used to determine 𝑎𝑖 in (5.17) and (5.18) (see Section 12.2.1 of (Hastie, 

Tibshirani, and Friedman 2009)). In this study, the hyperparameters (C and sigma) are calculated 

using ten-fold cross-validation on the training set (Murphy 2012). According to this method, the 

estimated hyperparameters for each of the datasets are as follows: TEC (C= 1.601470833, 

sigma= 0.047078172), ECO (C= 322303.3297, sigma= 0.000226155), SOC (C=1.45e9, sigma= 

0.366348636) (Script E.21). 

Support vector machines inherit the properties of the support vector classifier, so in predicting 

the response class of a new observation, only those training observations close to the decision 

boundary play a role (James et al. 2017). 

5.5.2 Potential metrics to interpret the predictive models 

The fourth objective of this study is to develop best-practice BSE-RPMs using advanced 

supervised machine learning techniques, which provide reliable predictions. Therefore, to 
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compare the performance of the predictive methods explained in Section 5.5.1 and select a 

best-practice BSE-RPM for each dataset (performed in Chapter 6), specific metrics should be 

used. The following sub-sections introduce the potential metrics that could be used for this 

purpose. After introducing these metrics, this section justifies the selected metrics used to 

compare the predictive models' performances in this research. It worth noting that the selected 

metrics would be used to compare the performance of the models in predicting the reusability 

of the unseen observations (testing sets) of the TEC, ECO, and SOC datasets. 

5.5.2.1 Confusion matrix 

In a binary classification problem such as the ones of interest in this study, where the methods 

classify the test observations to one of the two classes as reusable (1) or non-reusable (0), the 

outcomes (predictions) fall under one of the following categories. To evaluate whether the 

selected classifier correctly predicts and classifies the reusable and non-reusable items into 

correct classes, the true negative (TN) and true positive (TP) criteria, as represented in the 

confusion matrix (Table 5.11) will be used. The confusion matrix provides additional information 

about the rates of the predicted responses that were misclassified, which is a reusable item is 

classified as non-reusable (false negative or FN) or vice-versa (false positive or FP) (James et al. 

2017). It should be noted that the rows and columns of Table 5.11 represent the actual and 

predicted values of the responses, respectively. 

Table 5.11 Confusion matrix 

 Predicted response values 

Non-reusable (0) Reusable (1) 

True response 
values 

Non-reusable (0) 
True negative 

(TN) 
False positive 

(FP) 

Reusable (1) 
False negative 

(FN) 
True positive 

(TP) 

 

5.5.2.2 False positive error (Type I error) 

Based on Table 5.11, there are two types of misclassification. The first one, which is called Type 

I error, is when a non-reusable item is by mistake classified as reusable. As explained earlier, 

many classification methods (directly or indirectly) estimate the probability of a class given the 

features. Bayes classifier considers a threshold of 0.5 for allocating a class to an observation. 

Hence, considering (5.2), if 𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1) > 0.5, then the observation is classified as 

reusable, otherwise non-reusable. However, a conservative designer might prefer a higher 

threshold value to decrease the Type I error and prevent the risk of using a non-reusable 

component that is by mistake classified as reusable. While lower values of this metric are 
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preferred, to compare different models, the false positive error rate is used. This ratio is 

calculated as follows (James et al. 2017). 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(5.20) 

5.5.2.3 False negative error (Type II error) 

The second type of mistake in a binary classification problem is when the classifier predicts a 

component as non-reusable when it is reusable. This type of error is called a false negative or 

type II error. As explained above, this type of error might be preferred by a conservative client 

or designer, so by allocating different threshold values other than 0.5, type II error is increased. 

Like the type I error, it is the false negative rate that is used as another metric to compare the 

performance of a classifier (James et al. 2017). The false negative error rate is calculated using 

(5.21). 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

(5.21) 

5.5.2.4 Specificity 

Another important metric is the rate of non-reusable components that are correctly classified. 

This is called specificity and is calculated as follows (James et al. 2017). Specificity (5.22) is equal 

to one minus false positive rate. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(5.22) 

5.5.2.5 Sensitivity 

The rate of reusable components that are correctly categorised as reusable by the classifier is 

another metric that is called sensitivity (5.23) (James et al. 2017). It is equal to one minus false 

negative rate. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5.23) 

5.5.2.6 Overall accuracy 

To calculate the overall accuracy of a classifier, the total number of correct classifications are 

divided by the total number of observations in the test dataset (5.24) (James et al. 2017). 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 

(5.24) 
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5.5.2.7 Overall error rate 

To calculate the overall error rate of a classifier, the total number of false classifications are 

divided by the total number of observations in the test dataset (5.25) (James et al. 2017). 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 

(5.25) 

5.5.2.8 The receiver operating characteristics (ROC) curve 

The above metrics are very helpful in comparing the performance of different classifiers. 

However, they are restricted to a pre-determined threshold value. To be able to observe the 

performance of a classifier with different threshold values and to decide which threshold value 

works the best for a classifier, a graph, known as the receiver operating characteristics (ROC) 

curve is used. The Y-axis of this graph is the sensitivity or true positive rate and the X-axis is the 

false positive rate or one minus specificity. Then, for different values of threshold, these two 

metrics are calculated, and a graph is drawn by connecting the identified points on the X-Y plane 

(James et al. 2017). 

As discussed in Section 5.1, this research considers the threshold value of 0.5 for the probability 

of an element to be reusable or not (see conditional probability 5.1). However, higher threshold 

values could be considered at the cost of decreased sensitivity to reduce Type-I error (see Figure 

5.14). 

5.5.2.9 The area under the ROC curve (AUC) 

The area under the ROC curve (also known as the AUC), is a very important and useful metric 

because it shows the overall performance of a classifier considering all possible threshold values 

(James et al. 2017). Ideally speaking, if an AUC value is close to 1, it is preferred. The baseline 

value for the AUC is 0.5 and a classifier should always perform higher than this minimum value. 

In this study, the AUC values of the classifiers are used as one of the most important metrics to 

compare the performance of the predictive models on the test datasets. 

5.5.2.10 Selected metrics to compare the predictive models’ performances 

This chapter uses the Type-I error rate, overall accuracy, and AUC to compare the predictive 

models’ performances. 

While it is desired that a model makes the least number of misclassifications, in the case of this 

research, Type-I error is more significant than Type-II error because of considerable economic 

and logistic implications of the former. If the model misclassifies a reusable element as non-
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reusable, while environmentally significant, it would have minor economic implications 

compared to a false positive error because the designer would have enough time to source 

other suitable recovered or new elements. However, if a model misclassifies a non-reusable 

component as reusable during the design phase, it would have considerable economic and 

logistic consequences because sourcing alternative suitable new or recovered elements would 

be challenging.  

Regarding using other metrics, by using the Type-I error rate, it would be unnecessary to use 

specificity (identical to one minus false-positive error rate). Moreover, since this research 

focuses on the Type-I error rate, the use of sensitivity (equal to one minus false-negative error 

rate) as a model performance metric will be pointless. 

Moreover, since it is preferred that a model makes the highest number of correct classifications, 

the overall accuracy provides a reliable basis to understand the overall performance of a 

predictive model. It also provides a basis to evaluate the overall error rate (equal to one minus 

overall accuracy), which includes both types of errors explained earlier. 

Regarding using the AUC, it is a significant and useful metric because it shows the overall 

performance of a classifier considering all possible threshold values (James et al. 2017). Ideally 

speaking, if an AUC value is close to 1, it is preferred. The baseline value for the AUC is 0.5, and 

a classifier should always perform higher than this minimum value. 

5.5.3 Summary of the results 

The summary of the metrics used to compare the models’ performances is provided in Tables 

5.12 to 5.14 for the TEC, ECO, and SOC datasets, respectively. Likewise, these tables show the 

best performing models based on the following threshold values. In this research, following 

(Holdnack et al. 2013), a maximum threshold of 10% is considered acceptable for the Type-I 

error rate. Moreover, the minimum threshold values of 85% and 90% are considered acceptable 

for the models' overall accuracy and AUC, respectively. 

The complete set of outputs of the models used in this study (Table 5.10) are available in 

Appendix F. Moreover, the scripts used to develop each of the models are available in Appendix 

E (Script E.8 to E.21).  

According to Table 5.12, for the TEC dataset, KNN, QDA, RF, and SVM have the highest 

performance among all other TEC BSE-RPMs because they satisfy the considered threshold 

values in this research. Among these models, the RF model has the best performance because 

it makes no Type-I error and has the highest values for its overall accuracy and AUC. 
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Table 5.12 Summary of the results of the TEC BSE-RPMs developed (the validation set approach method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 
High-

performance 
models 

KNN1 0.03 0.85 0.95 Yes 

LR* 0.28 0.78 0.81  

LDA 0.14 0.83 0.86  

QDA 0.07 0.88 0.96 Yes 

NB 0.24 0.71 0.82  

DT 0.10 0.74 0.76  

RF2 0.00 0.91 0.98 Yes 

AB 0.07 0.81 0.93  

BM 0.07 0.78 0.91  

ANN3 0.14 0.86 0.90  

GP 0.14 0.78 0.91  

PRL 0.21 0.81 0.84  

SVM4 0.07 0.90 0.97 Yes 
* The TEC-LR BSE-RPM did not converge. Hence, this model is 
excluded from further analysis. 
Hyperparameters (calculated using 70% of the dataset that 
was selected randomly): 
1 k = 6 
2 ntree = 500, mtry = 5, nodesize = 1 
3 Size = 9, Decay = 0.09 
4 Cost = 1.601470833, Sigma = 0.047078172 

 

For the ECO dataset, KNN, RF, ANN, and SVM have the highest performance among all other 

ECO BSE-RPMs (Table 5.13). Among these models, the KNN, RF, and ANN models make no false-

positive errors. Likewise, the RF model has the highest AUC. However, it is the ANN and SVM 

models that have the highest accuracy. According to Table 5.13, none of the high-performance 

models could be ranked the highest based on the considered metrics. 

Table 5.13 Summary of the results of the ECO BSE-RPMs developed (the validation set approach method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 
High-

performance 
models 

KNN1 0.00 0.86 0.96 Yes 

LR 0.21 0.75 0.81  

LDA 0.25 0.69 0.79  

QDA 0.21 0.76 0.83  

NB 0.32 0.69 0.77  

DT 0.25 0.78 0.80  

RF2 0.00 0.86 0.98 Yes 

AB 0.04 0.82 0.94  

BM 0.00 0.84 0.90  

ANN3 0.00 0.89 0.96 Yes 
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Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 
High-

performance 
models 

GP 0.07 0.78 0.86  

PRL 0.25 0.71 0.72  

SVM4 0.07 0.89 0.95 Yes 

Hyperparameters (calculated using 70% of the dataset 
that was selected randomly): 
1 k = 5 
2 ntree = 500, mtry = 3, nodesize = 1 
3 Size = 9, Decay = 0.08 
4 Cost = 322303.3297, Sigma = 0.000226155 

 

In the case of the SOC dataset, the models with the highest performance are RF, BM, and GP 

(Table 5.14). According to Table 5.14, among the best performing models, it is the RF model 

that has the highest performance considering all three metrics. 

Table 5.14 Summary of the results of the SOC BSE-RPMs developed (the validation set approach method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 
High-

performance 
models 

KNN1 0.06 0.79 0.95  

LR 0.11 0.77 0.76  

LDA 0.11 0.74 0.77  

QDA 0.11 0.91 0.97  

NB 0.22 0.85 0.97  

DT 0.33 0.77 0.88  

RF2 0.00 0.91 0.99 Yes 

AB 0.11 0.91 0.94  

BM 0.06 0.88 0.98 Yes 

ANN3 0.11 0.88 0.92  

GP 0.06 0.85 0.96 Yes 

PRL 0.17 0.85 0.85  

SVM4 0.11 0.94 0.97  

Hyperparameters (calculated using 70% of the dataset 
that was selected randomly): 
1 k = 8 
2 ntree = 500, mtry = 3, nodesize = 1 
3 Size = 8, Decay = 0.04 
4 Cost = 1.45e9, Sigma = 0.366348636 

 

In this section, and to elaborate on the results presented in Tables 5.12 to 5.14, the best 

performing model in the TEC dataset (the RF model) is further discussed. Other results could be 

found in Appendix F. 
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Table 5.15 shows the results of the classification of the unseen observations (testing set) made 

by the RF model developed using the training set of the TEC dataset (also known as the TEC-RF 

BSE-RPM). According to Table 5.15, the TEC-RF BSE-RPM makes zero false positive errors 

(Section 5.5.2.2) and five false negative errors (Section 5.5.2.3). It means that the Type-I error 

rate is equal to zero, and the overall accuracy equal to 91% (Table 5.12) calculated using (5.24) 

as follows: 

24 + 29

29 + 0 + 5 + 24
= 0.91 

Table 5.15 The confusion matrix of the RF BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 29 0 

Actual reusable (1) 5 24 

 

 

Figure 5.14 The ROC curve of the RF BSE-RPM (TEC dataset) (AUC = 0.98) 

The ROC curve of the random forest model (TEC-RF BSE-RPM) for the testing set developed 

based on the validation set approach (Section 5.3, Table 5.2) is shown in Figure 5.14. This curve 
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is used to observe the performance of a classifier with different threshold values and to decide 

which threshold value works the best for a classifier. The Y-axis of this graph shows the 

sensitivity or true positive rate (the number of correctly classified reusable items by a model 

divided by the total number of reusable components in the test dataset), and the X-axis shows 

the false positive or Type-I error rate. Then, for different values of threshold, these two metrics 

are calculated, and a graph is drawn by connecting the identified points on the X-Y plane (James 

et al. 2017). According to this figure, the threshold value of 0.5 (Section 5.5.1) works optimally 

for the classifier; hence, no need to alter it.  

5.6 Chapter summary 

Chapter 5 was focused on fulfilling the third and fourth objectives of this study. Following the 

results of the previous chapter, the final list of the reused structural elements, including their 

independent and dependent variables, were used to develop the BSE-RPMs. Initially, and to 

avoid biased predictions, the class imbalances in all datasets were addressed using the SMOTE. 

This measure yielded synthetically increasing the sample size in all three datasets without 

duplicating the observations. In the next stage, and to achieve the third objective of this study, 

advanced machine learning methods were used to select the applicable list of variables for 

developing the predictive models. This feature selection resulted in the omission of some of the 

independent variables. It is noteworthy that even after restricting to the listed variables in 

Section 5.4.4, the observations remained unique, and this practice did not result in any 

duplications in the TEC, ECO, and SOC datasets. 

In this study, thirteen different models were used to predict the technical, economic, and social 

reusability of building structural elements in the TEC, ECO, and SOC datasets, respectively. 

These models include KNN, LR, LDA, QDA, NB, DT, RF, BM, AB, ANN, GP, PRL, and SVM. One of 

the reasons for using various parametric and non-parametric models is because there is no 

single machine learning method suitable for all types of datasets. Moreover, constraints such 

as the limited number of observations in each dataset, and unawareness of the nature of the 

relationship between the predictors and the responses brought new dimensions to the 

challenge of selecting a proper machine learning method. Therefore, it was decided to study a 

wide range of machine learning methods to develop an optimum predictive model that fulfils 

the fourth objective of this research. 

In this chapter, to develop the predictive models, the validation set approach was used. 

Therefore, each of the newly developed datasets was split into a training and testing set with a 

70/30 split ratio. Next, the training datasets were used to develop the predictive models, 
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whereas the testing datasets were used to evaluate the performance of the fitted models in 

handling unseen data. In this research, the Type-I error rate, overall accuracy, and AUC with 

acceptable threshold values of 10% (maximum), 85% (minimum), and 90% (minimum) are 

considered to compare the models' performances and identify the best-performing ones. 

According to Table 5.12 and 5.14, the TEC-RF BSE-RPM and the SOC-RF BSE-RPM are the best 

models for the TEC and SOC dataset, respectively. For the ECO dataset, both ECO-RF BSE-RPM 

and ECO-ANN BSE-RPM perform optimally. 

During the process of model development, the Logistic Regression model (LR) did not converge 

in the TEC dataset, which will be excluded from the model selection process in Chapter 6. The 

entire process of model development using the validation set approach is presented in Figure 

5.15. 
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Figure 5.15 Summary of the process of developing the predictive models in Chapter 5 

TEC, ECO, and SOC datasets 

(data collection results, Chapter 4) 

In these datasets, Predictors are the 

applicable questions in Sections B to D, 

and the Response is the applicable 

question in Section E of the survey (See 

Table 4.1 and Appendix C) 

Converting the response in each dataset 

into binary classes (Section 5.2) 

Addressing the imbalance in the response 

classes using SMOTE (Section 5.2) 

Splitting the datasets into two sections 

(Section 5.3) 

Training set (70% of the 

original data) 

Performing feature 

selection (Section 5.4) 

Developing predictive 

models. (Inputs to the 

models = Predictors; 

Outputs of the models = 

Predicted responses) 

(Section 5.5) 

Testing set (30% of the 

original data) 

Models’ performance 

evaluation (Section 5.5) 

The models predict the responses of the testing set. Next, these 

predictions are checked with respect to the real values of the 

responses using different metrics (Section 5.5) 
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Chapter 6 – Model selection: Results and discussion 

6.1 Chapter introduction 

Chapter 6 focuses on the fourth objective of this study and discusses the process of selecting 

the best-practice BSE-RPMs based on the results of the developed models in Section 5.5. 

Therefore, initially, Section 6.2 assesses the performance of the developed models using the k-

fold Cross-Validation method. Next, the outcome of this section is used to select the best-

practice BSE-RPMs based on the Type-I error rate, model accuracy, and the AUC of the 

developed models (Section 6.3). In Section 6.4, attempts are made to clarify the selected 

models and develop a set of easy-to-understand rules, so the practitioners in the building sector 

would be able to use the results of this research effectively. Section 6.5 provides instructions 

for using the developed learners in Section 6.4. And eventually, Sections 6.6, 6.7, and 6.8 discuss 

the technical, economic, and social reusability factors based on the outcome of the methods 

used to clarify the selected models. This chapter concludes by summarising the results in 

Section 6.9. 

6.2 Performance assessment for the developed BSE-RPMs 

The results of the fitted models reported in Tables 5.12, 5.13, and 5.14 for the TEC, ECO, and 

SOC datasets are based on the validation set approach method elaborated in Section 5.3. In 

Chapter 6, the performances of the developed models in Section 5.5 are evaluated through the 

k-fold Cross-Validation (kfCV) method with 𝑘 = 10. 

The validation set approach method used to estimate the test error rates in Chapter 5 (and 

other metrics explained in Section 5.5.2) is an acknowledged method to assess the performance 

of a given machine learning technique (James et al. 2017). However, because it is based on 

randomly splitting the dataset into a training set (70%), and a testing set (30%) (See Section 

5.3), there is a high chance of getting different performance measures if the process is repeated 

(James et al. 2017). This variability in the performance metrics is because the results highly 

depend on which observations are randomly held out for testing the fit and which are used for 

training the model (James et al. 2017). Moreover, because only 70% of the observations are 

used to fit a model, and since the performance of the predictive models improves by increasing 

the number of data points used to train them, the validation set approach tends to 

underestimate the performance of the fit by producing worse test error rates (James et al. 

2017). 
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In this chapter, and to overcome the drawbacks of the validation set approach mentioned 

earlier, a kfCV method with 𝑘 = 10 is performed to assess the performance of the developed 

BSE-RPMs in Section 5.5. In the kfCV method, the original dataset is randomly divided into 𝑘 

folds (𝑘 groups of observations) with approximately equal size (James et al. 2017). Then, the 

first fold is used as the testing set, and the 𝑘 − 1 remaining folds are used to train a predictive 

model. Next, the performance of the fit is determined using the held-out set (James et al. 2017). 

The process repeats 𝑘 times with all folds, and each time a different group of observations is 

considered as the validation set (James et al. 2017). Simultaneously, the performance results 

are recorded for all 𝑘 folds, and eventually, the performance of the predictive model is 

determined using the mean performances of the 𝑘 folds (James et al. 2017). According to James 

et al. (2017), while 𝑘 can take any number less than 𝑛 (𝑛 is the number of observations in a 

dataset), values of 𝑘 equal to 5 or 10 have empirically shown resistance against high bias or 

variance. The choice of 𝑘 = 10 in this study enables a higher number of training observations 

at each fold, which improves the performance of the classifiers (James et al. 2017). 

Another method that could be used to address the drawbacks of the validation set approach in 

determining the test error rate is the leave-one-out cross-validation method (LOOCV) (James et 

al. 2017). This approach repeats 𝑛 times, and at each stage, the LOOCV method performs by 

considering one of the observations as the testing set and the remaining as the training set 

(James et al. 2017). The resulting performance of the predictive model is the average 

performance of the 𝑛 models (James et al. 2017). This method has the advantage of considering 

a higher number of observations for training a model and can potentially improve the 

performance of the modeller by eliminating the bias of the test error estimates (James et al. 

2017). However, the test error estimates using the LOOCV method tend to have a higher 

variance than the kfCV method (James et al. 2017). Therefore, in this research, it was decided 

to use the kfCV method for estimating the performance of the developed models, and 

eventually selecting the best practice BSE-RPMs. For further details about the LOOCV and kfCV 

methods, please refer to Section 5.1 of (James et al. 2017). 

The results of the ten-fold CV used to assess the performance of the BSE-RPMs of the TEC, ECO, 

and SOC datasets are presented in Sections 6.3.2, 6.3.3, and 6.3.4, respectively. The assessment 

results are then used to select the best-practice model in each dataset. Script E.22 (Appendix E) 

is used to assess the performance of the BSE-RPMs using the kfCV method. 
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6.3 Selection of the best-practice BSE-RPMs 

This study aims to develop models that can predict the technical, economic, and social 

reusability of structural elements at the end-of-life of a building. Therefore, one of the key 

features in selecting such models is how accurately they can classify a recovered structural 

element in one of the two classes as reusable or not. An accurate model that makes minimum 

classification errors is then desirable and helps the stakeholders to decide whether to integrate 

recovered building structural elements in their new developments or not. On the other hand, 

the transparency of the results plays a vital role in encouraging the stakeholders to employ the 

outcomes of such machine learning techniques in their day-to-day activities (Scutari and Denis 

2015). 

6.3.1 Metrics used to select the best practice models 

In this research, Type I error rate (Sections 5.5.2.2), overall accuracy (Section 5.5.2.6), and AUC 

(Section 5.5.2.9) are used to compare the performance of different models. The values of these 

metrics are reported in Tables 6.1, 6.3, and 6.5 for the TEC, ECO, and SOC datasets, respectively. 

Moreover, model transparency is considered as another metric to choose between the 

potential best-practice BSE-RPMs. 

6.3.1.1 Model Type I error rate 

Model classification error rates or Type I (5.20) and Type II (5.21) errors are significant indicators 

of the performance of a predictive model. According to James et al. (2017), low error rates on 

a given dataset guarantees the safe use of a particular supervised learning model. While both 

error rates should be minimum, Type I error has a pronounced impact on the success of a 

project with recovered building structural elements. As discussed in Section 5.5.2.2, a Type I 

error happens when a BSE-RPM classifies a non-reusable component as reusable. This mistake 

causes several logistic, financial, and technical costs by providing a false indication about the 

reusability of an element, which could risk the entire project. However, the consequences of a 

Type II error are manageable. While reuse aims to improve the circularity of materials in the 

building sector, a Type II error only troubles the design team to focus on other available 

recovered structural components. It is because by making a Type II error, a reusable section is 

discarded, and a designer needs to look for other recovered elements or purchase a new 

component. While this is not favourable in terms of the circularity of materials, unlike a Type I 

error, it doesn’t jeopardise the entire project. Either way, by integrating proper waste 

management plans considering sustainability at their core, elements misclassified as non-
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reusable will still go through recycling or down-cycling processes, which are still far better 

solutions than landfilling. 

In this study, following Holdnack et al. (2013), a maximum threshold of 10% is considered 

acceptable for the Type I error rate. Accordingly, for the TEC dataset, KNN, QDA, RF, AB, and 

SVM BSE-RPMs are eligible candidates on this metric (Table 6.1). Regarding the economic 

reusability, only KNN and RF BSE-RPMs are within the acceptable range (Table 6.3). And 

regarding the social reusability, KNN, RF, AB, BM, GP, PRL, and SVM fulfil the maximum 

allowable Type I error rate (Table 6.5). 

6.3.1.2 Model accuracy 

The accuracy of a predictive model to correctly identifying the reusability of the recovered 

building structural elements is of pronounced importance for the designers. In this study, the 

available datasets are approximately having an equal number of reusable and non-reusable 

observations. According to Table 5.1, a baseline model based on the portion of reusable and 

non-reusable building component elements can be developed for each of the datasets. A 

baseline model assigns the most frequent response (either reusable or non-reusable) for all 

observations. The baseline model for the TEC dataset has a 50% accuracy. It is because, if it is 

used to predict the technical reusability of the elements, only half of its predictions would be 

correct (based on Table 5.1, in the TEC dataset, the number of reusable and non-reusable 

components are equal). In the case of the ECO dataset, the baseline model always predicts non-

reusable because 51% of the elements are non-reusable, yielding an accuracy of 51%. And for 

the SOC dataset, the baseline model has 53% accuracy because it always predicts non-reusable 

for every observation (53% of the elements are non-reusable). Therefore, the accuracy of the 

predictive models should be far better than the baseline models for making the best practice 

BSE-RPMs reliable. 

In this research, a minimum threshold of 85% is considered acceptable for the predictive 

models' overall accuracy (see Tables 6.1, 6.3, and 6.5). Therefore, KNN (92%), QDA (91%), RF 

(96%), AB (87%), ANN (88%), and SVM (93%) BSE-RPMs for the TEC dataset fulfil the minimum 

threshold requirements on model accuracy (Table 6.1). Regarding the BSE-RPMs developed 

based on the ECO dataset, KNN (86%), RF (89%), AB (86%), BM (86%), ANN (86%), PRL (86%) 

and SVM (87%) are the acceptable models (Table 6.3). Moreover, RF (94%) and SVM (87%) are 

the only acceptable models for the SOC dataset (Table 6.5). 
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6.3.1.3 AUC 

While the overall accuracy of a model is an essential metric to choose a classifier, it is limited to 

a fixed threshold value (in this study equal to 0.5, see Section 5.5.1), hence not comprehensive. 

To overcome this barrier, the area under the ROC curve (AUC) (Section 5.5.2.9), which portrays 

the overall performance of a classifier based on all possible threshold values (James et al. 2017), 

is considered as another metric for model selection. 

In this study, the minimum acceptable value for the AUC is set to 90% (Section 5.5.2.9). As the 

result, KNN (98%), QDA (96%), RF (100%), BM (94%), AB (95%), ANN (93%), GP (92%), and SVM 

(98%) have high performance among all BSE-RPMs developed for the TEC dataset (Table 6.1). 

Moreover, KNN (93%), RF (98%), AB (92%), BM (90%), ANN (93%), GP (91%) and SVM (91%) fulfil 

the minimum performance requirement for the ECO dataset (Table 6.3). And finally, on the SOC 

dataset, KNN (92%), QDA (91%), RF (96%), AB (91%), BM (91%), GP (92%), SVM (94%) fulfil the 

threshold requirement on the AUC (Table 6.5). 

6.3.1.4 Model transparency 

The developed models in this study cover both parametric and non-parametric methods (Table 

5.10). These models have different levels of transparency, ranging from transparent models (LR, 

LDA, DT, and PRL) to hard-to-interpret (QDA) and black-box models (KNN, NB, RF, BM, AB, ANN, 

GP, and SVM). While it is preferable to choose a transparent model, in some cases, such models 

do not yield acceptable levels of accuracy in correctly classifying reusable and non-reusable 

elements, and the selection of a black-box model becomes inevitable. In the case of the latter, 

other tools, such as the sensitivity analysis and visualisation techniques introduced by (Cortez 

and Embrechts 2013), can be used to open a black-box model and make the results transparent. 

6.3.2 Best practice BSE-RPM for the TEC dataset (TEC BSE-RPM) 

Table 6.1 reports the summary of the results of a ten-fold CV used to assess the performance 

of the BSE-RPMs of the TEC dataset. As mentioned in Section 5.5.3, the TEC Logistic Regression 

(LR) BSE-RPM did not converge. Hence, this model is not considered. 

Table 6.1 Mean values of the metrics used to assess the performance of TEC BSE-RPMs (10-fold CV method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 

KNN 0.03 0.92 0.98 

LDA 0.18 0.81 0.90 

QDA 0.09 0.91 0.96 

NB 0.28 0.72 0.82 

DT 0.29 0.71 0.73 
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Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 

RF 0.01 0.96 1.00 

AB 0.08 0.87 0.95 

BM 0.11 0.85 0.94 

ANN 0.13 0.88 0.93 

GP 0.12 0.84 0.92 

PRL 0.19 0.80 0.83 

SVM 0.07 0.93 0.98 

 

For the TEC dataset, none of the developed models could satisfy all the four metrics for choosing 

the best-practice TEC BSE-RPM (Table 6.2). Hence, in the process of selecting the best model 

for the TEC dataset, only the Type-I error rate, overall accuracy, and AUC are considered. Based 

on Table 6.1, the random forests model (TEC-RF BSE-RPM) has the lowest Type I error rate 

(0.01), the highest overall accuracy (0.96), and the highest AUC (1.00) among all other models. 

So, the random forest model (TEC-RF BSE-RPM) is selected as the best-practice model to predict 

the technical reusability of the building structural elements (Table 6.2). 

Table 6.2 Selecting the best-practice TEC BSE-RPM 

Predictive 
model 

Type-I 
error 

(≤10%) 

Overall 
accuracy 
(≥ 85%) 

AUC 
(≥90%) 

Transparency 
Selected 
model 

KNN Yes Yes Yes   

LDA    Yes  

QDA Yes Yes Yes   

NB      

DT    Yes  

RF Yes Yes Yes  Yes 

AB Yes Yes Yes   

BM   Yes   

ANN  Yes Yes   

GP   Yes   

PRL    Yes  

SVM Yes Yes Yes   

 

6.3.3 Best practice BSE-RPM for the ECO dataset (ECO BSE-RPM) 

Table 6.3 reports the summary of the results of a ten-fold CV used to assess the performance 

of the BSE-RPMs of the ECO dataset. 

Table 6.3 Mean values of the metrics used to assess the performance of ECO BSE-RPMs (10-fold CV method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 

KNN 0.08 0.86 0.93 
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Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 

LR 0.26 0.73 0.82 

LDA 0.26 0.74 0.83 

QDA 0.22 0.77 0.88 

NB 0.32 0.73 0.84 

DT 0.16 0.82 0.84 

RF 0.06 0.89 0.98 

AB 0.13 0.86 0.92 

BM 0.11 0.86 0.90 

ANN 0.11 0.86 0.93 

GP 0.10 0.83 0.91 

PRL 0.12 0.86 0.86 

SVM 0.10 0.87 0.91 

 

For the ECO dataset, none of the developed models could satisfy all the four metrics for 

choosing the best-practice ECO BSE-RPM (Table 6.4). Hence, in the process of selecting the best 

model for the ECO dataset, only the Type-I error rate, overall accuracy, and AUC are considered. 

Based on Table 6.3, the random forests model (ECO-RF BSE-RPM) has the lowest Type I error 

rate (0.06), the highest overall accuracy (0.89), and the highest AUC (0.98) among all other 

models. So, the random forest model (ECO-RF BSE-RPM) is selected as the best-practice model 

to predict the economic reusability of the building structural elements (Table 6.4). 

Table 6.4 Selecting the best-practice ECO BSE-RPM 

Predictive 
model 

Type-I 
error 

(≤10%) 

Overall 
accuracy 
(≥ 85%) 

AUC 
(≥90%) 

Transparency 
Selected 
model 

KNN Yes Yes Yes   

LR    Yes  

LDA    Yes   

QDA      

NB      

DT    Yes   

RF Yes Yes Yes  Yes 

AB  Yes Yes   

BM  Yes Yes   

ANN  Yes Yes   

GP   Yes    

PRL  Yes  Yes   

SVM  Yes Yes   

 

6.3.4 Best practice BSE-RPM for the SOC dataset (SOC BSE-RPM) 

Table 6.5 reports the summary of the results of a ten-fold CV used to assess the performance 

of the BSE-RPMs of the SOC dataset. 



158 
 

Table 6.5 Mean values of the metrics used to assess the performance of SOC BSE-RPMs (10-fold CV method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy 

AUC 

KNN 0.03 0.81 0.92 

LR 0.26 0.70 0.85 

LDA 0.25 0.72 0.85 

QDA 0.28 0.76 0.91 

NB 0.14 0.80 0.86 

DT 0.16 0.77 0.87 

RF 0.00 0.94 0.96 

AB 0.07 0.81 0.91 

BM 0.04 0.82 0.91 

ANN 0.10 0.80 0.84 

GP 0.03 0.81 0.92 

PRL 0.04 0.85 0.88 

SVM 0.10 0.87 0.94 

 

For the SOC dataset, none of the developed models could satisfy all the four metrics for 

choosing the best-practice SOC BSE-RPM (Table 6.6). Hence, in the process of selecting the best 

model for the SOC dataset, only the Type-I error rate, overall accuracy, and AUC are considered. 

Based on Table 6.5, the random forests model (SOC-RF BSE-RPM) has the lowest Type I error 

rate (0.00), the highest overall accuracy (0.94), and the highest AUC (0.96) among all other 

models. So, the random forest model (SOC-RF BSE-RPM) is selected as the best-practice model 

to predict the social reusability of a building’s structural elements (Table 6.6). 

Table 6.6 Selecting the best-practice SOC BSE-RPM 

Predictive 
model 

Type-I 
error 

(≤10%) 

Overall 
accuracy 
(≥ 85%) 

AUC 
(≥90%) 

Transparency 
Selected 
model 

KNN Yes  Yes   

LR    Yes  

LDA    Yes  

QDA   Yes   

NB      

DT    Yes  

RF Yes Yes Yes  Yes 

AB Yes  Yes   

BM Yes  Yes   

ANN      

GP Yes  Yes   

PRL Yes   Yes  

SVM Yes Yes Yes   
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6.4 Improving the transparency of the selected best-practice models 

While the selected TEC-RF BSE-RPM, ECO-RF BSE-RPM, and SOC-RF BSE-RPM models in Sections 

6.3.2, 6.3.3, and 6.3.4 have high overall accuracy, high AUC, and low Type-I error rate, they lack 

transparency. It is because random forest models are categorised under black-box methods, 

and they cannot be interpreted easily (Breiman 2001). As discussed in Section 6.3, the 

transparency of the results of the selected predictive models is essential to encourage the 

stakeholders to employ the outcome of such models for assessing the reusability of building 

structural elements at the end-of-life of a building. Therefore, when such easy-to-understand 

models are not available, it is necessary to make the results of the selected models transparent. 

In this research, two techniques are used to improve the transparency of the selected models. 

First, the sensitivity analysis and visualisation techniques suggested by Cortez and Embrechts 

(2013) are employed to identify the importance of the variables and open the black box models. 

Next, using the rule extraction method suggested by (Deng 2014) and based on the results of 

the previous technique, a set of decision rules was produced to explain the ensemble of trees 

developed in the selected RF model. While both techniques fulfil the aim of this study, the latter 

provides a simple and understandable set of rules for the stakeholders to estimate the 

reusability of building structural elements at the end-of-life of a building. 

According to Cortez and Embrechts (2013), to perform the sensitivity analysis (SA), a sensitivity 

method needs to be identified first. A sensitivity method performs by varying a given reusability 

factor from its minimum to maximum possible values while conditioning the remaining 

independent variables and observations (Cortez and Embrechts 2013). For the nominal features 

(B3 and B5), the sensitivity method alters the values of the variables based on the variable levels 

(B3 has three levels, and B5 has five levels, see Section C.2, Appendix C). For the categorical 

features, following Cortez and Embrechts (2013), the sensitivity method varies the value of the 

predictors from one to five in seven intervals (see Table 4.1 for the Likert scale used). As 

recommended by Cortez and Embrechts (2013), in this research, data-based SA (DSA) was used 

as the sensitivity method. The DSA method randomly selects several samples from the dataset 

and alters the values of an independent variable for all data points and records the responses 

while not changing other features (Cortez and Embrechts 2013). This process is performed for 

all independent variables (reusability factors) in the TEC, ECO, and SOC datasets. The sensitivity 

responses identified using the DSA method can be used to determine the feature importance 

using a sensitivity measure (Cortez and Embrechts 2013). This research uses the Average 
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Absolute Deviation (AAD) from the Median as the sensitivity measure, as advised by Cortez and 

Embrechts (2013). According to Cortez and Embrechts (2013), 

𝐴𝐴𝐷 =  
∑ |�̂�𝑎𝑗

− �̃�𝑎|𝐿
𝑗=1

𝐿
 

(6.1) 

where 𝐿 = 7 (seven intervals between one to five), �̂�𝑎𝑗
 is the sensitivity response for 𝑥𝑎𝑗

∈

{1, 1.67, 2.33, 3, 3.67, 4.33, 5} (𝑗𝑡ℎ level of input 𝒙𝑎: 𝑎 ∈ {1, … , 𝑝} for 𝑝 features), and �̃�𝑎 is the 

median of the responses. The higher the value of the AAD for an independent variable, the more 

important is the feature (Cortez and Embrechts 2013). This measure is then used to develop the 

relative importance of the input variables (Cortez and Embrechts 2013). It is noteworthy that 

following Cortez and Embrechts (2013), this research uses the complete TEC, ECO, and SOC 

datasets to perform the SA. For further details about the SA and visualisation methods used in 

this study, please refer to (Cortez and Embrechts 2013). Script E.23 (Appendix E) is used to 

perform the SA in this study. 

While the sensitivity analysis and visualisation techniques presented above help in opening the 

selected models (TEC-RF BSE-RPM, ECO-RF BSE-RPM, and SOC-RF BSE-RPM), it still lacks the 

clarity level required by the stakeholders to make sound judgments about the reusability of the 

structural elements of a building at its end-of-life phase. Hence, as mentioned earlier, the 

results of the SA are used to develop a set of easy-to-understand rules that can be effectively 

used by the practitioners. 

Figure 6.1 displays different stages of the method used to extract rules from the selected BSE-

RPMs (Deng 2014). 
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Figure 6.1 The process of developing the rules set from the selected BSE-RPMs (Deng 2014) 

The results of the sensitivity analysis and rule extraction methods that were performed for 

improving the transparency of the selected models are provided in Sections 6.4.1, 6.4.2, and 

6.4.3. 

6.4.1 Improving the transparency of the TEC-RF BSE-RPM 

Figure 6.2 shows the results of the feature importance for the TEC-RF BSE-RPM. In this figure, 

the X-axis shows the relative importance of the variables, and the Y-axis shows the features. 

Based on Figure 6.2, only some of the variables are relevant, and others have negligible 

importance. In this study, features with relative importance greater than 2% are considered for 

further review and development of the rules, and the remaining are ignored. It results in a total 

number of fourteen independent variables including, B3, B5, B7, B8, C6, C12, C15, C16, C20, 

C25, C27, C28, D23, and D24. 

Selected model 

(1) Extract rules 

(3) Remove irrelevant or 

redundant conditions from 

each rule 

(4) Select a set of relevant 

and non-redundant rules 

(5) Develop an easy-to-

understand predictive model 

(2) Measure rules’ quality and 

rank them 
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Figure 6.2 Bar plot with DSA and AAD relative feature importance for the TEC dataset based on the TEC-RF BSE-RPM 

In the next stage, and to present how different values of a feature affect the technical reusability 

of building structural elements on average, a set of variable effect characteristic (VEC) curves 

are plotted for the identified fourteen variables. A VEC curve plots the average impact of 

different values of a reusability factor (X-axis) on the probability that a structural element is 

reusable (Y-axis). 

Figure 6.3 shows the sensitivity analysis of the top-four factors based on Figure 6.2. According 

to Figure 6.3, the reusability probabilities of a building's structural elements improves when the 

values of these variables increase. 
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Figure 6.3 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D23, D24, C28, and C27 (the top-four variables in TEC-RF BSE-RPM) 

Figure 6.4 shows the impact of different values of the listed features on the technical reusability 

of building structural elements. Because B3 (age of the building) and B5 (number of existing 

connections) are nominal variables, four separate graphs are drawn for clarity. While the 

decrease in the reusability probability due to reduced effects of the damage due to post-

production modifications (variable C15) looks counterintuitive, the observed behaviour should 

not be evaluated in solitude, and the impact of the interactions with other independent 

variables needs to be considered, as well. It is noteworthy that in performing the sensitivity 

analysis for a feature, the value of other variables is not altered. Whereas, in real cases, the 

values of other variables might change due to the interdependencies of the features. The same 

applies to B5 (number of existing connections) and B3 (age of the building), as well. In the case 

of the former, it seems that by increasing the number of existing connections, the reusability 

decreases. The above observation is only correct for options three and four on the 

questionnaire survey, where the number of existing connections increases from five to ten. 

However, reusability improves for a higher number of connections, which is again 

counterintuitive. Notwithstanding, it can be concluded that while the limited number of existing 

connections is favourable, this factor cannot be considered on its own, and the interaction with 

other variables should be considered. The above fact applies to all other variables, as well. 
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Figure 6.4 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for B5, C25, B3, and C15 (TEC-RF BSE-RPM) 

 

Figure 6.5 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for B8, C6, C12, and C16 (TEC-RF BSE-RPM) 
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Figure 6.6 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for C20 and B7 (TEC-RF BSE-RPM) 

Figures 6.5 and 6.6 follow the same trend observed in Figure 6.3. However, as discussed earlier, 

none of these features should be considered independently for estimating the technical 

reusability of building structural elements. This effect can be shown by drawing the VEC curves 

while showing the range of the sensitivity at each point. For this purpose, the most suitable 

feature (D23, the mechanical properties of the component) and the least significant variable 

(B7, the future deployment of the element, identified based on a minimum 2% threshold for 

the relative importance) are plotted in Figure 6.7. According to this figure, the average VEC 

curve for B7 is nearly flat (the diamonds on the curve). Moreover, while there is a leap from 

three to four for D23, the rest of the curve remains almost flat. However, the range of the 

sensitivity is high for both variables, as shown by the box plots in Figure 6.7. The above 

observation acknowledges that the technical reusability of the structural elements of a building 

depends on the interactions between the predictors, as well (Cortez and Embrechts 2013). 
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Figure 6.7 The VEC curves with box plots (to show the range of sensitivity at each point) to compare the impact of 
different values of B7 (left) and D23 (right) on the reusability probabilities of the elements (TEC-RF BSE-RPM) 

In the next stage, and to further promote the clarity of the results of the selected TEC-RF BSE-

RPM, a set of easy-to-understand rules (presented in Table 6.7) are developed based on the 

method suggested by Deng (2014). The steps followed for developing these rules are available 

in Figure 6.1 (Section 6.4). 

The first column of Table 6.7 contains the sequence of the rules that need to be followed strictly. 

It means that checking should start with rule number one, and if its conditions are not satisfied, 

the next rule should be checked. This sequential process continues until a rule’s conditions are 

satisfied. At this point, checking stops, and the rule number (the first column of Table 6.7) and 

prediction result (the sixth column of Table 6.7) should be recorded against the observation. It 

should be noted that the next rules should not be checked even if the collected data satisfy 

them. 

The second column shows the length of a condition, which is the count of variable-value pairs 

(such as 𝐶12 ≤ 3 in rule number one) in a rule (Deng 2014). For example, rule number 7 has 

three circumstances to be satisfied; hence, the length of its condition is equal to 3. 

The third column is the frequency of a rule, which is defined as the proportion of the 

observations in the training dataset that satisfy the rule condition(s) (Deng 2014). For instance, 

the total number of observations in the training set is equal to 134, out of which twenty-one 

fall under the first rule. Therefore, the frequency of the first rule becomes 0.157 (the sum of 

frequency values is equal to one). 
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The fourth column is the error of a rule, which is equal to the number of misclassifications 

decided by the rule divided by the number of observations satisfying the rule condition(s) in the 

training dataset (Deng 2014). According to Table 6.7, out of 15 rules, only one (rule number 9) 

makes misclassifications on the training set. Rule number 9 covers 16 observations in the 

training set, out of which only one is wrongly classified as non-reusable, resulting in a 

misclassification error rate equal to 6.25%. 

Column five of Table 6.7 shows the conditions of the rules. And the last column contains the 

predicted responses by the rules, which is equal to zero (0) for non-reusable elements and to 

one (1) for reusable components. As an example, rule number one states that if C12 (damage 

caused by living organisms), C20 (lack of earlier certificates), and D23 (the process of matching 

the design of the new building with the strength of the recovered element) are less than or 

equal to 3, then the component is not reusable. 

In Table 6.7, there are both nominal variables (B3 and B5) and categorical factors (features of 

groups C and D). While the categorical variables are dealt with like numbers (because they are 

ordered) (Sauro and Lewis 2016) (see Section 4.10), the nominal factors have no correct order; 

hence, they appear in the learner presented in Table 6.7 as a vector. For instance, in rule 

number five, 𝐵3 = 𝑐 (‘4’) means only those observations where the age of a component (or a 

building) is between 81 to 100 years. For further details about the variables, please refer to 

Section 4.4.2 and Appendix C.2. 

Table 6.7 The learner (rules set) developed based on the TEC-RF BSE-RPM 

Rule 
No. 

Length Frequency Error Condition Prediction 

1 3 0.157 0 C12 ≤ 3 & C20 ≤ 3 & D23 ≤ 3 0 

2 2 0.134 0 C16 > 4 & D24 > 2 1 

3 2 0.112 0 B8 ≤ 3 & C12 > 4 0 

4 3 0.075 0 C20 ≤ 2 & C28 > 3 & D24 > 2 1 

5 3 0.067 0 B3 =  c (′4′) & C27 > 3 & C28 > 2 1 

6 1 0.045 0 D24 > 3 1 

7 3 0.030 0 
B3 =  c (′1′, ′2′, ′3′, ′5′) & B5 

=  c (′3′, ′4′) & C12
> 4 

0 

8 4 0.022 0 
B5 =  c (′1′, ′3′, ′4′, ′5′) & C6

> 3 & C15 ≤ 4 & C28
≤ 3 

1 

9 2 0.119 0.0625 C28 ≤ 4 & D23 > 2 0 

10 4 0.119 0 
B5 =  c (′1′, ′2′, ′5′) & C6 > 3 & C20

> 3 & C28 > 2 
1 

11 5 0.060 0 
B3 =  c (′1′, ′2′) & B5 
=  c (′1′, ′2′, ′3′, ′5′) & C20 > 1 & C28
≤ 3 & D23 ≤ 3 

0 
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Rule 
No. 

Length Frequency Error Condition Prediction 

12 3 0.015 0 B7 > 4 & C27 > 2 & D23 > 1 1 

13 3 0.022 0 
B5 =  c (′1′, ′5′) & C28 ≤ 4 & D24

≤ 3 
0 

14 3 0.015 0 
B5 =  c (′1′, ′2′, ′3′, ′5′) & B8

> 3 & C28 > 3 
1 

15 1 0.007 0 Else 0 

 

Table 6.7 is developed based on the training dataset defined in Section 5.3. While the above set 

of rules provides an easy-to-understand and implement collections of conditions, it is essential 

to make sure that the resulting predictions on the unseen data satisfy the minimum 

requirements set in Section 6.3.1. Therefore, the corresponding testing dataset (unseen 

observations by the learner) was used to evaluate the performance of the learner presented in 

Table 6.7. For this purpose, the researcher followed the rules sequentially (from 1 to 15), 

identified the applicable set of conditions to each observation, and recorded the resulting 

prediction for each element. Next, the prediction results were compared with the correct 

responses, and the errors were recorded to evaluate the performance of the learner. Table 6.8 

shows the results of the classifications made by this learner on the testing dataset (see Section 

5.5.2.1). 

Table 6.8 The confusion matrix of the learner presented in Table 6.7 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 27 2 

Actual reusable (1) 8 21 

 

As a result, the classifier misclassified two (2) non-reusable elements as reusable (Type-I errors, 

Section 5.5.2.2) and eight (8) reusable components as non-reusable (Type-II errors, Section 

5.5.2.3). Based on Table 6.8, the Type-I error rate is equal to 6.9%, and the overall accuracy is 

equal to 85.3%. Therefore, this learner satisfies the minimum performance requirements 

defined in sections 6.3.1.1 and 6.3.1.2. Moreover, the learner in Table 6.7 is transparent and 

easy-to-understand and can be easily implemented in practice.  

In Table 6.7, the rules are ordered, and the rules should be checked sequentially to find a 

condition that satisfies the predictor values of the component to determine the technical 

reusability of a structural element. According to Table 6.7, C25 is not available in any of the 

rules. Hence, a practitioner may not need to collect data on this variable. Table 6.9 summarises 

the survey that the practitioners need to perform before being able to use the learner in Table 
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6.7. In Table 6.9, the variable codes (Code) are kept equal to the original survey (Appendix C, 

Section C.2) to maintain uniformity. 

Table 6.9 The required survey for assessing the technical reusability of a structural element using the learner in 
Table 6.7 

Seq. Code Question / Options Selected 
answer 

1 B3 

What is the approximate age of the building from which the 
element is recovered? 

 1 2 3 4 5 

0 to 40 41 to 60 61 to 80 81 to 100 
Above 

100 

2 B5 

What is the number of existing connections fixed to the element 
when purchased/acquired (plates or angles fixed to a beam, etc.)? 

 
1 2 3 4 5 

1 to 2 3 to 4 5 to 7 8 to 10 Above 10 

3 B7 

The structural element is intended to be used for the same purpose 
(i.e. as a beam, slab, column, etc.) in its new installation. 

 
1 2 3 4 5 

Strongly 
disagree 

Disagree 
Neither 

agree nor 
disagree 

Agree 
Strongly 

agree 

4 B8 

The cross-section/thickness dimensions of the structural element 
in its new installation are expected to be equal or nearly equal to 
the cross-section/thickness dimensions of the element in its 
previous installation. 

 
1 2 3 4 5 

Strongly 
disagree 

Disagree 
Neither 

agree nor 
disagree 

Agree 
Strongly 

agree 

5 C6 

Estimated level of damage to the element due to the type of 
joints. 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

6 C12 

Estimated level of damage to the element caused by living 
organisms (termite, bacterial attack, etc.) 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

7 C15 

Estimated level of damage to the element due to post-production 
modifications (e.g. holes for ductwork, etc.) 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

8 C16 

The negative impact of the lack of certificates of quality for the 
structural element. 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

9 C20 
The negative impact of the lack of earlier certificates (inspection, 
material, etc.)  

1 2 3 4 5 
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Seq. Code Question / Options Selected 
answer 

Very high High Moderate Low Very low 

10 C27 

The negative impact of a potential problem with collateral 
warranties. 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

11 C28 

The negative impact of the presence of hazardous, banned or 
contaminating coatings. 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

12 D23 

How do you expect that matching the design of the new building 
with the strength of the recovered element affects its reusability? 

 1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

13 D24 

How do you expect that challenges in designing with the reused 
element affect its reusability? 

 1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

 

For further details about how different steps of this method perform, please refer to (Deng 

2014). Script E.24 (Appendix E) is used to extract the rules from the TEC-RF BSE-RPM. 

6.4.2 Improving the transparency of the ECO-RF BSE-RPM 

Figure 6.8 shows the results of the feature importance for the ECO-RF BSE-RPM. In this figure, 

the X-axis shows the relative importance of the variables, and the Y-axis shows the features. 

Based on Figure 6.8, all the variables are relevant and have relative importance above 0.02. This 

observation is in line with the results of the variable selection for the ECO dataset (Section 5.4). 

It results in a total number of twelve independent variables (Figure 6.8). 

In the next stage, and to present how different values of a feature affects the economic 

reusability of building structural elements on average, a set of variable effect characteristic 

(VEC) curves are plotted for all predictors. 

Figures 6.9 to 6.11 show the sensitivity analysis of the reusability factors based on Figure 6.8. 

According to these figures, in most cases, the economic reusability probabilities of a building's 

structural elements improves when the values of these variables increase. However, as 

discussed in Section 6.4.1, none of these features should be considered independently for 

estimating the economic reusability of building structural elements. 
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Figure 6.8 Bar plot with DSA and AAD relative feature importance for the ECO dataset based on the ECO-RF BSE-
RPM 

Figure 6.9 shows the sensitivity analysis of the top-four reusability factors (D10, C24, D25, D8) 

based on Figure 6.8. According to this figure, the economic reusability probabilities of a 

building's structural elements improves when the values of these variables increase from one 

(the highest negative impact) to five (the most positive effect). For the cash flow (D10), Figure 

6.9 reveals that if it is necessary to purchase the required recovered elements early on and as 

soon as they are available, it could negatively affect the project due to additional costs such as 

the need to store the components for an extended period. Regarding C24, if the reuse of load-

bearing building components reveals considerable financial risks as the result of extra efforts to 

find the required elements, changes in the original design to match with the properties of the 

recovered components, and other possible additional costs, reuse become economically 

unattractive. While a strict financial risk assessment at the beginning of any project is essential, 

the availability of financial incentives to recover and reuse building structural elements could 

overcome this barrier. Regarding the process to allocate and purchase the required components 

(D25), Figure 6.9 reveals that the increased difficulty in this process harms the economic 

reusability of the components. Eventually, Figure 6.9 shows that the increased cost of labour 

 

0.25 

Relative Importance 
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(D8) could negatively affect the reuse rates because it could increase the overall project 

expenses.  

 

Figure 6.9 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D10, C24, D25, and D8 (the top-four variables in ECO-RF BSE-RPM) 
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Figure 6.10 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D9, D1, D5, and D2 (ECO-RF BSE-RPM) 
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Figure 6.11 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D3, D6, D4, and D7 (ECO-RF BSE-RPM) 

According to Figure 6.11, the higher values of D4 (cost of refurbishment) is associated with a 

decrease in the economic reusability of the structural elements of a building. However, this 

variable has the least importance among all other variables (Figure 6.8). Moreover, as discussed 

in Section 6.4.1, the interactions between variables should be considered for interpreting the 

results. Hence, to show the interdependency of the economic reusability factors, the most 

suitable feature (D10) and the least significant variable (D4) are plotted in Figure 6.12. According 

to this figure, the range of sensitivity for D4 is higher than D10 at all values. It acknowledges 

that D4 has much higher interdependency with other variables than D10. Consequently, Figure 

6.12 shows that the economic reusability of the structural elements of a building depends on 

the interactions between the predictors, as well (Cortez and Embrechts 2013). 
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Figure 6.12 The VEC curves with box plots (to show the range of sensitivity at each point) to compare the impact of 
different values of D4 (left) and D10 (right) on the reusability probabilities of the elements (ECO-RF BSE-RPM) 

While the above sensitivity analysis helps in improving the transparency of the ECO-RF BSE-

RPM, as discussed in Section 6.4, a set of easy-to-understand rules are also developed to 

encourage the stakeholders to use the results of this research. These sets of rules are presented 

in Table 6.10. The details of this table are the same as Table 6.7 (Section 6.4.1) and are not 

repeated in this section. It is noteworthy that the first column of this table contains the 

sequence of the rules that need to be followed strictly. 

Table 6.10 The learner (rules set) developed based on the ECO-RF BSE-RPM 

Rule 
No. 

Length Frequency Error Condition Prediction 

1 3 0.225 0 C24 > 4 & D8 > 2 & D25 > 2 1 

2 2 0.14 0 D10 ≤ 2 & D25 > 2 0 

3 
5 0.101 0 

C24 > 3 & D1 = 3 & D5 ≤ 3 & D10
≤ 3 & D25 > 1 0 

4 1 0.093 0 D5 = 2 1 

5 
4 0.093 0 

C24 ≤ 3 & D4 > 2 & D5 ≤ 3 & D25
≤ 3 0 

6 
4 0.101 0 

C24 > 2 & D1 > 3 & D3 > 2 & D10
> 2 1 

7 3 0.047 0 C24 ≤ 3 & D6 > 3 & D10 ≤ 4 0 

8 2 0.031 0 C24 = 4 & D3 ≤ 1 1 

9 2 0.031 0 D1 > 3 & D3 ≤ 1 0 

10 3 0.031 0 D5 > 1 & D10 ≤ 2 & D25 ≤ 2 1 

11 2 0.023 0 D5 ≤ 1 & D6 > 2 0 

12 2 0.016 0 D5 ≤ 1 & D25 > 1 0 

13 2 0.062 0.125 D3 ≤ 2 & D6 ≤ 2 0 

14 1 0.008 0 Else 1 
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Table 6.10 is developed based on the training dataset defined in Section 5.3. While the above 

set of rules provides an easy-to-understand and implement collections of conditions, it is 

essential to make sure that the resulting predictions on the unseen data satisfy the minimum 

requirements set in Section 6.3.1. Therefore, the corresponding testing dataset (unseen 

observations by the learner) was used to evaluate the performance of the learner presented in 

Table 6.10. Table 6.11 shows the results of the classifications made by this learner on the testing 

dataset (see Section 5.5.2.1). 

Table 6.11 The confusion matrix of the learner presented in Table 6.10 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 26 2 

Actual reusable (1) 8 19 

 

Based on Table 6.11, the Type-I error rate is equal to 7.1%, and the overall accuracy is equal to 

82%. Therefore, while this learner satisfies the minimum performance requirements defined in 

Section 6.3.1.1, its accuracy is slightly lower than 85%, which means it may classify an 

economically reusable component as non-reusable. Nonetheless, the learner in Table 6.10 is 

transparent and easy-to-understand and can be easily implemented in practice. 

In Table 6.10, the rules are ordered, and they should be followed sequentially to find a condition 

that matches the predictor values to determine the economic reusability of a structural 

element. According to Table 6.10, D2, D7, and D9 are not available in any of the rules. Hence, a 

practitioner may not need to collect data on these variables to use the learner. Table 6.12 

summarises the survey that the practitioners need to perform before being able to use the 

learner in Table 6.10. In Table 6.12, the variable codes (Code) are kept equal to the original 

survey (Appendix C, Section C.2) to maintain uniformity. 

Table 6.12 The required survey for assessing the economic reusability of a structural element using the learner in 
Table 6.10 

Seq. Code Question / Options Selected 
answer 

1 C24 

The negative impact of the potential financial risks. 

 1 2 3 4 5 

Very high High Moderate Low Very low 

For questions 2 to 9, please assess how do the following factors might affect the economic 
reusability of the structural element? 

2 D1 
The purchasing price / the analysis cost of an existing structure for 
reuse  

1 2 3 4 5 
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Seq. Code Question / Options Selected 
answer 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

3 D3 

Cost of testing 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

4 D4 

Cost of refurbishment (sandblasting, treatment, etc.) 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

5 D5 

Cost of design with the reused element 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

6 D6 

Storage cost 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

7 D8 

Cost of labour 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

8 D10 

Cash flow (need to purchase the element early, etc.) 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

9 D25 

Sourcing/procurement process 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

 

For further details about how different steps of this method perform, please refer to (Deng 

2014). Script E.24 (Appendix E) is used to extract the rules from the ECO-RF BSE-RPM. 

6.4.3 Improving the transparency of the SOC-RF BSE-RPM 

Figure 6.13 shows the results of the feature importance for the SOC-RF BSE-RPM. In this figure, 

the X-axis shows the relative importance of the variables, and the Y-axis shows the features. 

Based on Figure 6.13, all the variables are relevant and have relative importance above 0.02. 

This observation is in line with the results of the variable selection for the SOC dataset (Section 

5.4). It results in a total number of ten independent variables (Figure 6.13). 
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In the next stage, and to present how different values of a feature affects the social reusability 

of building structural elements on average, a set of variable effect characteristic (VEC) curves 

are plotted for all predictors (Figures 6.14 to 6.16). 

Figure 6.14 shows the sensitivity analysis of the top-four features in the SOC dataset. For D16, 

C22, and D15, the higher values of the variables are associated with an improvement in social 

reusability. Whereas for C23, this increase has a counter effect. Notwithstanding, as discussed 

in Section 6.4.1, this variable cannot determine the social reusability of a component on its own, 

and the interactions with other variables should be considered, as well. For instance, according 

to Table 6.13, C23 is positively correlated with C22 and has a negative correlation with all other 

variables. While Table 6.13 clearly shows the linear interdependencies among the variables, it 

does not mean that the real relationship between predictors is linear. The result of the 

parametric models (Table 6.5) shows that the non-linear classifiers outperform the linear 

methods, an indication that the actual relationship between the predictors and the outcome is 

non-linear. 

 

Figure 6.13 Bar plot with DSA and AAD relative feature importance for the ECO dataset based on the SOC-RF BSE-
RPM 
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Table 6.13 Correlation between features in the SOC dataset (Pearson's) 

 C23 D11 D12 D13 D14 D15 D16 D17 D20 

C22 0.563** -0.052 -0.044 -0.015 -0.091 -0.014 -0.013 0.048 -0.157 

C23 - -0.184 -0.161 -0.091 -0.21* -0.097 -0.221* -0.044 -0.15** 

D11  - 0.816** 0.645** 0.685** 0.291** 0.328** 0.520** 0.386** 

D12   - 0.704** 0.722** 0.434** 0.392** 0.535** 0.398** 

D13    - 0.649** 0.443** 0.59** 0.484** 0.534** 

D14     - 0.432** 0.334** 0.573** 0.501** 

D15      - 0.379** 0.445** 0.492** 

D16       - 0.327** 0.518** 

D17        - 0.398** 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

 

 

Figure 6.14 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D16, C23, C22, and D15 (the top-four variables in SOC-RF BSE-RPM) 
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Figure 6.15 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D14, D20, D17, and D13 (SOC-RF BSE-RPM) 

 

Figure 6.16 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D11 and D12 (SOC-RF BSE-RPM) 



181 
 

Figures 6.15 and 6.16 show that, in most cases, the reusability probabilities of a building's 

structural elements improve when the values of these variables increase. However, as discussed 

earlier, because of the interdependencies between the predictors (Table 6.13), none of these 

features should be considered independently for estimating the social reusability of a building’s 

structural elements. 

In the next stage, and following the approach adopted in Sections 6.4.1 and 6.4.2, a set of easy-

to-understand rules are also developed to further clarify the outcome of the selected SOC-RF 

BSE-RPM. The resulting set of rules is presented in Table 6.14. 

The details of Table 6.14 are the same as Table 6.7 (Section 6.4.1) and are not repeated in this 

section. It is noteworthy that the first column of this table contains the sequence of the rules 

that need to be followed strictly. 

Table 6.14 The learner (rules set) developed based on the SOC-RF BSE-RPM 

Rule 
No. 

Length Frequency Error Condition Prediction 

1 3 0.244 0 C23 > 3 & D13 = 2 & D17 ≤ 4 0 

2 3 0.179 0 C22 > 3 & D11 > 2 & D12 > 1 1 

3 
5 0.218 0 

C22 ≤ 3 & D15 ≤ 3 & D16 ≤ 3 & D17
≤ 4 & D20 > 2 0 

4 2 0.064 0 C23 ≤ 3 & D16 ≤ 2 1 

5 2 0.064 0 D14 ≤ 2 & D17 = 3 0 

6 2 0.051 0 C23 ≤ 4 & D12 = 3 1 

7 1 0.179 0 Else 1 

 

Table 6.14 is developed based on the training dataset defined in Section 5.3. While the above 

set of rules provides an easy-to-understand and implement collections of conditions, it is 

essential to make sure that the resulting predictions on the unseen data satisfy the minimum 

requirements set in Section 6.3.1. Therefore, the corresponding testing dataset (unseen 

observations by the learner) was used to evaluate the performance of the learner presented in 

Table 6.14. Table 6.15 shows the results of the classifications made by this learner on the testing 

dataset (see Section 5.5.2.1). 

Table 6.15 The confusion matrix of the learner presented in Table 6.14 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 18 0 

Actual reusable (1) 3 13 

 



182 
 

Based on Table 6.15, there is no Type-I error, and the overall accuracy is equal to 91%. 

Therefore, this learner satisfies the minimum performance requirements defined in sections 

6.3.1.1 and 6.3.1.2. Moreover, the learner in Table 6.14 is transparent and easy-to-understand 

and can be easily implemented in practice. 

In Table 6.14, the rules are ordered, and they should be followed sequentially to find a condition 

that matches the predictor values to determine the social reusability of a structural element. 

Table 6.16 summarises the survey that the practitioners need to perform before being able to 

use the learner in Table 6.14. In Table 6.16, the variable codes (Code) are kept equal to the 

original survey (Appendix C, Section C.2) to maintain uniformity. 

Table 6.16 The required survey for assessing the social reusability of a structural element using the learner in Table 
6.14 

Seq. Code Question / Options Selected 
answer 

1 C22 

The potential liability risks related to reusing the recovered 
structural elements. 

 
1 2 3 4 5 

Very high High Moderate Low Very low 

2 C23 

The potential health and safety risks related to reusing the 
recovered structural elements. 

 

1 2 3 4 1  

Very high High Moderate Low Very high  

For questions 3 to 10, please assess how do the following factors might affect the social 
reusability of the structural element? 

3 D11 

Perception of the client/top management team about the element 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

4 D12 

Perception of the designers about the element 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

5 D13 

Perception of the builders/contractors about the element 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

6 D14 

Perception of the end-users (when it is not the client) about the 
element 

 1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

7 D15 

Perception of the stockist about the element 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 
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Seq. Code Question / Options Selected 
answer 

8 D16 

Perception of the regulatory authorities about the element 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

9 D17 

Visual appearance 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

10 D20 

Changes in the health and safety regulations (fire, etc.) 

 
1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

 

For further details about how different steps of this method perform, please refer to (Deng 

2014). Script E.24 (Appendix E) is used to extract the rules from the SOC-RF BSE-RPM. 

6.5 Instructions for using the developed learners 

In Section 6.4, three learners were developed and presented in Tables 6.7, 6.10, and 6.14 using 

the results of the best-practice random forest models for the TEC, ECO, and SOC datasets, 

respectively. In Section 6.5, a flow chart is developed to help the practitioners in the building 

sector to use these learners effectively. Figure 6.17 shows this flow chart. 

Before using these learners, it is essential to consider the following. If the below conditions are 

not satisfied, the learners in Tables 6.7, 6.10, and 6.14 cannot be used. 

• The learners presented in Tables 6.7, 6.10, and 6.14 are designed to assist the 

construction professionals in their decision-making process for reusing load-bearing 

building components from technical, economic, and social aspects. First, an item 

should be confirmed reusable using the learner presented in Table 6.7. Next, if the 

learner is technically reusable, using the learner in Table 6.10, its economic reusability 

should be assessed. Eventually, the item should be assessed from a social perspective 

using the learner in Table 6.14. 

• It is assumed that the elements are/would be recovered through deconstruction. If 

demolition is considered, reuse of the load-bearing building components is not 

practical due to the damages during this process (Section 1.10). 
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Figure 6.17 Instructions for using the learners developed in Tables 6.7, 6.10, and 6.14 

Figure 6.18 presents an example of using these learners for predicting the technical reusability 

of the structural elements at the end-of-life of a building. It is noteworthy that the structural 

component presented in this example is the result of a real survey that was received after the 

development of the predictive models in this study. Hence, it was not used for training or 

performance evaluation of the predictive models. This component was technically reusable 

Start 

Perform a building survey. Make a list of all the 

structural elements in the building. Identify all the 

necessary inputs to the model (Based on Tables 6.9, 

6.12 and 6.16). 

For each of the structural 

elements (or groups of similar 

components), perform the 

applicable surveys based on 

Tables 6.9, 6.12, and 6.16. 

Based on the 

applicable learners 

in Tables 6.7, 6.10, 

and 6.14, is the 

element reusable? 

Proceed 

with 

reuse 

Follow other 

waste 

treatment 

options 

End 

Yes No 
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based on the confirmation of the respondent. According to Figure 6.18, the learner predicts 

that the element is reusable, which agrees with the real status of the component. 

 

Figure 6.18 An example of using the learner presented in Table 6.7 for predicting the technical reusability of a 
timber beam 

6.6 Technical reusability factors 

Based on Figure 6.2, the most important factor affecting the reusability of the building structural 

elements is the mechanical properties of the component (D23). This observation is in line with 

the attempts of some researchers in estimating the mechanical properties of the load-bearing 

components as an indicator of reusability (Fujita and Masuda 2014, Fujita and Kuki 2016, Cavalli 

et al. 2016). 

The next important variable is the other design challenges observed by the stakeholders (D24). 

In the literature, these challenges are identified as integrating reused and new components into 

the new building (Gorgolewski 2008), need for flexibility in the design (Gorgolewski 2008), and 

overdesigned structures due to the available supply (Brütting et al. 2019). 

The third variable affecting the reusability of building structural elements is the presence of 

hazardous, banned or contaminating coatings (C28). This variable has been reported in various 

articles in the literature including (Rameezdeen et al. 2016, Tatiya et al. 2017, Tingley et al. 

A building is at its end-of-life. The developers plan to deconstruct 

the building. They decide to reuse as many structural elements in 

the new development as possible. Therefore, it is essential to 

check the technical reusability of the elements first. 

For a timber beam, the following details 

are collected using the survey in Table 9.9 

B3 = 5; B5 = 2; B7 = 5; B8 = 5; C6 = 5; C12 = 

5; C15 = 5; C16 = 3; C20 = 4; C27 = 4; C28 = 

4; D23 = 2; D24 = 3 

According to Table 6.7, rule number 10 is 

the first rule that applies to this 

component. Hence, the element is 

technically reusable. 
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2017). If such coatings are present on the structural elements, the chance for recovery and 

reuse decreases drastically. As a solution, and to overcome this barrier in new buildings, Basta 

et al. (2020) proposed a reusable fireproofing system to promote the reusability of the building 

structure. 

According to Figure 6.2, the fourth most important barrier is a potential problem with collateral 

warranties. Surprisingly, this barrier was not observed by other researchers. However, 

according to Addis (2006), issues related to the performance of the recovered structural 

element should be resolved early to avoid a problem with collateral warranties. 

6.7 Economic reusability factors 

According to Figure 6.8, the most important economic factors affecting the reusability of the 

structural components of a building is the need to purchase reused elements early in the 

project, which can have cash flow implications. This observation is in line with (Gorgolewski 

2008, Gorgolewski et al. 2008). According to Gorgolewski et al. (2008), the need to purchase 

early on requires the client to allocate resources and can increase the cost of storage. 

The second most important factor, based on Figure 6.8, is the potential financial risks. According 

to the literature (Rameezdeen et al. 2016, Pun, Liu, and Langston 2006), these potential 

financial risks might be the result of other variables such as deconstruction, transportation, and 

storage costs (Dantata, Touran, and Wang 2005, Chileshe, Rameezdeen, and Hosseini 2015, 

Yeung, Walbridge, and Haas 2015, Tingley et al. 2017, Rose and Stegemann 2018, Dunant et al. 

2018, Tatiya et al. 2017). As discussed in Section 2.4.2, a strict financial risk assessment at the 

beginning of any project with reused structural elements is then necessary. As shown in Figure 

6.9, if these risks are low, there is a higher chance for reuse. 

The third most important economic factor is the sourcing/procurement process. This factor has 

been continuously reported in the literature as one of the main factors affecting reuse (Section 

2.3.2). According to Section 2.4.2, this factor is categorised under the supply chain level, and it 

is observed that there is a significant correlation between the market and cost. If an established 

market for the reused structural elements is not available (Shaurette 2006, Gorgolewski 2008, 

Gorgolewski et al. 2008, Dunant et al. 2018), the design team need to put extra efforts to 

allocate the desired element, which in turn can increase the overall cost of the project 

(Gorgolewski et al. 2008). According to Figure 6.9, the reusability of building components 

increases if the difficulty in sourcing decreases. 
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Based on Figure 6.8, the fourth most affecting variable is the cost of labour. Dantata et al. (2005) 

observed that deconstruction and recovery of the structural elements are time-consuming and 

can decrease the economic viability of reuse. According to Figure 6.9, the lower cost of labour 

is associated with the higher reusability of building components. 

6.8 Social reusability factors 

According to Figure 6.13, the most important social factor affecting reuse is the perception of 

the regulatory authorities about a recovered structural component. This factor was observed 

by Chileshe et al. (2015) in the context of South Australian construction, as well. According to 

this study, to improve the perception of the building regulators, it is essential to increase the 

awareness of the stakeholders about the advantages of reuse (Chileshe, Rameezdeen, and 

Hosseini 2015). Figure 6.14 reveals that when this perception is in favour of reuse, the 

reusability of the structural components increases. 

The second and third ranks among the social reusability factors belong to risks. These factors 

were reported as reuse barriers by several authors in the literature (Huuhka and Hakanen 2015, 

Rameezdeen et al. 2016, Klang, Vikman, and Brattebø 2003, Gorgolewski 2008, Tingley et al. 

2017). According to Section 2.4.1, there is a strong correlation between perception and risk. As 

discussed in Section 2.4.1, the potential risks associated with reusing structural elements affect 

the stakeholders’ perception about reuse. 

The fourth most important social factor is the perception of the stockist about the element 

(D15). This factor has been reported by Dunant et al. (2017). According to Dunant et al. (2017), 

the stockists are sensitive to the visual appearance of the recovered structural elements, which 

could affect their perception of the reusability of these components. Based on Figure 6.14, the 

positive perception of the stakeholders towards recovered load-bearing structural elements of 

a building could potentially improve their reusability. 

6.9 Chapter summary 

Chapter 6 was focused on fulfilling the fourth objective of this research by developing best-

practice BSE-RPMs using advanced supervised machine learning methods, which provide 

reliable predictions. Initially, this chapter assessed the performance of the developed BSE-RPMs 

in Chapter 5 using a k-fold Cross-validation method with 𝑘 = 10 (Section 6.3). While both 

performance and interpretability are essential in the selection of the best-practice models, the 

results revealed that the understandable models were having poor performance. Hence, only 

the Type-I error rate, overall accuracy, and the AUC were used to select the best-practice 
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models. The result was choosing random forest models for the technical, economic, and social 

aspects of this research (Section 6.3). 

The selected TEC-RF BSE-RPM, ECO-RF BSE-RPM, and SOC-RF BSE-RPM outperform all other 

models. However, since they are known as black boxes, they lack transparency. Therefore, to 

improve clarity, this research opened the selected black-box models in two ways (Section 6.4). 

First, the models were opened using advanced sensitivity analysis and visualisation techniques. 

Using these methods, the author identified the relative importance of the features and 

demonstrated the effect of different values of the features on the reusability of the structural 

components. Next, the author used the results of the previous stage and developed a set of 

easy-to-understand rules so that the stakeholders could use them as a guideline to identify the 

technical, economic, and social reusability of these elements. The researcher then evaluated 

the performance of the developed learners (Tables 6.7, 6.10, and 6.14) and concluded that they 

produce reliable predictions. Eventually, the author revised the original survey (Appendix C.2) 

and produced three new questionnaires that stakeholders can use to gather information for 

using the developed learners (Tables 6.9, 6.12, and 6.16 for the technical, economic, and social 

aspects of this research).  
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Chapter 7 – Conclusion and recommendations 

7.1 Chapter introduction 

This chapter concludes this research, which aimed to develop a set of tools to predict the reuse 

potential of the load-bearing building components based on professional experience from 

technical, economic, and social perspectives. This research considered four objectives to fulfil 

its aim, as specified in Section 1.6. Section 7.2 presents a summary of the findings concerning 

the identified objectives of the research. Next, Section 7.3 highlights the contributions of this 

research from academic and industrial perspectives (Sections 7.3.1 and 7.3.2, respectively). 

Section 7.4 reintroduces the limitations of the research, and Section 7.5 discusses the future 

research opportunities in this field. Eventually, this chapter concludes by summarising the 

results in Section 7.6.  

7.2 Summary of the findings 

Four objectives were considered to answer the research questions (Section 1.5) and fulfil the 

aim of this research (Section 1.6). Achieving each of these objectives helped to uncover 

unknown dimensions of a new paradigm in the field of reuse in the construction sector, which 

is determining the reusability of the load‐bearing building components. Subsections 7.2.1 to 

7.2.4 present a summary of these findings. 

7.2.1 Objective One: To identify and assess factors affecting the reusability of a building’s 

structural elements (reusability factors) through a literature review. 

The identification of the reusability factors was performed through a systematic literature 

review targeting peer-reviewed journal articles (Chapter 2). After a careful study of the top-tier 

construction journals (Chapter 2, Section 2.2), 76 peer-reviewed journal articles were reviewed 

to identify factors affecting the reuse of load-bearing building components. In total, 57 drivers 

and 130 barriers affecting the reuse of these components were identified. These factors were 

then categorised into economic, environmental, social, technical, regulatory, and organisational 

groups. 

The review of the categories of the variables showed that the top-three groups of the identified 

drivers were economic, organisational, and environmental. Also, reviewing the frequency of the 

reported barriers in the literature revealed that the economic factors were playing a significant 

role in the successful implementation of reuse in the building sector, followed by technical, 

social, regulatory, and organisational barriers. As discussed in Section 1.4, identifying the 
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technical reusability of the load-bearing building components has introduced a new paradigm 

in the field of reuse and has been the focus of research recently. Moreover, the analysis of the 

inter-relationship between the sub-categories of barriers in Chapter 2 revealed that social and 

economic factors are having a significant impact on the widespread of reusing recovered load-

bearing building components. Therefore, this research focused on estimating the technical, 

economic, and social reusability of the recovered structural elements of a building. 

It should be noted that since the focus of this research was to develop tools to estimate the 

technical, economic, and social reusability of the load-bearing building components, only 

factors under these categories were used to prepare the questionnaire survey to achieve the 

second objective of this research. 

7.2.2 Objective Two: To quantify the weightage and impact of the reusability factors 

based on the experience of the professionals using questionnaires. 

According to the collected questionnaires, it was observed that among different structural 

components, 62.5% of respondents referred to beams (of various materials) to complete the 

survey. Therefore, to evaluate if the type of the element (question B1) affects the scores 

provided for the factors affecting the reusability of the structural components, a non-

parametric test (Kruskal-Wallis H test) was performed at a 5% significance level. The results 

revealed that there was no statistical difference between the groups of the structural elements 

at 95% confidence level, which means that the type of the component (i.e., beam, column, truss, 

etc. based on question B1) does not affect the scores given to the reusability factors. 

The results of the descriptive statistics for the technical (TEC), economic (ECO), and social (SOC) 

datasets are as follows. 

From a technical perspective, the following factors were identified as the most significant 

barriers ahead of the reuse of load-bearing building components (Table 4.5 and Appendix D.4). 

• Matching the original design with the dimensions of the reused element (D22) 

• Changes in the design codes (BS codes to Eurocodes, etc.) (D19) 

• CE marking (D21) 

• Matching the original design with the strength of the reused element (D23) 

From these variables, it can be observed that the design-related factors are the most significant 

variables affecting the reusability of the load-bearing building components. 
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The following factors were identified as the most significant barriers against the economic 

reusability of the structural elements of a building (Table 4.6 and Appendix D.4). 

• Cost of testing (D3) 

• Cost of insurance (D2) 

• Storage cost (D6) 

• Cost of refurbishment (sandblasting, treatment, etc.) (D4) 

The above observations reflect the fact that the reuse of the load-bearing building components 

is associated with additional costs that could negatively affect the successful integration of the 

reused elements in the new buildings. 

The results of the descriptive statistics of the received questionnaires revealed that the 

following barriers significantly affect the social reusability of the load-bearing building 

components (Table 4.7 and Appendix D.4). 

• Changes in the health and safety regulations (fire, etc.) (D20) 

• Perception of the stockist about the element (D15) 

• Perception of the regulatory authorities about the element (D16) 

• Perception of the builders/contractors about the element (D13) 

According to these variables, the perception of the stakeholders has the highest impact on the 

social reusability of the load-bearing building components. 

While the results of the descriptive statistics provide an overview of the barriers to reuse from 

different perspectives, it should be noted that these variables cannot be directly used to 

determine if a structural component is reusable or not. For instance, considering the technical 

dataset (72 valid responses, see Section 4.7), matching the original design with the dimensions 

of the reused element (D22) is the most significant barrier with a mean of 2.53 and a standard 

deviation of 1.14 (Table 4.5 and Appendix D.4). Considering 𝐷22 to decide if an element is 

technically reusable or not, a model predicts reusable if 𝐷22 ≥ 3, which results in predicting 37 

reusable and 35 non-reusable components (Table 7.1). The following confusion matrix (Table 

7.1) is developed based on this classifier for the entire TEC dataset (72 responses). As can be 

observed, the model’s overall accuracy (Section 5.5.2.6) is equal to 46%. 

Whereas, since the number of reusable components in the received dataset is 48, a baseline 

model (Section 6.3.1.2) always predicts reusable for all elements, which results in an overall 
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accuracy of 67%. It shows that using the 𝐷22 ≥ 3 rule as an indication of reusability results in 

a prediction worse than the baseline model, which is not acceptable.  

Table 7.1 Technical reusability of the elements in the original dataset using 𝐷22 ≥ 3 rule only 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 10 14 

Actual reusable (1) 25 23 

 

Moreover, the results of the descriptive statistics do not reveal which combination of variables 

could provide the most accurate estimate of the reusability of the components. In this research, 

these shortcomings were addressed through the third and fourth objectives of this research. 

7.2.3 Objective Three: To determine the best combination of the identified factors to 

develop the BSE-RPMs. 

This research aimed to predict the technical, economic, and social reusability of the load-

bearing building components based on the experts’ opinions. Therefore, this research used a 

combination of filter and wrapper techniques to select the best combination of variables that 

could result in reliable predictions on unseen observations. 

In this research, ten different filter methods were used to rank the importance of the variables 

in all three datasets. While the outcome of the filter methods provided an overview of the 

importance of the variables, it was decided to use wrappers to compare the results and choose 

the best combination of variables in all datasets. For this purpose, the Boruta method was used 

for variable selection in all three datasets as well. In the case of economic and social datasets, 

the Boruta method identified that all variables were suitable for the development of the BSE-

RPMs. Moreover, there was a good agreement between the rankings made by the filter 

techniques and the Boruta method in these two datasets. However, in the case of the technical 

dataset, some of the variables were rejected, and the Boruta method could not determine the 

suitability of one feature. Moreover, the rankings made by the filter methods were different 

from the feature selection of the Boruta technique. Therefore, it was decided to employ the 

RFE method to add a new layer to the process of feature selection. In this research, four 

different supervised machine learning methods were used to perform the RFE technique. It was 

observed that the RFE results are in good agreement with the Boruta technique. Therefore, 

twenty-six variables that were not rejected by the RFE and Boruta methods were selected for 

the development of the technical BSE-RPMs. 
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7.2.4 Objective Four: To develop a best-practice BSE-RPM using advanced supervised 

machine learning techniques, which provides reliable predictions. 

In this research, thirteen different methods were used to develop 13 predictive models for each 

dataset. These methods cover both parametric and non-parametric techniques and range from 

interpretable Logistic Regression to complex Gaussian Processes and Support Vector Machines. 

While it is desirable to have accurate and interpretable models to encourage the building 

experts to use the results of this research, analysing the results revealed that such models were 

inefficient in terms of accuracy. Hence, the selection of the best-practice models was performed 

based on the predictive performance of the models only. From the above discussion, it can be 

concluded that the relationship between features and responses in these datasets are not 

linear. 

For all three datasets, the random forest (RF) models were selected as the best-practice BSE-

RPMs because they outperformed all other models. However, these models are known as black 

boxes because they cannot be interpreted easily. Therefore, this study used advanced 

sensitivity analysis and visualisation techniques to open the best-practice BSE-RPMs. 

Opening the TEC-RF BSE-RPM using the sensitivity analysis and visualisation techniques 

revealed that the following factors are the most important variables affecting the technical 

reusability of the load-bearing building components. 

• Matching the original design with the strength of the reused element (D23) 

• Other design challenges with the reused element (D24) 

• Presence of hazardous, banned or contaminating coatings (C28) 

• A potential problem with collateral warranties (C27) 

The results of sensitivity analysis and visualisation techniques to improve the transparency of 

the ECO-RF BSE-RPM revealed that the following variables significantly affect the economic 

reusability of the load-bearing building components. 

• Cash flow (need to purchase the element early, etc.) (D10) 

• Potential financial risks (C24) 

• Sourcing/procurement process (D25) 

• Cost of labour (D8) 
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Improving the transparency of the SOC-RF BSE-RPM using sensitivity analysis and visualisation 

techniques revealed that the following factors are having the highest effect on the social 

reusability of the structural elements of a building at its end-of-life. 

• Perception of the regulatory authorities about the element (D16) 

• Potential health and safety risks (C23) 

• Potential liability risks (C22) 

• Perception of the stockist about the element (D15) 

The above findings are different from the results of the descriptive statistics on the collected 

data. As discussed earlier, measures such as mean, or median do not consider the possible 

interdependency of the features and the response. Also, from the developed predictive models, 

it was observed that this relationship is non-linear. Therefore, the outcome of the descriptive 

statistics presented in Section 7.2.2 is not reliable. 

While the findings presented in Section 7.2.4 help in opening the selected best-practice models, 

they cannot be used directly to determine the reusability of the load-bearing building 

components. Hence, this research used advanced rule-extraction techniques to develop three 

easy-to-understand models that can be used by practitioners in the building sector to assess if 

a recovered structural element is reusable or not from technical, economic, and social 

perspectives. The resulting tools are easily interpretable and produce reliable predictions on 

unseen observations, hence, fulfilling the aim of this research. 

7.3 Contributions of the research 

7.3.1 Contributions of the research to the body of knowledge 

This research contributes to the body of knowledge in different ways. First, this research shows 

how advanced supervised machine learning techniques such as random forests, K-Nearest 

Neighbours algorithm, Gaussian processes, support vector machines, adaptive boosting, BART 

machine, etc., (Section 5.5) can be used to promote the circular economy in the building sector. 

Second, this research showed that the relationship between factors affecting reuse is not linear 

and that the results of the ordinary statistics have significant restrictions. Also, this research 

successfully ranked the factors affecting the reusability of load-bearing building components. 

This achievement assists other researchers to take progressive steps towards the circularity of 

materials in this sector by prioritising their research. Likewise, this research showcased how 

complex supervised machine learning techniques could be handled to produce practical tools 

that can be used by practitioners who have no prior knowledge about these complex data 
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analysis techniques. While this research is focused on the building sector, the techniques used 

could be employed to perform similar studies in different divisions of the construction industry, 

and on a larger scale, in other economic sectors. 

7.3.2 Contributions of the research in practice 

This research contributes to the industry in different ways. This research developed three easy-

to-understand models that can be used by professionals in the building sector for estimating 

the technical, economic, and social reusability of the structural components effectively. The 

easy-to-understand predictive tools developed during this research have several advantages, 

as follows. 

• They can be used by any practitioner in the building sector, and they do not need a 

machine learning background. 

• They give a first-hand idea about the feasibility of reusing a structural component from 

technical, economic, and social dimensions by collecting the necessary data. 

• They have the potential to promoting reuse by increasing the reuse rate, which, in turn, 

can accelerate the growth of reuse markets. 

Considering the UK economy post-Brexit and the impact of the COVID-19 outbreak on the 

employment rate, the results of this project can provide new job opportunities in the building 

sector in the UK. 

7.4 Limitations of the research 

In contrast to the mentioned contributions, this study has some limitations. The most important 

constraint in this research is the low rate of reuse in the building sector that restricts access to 

more experts with such experience. Likewise, while the researcher tried to decrease error by 

employing a wide range of machine learning methods, there still might be some errors due to 

a missing key factor that has not been integrated into the questionnaire. 

Moreover, this research limits itself to the reuse of load-bearing building components in the 

superstructure of buildings; hence, the findings may not be generalised to the substructure of 

buildings. Also, this research is limited to the building sector, and the findings should not be 

expanded to other sub-sectors of the construction industry. Besides, while the questionnaire 

was not limited to any material, the responses provided were restricted to timber, steel, and 

concrete. Hence, the developed predictive tools in Chapter 6 can only be used to determine the 

reusability of timber, steel, and concrete load-bearing building components. Furthermore, as 

discussed in Section 5.4.4, the results of this research would be limited to load-bearing building 
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components recovered using deconstruction technique or its variations such as component-

specific recovery. 

7.5 Future research 

The resulting outcome of this research is three easy-to-understand predictive tools that can 

estimate the technical, economic, and social reusability of the load-bearing building 

components. While these tools are developed based on real reused components, because of 

the time constraints, it was not possible to employ them in real projects. Therefore, one 

possible future research would be utilising these tools to predict the reusability of the structural 

elements in relevant buildings’ case studies and evaluate the impacts of this research on 

promoting reuse in the building sector. 

Another potential future research would be using the developed learners in case study buildings 

with different structural materials and comparing their effectiveness in correctly classifying the 

reusable and non-reusable components based on their material (i.e., steel, timber, and 

concrete). Since the embodied energy and CO2 of construction of similar structural elements 

with different materials are not equal, the learners’ accuracy could be associated with the 

amount of CO2 saved as the result of reusing the structural element. This way, a new metric 

(accuracy plus the percentage of saved embodied CO2 of construction) could be developed to 

give a broader indication of the tools' effectiveness. 

As discussed earlier, this research is limited to the superstructure of buildings. Therefore, it is 

advised to perform such investigation in other sub-divisions of the construction industry, such 

as foundations, roads, bridges, and infrastructures. While this research is limited to the building 

sector, the researcher strongly believes that similar studies can be performed in other sub-

divisions of the construction industry to develop tools that can assess the reusability of the 

structures. 

This research is focused on the technical, economic, and social reusability of the load-bearing 

building components. However, as discussed in Chapter 2, the reusability factors extend to a 

broader domain including, the environment, organisations, and regulations. As observed in this 

research, the relationship between variables is non-linear, which requires advanced tools to 

analyse the reusability factors under these domains. Therefore, one other potential future 

research is using the developed methodology in this research to identify the key factors 

affecting the reuse of load-bearing building components from organisational and regulatory 
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perspectives. Such investigations would have considerable impacts on the existing policies and 

promote the circular economy in all aspects of the construction industry. 

7.6 Chapter summary 

Determining the reusability of load-bearing building components has introduced a new 

paradigm in the field of reuse. The focus of the existing body of knowledge in recent years has 

been limited to estimating the physical properties of recovered building structural elements to 

evaluate their reusability. However, these studies are not comprehensive because they only 

consider physical properties and ignore the impact of the multitude of variables including, 

economic and social factors affecting the reusability of these elements. Moreover, the few 

studies that have tried to consider the impact of other variables are too simplistic, consider a 

linear relationship between variables, are not based on real reuse projects, and are restricted 

to a very particular type of building and material. 

This research performed a systematic literature review to identify the factors affecting reuse. 

Then, it developed an online questionnaire to quantify the reusability factors based on the 

experts’ opinions. Next, this research used the results of the survey and showed the 

effectiveness of employing advanced supervised machine learning techniques such as random 

forests, K-Nearest Neighbours algorithm, Gaussian processes, support vector machines, 

adaptive boosting, BART machine, etc., in determining the reusability of the load-bearing 

building components. The results of this research revealed that the relationship between 

variables is far from being linear, which is evident by reviewing the performance of linear 

regression (LR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and 

decision trees (DT) models. Moreover, this research revealed that not all variables play a 

significant role in the reusability of the load-bearing building components. It should be noted 

that this research is the first study to use advanced feature selection techniques to identify the 

most important variables affecting the reuse of structural elements in the building sector. 

The results of sensitivity analysis and visualisation techniques to open the RF BSE-RPMs showed 

that design-related variables are having the highest impact on the technical reusability of the 

building components. Moreover, they showed that cost-related barriers have a significant 

effect on economic reusability. They eventually revealed that perception plays a significant role 

in the success of a project that intends to integrate recovered structural components, 

regardless of being technically and economically reusable. 
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This research took a further step and, for the first time, developed a series of tools that can be 

used by building experts to evaluate if a structural element is reusable from technical, 

economic, and social perspectives. While these tools perform effectively on the unseen 

observations, it is essential to utilise them in real case-study construction projects to evaluate 

their accuracy in an attempt to fine-tune them as future research work. 

This research concludes that the complex interdependencies of factors affecting reuse cause a 

high level of uncertainty about the feasibility of reusing load-bearing building structural 

components, which hampers the widespread adoption of reuse. Notwithstanding, this research 

unveils that by using the probability theory foundations and combining it with advanced 

supervised machine learning methods, it is possible to develop tools that could reliably estimate 

the reusability of these elements based on affecting variables.  
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Appendix A  The complete list of reusability factors 

A.1 Reuse drivers identified during the systematic literature review (Chapter 2) 

 

Table A-1 The complete list of identified reuse drivers (Table 2.1) 

Category Sub-category Driver Reference 
(sequence 
number in 
Table 2.1) 

Economic Cost Access to finance to offset additional costs 12, 49 

Economic Cost Deconstruction costs less than demolition 43 

Economic Cost Increased cost of landfilling 5, 12, 41, 42 

Economic Cost In-situ reuse of the reused elements 
4, 11, 12, 21, 
59 

Economic Cost 
Low labour cost due to reusing the 
modules of the structural systems 54 

Economic Cost 
Low labour cost due to using custom 
plates and reusing the existing bolt holes 54 

Economic Cost Low price of new steel and scrap 59 

Economic Cost 

Lower cost of deconstruction compared to 
demolition due to low cost of manual 
labour and high demand for demolition 
products 14 

Economic Cost Lower cost of reused elements 
1, 4, 11, 14, 33, 
47, 55, 62 

Economic Cost 
Savings due to the purchase of fewer new 
steel sections 36 

Economic Cost 
Sourcing reused material from nearby 
locations 11, 31 

Economic Market 
High demand for reused building 
components 4 

Economic Market Supporting the growth of reuse market 49 

Economic Market Well-established reuse market 14, 33 

Economic 
Value for 
money 

Increased profit as the result of decreased 
CDW sent to landfill 7 

Economic 
Value for 
money 

Increased revenue from reused elements 
resale 

4, 5, 7, 14, 17, 
19, 30, 33, 36, 
47, 52, 55, 56, 
62 

Environmental 
Energy and 
GHG 

Decrease in embodied energy and carbon 
of construction 

2, 4, 20, 23, 25, 
26, 30, 33, 45, 
46, 48, 49, 50, 
51, 52, 54, 60, 
61, 62, 63, 64 

Environmental 
Preservation of 
resources 

Decrease in the amount of waste disposed 
in the landfills 20 

Environmental 
Preservation of 
resources Decrease in the use of virgin materials 

2, 16, 24, 26, 
30, 49 



219 
 

Category Sub-category Driver Reference 
(sequence 
number in 
Table 2.1) 

Environmental 
Preservation of 
resources Decrease in water consumption 50 

Environmental 
Preservation of 
resources Scarcity of the landfilling sites 41, 62 

Organisational Contracts 
Legal contractual requirement to use 
reused elements 1, 11, 12 

Organisational Experience 
Knowledge and experience in using reused 
elements makes firms more competitive 49 

Organisational Experience 
Training the operators for effective 
deconstruction 5, 8, 27 

Organisational Infrastructure 
Availability of space for storage of 
reusable materials after deconstruction 18 

Organisational Infrastructure 
Proper separation and storage of the 
reusable materials after deconstruction 18, 27, 38, 44 

Organisational Management 
Companies’ entrepreneurial activities to 
integrate circular principles 62 

Organisational Management 
Existence of a reclaimed components 
management coordinator 12, 49 

Organisational Management 
Integrating reuse in the design process of 
the new projects 

11, 12, 18, 25, 
44, 49 

Organisational Management 

Knowledge of a known list of structural 
elements to reuse early on in the design 
process 12, 58 

Organisational Sustainability Corporate social responsibility 58 

Organisational Sustainability 
Improving the overall sustainability of the 
building sector 18, 49 

Organisational Sustainability 
Promoting the green image of the firms to 
improve competitiveness 

18, 32, 39, 41, 
42, 55 

Organisational Sustainability Reducing the CDW generation by the firms 

7, 9, 10, 24, 26, 
30, 39, 45, 52, 
53, 55 

Regulatory Compliance 
Availability of standards to certify the 
quality of reused elements 62 

Regulatory Compliance 
Compliance to regulations enhances 
deconstruction 55 

Regulatory Compliance Compliance to regulations enhances reuse 55 

Regulatory Incentive 
Availability of regulatory/financial 
incentives to promote deconstruction 55 

Regulatory Incentive 
Availability of regulatory/financial 
incentives to promote reuse 3, 13, 55, 57 

Regulatory Sustainability 
Impact of building rating systems such as 
BREEAM, LEED, etc. 8, 12, 35, 62 

Regulatory Sustainability Impact of environmental policies 55 

Regulatory Sustainability 
Legislative pressure for resource 
preservation 41 

Social Awareness 
Increased awareness by recognition of 
reuse in the public debate 62 
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Category Sub-category Driver Reference 
(sequence 
number in 
Table 2.1) 

Social Awareness 
Increased awareness of the full benefits of 
reuse among the stakeholders 1, 13 

Social Perception 
Positive perception of contractors about 
reuse 18 

Social Sustainability 
Impact of society's environmental 
concerns 42 

Social Trust 
Informality and good relationship among 
the stakeholders can enhance reuse 8, 14, 39 

Social Willingness 
Client willingness to integrate reused 
elements 

8, 11, 12, 21, 
29, 47, 59 

Social Willingness 
Contractor willingness to integrate reused 
elements 

11, 18, 39, 47, 
55 

Social Willingness 
Design team willingness to integrate 
reused elements 

11, 12, 37, 47, 
49, 59 

Social Willingness Unique appearance of reused elements 62 

Technical Deconstruction 
Deconstruction technique can enhance 
the chance for reuse 

6, 7, 10, 11, 17, 
19, 24, 28, 31, 
34 

Technical Deconstruction 

Use of advanced construction techniques 
(e.g. pre-fabrications for installation) 
increases the reuse rate 22, 40 

Technical 
Design 
challenges 

Durability of the recovered building 
component 51 

Technical 
Design 
challenges 

Proper estimation of the required size and 
lengths at the beginning of the design 
phase 11 

Technical 
Design 
challenges 

Use of the reused structural elements to 
support similar loads 11, 12, 31 

Technical Information 

Availability of information about 
characteristics, details, certificates and 
drawings of the reused structural 
elements 

11, 12, 15, 31, 
51 
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A.2 Reuse barriers identified during the systematic literature review (Chapter 2) 

 

Table A-2 The complete list of identified reuse barriers (Table 2.2) 

Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Economic Cost Cost of insurance for reused materials 38 

Economic Cost Cost of marketing for reused elements 4 

Economic Cost Cost of sorting for reused elements 12, 32 

Economic Cost Cost of testing for the reused elements 
10, 29, 31, 32, 38, 
46 

Economic Cost 
Deconstruction costs more than 
demolition 

4, 8, 25, 29, 38, 
45, 46 

Economic Cost 
Extra effort by design team to find reused 
components 9, 31 

Economic Cost 
Extra effort required for 
deconstruction/reuse 9, 25, 32 

Economic Cost 
Extra time required for treatment and 
fabrication of the salvaged components 37, 46 

Economic Cost Higher cost of reused elements 
7, 25, 32, 35, 38, 
46 

Economic Cost 
Impact of access to the building on 
deconstruction cost 36 

Economic Cost 
Impact of complexity of the building 
design on deconstruction cost 36 

Economic Cost 
Impact of location of the building on 
deconstruction cost 36 

Economic Cost 

Increased cost due to the need for 
treatment/modification of the salvaged 
components 

2, 12, 15, 27, 31, 
46 

Economic Cost 
Increased cost of design with the reused 
elements 9, 10, 37 

Economic Cost 
Increased cost of fabrication of the reused 
materials 37, 38, 46 

Economic Cost Increased labour cost 

3, 4, 6, 7, 9, 32, 
34, 38, 39, 44, 45, 
46, 48 

Economic Cost Increased storage cost 
6, 8, 9, 10, 11, 29, 
31, 34, 37, 38, 46 

Economic Cost Increased transportation cost 

8, 9, 10, 11, 23, 
29, 31, 32, 34, 35, 
44, 46 

Economic Cost Lower cost of landfilling 8, 15, 32, 35, 42 

Economic Cost 
Need to purchase reused elements early 
in the project 9, 10 

Economic Cost Potential financial risks 6, 32 

Economic Cost 
Recycling is preferred to reuse due to 
market conditions 

21, 27, 29, 38, 39, 
49 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Economic Cost 
Time required for deconstruction and 
project scheduling 

1, 4, 6, 7, 9, 10, 
15, 21, 25, 27, 29, 
32, 34, 35, 36, 37, 
38, 45 

Economic Cost 
Wrong estimation of deconstruction cost 
hinders its application 36 

Economic Market 
Lack of an established market for reused 
structural elements 

5, 6, 7, 9, 10, 32, 
33, 34, 35, 36, 37, 
38, 41, 42, 45, 46, 
49 

Economic Market 
Lack of demand for reused structural 
elements 

5, 6, 14, 27, 33, 
38, 41, 49 

Economic Market 

Lack of information sharing in the supply 
chain (e.g. disconnection between supply 
and demand) 5, 9, 32, 45 

Economic Market 

Lack of sufficient supply for the reused 
elements with desired characteristics 
(dimension, quality, etc.) 

10, 11, 37, 38, 43, 
45, 49 

Economic Market 
Lack of supply and demand for reused 
structural elements 7, 27 

Economic Market 
Uncertainty in the demand for reused 
materials 6, 45 

Economic 
Value for 
money 

Economic benefits of reuse not defined 
properly 38 

Economic 
Value for 
money 

Uncertainty about revenue from reused 
elements resale 

15, 29, 35, 45, 46, 
48 

Environmental 
Energy and 
GHG 

Emissions due to the higher operating 
time of the heavy machinery during 
deconstruction 50 

Environmental 
Energy and 
GHG Emissions due to transportation 27, 49, 50 

Organisational Contracts Proprietary lock-in 38 

Organisational Experience 
Lack of companies’ expert in 
deconstruction 33 

Organisational Experience 

Lack of skills, experience and knowledge 
in deconstruction, salvage, and using 
reused elements 

7, 10, 17, 20, 25, 
29, 33, 48 

Organisational Experience Uncommon practice 37, 46 

Organisational Infrastructure 
Lack of facilities to recover the used 
products 33, 49 

Organisational Infrastructure 
Lack of space for storage of reusable 
materials after deconstruction 

7, 10, 18, 34, 37, 
45, 46, 48 

Organisational Infrastructure 
Need for infrastructure and equipment to 
perform deconstruction 7, 18, 40, 44 

Organisational Infrastructure Need for specific technology 34 

Organisational Management 
Inconsistency in waste management 
practices 16 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Organisational Management 
Lack of a decision-making framework for 
reuse 29 

Organisational Management 

Lack of cooperation with demolition 
contractors to jointly recover materials 
from construction sites 49 

Organisational Management 

Lack of coordination between the owners 
of the demolition site and the new 
building 46 

Organisational Management 
Lack of integration of reuse in the design 
process of the new projects 45 

Organisational Management 
Lack of ownership due to too many 
players 16 

Organisational Management Lack of systems thinking 45 

Organisational Management 
Uncertainty about the timely availability 
of desired reused elements 9, 25 

Regulatory Compliance 
Change in the applicable design norms 
(e.g. room height, fire, stress, etc.) 8, 27 

Regulatory Compliance 
Existing codes, standards, and procedures 
do not consider component reuse 10, 27, 32, 38 

Regulatory Compliance 
Existing codes, standards, and procedures 
do not mandate component reuse 49 

Regulatory Compliance 
Existing codes, standards, and procedures 
do not mandate deconstruction 49 

Regulatory Compliance 
Existing regulations do not support 
deconstruction 32 

Regulatory Compliance Existing regulations do not support reuse 

10, 18, 19, 25, 27, 
28, 32, 33, 37, 38, 
45, 48 

Regulatory Compliance 
Inconsistency and lack of coordination 
among the regulatory bodies 32, 35 

Regulatory Compliance 
Lack of government control for effective 
implementation of existing regulations 11 

Regulatory Compliance Lack of government support 33, 35 

Regulatory Compliance 

Lack of guidance, knowledge and 
information sharing about C&DW 
management 11, 42 

Regulatory Compliance Lack of insurance for reused elements 37 

Regulatory Compliance 
Lack of quality certificates for the reused 
element 2, 6, 8, 27, 33 

Regulatory Compliance 
Lack of standardisation for reused 
components 27 

Regulatory Compliance 
Lack of standards to certify the quality of 
reused elements 

2, 7, 12, 25, 37, 
38, 42 

Regulatory Compliance 
Lack of traceability and certification for 
reused elements 37, 38 

Regulatory Compliance Need for CE marking 37, 38 

Regulatory Compliance 
PI insurance in case of using reused 
elements 37, 38 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Regulatory Compliance 

Regulations do not allow storage of 
salvaged material and consider them as 
waste 32 

Regulatory Incentive 
Lack of incentives for component reuse in 
environmental assessment methods 38 

Regulatory Incentive Lack of incentives for waste minimisation 16 

Regulatory Incentive 
Lack of regulatory/financial incentives to 
promote deconstruction 33, 35 

Regulatory Incentive 
Lack of regulatory/financial incentives to 
promote reuse 29, 33, 38, 45, 49 

Social Awareness 
Lack of awareness about reused elements 
across the supply chain 6, 38 

Social Awareness 
Lack of awareness about the 
deconstruction risks and challenges 32, 33 

Social Awareness 
Lack of awareness of the full benefits of 
deconstruction among the stakeholders 25, 32, 33 

Social Awareness 
Lack of awareness of the full benefits of 
reuse among the stakeholders 10, 27, 33 

Social Perception 

Demolition is preferred to deconstruction 
due to the perceived economic and 
scheduling reasons. 10 

Social Perception 
Negative perception of contractors about 
reused elements 7, 10 

Social Perception 
Negative perception of the clients about 
reused elements 11, 25, 37, 45 

Social Perception 
Negative perception of the designers 
about reuse 10 

Social Perception 
Negative perception of the stakeholders 
about reused elements 

1, 3, 25, 27, 32, 
35, 37, 38, 47 

Social Perception 
Negative perception of the supervisors 
about reused elements 25 

Social Perception 
Reused structural elements are not 
visually attractive 24, 38 

Social Risk 
Inequality in the distribution of risk among 
the stakeholders 46 

Social Risk 
Lack of confidence in the quality of reused 
components 30, 35, 46 

Social Risk Liability risk due to informality and trust 11 

Social Risk Potential health and safety risks 3, 27, 32 

Social Risk 
Risks associated with reuse (liability, fear, 
etc.) 

38, 37, 25, 10, 7, 
32 

Social Sustainability 

Unsatisfactory working environment 
during the treatment of the reused 
elements 3, 12 

Social Trust 
Lack of trust to the supplier of reused 
elements 37, 46 

Social Willingness 
Construction sector inertia/resistance 
against reuse 10, 24, 32, 38, 49 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Social Willingness 
Contractors unwillingness to work with 
the reused element 10 

Social Willingness 
Design team unwillingness to integrate 
reused elements 25, 32 

Social Willingness Lack of client demand/ support 27, 32, 38, 45 

Social Willingness 
Lack of interest to integrate reused 
materials in the projects 32, 33 

Social Willingness 
Regulatory authority unwillingness to 
integrate reused elements 25 

Technical Deconstruction Composite structural elements 38 

Technical Deconstruction 
Existing building not designed for 
deconstruction 

22, 25, 27, 30, 33, 
36, 37, 39, 45 

Technical Deconstruction Hard to access joints 38, 40 

Technical Deconstruction Permanent jointing techniques 
10, 12, 13, 18, 22, 
23, 38, 50, 51 

Technical Deconstruction 
Presence of fire permanent protection on 
the reused elements 51 

Technical Deconstruction 
Type of connection can affect 
deconstruction 12, 28 

Technical 
Design 
challenges 

Damage caused by living organisms 
(termite, bacterial attack, etc.) 2, 8 

Technical 
Design 
challenges 

Damage during refurbishment (nail 
removal, etc.) 2 

Technical 
Design 
challenges Damage to the structural elements 27 

Technical 
Design 
challenges 

Damage to the structural elements due to 
corrosion 2, 28, 29 

Technical 
Design 
challenges 

Damage to the structural elements due to 
deconstruction 2, 8, 10, 15, 23, 40 

Technical 
Design 
challenges 

Damage to the structural elements due to 
degradation 24, 26 

Technical 
Design 
challenges 

Damage to the structural elements due to 
fatigue 29 

Technical 
Design 
challenges 

Damage to the structural elements due to 
frost 28 

Technical 
Design 
challenges 

Damage to the structural elements due to 
impact 29 

Technical 
Design 
challenges 

Damage to the structural elements due to 
post-production modifications (e.g. holes 
for duct work, etc.) 2, 8, 29 

Technical 
Design 
challenges 

Damage to the structural elements due to 
type of joints 10, 12, 40, 51 

Technical 
Design 
challenges 

Damage to the structural elements due to 
water/fire/holes 8, 26, 29, 36 

Technical 
Design 
challenges 

Damage to the structural elements during 
storage 10, 40 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Technical 
Design 
challenges Design with long spans 9 

Technical 
Design 
challenges 

Difference in the loading requirements of 
the old and the new buildings 9 

Technical 
Design 
challenges 

Difficulty in designing with reused 
elements 9, 23, 38, 43 

Technical 
Design 
challenges 

Difficulty in reusing the elements due to 
the short length 43 

Technical 
Design 
challenges 

Integration of the reused and new 
elements in the new structure 10, 23 

Technical 
Design 
challenges 

Lower quality of reclaimed products 
compared to new 11, 24, 36 

Technical 
Design 
challenges Need for the flexibility in the design 9, 10 

Technical 
Design 
challenges 

Old spans do not match new design 
features 27 

Technical 
Design 
challenges 

Overdesigned structures due to the 
available supply 9, 43 

Technical 
Design 
challenges 

Reused elements exposed to weather 
conditions 8, 27 

Technical 
Health and 
safety 

Additional health and safety precautions 
necessary for deconstruction and element 
recovery & reuse 

15, 21, 25, 27, 29, 
32, 35, 38 

Technical 
Health and 
safety 

Presence of fire protection on the reused 
elements 38 

Technical 
Health and 
safety 

Presence of hazardous, banned or 
contaminating coatings on the reused 
elements 6, 8, 15, 32, 36, 38 

Technical Information 

Lack of information about characteristics, 
details, certificates and drawings of the 
reused structural elements 

9, 10, 27, 29, 38, 
45 

Technical Information 
Lack of information about the remaining 
capacity of the reused structural elements 27, 29 
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Appendix B Checklists used to improve the quality of the 

questionnaire before pilot study 

 

Seq Questionnaire layout Status 

1 (For self-completed questionnaires) Do questions appear well spaced on 
the page or screen? A cramped design will put the respondent off reading 
it and reduce the response rate. Unfortunately, a thick questionnaire is 
equally off-putting! 

Yes 

2 (For paper-based self-completed questionnaires) Is the questionnaire 
going to be printed on good quality paper? Poor-quality paper implies that 
the survey is not important. 

Yes 

3 (For self-completed questionnaires) Is the questionnaire going to be 
printed or displayed on a warm pastel colour? Warm pastel shades, such 
as yellow and pink, generate slightly more responses than white (Edwards 
et al. 2002) or cool colours, such as green or blue. White is a good neutral 
colour but bright or fluorescent colours should be avoided. 

No 
(neutral 
white) 

4 (For structured interviews) Will the questions and instructions be printed 
on one side of the paper only? An interviewer will find it difficult to read 
the questions on the back of pages if you are using a questionnaire 
attached to a clipboard! 

N/A 

5 Is your questionnaire easy to read? Questionnaires should be typed in 12 
point or 10 point using a plain font. Excessively long and unduly short lines 
reduce legibility. Similarly, respondents find CAPITALS, italics and shaded 
backgrounds more difficult to read. However, if used consistently, they can 
make completing the questionnaire easier. 

Yes 
(you 

should 
remove 
italics) 

6 Have you ensured that the use of shading, colour, font sizes, spacing and 
the formatting of questions is consistent throughout the questionnaire? 

Yes 

7 Is your questionnaire laid out in a format that respondents are 
accustomed to reading? Research has shown that many people skim-read 
questionnaires (Dillman et al. 2014). Instructions that can be read one line 
at a time from left to right moving down the page are, therefore, more 
likely to be followed correctly. 

Yes 

 

Actions taken (6th online revision): 

• Changes incorporated 

• Italics changed to normal 

• Page 7, definition changed to bold & black 
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Seq Question order Status 

1 Are questions at the beginning of your questionnaire more 
straightforward and ones the respondent will enjoy answering? 
Questions about attributes and behaviours are usually more 
straightforward to answer than those collecting data on opinions. 

No 

2 Are questions at the beginning of your questionnaire obviously relevant 
to the stated purpose of your questionnaire? For example, questions 
requesting contextual information may appear irrelevant. 

Yes 

3 Are questions and topics that are more complex placed towards the 
middle of your questionnaire? By this stage most respondents should 

Yes 

4 Are personal and sensitive questions towards the end of your 
questionnaire, and is their purpose clearly explained? On being asked 
these a respondent may refuse to answer; however, if they are at the 
end of an interviewer-completed questionnaire you will still have the rest 
of the data! 

Yes 

5 Are filter questions and routing instructions easy to follow so that there 
is a clear route through the questionnaire? 

No filter 
questions 

6 (For interviewer-completed questionnaires) Are instructions to the 
interviewer easy to follow? 

N/A 

7 Are questions grouped into obvious sections that will make sense to the 
respondent? 

Yes 

8 Have you re-examined the wording of each question and ensured it is 
consistent with its position in the questionnaire as well as with the data 
you require? 

Yes 

 

Note: I developed the 6th online revision to fulfil the requirements of the 4th question. 
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Seq Question wording Status 

1 Does your question collect data at the right level of detail to answer 
your investigative question as specified in your data requirements 
table? 

Yes 

2 Will respondents have the necessary knowledge to answer your 
question? A question on the implications of a piece of European Union 
legislation would yield meaningless answers from those who were 
unaware of that legislation. 

Yes 

3 Does your question appear to talk down to respondents? It should not! No 

4 Does your question challenge respondents’ mental or technical 
abilities? Questions that do this are less likely to be answered. 

No 

5 Are the words used in your question familiar to all respondents, and 
will all respondents understand them in the same way? In particular, 
you should use simple words and avoid jargon, abbreviations and 
colloquialisms. 

Yes 

6 Are there any words that sound similar and might be confused with 
those used in your question? This is a particular problem with 
interviewer-completed questionnaires. 

No 

7 Are there any words that look similar and might be confused if your 
question is read quickly? This is particularly important for self-
completed questionnaires. 

No 

8 Are there any words in your question that might cause offence? These 
might result in biased responses or a lower response rate. 

No 

9 Can your question be shortened? Long questions are often difficult to 
understand, especially in interviewer-completed questionnaires, as the 
respondent needs to remember the whole question. Consequently, 
they often result in no response at all. 

Yes 

10 Are you asking more than one question at the same time? The question 
‘How often do you visit your mother and father?’ contains two 
separate questions, one about each parent, so responses would 
probably be impossible to interpret. 

No 

11 Does your question include a negative or double negative? Questions 
that include the word ‘not’ are sometimes difficult to understand. The 
question ‘Would you rather not use a 

No 

12 Is your question unambiguous? This can arise from poor sentence 
structure, using words with several different meanings or having an 
unclear investigative question. If you ask ‘When did you leave school?’ 
some respondents might state the year, others might give their age, 
while those still in education might give the time of day! Ambiguity can 
also occur in category questions. If you ask employers how many 
employees they have on their payroll and categorise their answers into 
three groups (up to 100, 100– 250, 250 plus), they will not be clear 
which group to choose if they have 100 or 250 employees. 

Checked. 
Questions 

are not 
ambiguous. 

13 Does your question imply that a certain answer is correct? If it does, 
the question is biased and will need to be reworded, such as with the 
question ‘Many people believe that too little money is spent on our 
public Health Service. Do you believe this to be the case?’ For this 
question, respondents are more likely to answer ‘yes’ to agree with and 
please the interviewer. 

No 

14 Does your question prevent certain answers from being given? If it 
does, the question is biased and will need to be reworded. The 

No 
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Seq Question wording Status 

question ‘Is this the first time you have pretended to be sick?’ implies 
that the respondent has pretended to be sick whether they answer yes 
or no! 

15 Is your question likely to embarrass the respondent? If it is, then you 
need either to reword it or to place it towards the end of the survey 
when you will, it is to be hoped, have gained the respondent’s 
confidence. Questions on income can be asked as either precise 
amounts (more embarrassing), using a quantity question, or income 
bands (less embarrassing), using a category question. Questions on 
self-perceived shortcomings are unlikely to be answered. 

No 

16 Have you incorporated advice appropriate for your type of 
questionnaire (such as the maximum number of categories) outlined in 
the earlier discussion of question types? 

Yes 

17 Are answers to closed questions written so that at least one will apply 
to every respondent and so that each of the responses listed is 
mutually exclusive? 

Yes 

18 Are the instructions on how to record each answer clear? Yes 

 

Notes: 

• Performed on the 5th online revision 
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Appendix C Data collection tool 

C.1 Example of the email sent to the professionals with experience in reuse in 

buildings 

  

Content removed on data protection grounds
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C.2 Example of the questionnaire survey 

Section A: Respondent’s details: 

Please answer the following questions by choosing the applicable boxes or filling in the blank 

spaces. 

1. Where is the geographic location of your organisation (Country name)? 

………………………………………………………………. 

2. What is the type of organisation you work in? 

☐Client   ☐Consultancy (architectural, structural, etc.)  

 ☐Contractor     ☐Deconstruction/Demolition ☐Supplier/Stockist  ☐

University/Academic institution      ☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

3. How many years of experience do you have in the construction sector? 

☐1-5  ☐6-10  ☐11-15 ☐16-20 ☐21-25 ☐26-30

 ☐31-35     ☐36-40 ☐over 40 ☐other (please specify): 

…………………………………………………………………………………………… 

4. What is your position/job title (Architect, CEO, etc.)? 

……………………………………………………………………………………………. 

5. Do you or your company have any experience with the reuse of the building structural 

elements? ☐Yes☐No 

Section B: Details about the reused structural element 

Based on your experience, please select only one structural element that you reused in the 

past and complete the rest of the questionnaire based on that. 

1. Which structural element that you reused before are you basing your answers?  

☐Beam  ☐Brace  ☐Column   ☐Slab  ☐Truss                                                               

☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

2. What is the material of construction (MoC) of the structural element that you reused? 

☐Concrete  ☐Steel  ☐Timber ☐Cast Iron ☐Wrought Iron  ☐

Composite                        ☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

3. What is the approximate age of the building from which the element is recovered? 

☐0 to 40 ☐41 to 60 ☐61 to 80 ☐81 to 100 ☐100 years and older 

                     ☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

4. What is the recovery technique used to recover the particular element? 
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☐Demolition  ☐Component-specific recovery  ☐ Deconstruction 

                     ☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

5. What is the number of existing connections fixed to the element when 

purchased/acquired (plates or angles fixed to a beam, etc.)? 

☐1 to 2 ☐3 to 4 ☐5 to 7 ☐8 to 10 ☐11 and above  

                     ☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

6. What are the types of the end connections (joints) of the element when 

purchased/acquired? 

☐ Reversible (bolts, screws, etc.) ☐ Permanent (welding, cast in-situ concrete, etc.)

  ☐ Mixed  ☐other (please specify): 

……………………………………………………………………………………………………………………………………………… 

 

Instructions for questions 7 to 11: 

You may ignore any question if not applicable or the details are/were not available. 

Questions 7 to 11 compare the current use (or use after deconstruction) of the structural 

element with its previous use before it was removed/deconstructed from a building. 

7. The structural element is serving the same purpose (i.e. as a beam, slab, column, etc.) in 

its new installation as in its previous installation. 

☐ Strongly agree ☐ Agree ☐ Neither agree nor disagree ☐ Disagree ☐ 

Strongly disagree 

8. The cross-section/thickness dimensions of the structural element in its new installation 

are equal or nearly equal to the cross-section/thickness dimensions of the element in its 

previous installation. 

☐ Strongly agree ☐ Agree ☐ Neither agree nor disagree ☐ Disagree ☐ 

Strongly disagree 

9. The length dimensions of the structural element in its new installation are equal or nearly 

equal to the length dimensions of the element in its previous installation. 

☐ Strongly agree ☐ Agree ☐ Neither agree nor disagree ☐ Disagree ☐ 

Strongly disagree 

10. The amount of load supported by the structural element in its new installation compared 

to the amount of load supported by the element in its previous installation. 

☐ Much lower  ☐ Lower  ☐ Equal  ☐ Higher 

 ☐ Much Higher 

11. The life expectancy of the structural element in its new installation compared to the life 

expectancy of the element in its previous installation. 
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☐ Much lower  ☐ Lower  ☐ Equal  ☐ Higher 

 ☐ Much Higher 

Section C: Factors affecting the reusability of the structural element 

You may ignore any question if not applicable or the details are/were not available. 

Please rate the followings on the scale of 1 to 5 where: 

5 = Very low  4 = Low  3 = Moderate  2 = High 1 = Very High 

 What was the negative impact of the following factors on the 
reusability of the structural element? 

Scale 

1 2 3 4 5 

C1 Damage during deconstruction/demolition      

C2 Damage due to fatigue      

C3 Damage due to fire      

C4 Damage during transportation      

C5 Damage during storage      

C6 Damage due to the type of joints      

C7 Damage due to corrosion      

C8 Damage due to frost      

C9 Damage due to water penetration/presence      

C10 Damage during refurbishment (nail removal, etc.)      

C11 Damage due to exposure to wind, acidic rain, etc.      

C12 Damage caused by living organisms (termite, bacterial attack, 
etc.) 

     

C13 Damage due to earthquake      

C14 Damage due to impact      

C15 Damage due to post-production modifications (e.g. holes, 
etc.) 

     

C16 Lack of certificates of quality for the element when acquired      

C17 Lack of standards to certify the element      

C18 Lack of the original drawings      

C19 Lack of the original design calculations      

C20 Lack of earlier certificates (inspection, material, etc.)      

C21 Lack of traceability of the element      

C22 Potential liability risks      

C23 Potential health and safety risks      

C24 Potential financial risks      

C25 The potential risk associated with the structural integrity      

C26 The potential risk of damage to the machinery (nails in timber, 
etc.) 

     

C27 A potential problem with collateral warranties      

C28 Presence of hazardous, banned or contaminating coatings      

Section D: Other factors affecting the reusability of the structural element 

You may ignore any question if not applicable or the details are/were not available. 

Please rate the followings on the scale of 1 to 5 where: 
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1 = Very negatively 2 = Negatively  3 = No real effect 4 = Positively 
 5 = Very Positively 

 How did the following factors affect the reusability of the structural element? Scale 

1 2 3 4 5 

D1 The purchasing price      

D2 Cost of insurance      

D3 Cost of testing      

D4 Cost of refurbishment (sandblasting, treatment, etc.)      

D5 Cost of design with the reused element      

D6 Storage cost      

D7 Transportation cost      

D8 Cost of labour      

D9 Cost of fabrication      

D10 Cash flow (need to purchase the element early, etc.)      

D11 Perception of the client/top management team about the element      

D12 Perception of the designers about the element      

D13 Perception of the builders/contractors about the element      

D14 Perception of the end users (when it is not the client) about the element      

D15 Perception of the stockist about the element      

D16 Perception of the regulatory authorities about the element      

D17 Visual appearance      

D18 Presence of fire protection on the element      

D19 Changes in the design codes (BS codes to Eurocodes, etc.)      

D20 Changes in the health and safety regulations (fire, etc.)      

D21 CE marking      

D22 Matching the original design with the dimensions of the reused element      

D23 Matching the original design with the strength of the reused element      

D24 Other design challenges with the reused element      

D25 Sourcing/procurement process      

Section E: The overall reusability of the structural element 

Definitions: 

Technical reusability: 

• The extent to which the reused structural element in its new life could perform 

similarly to its earlier life. 

Economic reusability: 

• The cost savings in the project as the result of using the reused structural element 

when compared to a similar project using a new structural element with the same 

performance. 

Social reusability: 

• The acceptance level of the stakeholders (clients, CEO, designers, construction team, 

occupants, etc.) about using the reused structural element in the new building. 

Please refer to the definitions section (above) for further clarity. Please rate the followings on 
the scale of 1 to 5 where: 
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1 = Very low  2 = Low  3 = Moderate  4 = High 5 = Very High 

 Please rate the relative level of reusability of the structural 
element by providing the actual or approximate answers. 

Scale 

1 2 3 4 5 

E1 The technical reusability      

E2 The economic reusability      

E3 The social reusability      

 

Please feel free to write any additional comments in the space provided below. 

……………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………… 

If you are willing to know the results of this study, please provide your contact details in the 

space provided below. Kindly note that this is totally optional. 

……………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………

………………………………………………………………………… 

If you have an experience with another reused structural element, please feel free to fill this 

survey again based on that other structural element. 

Thank you for taking the time to complete this questionnaire. 

If you have any queries, please do not hesitate to contact me (Kambiz Rakhshanbabanari) by 

telephoning (+44)7443-305756 or emailing rakhshak@uni.coventry.ac.uk. 
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Appendix D Record of the statistical tests and descriptive 

statistics 

D.1 Little’s MCAR test (Technical dataset) 

 
Table D-1 Little’s MCAR test (Technical dataset) 

Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

B7 69 3.70 1.204 3 4.2 0 0 3.70 

B8 69 3.93 1.019 3 4.2 9 0 3.89 

B9 69 3.23 1.214 3 4.2 0 0 3.22 

B10 68 2.31 .778 4 5.6 0 0 2.30 

B11 65 2.83 .802 7 9.7 0 2 2.69 

C1 71 3.01 1.282 1 1.4 0 0 2.98 

C2 72 3.85 1.070 0 .0 0 0 3.85 

C3 71 4.27 1.253 1 1.4 10 0 4.22 

C4 71 4.35 .864 1 1.4 3 0 4.36 

C5 72 4.21 1.061 0 .0 7 0 4.21 

C6 72 3.78 1.178 0 .0 0 0 3.78 

C7 70 4.19 1.133 2 2.8 8 0 4.16 

C8 71 4.58 .710 1 1.4 1 0 4.56 

C9 72 3.53 1.267 0 .0 0 0 3.53 

C10 71 3.85 1.023 1 1.4 0 0 3.81 

C11 72 4.42 .946 0 .0 5 0 4.42 

C12 72 3.87 1.310 0 .0 0 0 3.88 

C13 71 4.85 .497 1 1.4 . . 4.85 

C14 70 4.39 .997 2 2.8 5 0 4.34 

C15 72 3.76 1.081 0 .0 0 0 3.76 

C16 72 2.97 1.472 0 .0 0 0 2.97 

C17 71 3.06 1.511 1 1.4 0 0 3.04 

C18 71 3.75 1.481 1 1.4 0 0 3.73 

C19 71 3.80 1.480 1 1.4 0 0 3.79 

C20 71 3.70 1.468 1 1.4 0 0 3.69 

C21 71 3.86 1.437 1 1.4 0 0 3.85 

C25 72 3.43 1.276 0 .0 0 0 3.43 

C26 71 3.80 1.116 1 1.4 0 0 3.80 

C27 72 3.97 1.162 0 .0 0 0 3.97 

C28 72 3.60 1.241 0 .0 0 0 3.60 
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Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

D18 68 2.69 1.069 4 5.6 0 5 2.69 

D19 67 2.58 1.103 5 6.9 0 4 2.60 

D21 65 2.65 1.138 7 9.7 0 5 2.74 

D22 69 2.51 1.146 3 4.2 0 4 2.55 

D23 69 2.71 1.238 3 4.2 0 8 2.76 

D24 68 2.75 1.098 4 5.6 0 7 2.72 

E1 72 3.76 1.216 0 .0 0 0 3.76 

B1 72   0 .0    

B2 72   0 .0    

B3 72   0 .0    

B4 72   0 .0    

B5 71   1 1.4    

B6 71   1 1.4    

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

b. Little's MCAR test: Chi-Square = 662.391, DF = 611, Sig. = .074 

 

D.2 Little’s MCAR test (Economic dataset) 

 

Table D-2 Little’s MCAR test (Economic dataset) 

Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

C24 72 4.01 1.132 0 .0 0 0 4.00 

D1 72 3.68 1.265 0 .0 0 0 3.68 

D2 68 2.66 .940 4 5.6 0 3 2.67 

D3 68 2.57 1.083 4 5.6 0 4 2.55 

D4 72 2.81 1.043 0 .0 0 4 2.79 

D5 72 2.82 1.079 0 .0 0 5 2.82 

D6 72 2.78 1.213 0 .0 0 9 2.77 

D7 72 2.82 1.179 0 .0 0 0 2.82 
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Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

D8 72 2.94 1.112 0 .0 0 10 2.94 

D9 71 2.89 1.090 1 1.4 0 6 2.91 

D10 71 2.83 1.134 1 1.4 0 6 2.81 

D25 69 2.83 1.200 3 4.2 0 0 2.82 

E2 72 3.93 .969 0 .0 0 0 3.92 

B1 72   0 .0    

B2 72   0 .0    

B3 72   0 .0    

B4 72   0 .0    

B5 71   1 1.4    

B6 71   1 1.4    

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

b. Little's MCAR test: Chi-Square = 55.684, DF = 44, Sig. = .111 

 

D.3 Little’s MCAR test (Social dataset) 

  

Table D-3 Little’s MCAR test (Social dataset) 

Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

C22 72 3.24 1.399 0 .0 0 0 3.23 

C23 72 3.81 1.274 0 .0 0 0 3.79 

D11 70 3.46 1.151 2 2.8 5 0 3.44 

D12 71 3.35 1.255 1 1.4 0 0 3.36 

D13 71 3.11 1.304 1 1.4 0 0 3.10 
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Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

D14 70 3.46 1.441 2 2.8 0 0 3.46 

D15 61 2.70 1.038 11 15.3 0 2 2.81 

D16 70 3.00 1.155 2 2.8 0 0 3.02 

D17 72 3.32 1.309 0 .0 0 0 3.34 

D20 68 2.63 1.006 4 5.6 0 3 2.64 

E3 72 4.29 .956 0 .0 3 0 4.28 

B1 72   0 .0    

B2 72   0 .0    

B3 72   0 .0    

B4 72   0 .0    

B5 71   1 1.4    

B6 71   1 1.4    

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

b. Little's MCAR test: Chi-Square = 60.730, DF = 59, Sig. = .413 

 

D.4 Descriptive statistics of the received questionnaire (after estimating the 

missing values) 

Ranking of the variables is performed based on the values of the Mean. Since questions B7 to 

B11 intend to compare the current use of the element with its previous deployment, they were 

not included in the ranking. Questions in Section C act as barrier and questions in Section D can 

act as drivers or barriers depending on the value of the Mean. For instance, for values of Mean 

above 3 in Section D, the variable acts as a reuse driver. The comparison has been made in two 

stages. In Stage 1 variables are compared within their respective group (e.g., ranking is based 

on being in Section B or C or D and being a driver or a barrier). In Stage 2, which includes 

variables in Sections C & D, the variables are ranked from 1 (the lowest Mean) to the highest 

Mean. Hence, D22 in the TEC dataset with Mean equal to 2.53 has the worst impact on the 

reusability of an element and is ranked 1. 
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Table D-4 Descriptive statistics for TEC dataset (Number of observations = 72) 

Variables Mean Standard 
Error 

Median Standard 
Deviation 

Variance Role In 
group 
rank 
(Stage 
1) 

Overall 
rank 
(Stage 
2) 

B7 3.71 0.14 4.00 1.19 1.42 NA 2 N/A 

B8 3.93 0.12 4.00 1.01 1.02 NA 1 N/A 

B9 3.25 0.14 3.00 1.21 1.46 NA 3 N/A 

B10 2.31 0.09 2.00 0.76 0.58 NA 5 N/A 

B11 2.88 0.10 3.00 0.82 0.67 NA 4 N/A 

C1 2.99 0.15 3.00 1.29 1.68 Barrier 2 8 

C2 3.85 0.13 4.00 1.07 1.15 Barrier 14 19 

C3 4.26 0.15 5.00 1.24 1.55 Barrier 20 26 

C4 4.31 0.11 5.00 0.94 0.89 Barrier 21 27 

C5 4.21 0.13 5.00 1.06 1.13 Barrier 19 25 

C6 3.78 0.14 4.00 1.18 1.39 Barrier 10 16 

C7 4.19 0.13 5.00 1.12 1.26 Barrier 18 24 

C8 4.58 0.08 5.00 0.71 0.50 Barrier 24 30 

C9 3.53 0.15 4.00 1.27 1.60 Barrier 5 11 

C10 3.85 0.12 4.00 1.02 1.03 Barrier 13 20 

C11 4.42 0.11 5.00 0.95 0.89 Barrier 23 29 

C12 3.88 0.15 4.00 1.31 1.72 Barrier 16 22 

C13 4.85 0.06 5.00 0.49 0.24 Barrier 25 31 

C14 4.35 0.13 5.00 1.06 1.13 Barrier 22 28 

C15 3.76 0.13 4.00 1.08 1.17 Barrier 9 15 

C16 2.97 0.17 3.00 1.47 2.17 Barrier 1 7 

C17 3.04 0.18 3.00 1.51 2.27 Barrier 3 9 

C18 3.76 0.17 5.00 1.48 2.18 Barrier 8 14 

C19 3.81 0.17 5.00 1.47 2.16 Barrier 12 18 

C20 3.72 0.17 4.50 1.47 2.15 Barrier 7 13 

C21 3.88 0.17 5.00 1.43 2.05 Barrier 15 21 

C25 3.43 0.15 4.00 1.28 1.63 Barrier 4 10 

C26 3.79 0.13 4.00 1.11 1.24 Barrier 11 17 

C27 3.97 0.14 4.00 1.16 1.35 Barrier 17 23 

C28 3.60 0.15 4.00 1.24 1.54 Barrier 6 12 

D18 2.72 0.13 3.00 1.13 1.27 Barrier 5 5 

D19 2.63 0.13 3.00 1.11 1.22 Barrier 2 2 

D21 2.64 0.13 3.00 1.10 1.22 Barrier 3 3 

D22 2.53 0.13 3.00 1.14 1.29 Barrier 1 1 

D23 2.71 0.15 3.00 1.26 1.59 Barrier 4 4 

D24 2.79 0.13 3.00 1.10 1.21 Barrier 6 6 
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Table D-5 Descriptive statistics for ECO dataset (Number of observations = 72) 

Variable Mean Standard 
Error 

Median Standard 
Deviation 

Variance Role In 
group 
rank 
(Stage 
1) 

Overall 
rank 
(Stage 
2) 

C24 4.01 0.13 4.00 1.13 1.28 Barrier 1 12 

D1 3.68 0.15 4.00 1.27 1.60 Driver 1 11 

D2 2.69 0.11 3.00 0.96 0.92 Barrier 2 2 

D3 2.58 0.12 3.00 1.06 1.12 Barrier 1 1 

D4 2.81 0.12 3.00 1.04 1.09 Barrier 4 4 

D5 2.82 0.13 3.00 1.08 1.16 Barrier 5 5 

D6 2.78 0.14 3.00 1.21 1.47 Barrier 3 3 

D7 2.82 0.14 3.00 1.18 1.39 Barrier 6 6 

D8 2.94 0.13 3.00 1.11 1.24 Barrier 10 10 

D9 2.89 0.13 3.00 1.08 1.17 Barrier 9 9 

D10 2.86 0.14 3.00 1.15 1.33 Barrier 8 8 

D25 2.83 0.14 3.00 1.19 1.41 Barrier 7 7 

 

Table D-6 Descriptive statistics for SOC dataset (Number of observations = 72) 

Variable Mean Standard 
Error 

Median Standard 
Deviation 

Variance Role In 
group 
rank 
(Stage 
1) 

Overall 
rank 
(Stage 
2) 

C22 3.24 0.16 3.00 1.40 1.96 Barrier 1 5 

C23 3.81 0.15 4.00 1.27 1.62 Barrier 2 10 

D11 3.46 0.14 4.00 1.16 1.35 Driver 1 9 

D12 3.36 0.15 4.00 1.25 1.56 Driver 3 7 

D13 3.10 0.15 3.00 1.30 1.69 Driver 5 4 

D14 3.44 0.17 4.00 1.43 2.05 Driver 2 8 

D15 2.71 0.12 3.00 0.98 0.97 Barrier 2 2 

D16 2.97 0.14 3.00 1.15 1.32 Barrier 3 3 

D17 3.32 0.15 3.00 1.31 1.71 Driver 4 6 

D20 2.65 0.12 3.00 0.98 0.96 Barrier 1 1 
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Appendix E The R codes 

E.1 The code to estimate the missing data 

Depending on the dataset, dataset1 represents the original TEC, ECO, and SOC dataset. 

E.2 The code to balance the datasets 

 

E.3 The code to randomly split the datasets to training and testing sets 

 

>library(mlr) 

>task1 = makeClassifTask(data = as.data.frame(dataset1), target = 

"response") 

>dataset2= smote(task1, rate, nn = 5L, standardize = TRUE, alt.logic = TRUE) 

>library(caTools) 

>set.seed(88) 

>split=sample.split(dataset2$response,SplitRatio = 0.70) 

>train=subset(dataset2,split1==TRUE) 

>test=subset(dataset2,split1==FALSE) 

 

 

>library(missMDA) 

>library(mice) 

>library(readxl) 

>dataset=read_xlsx("dataset1.xlsx") 

>col_names = names(dataset1) 

>dataset1[,col_names] <- lapply(dataset1[,col_names] , factor) 

>res.ncp = estim_ncpMCA(dataset1,method.cv="loo")#optionally use “kfold” 

>plot(names(res.ncp$criterion),res.ncp$criterion,xlab="number of 

dimensions",ylab="cv error") 

>res.MIMCA = MIMCA(dataset1,ncp = res.ncp$ncp) 

>imp=prelim(res.MIMCA,dataset1) 

>dataset2 = complete(imp, action = "long", include = TRUE) 

>dataset2_imputed=complete(mice(dataset2)) 
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E.4 The code to install packages required for feature selection using filter 

methods 

 

E.5 The code to rank features using filter methods 

 

E.6 The code to select features using the Boruta method 

 

>install.packages("mlr") 

>install.packages("FSelector") 

>install.packages("randomForest") 

>install.packages("party") 

>install.packages("praznik") 

>install.packages("xtable") 

>install.packages("xlsx") 

>library(mlr) 

>library(FSelector) 

>library(randomForest) 

>library(party) 

>library(praznik) 

>library(xtable) 

>library(xlsx) 

 

 

>task = makeClassifTask(data = as.data.frame(train), target = "response") 

>gfvd=generateFilterValuesData(task, method = 

c("party_cforest.importance","FSelector_chi.squared","FSelector_information

.gain","FSelector_gain.ratio","kruskal.test","praznik_MRMR","FSelector_oneR

","randomForest_importance","FSelector_relief","FSelector_symmetrical.uncer

tainty")) 

>featureScors=xtable(gfvd$data) 

>write.xlsx(featureScors, file = "featureScors.xlsx") 

>library(Boruta) 

>feature=Boruta(response~., data=train, maxRuns = 10000) 
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E.7 The code to select features using RFE technique 

 

  

library(caret) 

library(randomForest) 

library(ipred) 

library(klaR) 

# x=train1 (excluding response) 

# y=response 

#List of functions used: rfFuncs, nbFuncs, treebagFuncs, caretFuncs 

ctrl <- rfeControl(functions = (see list of functions used) 

                   method = "repeatedcv", 

                   repeats = 5, 

                   verbose = FALSE) 

Profile <- rfe(x, y, 

                 sizes = c(1:20), 

                 rfeControl = ctrl) 
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E.8 The code to install packages required for the development of the predictive 

models 

Below is the list of all required packages to develop the predictive models. After installing these 

packages, it is necessary to call the package using the library() function in R. Script E.8 (Appendix 

E) is used to call the required packages. 

Scripts E.9 to E.21 were used to develop the predictive models for the list of machine learning 

methods in Table 5.10. In these scripts, using the makeLearner() function, the class of 

learner and the type of prediction is specified. Next, using the makeClassifTask() 

function, the training and testing datasets (Section 5.3), as well as the targeting response vector 

are defined for use to fit the models and perform predictions. Then, using the 

train()function, the predictive model is developed by fitting the learner to the training 

dataset. Finally, using the predict() function, the predictions of the models on the unseen 

data are performed. 

 

 

 

 

 

library(ada) 

library(bartMachine) 

library(caret) 

library(clusterGeneration) 

library(devtools) 

library(e1071) 

library(kernlab) 

library(kknn) 

library(mlr) 

library(neuralnet) 

library(nnet) 

library(randomForest) 

library(ROCR) 

library(rpart) 

library(rpart.plot) 

library(RWeka) 

library(rJava) 
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E.9 The code to develop the KNN models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

#Estimating the number of neighbours using the rminer package. 

>s=list(smethod="grid",search=mparheuristic("kknn",n=10),convex=0,metric="A

UC",method=c("holdout",2/3,123)) 

>model1=fit(E1C ~ ., data = train, model="kknn",task="prob",search=s) 

>print(model1@mpar) 

#Using mlr package to develop the model 

>obj_mlr_knn = makeLearner("classif.kknn", predict.type = "prob") 

obj_mlr_knn$par.set$pars$k=s #s is equal to 6, 5, or 8 for the TEC, ECO, 

and SOC, respectively 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_knn = train(obj_mlr_knn, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_knn = predict(model1_knn, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_knn) 

>ROCRpredTest1 = asROCRPrediction(predTest1_knn) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>knn_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.10 The code to develop the LR models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.11 The code to develop the LDA models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

>obj_mlr_lr = makeLearner("classif.logreg", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_lr = train(obj_mlr_lr, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_lr = predict(model1_lr, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_lr) 

>ROCRpredTest1 = asROCRPrediction(predTest1_lr) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>lr_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>obj_mlr_lda = makeLearner("classif.lda", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_lda = train(obj_mlr_lda, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_lda = predict(model1_lda, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_lda) 

>ROCRpredTest1 = asROCRPrediction(predTest1_lda) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>lda_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.12 The code to develop the QDA models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.13 The code to develop the NB models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

>obj_mlr_nb = makeLearner("classif.naiveBayes", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_nb = train(obj_mlr_nb, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_nb = predict(model1_nb, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_nb) 

>ROCRpredTest1 = asROCRPrediction(predTest1_nb) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>nb_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

 >obj_mlr_qda = makeLearner("classif.qda", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_qda = train(obj_mlr_qda, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_qda = predict(model1_qda, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_qda) 

>ROCRpredTest1 = asROCRPrediction(predTest1_qda) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>qda_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.14 The code to develop the DT models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.15 The code to develop the RF models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

>obj_mlr_dt = makeLearner("classif.rpart", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_dt = train(obj_mlr_dt, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_dt = predict(model1_dt, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_dt) 

>ROCRpredTest1 = asROCRPrediction(predTest1_dt) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>dt_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>rpart.plot.version1(model1_dt$learner.model) 

 

>obj_mlr_rf = makeLearner("classif.randomForest", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_rf = train(obj_mlr_rf, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_rf = predict(model1_rf, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_rf) 

>ROCRpredTest1 = asROCRPrediction(predTest1_rf) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>rf_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.16 The code to develop the AB models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.17 The code to develop the BM models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

>obj_mlr_ab = makeLearner("classif.ada", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_ab = train(obj_mlr_ab, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_ab = predict(model1_ab, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_ab) 

>ROCRpredTest1 = asROCRPrediction(predTest1_ab) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>ab_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>obj_mlr_bm = makeLearner("classif.bartMachine", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_bm = train(obj_mlr_bm, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_bm = predict(model1_bm, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_bm) 

>ROCRpredTest1 = asROCRPrediction(predTest1_bm) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>bm_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.18 The code to develop the ANN models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset.  

The hyperparameters (size and decay) for each of the datasets are as follows: TEC (size=9, 

decay=0.09), ECO (size=9, decay=0.08), SOC (size=8, decay=0.04). For k-fold cross-validation 

(Tables 6.1 to 6.3), dataset represents the entire TEC, ECO, and SOC observations (Section 

5.2), and not the training set. 

 

#Estimating the hyperparameters using the caret package. 

>fitControl = trainControl(method = "repeatedcv",number = 10,repeats = 

5,classProbs = TRUE, summaryFunction = twoClassSummary) 

>nnetGrid <= expand.grid(size = seq(from = 1, to = 10, by = 1),decay = 

seq(from = 0, to = 0.5, by = 0.01)) 

>nnetFit = train(target ~ .,data = train,method = "nnet",metric = 

"ROC",trControl = fitControl,tuneGrid = nnetGrid,verbose = FALSE) 

#Using mlr package to develop the model 

>model1=fit(target ~ ., data = train ,model="mlpe",task="prob",size ,decay) 

>predTest1=predict(model1,newdata = test) 

>print(mmetric(test$target,predTest1,"CONF",TC=2)) 

>print(mmetric(test$target,predTest1,metric = 

c("ACC","AUC","TPR","TNR"),TC=2)) 

>print(mmetric(test$target,predTest1,"ROC",TC=2)) 

>ROCRpredTest1 = ROCR::prediction(predTest1[,2], test$target) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1,"tpr","fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7), main="ANN 

(TEC) Testing dataset ROC curve") 

>aucTest1 = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>aucTest1 

#10-fold Cross-validation for Tables 9.1, 9.2, and 9.3 

>M=crossvaldata(target ~ 

.,data=dataset,fit,predict,seed=88,model="mlpe",task="prob",size,decay) 

>print(mmetric(dataset$TEC,M$cv.fit,metric = 

c("ACC","AUC","TPR","TNR"),TC=2)) 
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E.19 The code to develop the GP models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

E.20 The code to develop the PRL models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

>obj_mlr_gp = makeLearner("classif.gausspr", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_gp = train(obj_mlr_gp, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_gp = predict(model1_gp, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_gp) 

>ROCRpredTest1 = asROCRPrediction(predTest1_gp) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>gp_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>obj_mlr_prl = makeLearner("classif.JRip", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_prl = train(obj_mlr_prl, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_prl = predict(model1_prl, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_prl) 

>ROCRpredTest1 = asROCRPrediction(predTest1_prl) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>prl_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>as.matrix(scan(text=.jcall(model1_prl$learner.model$classifier,"S", 

"toString") ,sep="\n", what="") )[-c(1:2, 20), ,drop=FALSE] 
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E.21 The code to develop the SVM models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

> train1_task = makeClassifTask(data = as.data.frame(train), target) 

>num_ps_Tuning = makeParamSet( 

  makeNumericParam("C", lower = -10, upper = 10, trafo = function(x) 10^x), 

  makeNumericParam("sigma", lower = -10, upper = 10, trafo = function(x) 

10^x)) 

>ctrlTuning = makeTuneControlRandom(maxit = 100L) 

>rdescTuning = makeResampleDesc("CV", iters = 10L) 

>resTuning = tuneParams("classif.ksvm", task = train1_task, resampling = 

rdescTuning, par.set = mum_ps_Tuning, control = ctrlTuning, measures = 

list(acc, setAggregation(acc, test.sd))) 

>obj_mlr_svm = setHyperPars(makeLearner("classif.ksvm", predict.type = 

"prob"), C = resTuning$x$C, sigma = resTuning$x$sigma) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>model1_svm = train(obj_mlr_svm, train1_task) 

>predTest1_svm = predict(model1_svm, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_svm) 

>ROCRpredTest1 = asROCRPrediction(predTest1_svm) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 

colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>svm_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.22 The code to assess the performance of the BSE-RPMs using the kfCV 

method 

In makeClassifTask() function, target is replaced with target = "E1C" for the 

TEC dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC 

dataset. Moreover, in resample() function, learner is replaced with obj_mlr_knn (Script 

E.9), obj_mlr_lr (Script E.10), obj_mlr_lda (Script E.11), obj_mlr_qda (Script E.12), 

obj_mlr_nb (Script E.13), obj_mlr_dt (Script E.14), obj_mlr_rf (Script E.15), 

obj_mlr_bm (Script E.16), obj_mlr_ab (Script E.17), obj_mlr_ann (Script E.18), 

obj_mlr_gp (Script E.19), obj_mlr_prl (Script E.20), obj_mlr_svm (Script E.21). 

 

 

E.23 The code to perform Sensitivity Analysis and open the best-practice RF 

BSER-RPMs 

dataset2 is defined in Script E.1 

 

>task = makeClassifTask(data = as.data.frame(reuse2), target) 

>rdesc = makeResampleDesc("CV", iters = 10, predict = "both") 

>r = resample(learner, task, rdesc, measures = list(mmce, acc, fpr, fnr, 

tnr, tpr, auc)) 

>library(rminer) 

>model=fit(response ~ ., data=dataset2,model = "randomForest",task="prob") 

>dsa_imp=Importance(model,dataset2,method = "DSA",measure = "AAD") 

>list_dsa=list(runs=1,sen=t(dsa_imp$imp),sresponses=dsa_imp$sresponses) 

>mgraph(list_dsa,graph="IMP",leg=names(dataset2),col="white", 

       xval=0.0105,main = "TEC-RF BSE-RPM Variable importance levels 

(DSA)",metric="ALL", 

       axis=c(1),cex = 0.75) 
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E.24 The code to extract rules from the best-practice RF BSER-RPMs 

 

 

  

>library(inTrees) 

>library(randomForest) 

>y=train$response 

>nonvars=c("response") 

>x=train[ , !(names(train) %in% nonvars) ] 

>y=as.factor(y) 

>x=as.data.frame(x) 

>train=as.data.frame(train) 

>test=as.data.frame(test) 

>model=randomForest(x,y) 

>treeList = RF2List(model) 

>ruleExec = extractRules(treeList,x) 

>ruleExec = unique(ruleExec) 

>ruleMetric = getRuleMetric(ruleExec,x,y) 

>ruleMetric = pruneRule(ruleMetric,x,y) 

>ruleMetric = selectRuleRRF(ruleMetric,x,y) 

>learner = buildLearner(ruleMetric,x,y) 

>pred = applyLearner(learner,x) 

>read = presentRules(learner,colnames(x)) 
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Appendix F Outcome of the predictive models 

Results of the predictive models (Chapter 5, Section 5.5.3, Table 5.10) 

F.1 Predictive models on the TEC dataset 

In this section, the results of the models used to predict the technical reusability of the 

structural elements are presented. 

Table F-1 Summary of the results of the TEC BSE-RPMs developed (the validation set approach method). 

Predictive 
model 

Type-I 
error 

Type-II 
error 

Specificity Sensitivity Overall 
accuracy 

Overall 
error 
rate 

AUC 

KNN 0.03 0.28 0.97 0.72 0.85 0.15 0.95 

LR* 0.28 0.17 0.72 0.83 0.78 0.22 0.81 

LDA 0.14 0.21 0.86 0.79 0.83 0.17 0.86 

QDA 0.07 0.17 0.93 0.83 0.88 0.12 0.96 

NB 0.24 0.35 0.76 0.65 0.71 0.29 0.82 

DT 0.10 0.41 0.90 0.59 0.74 0.26 0.76 

RF 0.00 0.17 1.00 0.83 0.91 0.09 0.98 

AB 0.07 0.31 0.93 0.69 0.81 0.19 0.93 

BM 0.07 0.38 0.93 0.62 0.78 0.22 0.91 

ANN 0.14 0.14 0.86 0.86 0.86 0.14 0.90 

GP 0.14 0.31 0.86 0.69 0.78 0.22 0.91 

PRL 0.21 0.17 0.79 0.83 0.81 0.19 0.84 

SVM 0.07 0.14 0.93 0.86 0.90 0.10 0.97 
* The LR BSE-RPM did not converge. Hence, this model is excluded from further analysis. 

 

F.1.1 TEC dataset K-Nearest Neighbours (KNN) BSE-RPM 

Script E.9 (Appendix E) is used to develop the TEC K-Nearest Neighbours (KNN) BSE-RPM.  

Table F-2 The confusion matrix of the KNN BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 28 1 

Actual reusable (1) 8 21 
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Figure F-1 The ROC curve of the KNN BSE-RPM (TEC dataset) 

The AUC value for the TEC K-Nearest Neighbours (KNN) BSE-RPM is equal to 0.95.  
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F.1.2 TEC dataset Logistic Regression (LR) BSE-RPM 

Script E.10 (Appendix E) is used to develop the TEC Logistic Regression (LR) BSE-RPM. 

Table F-3 The confusion matrix of the LR BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 21 8 

Actual reusable (1) 5 24 

 

 

Figure F-2 The ROC curve of the LR BSE-RPM (TEC dataset) 

The AUC value for the TEC Logistic Regression (LR) BSE-RPM is equal to 0.81. However, the 

model for the TEC Logistic Regression (LR) BSE-RPM did not converge. Hence, this model is not 

considered during the final evaluation (Chapter 6). 
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F.1.3 TEC dataset Linear Discriminant Analysis (LDA) BSE-RPM 

Script E.11 (Appendix E) is used to develop the TEC Linear Discriminant Analysis (LDA) BSE-RPM. 

Table F-4 The confusion matrix of the LDA BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 25 4 

Actual reusable (1) 6 23 

 

 

Figure F-3 The ROC curve of the LDA BSE-RPM (TEC dataset) 

The AUC value for the TEC Linear Discriminant Analysis (LDA) BSE-RPM is equal to 0.862069. 
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F.1.4 TEC dataset Quadratic Discriminant Analysis (QDA) BSE-RPM 

Script E.12 (Appendix E) is used to develop the TEC Quadratic Discriminant Analysis (QDA) BSE-

RPM.  

Table F-5 The confusion matrix of the QDA BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 27 2 

Actual reusable (1) 5 24 

 

 

Figure F-4 The ROC curve of the QDA BSE-RPM (TEC dataset) 

The AUC value for the TEC Quadratic Discriminant Analysis (QDA) BSE-RPM is equal to 0.96. 
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F.1.5 TEC dataset Naïve Bayes (NB) BSE-RPM 

Script E.13 (Appendix E) is used to develop the TEC Naïve Bayes (NB) BSE-RPM.  

Table F-6 The confusion matrix of the NB BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 22 7 

Actual reusable (1) 10 19 

 

 

Figure F-5 The ROC curve of the NB BSE-RPM (TEC dataset) 

The AUC value for the TEC Naïve Bayes (NB) BSE-RPM is equal to 0.82. 
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F.1.6 TEC dataset Decision Trees (DT) BSE-RPM 

Script E.14 (Appendix E) is used to develop the TEC Decision Trees (DT) BSE-RPM. 

Table F-7 The confusion matrix of the DT BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 26 3 

Actual reusable (1) 12 17 

 

 

Figure F-6 The ROC curve of the DT BSE-RPM (TEC dataset) 

The AUC value for the TEC Decision Trees (DT) BSE-RPM is equal to 0.76. 
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Figure F-7 The DT BSE-RPM Model (TEC dataset) 

  

DT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) ModelDT (TEC) Model

C28 < 4.5

D24 < 3.5

B5 = 1,3,4,5

C1 >= 1.5 B3 = 1,2

B5 = 3,4

0 1 0 1

1 0 1

yes no
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F.1.7 TEC dataset Random Forests (RF) BSE-RPM 

Script E.15 (Appendix E) is used to develop the TEC Random Forests (RF) BSE-RPM.  

Table F-8 The confusion matrix of the RF BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 29 0 

Actual reusable (1) 5 24 

 

 

Figure F-8 The ROC curve of the RF BSE-RPM (TEC dataset) 

 

The AUC value for the TEC Random Forests (RF) BSE-RPM is equal to 0.98. 
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F.1.8 TEC dataset Adaptive Boosting (AB) BSE-RPM 

Script E.17 (Appendix E) is used to develop the TEC Adaptive Boosting (AB) BSE-RPM.  

Table F-9 The confusion matrix of the AB BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 27 2 

Actual reusable (1) 11 18 

 

 

Figure F-9 The ROC curve of the AB BSE-RPM (TEC dataset) 

The AUC value for the TEC Adaptive Boosting (AB) BSE-RPM is equal to 0.91. 
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F.1.9 TEC dataset Bart Machine (BM) BSE-RPM 

Script E.16 (Appendix E) is used to develop the TEC Bart Machine (BM) BSE-RPM. 

Table F-10 The confusion matrix of the BM BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 27 2 

Actual reusable (1) 9 20 

 

 

Figure F-10 The ROC curve of the BM BSE-RPM (TEC dataset) 

The AUC value for the TEC Bart Machine (BM) BSE-RPM is equal to 0.93. 
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F.1.10 TEC dataset Artificial Neural Networks (ANN) BSE-RPM 

Script E.18 (Appendix E) is used to develop the TEC Artificial Neural Networks (ANN) BSE-RPM. 

Table F-11 The confusion matrix of the ANN BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 25 4 

Actual reusable (1) 4 25 

 

 

Figure F-11 The ROC curve of the ANN BSE-RPM (TEC dataset) 

The AUC value for the TEC Artificial Neural Networks (ANN) BSE-RPM is equal to 0.90. 
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F.1.11 TEC dataset Gaussian Processes (GP) BSE-RPM 

Script E.19 (Appendix E) is used to develop the TEC Gaussian Processes (GP) BSE-RPM. 

Table F-12 The confusion matrix of the GP BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 25 4 

Actual reusable (1) 9 20 

 

 

Figure F-12 The ROC curve of the GP BSE-RPM (TEC dataset) 

The AUC value for the TEC Gaussian Processes (GP) BSE-RPM is equal to 0.91. 
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F.1.12 TEC dataset Propositional Rule Learner (PRL) BSE-RPM 

Script E.20 (Appendix E) is used to develop the TEC Propositional Rule Learner (PRL) BSE-RPM. 

Table F-13 The confusion matrix of the PRL BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 23 6 

Actual reusable (1) 5 24 

 

 

Figure F-13 The ROC curve of the PRL BSE-RPM (TEC dataset) 

The AUC value for the TEC Propositional Rule Learner (PRL) BSE-RPM is equal to 0.84. 

 

Table F-14 The rules set of the PRL BSE-RPM (TEC dataset) 

Rule number (to 
be considered in 
order) 

Rule Result 

1st  If: (C25 <= 3) and (C9 >= 3) and (C20 >= 2) 
and (C17 <= 4) 

Then: E1C=0 (34.0/3.0) 
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Rule number (to 
be considered in 
order) 

Rule Result 

2nd Else if: (C28 <= 3) and (C15 = 5) Then: E1C=0 (17.0/1.0) 

3rd Else if: (C6 <= 3) and (B9 <= 3) Then: E1C=0 (10.0/1.0) 

4th Else if: (B3 = 2) and (B7 <= 4) Then: E1C=0 (6.0/1.0) 

5th Else if none Then: E1C=1 (67.0/6.0) 
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F.1.13 TEC dataset Support Vector Machines (SVM) BSE-RPM 

Script E.21 (Appendix E) is used to develop the TEC Support Vector Machines (SVM) BSE-RPM. 

Table F-15 The confusion matrix of the SVM BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 27 2 

Actual reusable (1) 4 25 

 

 

Figure F-14 The ROC curve of the SVM BSE-RPM (TEC dataset) 

The AUC value for the TEC Support Vector Machines (SVM) BSE-RPM is equal to 0.97.  
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F.2 Predictive models on the ECO dataset 

In this section, the results of the models used to predict the economic reusability of the 

structural elements are presented. 

Table F-16 Summary of the results of the ECO BSE-RPMs developed (the validation set approach method). 

Predictive 
model 

Type-I 
error 

Type-II 
error 

Specificity Sensitivity Overall 
accuracy 

Overall 
error rate 

AUC 

KNN 0.00 0.30 1.00 0.70 0.86 0.14 0.96 

LR 0.21 0.30 0.79 0.70 0.75 0.25 0.81 

LDA 0.25 0.37 0.75 0.63 0.69 0.31 0.79 

QDA 0.21 0.26 0.79 0.74 0.76 0.24 0.83 

NB 0.32 0.30 0.68 0.70 0.69 0.31 0.77 

DT 0.25 0.19 0.75 0.81 0.78 0.22 0.80 

RF 0.00 0.30 1.00 0.70 0.86 0.14 0.98 

AB 0.04 0.33 0.96 0.67 0.82 0.18 0.94 

BM 0.00 0.33 1.00 0.67 0.84 0.16 0.90 

ANN 0.00 0.22 1.00 0.78 0.89 0.11 0.96 

GP 0.07 0.37 0.93 0.63 0.78 0.22 0.86 

PRL 0.25 0.33 0.75 0.67 0.71 0.29 0.72 

SVM 0.07 0.15 0.93 0.85 0.89 0.11 0.95 

 

F.2.1 ECO dataset K-Nearest Neighbours (KNN) BSE-RPM 

Script E.9 (Appendix E) is used to develop the ECO K-Nearest Neighbours (KNN) BSE-RPM. 

 

Table F-17 The confusion matrix of the KNN BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 28 0 

Actual reusable (1) 8 19 
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Figure F-15 The ROC curve of the KNN BSE-RPM (ECO dataset) 

The AUC value for the ECO K-Nearest Neighbours (KNN) BSE-RPM is equal to 0.96. 
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F.2.2 ECO dataset Logistic Regression (LR) BSE-RPM 

Script E.10 (Appendix E) is used to develop the ECO Logistic Regression (LR) BSE-RPM. 

Table F-18 The confusion matrix of the LR BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 22 6 

Actual reusable (1) 8 19 

 

 

Figure F-16 The ROC curve of the LR BSE-RPM (ECO dataset) 

The AUC value for the ECO Logistic Regression (LR) BSE-RPM is equal to 0.81. 
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F.2.3 ECO dataset Linear Discriminant Analysis (LDA) BSE-RPM 

Script E.11 (Appendix E) is used to develop the ECO Linear Discriminant Analysis (LDA) BSE-RPM. 

Table F-19 The confusion matrix of the LDA BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 21 7 

Actual reusable (1) 10 17 

 

 

Figure F-17 The ROC curve of the LDA BSE-RPM (ECO dataset) 

The AUC value for the ECO Linear Discriminant Analysis (LDA) BSE-RPM is equal to 0.79. 
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F.2.4 ECO dataset Quadratic Discriminant Analysis (QDA) BSE-RPM 

Script E.12 (Appendix E) is used to develop the ECO Quadratic Discriminant Analysis (QDA) BSE-

RPM. 

Table F-20 The confusion matrix of the QDA BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 22 6 

Actual reusable (1) 7 20 

 

 

Figure F-18 The ROC curve of the QDA BSE-RPM (ECO dataset) 

The AUC value for the ECO Quadratic Discriminant Analysis (QDA) BSE-RPM is equal to 0.83. 
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F.2.5 ECO dataset Naïve Bayes (NB) BSE-RPM 

Script E.13 (Appendix E) is used to develop the ECO Naïve Bayes (NB) BSE-RPM. 

Table F-21 The confusion matrix of the NB BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 19 9 

Actual reusable (1) 8 19 

 

 

Figure F-19 The ROC curve of the NB BSE-RPM (ECO dataset) 

The AUC value for the ECO Naïve Bayes (NB) BSE-RPM is equal to 0.77. 
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F.2.6 ECO dataset Decision Trees (DT) BSE-RPM 

Script E.14 (Appendix E) is used to develop the ECO Decision Trees (DT) BSE-RPM. 

Table F-22 The confusion matrix of the DT BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 21 7 

Actual reusable (1) 5 22 

 

 

Figure F-20 The ROC curve of the DT BSE-RPM (ECO dataset) 

The AUC value for the ECO Decision Trees (DT) BSE-RPM is equal to 0.80. 
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Figure F-21 The DT BSE-RPM Model (ECO dataset) 
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F.2.7 ECO dataset Random Forests (RF) BSE-RPM 

Script E.15 (Appendix E) is used to develop the ECO Random Forests (RF) BSE-RPM. 

Table F-23 The confusion matrix of the RF BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 28 0 

Actual reusable (1) 8 19 

 

 

Figure F-22 The ROC curve of the RF BSE-RPM (ECO dataset) 

The AUC value for the ECO Random Forests (RF) BSE-RPM is equal to 0.98. 
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F.2.8 ECO dataset Adaptive Boosting (AB) BSE-RPM 

Script E.17 (Appendix E) is used to develop the ECO Adaptive Boosting (AB) BSE-RPM. 

Table F-24 The confusion matrix of the AB BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 27 1 

Actual reusable (1) 9 18 

 

 

Figure F-23 The ROC curve of the AB BSE-RPM (ECO dataset) 

The AUC value for the ECO Adaptive Boosting (AB) BSE-RPM is equal to 0.94. 
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F.2.9 ECO dataset Bart Machine (BM) BSE-RPM 

Script E.16 (Appendix E) is used to develop the ECO Bart Machine (BM) BSE-RPM. 

Table F-25 The confusion matrix of the BM BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 28 0 

Actual reusable (1) 9 18 

 

 

Figure F-24 The ROC curve of the BM BSE-RPM (ECO dataset) 

The AUC value for the ECO Bart Machine (BM) BSE-RPM is equal to 0.90. 
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F.2.10 ECO dataset Artificial Neural Networks (ANN) BSE-RPM 

Script E.18 (Appendix E) is used to develop the ECO Artificial Neural Networks (ANN) BSE-RPM. 

Table F-26 The confusion matrix of the ANN BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 28 0 

Actual reusable (1) 6 21 

 

 

Figure F-25 The ROC curve of the ANN BSE-RPM (ECO dataset) 

The AUC value for the ECO Artificial Neural Networks (ANN) BSE-RPM is equal to 0.96. 
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F.2.11 ECO dataset Gaussian Processes (GP) BSE-RPM 

Script E.19 (Appendix E) is used to develop the ECO Gaussian Processes (GP) BSE-RPM. 

Table F-27 The confusion matrix of the GP BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 26 2 

Actual reusable (1) 10 17 

 

 

Figure F-26 The ROC curve of the GP BSE-RPM (ECO dataset) 

The AUC value for the ECO Gaussian Processes (GP) BSE-RPM is equal to 0.86. 
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F.2.12 ECO dataset Propositional Rule Learner (PRL) BSE-RPM 

Script E.20 (Appendix E) is used to develop the ECO Propositional Rule Learner (PRL) BSE-RPM. 

Table F-28 The confusion matrix of the PRL BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 21 7 

Actual reusable (1) 9 18 

 

 

Figure F-27 The ROC curve of the PRL BSE-RPM (ECO dataset) 

The AUC value for the ECO Propositional Rule Learner (PRL) BSE-RPM is equal to 0.72. 

Table F-29 The rules set of the PRL BSE-RPM (ECO dataset) 

Rule number (to 
be considered in 
order) 

Rule Result 

1st  If: (D10 >= 3) and (D25 >= 4) Then: E2C=1 (29.0/2.0) 

2nd Else if: (C24 >= 4) and (D1 >= 4) Then: E2C=1 (27.0/6.0) 

3rd Else if: (D8 >= 3) and (D10 >= 4) Then: E2C=1 (5.0/1.0) 
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Rule number (to 
be considered in 
order) 

Rule Result 

4th Else if: (D4 <= 2) and (D2 >= 3) and (C24 <= 
4) 

Then: E2C=1 (5.0/0.0) 

5th Else if none Then: E2C=0 (63.0/7.0) 
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F.2.13 ECO dataset Support Vector Machines (SVM) BSE-RPM 

Script E.21 (Appendix E) is used to develop the ECO Support Vector Machines (SVM) BSE-RPM. 

Table F-30 The confusion matrix of the SVM BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 26 2 

Actual reusable (1) 4 23 

 

Figure F-28 The ROC curve of the SVM BSE-RPM (ECO dataset) 

The AUC value for the ECO Support Vector Machines (SVM) BSE-RPM is equal to 0.95.  



289 
 

F.3 Predictive models on the SOC dataset 

In this section, the results of the models used to predict the social reusability of the structural 

elements are presented. 

Table F-31 Summary of the results of the SOC BSE-RPMs developed (the validation set approach method). 

Predictive 
model 

Type-I 
error 

Type-II 
error 

Specificity Sensitivity Overall 
accuracy 

Overall 
error rate 

AUC 

KNN 0.06 0.38 0.93 0.62 0.79 0.21 0.95 

LR 0.11 0.38 0.89 0.62 0.77 0.23 0.76 

LDA 0.11 0.44 0.89 0.56 0.74 0.26 0.77 

QDA 0.11 0.06 0.89 0.94 0.91 0.09 0.97 

NB 0.22 0.06 0.78 0.94 0.85 0.15 0.97 

DT 0.33 0.13 0.67 0.87 0.77 0.23 0.88 

RF 0.00 0.19 1.00 0.81 0.91 0.09 0.99 

AB 0.11 0.06 0.89 0.94 0.91 0.09 0.94 

BM 0.06 0.19 0.94 0.81 0.88 0.12 0.98 

ANN 0.11 0.13 0.89 0.87 0.88 0.12 0.92 

GP 0.06 0.25 0.94 0.75 0.85 0.15 0.96 

PRL 0.17 0.13 0.83 0.87 0.85 0.15 0.85 

SVM 0.11 0.00 0.89 1.00 0.94 0.06 0.97 

 

F.3.1 SOC dataset K-Nearest Neighbours (KNN) BSE-RPM 

Script E.9 (Appendix E) is used to develop the SOC K-Nearest Neighbours (KNN) BSE-RPM. 

Table F-32 The confusion matrix of the KNN BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 17 1 

Actual reusable (1) 6 10 
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Figure F-29 The ROC curve of the KNN BSE-RPM (SOC dataset) 

The AUC value for the SOC K-Nearest Neighbours (KNN) BSE-RPM is equal to 0.95. 
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F.3.2 SOC dataset Logistic Regression (LR) BSE-RPM 

Script E.10 (Appendix E) is used to develop the SOC Logistic Regression (LR) BSE-RPM. 

Table F-33 The confusion matrix of the LR BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 16 2 

Actual reusable (1) 6 10 

 

 

Figure F-30 The ROC curve of the LR BSE-RPM (SOC dataset) 

The AUC value for the SOC Logistic Regression (LR) BSE-RPM is equal to 0.76. 
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F.3.3 SOC dataset Linear Discriminant Analysis (LDA) BSE-RPM 

Script E.11 (Appendix E) is used to develop the SOC Linear Discriminant Analysis (LDA) BSE-RPM. 

Table F-34 The confusion matrix of the LDA BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 16 2 

Actual reusable (1) 7 9 

 

 

Figure F-31 The ROC curve of the LDA BSE-RPM (SOC dataset) 

The AUC value for the SOC Linear Discriminant Analysis (LDA) BSE-RPM is equal to 0.77. 
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F.3.4 SOC dataset Quadratic Discriminant Analysis (QDA) BSE-RPM 

Script E.12 (Appendix E) is used to develop the SOC Quadratic Discriminant Analysis (QDA) BSE-

RPM. 

Table F-35 The confusion matrix of the QDA BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 16 2 

Actual reusable (1) 1 15 
 

 

Figure F-32 The ROC curve of the QDA BSE-RPM (SOC dataset) 

The AUC value for the SOC Quadratic Discriminant Analysis (QDA) BSE-RPM is equal to 0.97.  
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F.3.5 SOC dataset Naïve Bayes (NB) BSE-RPM 

Script E.13 (Appendix E) is used to develop the SOC Naïve Bayes (NB) BSE-RPM. 

Table F-36 The confusion matrix of the NB BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 14 4 

Actual reusable (1) 1 15 

 

 

Figure F-33 The ROC curve of the NB BSE-RPM (SOC dataset) 

The AUC value for the SOC Naïve Bayes (NB) BSE-RPM is equal to 0.97. 
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F.3.6 SOC dataset Decision Trees (DT) BSE-RPM 

Script E.14 (Appendix E) is used to develop the SOC Decision Trees (DT) BSE-RPM. 

Table F-37 The confusion matrix of the DT BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 12 6 

Actual reusable (1) 2 14 

 

 

Figure F-34 The ROC curve of the DT BSE-RPM (SOC dataset) 

The AUC value for the SOC Decision Trees (DT) BSE-RPM is equal to 0.88. 
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Figure F-35 The DT BSE-RPM Model (SOC dataset) 
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F.3.7 SOC dataset Random Forests (RF) BSE-RPM 

Script E.15 (Appendix E) is used to develop the SOC Random Forests (RF) BSE-RPM. 

Table F-38 The confusion matrix of the RF BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 18 0 

Actual reusable (1) 3 13 

 

 

Figure F-36 The ROC curve of the RF BSE-RPM (SOC dataset) 

The AUC value for the SOC Random Forests (RF) BSE-RPM is equal to 0.99. 
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F.3.8 SOC dataset Adaptive Boosting (AB) BSE-RPM 

Script E.17 (Appendix E) is used to develop the SOC Adaptive Boosting (AB) BSE-RPM. 

Table F-39 The confusion matrix of the AB BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 16 2 

Actual reusable (1) 1 15 

 

 

Figure F-37 The ROC curve of the AB BSE-RPM (SOC dataset) 

The AUC value for the SOC Adaptive Boosting (AB) BSE-RPM is equal to 0.94. 
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F.3.9 SOC dataset Bart Machine (BM) BSE-RPM 

Script E.16 (Appendix E) is used to develop the SOC Bart Machine (BM) BSE-RPM. 

Table F-40 The confusion matrix of the BM BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 17 1 

Actual reusable (1) 3 13 

 

 

Figure F-38 The ROC curve of the BM BSE-RPM (SOC dataset) 

The AUC value for the SOC Bart Machine (BM) BSE-RPM is equal to 0.98. 
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F.3.10 SOC dataset Artificial Neural Networks (ANN) BSE-RPM 

Script E.18 (Appendix E) is used to develop the SOC Artificial Neural Networks (ANN) BSE-RPM. 

Table F-41 The confusion matrix of the ANN BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 16 2 

Actual reusable (1) 2 14 

 

 

Figure F-39 The ROC curve of the ANN BSE-RPM (SOC dataset) 

The AUC value for the SOC Artificial Neural Networks (ANN) BSE-RPM is equal to 0.92. 
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F.3.11 SOC dataset Gaussian Processes (GP) BSE-RPM 

Script E.19 (Appendix E) is used to develop the SOC Gaussian Processes (GP) BSE-RPM. 

Table F-42 The confusion matrix of the GP BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 17 1 

Actual reusable (1) 4 12 

 

 

Figure F-40 The ROC curve of the GP BSE-RPM (SOC dataset) 

The AUC value for the SOC Gaussian Processes (GP) BSE-RPM is equal to 0.96. 
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F.3.12 SOC dataset Propositional Rule Learner (PRL) BSE-RPM 

Script E.20 (Appendix E) is used to develop the SOC Propositional Rule Learner (PRL) BSE-RPM. 

Table F-43 The confusion matrix of the PRL BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 15 3 

Actual reusable (1) 2 14 

 

 

Figure F-41 The ROC curve of the PRL BSE-RPM (SOC dataset) 

The AUC value for the SOC Propositional Rule Learner (PRL) BSE-RPM is equal to 0.85. 

Table F-44 The rules set of the PRL BSE-RPM (SOC dataset) 

Rule number (to 
be considered in 
order) 

Rule Result 

1st  If: (D14 >= 5) and (D17 >= 4) Then: E3C=1 (11.0/0.0) 

2nd Else if: (D20 <= 2) and (C22 <= 4) Then: E3C=1 (8.0/0.0) 

3rd Else if: (D16 >= 4) Then: E3C=1 (4.0/0.0) 
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Rule number (to 
be considered in 
order) 

Rule Result 

4th Else if: (C22 >= 4) and (D12 >= 3) Then: E3C=1 (8.0/0.0) 

5th Else if none Then: E3C=0 (47.0/6.0) 
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F.3.13 SOC dataset Support Vector Machines (SVM) BSE-RPM 

Script E.21 (Appendix E) is used to develop the SOC Support Vector Machines (SVM) BSE-RPM. 

Table F-45 The confusion matrix of the SVM BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 

Actual non-reusable (0) 16 2 

Actual reusable (1) 0 16 

 

Figure F-42 The ROC curve of the SVM BSE-RPM (SOC dataset) 

The AUC value for the SOC Support Vector Machines (SVM) BSE-RPM is equal to 0.97.  
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Ethical Approval P105548 is presented at the beginning of the thesis 
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