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Optimal Actuator
Placement in Adaptive
Optics Systems

Berk Altıner1, Bilal Erol2 and Akın Delibaşı3

Abstract
Adaptive optics systems are powerful tools that are implemented
to degrade the effects of wavefront aberrations. In this paper, the
optimal actuator placement problem is addressed for the improvement
of disturbance attenuation capability of adaptive optics systems
due to the fact that actuator placement is directly related to the
enhancement of system performance. For this purpose, the linear-
quadratic cost function is chosen, so that optimized actuator layouts
can be specialized according to the type of wavefront aberrations.
It is then considered as a convex optimization problem and the
cost function is formulated for the disturbance attenuation case. The
success of the presented method is demonstrated by simulation
results.
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Introduction

Adaptive optics is a growing technology that becomes a necessity in
many optical applications such as free-space optical communication,
biological imaging, ground-based astronomy and laser beam focusing.
Its promising success at correction of wavefront aberrations draws
researchers’ attention. Adaptive optics systems consist of a deformable
mirror (DM), a wavefront sensor (WFS), and a control unit. A
schematic representation of adaptive optics systems is shown in Figure
1. Deformable mirrors give the wavefront correction ability to adaptive
optics systems and wavefront sensors measure the residual error (φres =
φtur − φcor) between the distorted wavefront (φtur) and the compensated
wavefront (φcor). Next, a control unit determines the shape of deformable
mirrors that will compensate for wavefront aberrations.

There are two types of wavefront aberrations: high order aberrations
and low order aberrations (Lakshminarayanan and Fleck (2011)). While
high order aberrations are widely encountered in applications such as
biological imaging, high energy lasers, multifocal systems (Sheppard
and Gu (1991), Potsaid et al. (2005)), Hu et al. (2019)), low order
aberrations are mostly seen in astronomy applications and they are
caused by the atmospheric turbulence and vibrations due to wind
effects, coolers, or mechanical components (Powell (2011), Kulcsár et al.
(2012a), Correia et al. (2012), Glück et al. (2018)). In the literature,
it is shown that adequate modeling of wavefront aberrations provides
an efficient way to analyze and eliminate the effects of all types of
aberrations. Since the most common aberrations are caused by the
atmospheric turbulence, researchers focus on atmospheric turbulence
modeling. Andrey Nikolaevich Kolmogorov constructed milestones of
atmospheric turbulence modeling. Later, some turbulence spectra are also
developed. Among them, two common turbulence spectra called von
Karman and Hills-Andrew provide opportunities to observe the effect
of inner scale and outer scales which are derived by measurements and
observations, in high frequencies.

In order to deal with atmospheric turbulence effects in adaptive optics
systems as a control aspect, its temporal behavior is needed. A common
way to show the temporal behavior of atmospheric turbulence is using
the Taylor hypothesis of frozen turbulence. In this approximation, the
atmospheric turbulence is constructed by some of the discrete layers which
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have constant wind speed (Conan et al. (1995)). In the control society,
some researchers take turbulence as a static gain, neglecting dynamics.
Some of them use a simple first-order autoregressive model to express
the degraded wavefront by the turbulence. There also exist some works
in which the turbulence model is derived by the real-time data (Massioni
et al. (2014), Yu and Verhaegen (2018)). The most preferred expression
of the turbulence-degraded wavefront is the linear combinations of
the orthogonal Zernike polynomials (Conan et al. (1995), Noll (1976),
Kulcsar´ et al. (2012b)). The surface distortions can be expressed as
the sum of an infinite number of Zernike polynomials. Fortunately, the
first fifteen Zernike polynomial series are sufficient to show 92% of the
atmospheric turbulence effect. In (Baudouin et al. (2008)), they construct
a state-space representation of atmospheric turbulence with Zernike
polynomials, based on the frequency characterization of the atmospheric
turbulence and Kolmogorov theory of turbulence.

The major objective of adaptive optics systems is to handle the
deformation control, so deformable mirrors are fundamental components
of adaptive optics systems. Deformable mirrors are flexible structures. The
distributed nature of flexibility makes the dynamic behavior of a system
not only dependent on a time variable but also spatial distribution. These
kinds of systems belong to the distributed parameter system (DPS) class,
and they are governed by partial differential equations (PDE). For such
a class of systems, especially in flexible structures, actuator placement is
a crucial issue and is the preliminary part of the controller design. The
actuator placement problem has been studied since the 1980s. The goal of
this subject is to optimize the locations of the actuators for improving the
closed-loop performance, ensuring robustness, or minimizing the energy
that is consumed to control a system. To optimize the locations of the
actuators, an appropriate cost function has to be chosen. In the literature,
one of the most common objectives is the maximization of controllability.
The maximization of the controllability of a system is achieved by
maximizing the minimum eigenvalue of the controllability gramian (Hać
and Liu (1993)). Another objective in the actuator placement problem
is to eliminate the effects of the initial conditions on system response
that is generally handled by the choice of the linear-quadratic (LQ) cost.
According to designers’ demand, it can be formulated as either the worst-
case initial conditions or random initial conditions. For problems governed
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by PDEs, an approximation scheme is required to determine the optimal
actuator placement, therefore the convergence of the optimal cost is a
crucial issue for optimality. In (Morris (2011)), the conditions are provided
for the convergence of the LQ optimal actuator placement problem. The
robustness against known and unknown disturbances is handled with H2

and H∞ costs respectively (Morris et al. (2015), Kasinathan and Morris
(2013)). More detailed discussions for cost functions are presented in
survey articles (Frecker (2003), Van De Wal and De Jager (2001), Gupta
et al. (2010), Morris and Yang (2015)).

Although the literature abounds with many theoretical and applicable
studies on this topic, the actuator placement problem for adaptive optics
systems is rarely studied. Energy consumption based optimization is
studied via the heuristic way in (Yamaki et al. (2018)). However, the
dynamics of the deformable mirror and the aberrations are not taken
into consideration. In (Ruppel et al. (2010)), the minimum force modal
control is chosen for the performance criteria and it investigates different
boundary conditions effect on actuator locations. The optimal sensor
placement problem is also studied in (Böhm and Sawodny (2015))
regarding the minimum eigenvalue of the observability gramian as
performance indices. To the best of our knowledge, the optimal actuator
placement problem which incorporates both the wavefront aberration and
the deformable mirror dynamics has not been considered in the literature.

Motivated by the above applications of adaptive optics and since
actuator placement is extremely important in the control of flexible
structures, the contribution of this paper is to determine the optimal
actuator locations for the flexible deformable mirror subject to the linear-
quadratic cost. The proposed method provides an efficient way to optimize
the actuator locations by focusing on specific optical requirements. From
the virtue of our scheme, concentration on specific aberration modes is
achieved using weight matrices in the LQ cost. Since the LQ cost relies
on actuator locations, that makes the optimization problem defined in a
nonconvex cluster. The convexification of the optimal actuator location
problem and the solution of this problem through a subgradient algorithm
are presented in (Geromel (1989)). However, the results in this work only
consider the initial condition effects, and given cost functions in (Geromel
(1989)) are not appropriate to cope with the disturbance effects in the
adaptive optics control problem. In this context, the proposed optimization
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Figure 1. The main structure of adaptive optics system

procedure has to be reformulated for the disturbance attenuation case. The
numerical optimization procedure given in (Darivandi et al. (2013)) is
adopted to calculate the optimal locations. The closed-loop performance
of the system with the linear quadratic regulator (LQR) controller based
on the optimal actuator locations is presented.

The rest of the paper is organized as follows. In the modeling
section, the mathematical models of the deformable mirror, the wavefront
aberrations, and the error dynamics are derived. Then, the LQ actuator
location problem is formulated, and the numerical optimization scheme is
presented. The numerical results and interpretations are presented in the
following section. The final section is devoted to the conclusions.

Notations used throughout this paper are as follows. f ′ denotes ∂f , ḟ
∂x

represents ∂f and || · ||2 refers to either the Euclidean vector norm or
∂t

the induced matrix 2-norm. A† and A′ are pseudoinverse and transpose
of a matrix, respectively. δ(·) is the Kronecker delta operator, exp(·)
is the matrix exponential function and Tr(·) is the trace operator. For
convenience, the time dependence parameter of the states and the input
functions are omitted, i.e ω is for ω(t).

Mathematical Modeling

In this study, dynamics of wavefront aberrations and the deformable
mirror are incorporated into the design procedure. For completeness, the
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outputs of both models are taken as Zernike coefficients that are utilized
to construct the wavefront error.

Wavefront Aberration Model

The wavefront distortion (φ(r, θ, t)) caused by the atmospheric turbulence,
can be written in polar coordinates (Noll (1976)),

∞∑
φ(r, θ, t) = z2j(t)Zj(r, θ), (1)

j=0

where z2j(t) is the Zernike coefficients and Zj(r, θ) is the Zernike
polynomials that are defined on unit circle

√ √
Zeven j(r, θ) � n+ 1Rn

m(r) 2cos(mθ), m �= 0,√ √
Zodd j(r, θ) � n+ 1Rn

m(r) 2sin(mθ), m �= 0, (2)

Zj �
√

nn+ 1R0(r), m = 0

where r is the radial coordinate ranging from 0 to 1 and θ is the azimuthal
component ranging from 0 to 2π and

n−m
2∑ (−1)k(n− k)!

Rn
m(r) � rn−2k. (3)

k![n+
2
m − k]![n−

2
m − k]!

k=0

The Zernike polynomials in Polar Coordinate and its equivalent form in
Cartesian Coordinate are given in Table 1 and Figure 2 shows the shape of
the Zernike polynomials. A double indexing scheme is used to define the
Zernike polynomials, the index n is the radial order and m refers to the
azimuthal frequency.

In this study, the first fourteen Zernike polynomials excluding the first
mode are considered, so the Nz = 14. For the state space representation
of the wavefront aberration, the frequency characteristics of turbulence-
degraded wavefront given in (Conan et al. (1995)) are exploited. The
system matrix of the wavefront aberration contains the low-pass filter
structure for the Zernike polynomials

2πfcjHj(s) = , (4)
s+ 2πfcj
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Table 1. The Zernike polynomials in Polar and Cartesian Coordinates

n m Polar Coordinate Zm
n Cartesian Coordinate Zm

n

0 0 1 1
1 -1 2rsin(θ) y
1 1 2rcos(θ) x
2 -2 2r sin(2θ)√ 2xy

2 0 3(2r2 − 1)√ 22x + 2y2 − 1

2 2 26r cos(2θ)√ 2x2 − y

3 -3 38r sin(3θ)√ 2 33x y − y

3 -1 8(3r3 − 2r)sin(θ)√ 23x y + 3y3 − 2y

3 1 8(3r3 − 2r)cos(θ)√ 33x + 3xy2 − 2x

3 3 38r cos(3θ)√ 2x3 − 3xy

4 -4 410r sin(4θ)√ 3 34x y − 4xy

4 -2 210(4r4 − 3r )sin(2θ)√ 38x y + 8xy3 − 6xy

4 0 5(6r4 − 6r2 + 1)√ 26x4 + 12x y2 − 6x2 + 6y4 − 6y2 + 1

4 2 210(4r4 − 3r )cos(2θ)√ 4 24x4 − 3x2 − 4y + 3y

4 4 410r cos(4θ) 2 2 4x4 − 6x y + y

Figure 2. The shape of the first 21 Zernike polynomials

fcj is the cut-off frequency values of the low-pass filter structures with
respect to the Zernike polynomial index nj and it can be calculated by
using the heuristic equation

V∼fcj = 0.3(nj + 1) (5)D
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where V is the atmosphere wind speed and D is the input lens diameter.
The input matrix (B2 ∈ R

2Nz×Nz ) can be calculated by taking steady state
Lyapunov matrix as covariance matrix of Kolmogorov (Baudouin et al.
(2008))

B2B2
′ = −(A2Pφ(∞) + Pφ(∞)A′

2), (6)

Pφ is the covariance matrix which is derived from the Kolmogorov theory
on athmospheric turbuence (Baudouin et al. (2008)). The ouput matrix
C2 ∈ R

2Nz×2Nz of the wavefront aberration model is the identity matrix
that gives the coefficients of the Zernike polynomials. Finally, the state
space representation of the atmoshperic turbulence is obtained as

ż2 = A2z2 + B2ω (7)

ytur = C2z2 (8)

where A2 ∈ R
2Nz×2Nz is the matrix with the low-pass filter structure, ω

is the noise input signal, z2 is the state vector which corresponds to the
Zernike coefficients and 0 is the zero matrix with appropriate dimension.

Deformable Mirror Model

Deformable mirrors are modeled by using the Kirchhoff plate theory
and are governed by biharmonic PDE (Ruppel (2012)). Hence, the
mathematical model of the deformable mirror is given by

∂4w ∂4w ∂4w ∂2w
D + 2 + + ρh = u (9)

∂x4 ∂x2∂y2 ∂y4 ∂t2

and the flexural rigidity of the deformable mirror

Eh3

D = (10)
12(1− ν2)

where E, h and ν are the modulus of elasticity, the thickness of the
deformable mirror and the Poisson’s ratio respectively. In equation (9),
ρ is the mass density of the material, w stands for w(x, y, t) and it denotes
the deflection of the deformable mirror that depends on spatial variables
x, y ∈ [0, L] and time t. L is the length of edges of the deformable mirror.
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Similarly, u in the right hand side of this equation represents the input
function u(x, y, t) and it is expressed as

Na∑
u(x, y, t) = bi(x, y)ui(t) (11)

i=1

where bi(x, y) is the bump function and it is defined as

(x−xi)2+(y−yi)2<ε1− ((x− xi)2 + (y − yi)2)

( )
bi(x, y) = exp − 1

.1[√ ]

(12)
and

{ √
1, (x− xi)2 + (y − yi)2 < ε]1[√ = . (13)

(x−xi)2+(y−yi)2<ε 0, otherwise

ε is the radius of the actuator influence area and the {xi, yi} positions
denotes the center of this area. Na is the number of inputs. ui(t) is the
input applied to the deformable mirror from the ith actuator. Deformable
mirrors may appear in adaptive optics systems with different boundary
conditions such as simply supported end, clamped end or free end. In this
study, it is assumed that the deformable mirror is clamped from its edges,
so the boundary conditions are

∂w
w|x=0,L = 0, |x=0,L = 0, (14)

∂x
∂w

w|y=0,L = 0,
∂y

|y=0,L = 0. (15)

In order to approximate the PDE given in equation (9) to the finite number
of ODEs, the finite element approximation scheme in (Zienkiewicz
et al. (2000)) is used. The finite element discretization yields the finite
dimensional approximation of equation (9) in the form of

Mẍdm + Bẋdm +Kxdm = Fu, (16)[ ]′
xdm � wi θyi θxi , i = 1, . . . , n (17)

∂w ∂w
θyi � , θxi

� − (18)
∂x ∂y
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where M,K ∈ R
3n×3n are the mass matrix and the stiffness matrix. F ∈

R
3n×Na is the force matrix. Equation (9) has no term for the structural

damping of the deformable mirror. For the sake of adding the structural
damping to the mathematical model, the Rayleigh damping term which is
the B = αM + βK is added to the finite dimensional model. α and β are
the Rayleigh coefficients. They are chosen based on the following formula

1 wk
ζk = β + α (19)

2wk 2

where wk is the natural frequencies of the deformable mirror and ζk
is the damping term that corresponds to the natural frequencies. It is
considered that the deformable mirror model has low damping ratio
(0 < ζk < 1) at low frequencies and high damping ratio (ζk > 1) at
high frequencies. Low frequencies correspond to the frequency band
that includes operational region and it is assumed that it varies between
6.24 rad/s and 1872.56 rad/s. In the state space form,

0 I 0
ż1(t) = z1(t) + u, (20)−M−1K −M−1B M−1F︸ ︷︷ ︸ ︸ ︷︷ ︸

A1 B1

ydm(t) = C1z1(t)

where z1 = xdm ẋdm
′

is the state vector, A1 ∈ R
6n×6n and B1 ∈

R
6n×Na . The discretized state space model (20) has discrete nodal points

on the surface of the deformable mirror. wi, θyi and θxi
given in (18)

are the deflection of the deformable mirror and the phase gradients at ith

node. In order to express the output of the deformable mirror in terms
of Zernike coordinates, a transformation matrix is required. In (Moser
et al. (2015)), the construction of such a transformation matrix using the
measured phase gradients is explained. Once the transformation matrix is
applied, the output matrix of the deformable mirror model (20) may be
defined as C1 ∈ R

2Nz×6n. Nz is the number of Zernike coefficients.

Error Dynamics

The overall system is given in
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ż2 A2 0 z2 B2 0
= + ω + u,

ż1 0 A1 z1 0 B1︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
ż A z Bω Bu

e = C2 −C1
z2 . (21)︸ ︷︷ ︸ z1

C

In order to express the performance criterion in terms of wavefront error in
the design procedure, the error dynamics between the deformable mirror
and the wavefront aberration models should be obtained,

e = ytur − ydm, (22)

= C2z2 − C1z1,

ė = C2ż2 − C1ż1 (23)

and ⎡ ⎤
xtur⎢ ⎥e I 0 −C11 0 ẋtur= ⎢ ⎥ (24)

ė 0 I 0 −C11 ⎣xdm⎦︸ ︷︷ ︸ ẋdmT

where C11 is the first Nz × 3n part of the C1 matrix, 0 and I are the zero
and the identity matrix with appropriate dimensions. Then, the coordinate
transformation

z = T †ẽ

ẽ = e ė
′

(25)

(26)

can be used to convert equation (21) to the error dynamics

˙̃e = Ãẽ+ B̃ωω + B̃uu (27)

where Ã = TAT †, B̃ω = TBω and B̃u = TBu. The output matrix of the
error dynamics stay same with system equation (21).

Linear Quadratic Cost for Optimal Actuator Locations

Consider the LQ optimal control problem and there exists a control signal
u minimize the cost

J = lim E[ẽ′Qẽ+ u′Ru] (28)
t→∞
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where Q is a positive semi-definite matrix, R is a positive definite matrix
and E[·] is the expected value operator. Q and R are weights for the states
and the control inputs respectively. For the u = −Gẽ, equation (27) is

ė̃ = (Ã− B̃uG)ẽ+ B̃ωω (29)

and the noise input signal ω in (29) is assumed as the Gaussian white noise
with the

E[ω] = 0, E[ωω′] = Wδ(t− τ) (30)

where W is the covariance matrix. In this manner, the LQ optimal control
problem evolves to minimizing the cost against the noise input, so the cost
becomes

J = Tr (PBωWBω
′ ) (31)

with the choice of initial condition ẽ(0) = 0, P is the solution of the
Riccati equation

Ã′P + PÃ− PB̃uR
−1B̃u

′ P +Q = 0. (32)

This cost representation is comprised of all actuator locations. However,
the goal of this paper is to address the optimal placement for the limited
number of actuators. Therefore, the cost function must be reproduced
based on alternative actuator layouts. From the standpoint of design, the
system matrix B̃u, defined in equation (27) is dependent on the actuator
locations. Then, the previously defined LQ cost given in equation (31)
depends also on the actuator location r, and as a matter of this fact the
cost function becomes minimization of

J = Tr (P (r)BωWBω
′ ) . (33)

Since the decision variable, P (r), is a function of r , the problem is a
non-convex optimization problem. To handle this issue, projection is one
of the ways. In (Geromel (1989)), it is shown that the projection of the
problem onto Π-space and the solution of the Riccati equation onto the
parameter space make the problem convex. This elegant assumption is
based on the discretization of the solution cluster into a discrete set of
possible locations. Here, the set of possible locations is denoted by NL

and it refers to the available actuator locations on the deformable mirror
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domain. In this regard, Π-space is spanned by vectors whose elements
are consist of 0-1 elements, and π ∈ Π is a binary vector with the length
of the number of possible actuator locations NL. The number of ones in
π vectors denotes the actuator locations and the zeros are for the nodes
where there is no actuator. In other words, if there is one at the jth element
of the π vector, it means that there is an actuator at the jth column of the
input matrix (B̃u) of the system. In this context, the new system matrix B̂u

hinges on the actuator locations as follows,[ ]
B̂u = π1B̃u1 π2B̃u2 · · · πNL

B̃uNL

and the control weighting matrix R is

R = blockdiag(π1R1, π2R2, · · · , πNL
RNL

)

.
Therefore, the actuator location problem may be defined as

NL∑
lim E[(ẽ′Qẽ+ u′

jπjRjuj)]
t→∞

j=1

NL∑
s.t. ė̃ = Ãẽ+ B̃ωω + πjB̃uj

uj (34)
j=1

y = Ce.̃

The cost function given in (33) is now expressed as a function of the π
vector, so the location dependent cost is

σ(π) � Tr (P (π)BωWBω
′ ) , (35)

and the optimization problem can be summarized as follows

min σ(π) (36)
π∈Φ

NL∑
s.t. Φ = {π ∈RNL s.t.π ∈ {0, 1}; πj = Na}.

j=1

and the following theorem shows how to obtain the subgradients for the
convexified optimization problem.
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Theorem 1. For the convex set Φc = {π ∈ R
NL s.t. π ≥ 0}, the objective

function σ(π) : Φc → R is convex and for any π0 ∈ Φc define the following
equalities

Lj = BjRj
−1Bj

′ , (37)

μj(π0) = Tr{LjS(π0)} j = 1, . . . , NL, (38)

1
S(π0) = − P (π0)θ(π0)P (π0) (39)

2

where θ(π0) is the solution of the Lyapunov equation

(A− BK(π0))θ(π0) + θ(π0)(A− BK(π0))
′ + Z = 0, (40)

where Z = BωWBω
′ , so a subgradient μ of σ(π0), π0 ∈ Φc can be

expressed as

μ(π0) = μ1(π0) . . . μNL
(π0) . (41)

To prove the theorem, the primal and the dual versions of the cost function
presented in (Geromel (1989)) are exploited. The reason for using the
primal and the dual versions is to take advantage of invariance properties
of convex sets based on a set of parameters of interest Σ = {B,C,Q,R}.
In this context, some definitions that are given in (Geromel (1989)) are
revisited for comprehensiveness. First, the quadratic function H(π, x, λ)
is defined to construct the primal and dual versions⎡ ⎤ 

∑Q A′
NL

A − πjBjR
−
j
1Bj

′
1 ⎢⎣ ⎥⎦ 

x 
λ . (42)H(π, x, λ) � x ′ λ′

2 
j=1

The quadratic function H is convex with respect to x and it is concave
with respect to λ. x and λ can be interpreted as the trajectories of any state
space system and they are connected to each other with the relation λ(t) =
P (π, t)x(t). The following sets are defined for exploiting the invariance
principle.

∑NL

X(π) � {x ∈ ΩO | πjBjRj
−1Bj

′λ = Ax− ẋ for some λ ∈ ΩT}
j=1

(43)

D(π) � {λ ∈ ΩT | Qx = A′λ− λ̇ for some x ∈ ΩO} (44)
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where ΩO and ΩT are the set of differentiable trajectories. Then, the
following functional ∫ t

f(π, x) � max {H(π, x, λ)− λ′ẋ} dt (45)
λ∈ΩT 0

is convex with respect to x and

J(π) = min f(π, x). (46)
x∈X(π)

Similarly, ∫ t

h(π, λ) � min {H(π, x, λ)− λ′ẋ} dt (47)
x∈ΩO 0

is concave with respect to λ and

J(π) = max h(π, λ). (48)
λ∈D(π)

(46) and (48) are the primal and dual versions of cost function in (34),
then

min f(π, x) = J(π) = max h(π, λ). (49)
x∈X(π) λ∈D(π)

In this problem, the decision variable is Σ = {π} and the proof depends
on the invariance of the defined sets in (43)-(44) subject to the decision
variable. According to the invariance of the sets, the primal or the dual
versions of cost are chosen. See (Geromel 1989) for the details. Proof of
theorem is given in the Appendix section.

In (Darivandi et al. (2013)), the expansion of Geromel’s study (Geromel
(1989)) to the multi input case is given and the optimization problem
which minimizes the σ(π) is relaxed as

minmax σ(πi)− 〈μ(πi), πi〉+ 〈μ(πi), π〉 i = 1, . . . , k (50)
π∈Φc i

NL∑
s.t. Φ = {π ∈ R

Na s.t. 0 ≤ π ≤ 1; πj = Na}.
j=1

The algorithm for the solution of the optimization problem (50) is given
in Algorithm 1:
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Algorithm 1: Linear quadratic optimal actuator location

˜ ˜Input: A,˜ Bω, Bu, Q, R, W, NL, Na, γmin, kmax 
Output: π ∈ R

NL 

Data: On the convex set Φc 
/* actuator placement ∗/ */

1 Start with an initial π0 ∈ Φc;
2 Compute σ(π0) and μ(π0) with an initial π0 ∈ Φc;
3 Set k = 1 and compute μ(πk), σ(πk) using πk ∈ Φc ;
4 while k < kmax do
5 forall i = 0 · · · k do
6 if (σk − σ(πi)− μ(πi), π − πi ) < γmin then
7 terminate

8 compute μ(πk+1), σ(πk+1) using πk+1 ∈ Φc ;
9 k = k + 1;

Numerical Results

The finite element approximation of order for the deformable mirror
is chosen as 9× 9 and the possible actuator locations are NL = 64.
The discretized mirror surface is depicted in Figure 3. Suppose the
number of actuators of which positions are to be optimized is Na = 16.
The parameters of the deformable mirror are given in Table 2. The
optimization problem given in equation (50) is solved by the Matlab
function fminimax. In order to calculate the optimal locations, the
weighting matrices Q and R are scaled according to the worst possible
phase errors, and the maximum value of the control input signal. Then, the
concerned error modes are weighted. Although there exist many control
techniques based on the Integral Barrier Lyapunov Functionals and neural
network-based event trigger control (Li et al. (2016), Liu et al. (2020)),
the LQR controller is chosen to show the closed-loop performance
of the system. In this way, it is claimed that the LQR controller
with optimal location achieves disturbance attenuation better than other
possible actuators’ layouts. In this context, the oblique astigmatism mode
(Z2 ), the defocus (Z2), the vertical astigmatism (Z2), and the vertical−2 0 2

trefoil (Z3
−3) aberration modes are chosen and the white noise disturbance

is added to the plant for the atmospheric turbulence effect. The results are
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Table 2. Parameter values for the 1 m length square deformable mirror

Parameters Definition Value

E Modulus of Elasticity 63 ×109 Pa

ν Poisson’s ratio 0.2

ρ Density 32.23 ×103 kg/m
h Thickness 2 mm

α, β Rayleigh coefficients 0.001

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 3. The discretized deformable mirror

given in Table 3-6 and Figure 4-7. (. . . )∗ indicates the optimal location
and ẽi denotes the phase errors for ith Zernike modes.

Table 3 shows the results when the oblique astigmatism mode (Z−
2
2)

is weighted in the cost function of the location optimization problem.
The selected Q and R matrix in the optimization problem are given in
(51) and (52). One can see that the optimal actuator location gives the
best attenuation performance when it is compared to the other random
locations. Figure 4 also shows the performance of LQR controller with
the optimal actuator layout.
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Table 3. LQR controller performances of the actuator locations for the oblique astigmatism
(Z2

−2) error

Actuator Locations ||ẽ3||2
Na∑

||ui||2
i=1

J

(1,8,10,11,14,15,18,23,42,47,50,51,54,55,57,64)* 0.0405 10434 2556.7

(2,5,7,17,29,31,32,33,35,36,38,51,55,58,62,64) 0.0752 10417 3747.7

( 4,10,20,25,26,29,32,33,36,40,45,46,47,50,62,63) 0.0559 7906.4 4442.6

(7,10,17,21,26,27,33,34,39,42,46,47,48,52,60,64) 0.0558 9422 3624.8

(3,9,10,11,23,25,33,36,37,41,46,47,59,60,61,62) 0.0482 7848.6 4261

(3,7,8,12,13,14,17,21,32,35,44,48,51,58,60,63) 0.0688 10327 3723.4

(5,9,11,16,18,29,33,37,41,43,46,48,56,58,59,64) 0.0600 91157 3672.8

Qc3 = 103 × diag(0.288, 0.098, 1.0390× 103, 3.0518, 2.4292, (51)

3.7554, 3.9606, 3.9606, 4.8601, 12.933, 7.1517, 10.978,

45.028, 31.608, 29.495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Rc3 = 10−4 × I (52)

In Table 4 and Figure 5, the performance of the optimal actuator location
and the LQR controller with respect to (53) and (54) are shown for
the defocus (Z0

2) mode. The optimal actuator layout yields the best
performance for the disturbance attenuation but consumes high energy,
as it can be seen from Table 4. The reason for this result is that when it
comes to correct the circular optical deformations such as defocus (Z0

2) or
the coma (Z3

−1 and Z3
1), the structural properties of the deformable mirror,

the number of actuators is of significance.

Qc4 = 103 × diag(0.288, 0.098, 1.0390× 103, 3.0518, 2.4292, (53)

3.7554, 3.9606, 3.9606, 4.8601, 12.933, 7.1517, 10.978,

45.028, 31.608, 29.495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Rc4 = 10−4 × I (54)

For the vertical astigmatism mode (Z2
2), the results are given in Table 5 and

Figure 6. Q and R matrices used for this case are given in (55) and (56).
Similar to the previous cases, the LQR controller with the optimal location
minimizes the noise input effect on the interested error mode better than
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0.005
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(b)

Figure 4. (a) Comparison of LQR controller performance for optimal location (red), random
location 1 (black), random location 5 (green) with open loop response (blue). (b) Comparison
of LQR controller performance for optimal location (red), random location 1 (black), random
location 5 (green)

Table 4. LQR controller performances of the actuator locations for the defocus (Z0
2) error

Actuator Locations ||ẽ4||2
Na∑

||ui||2
i=1

J

(3,4,5,6,9,16,17,24,41,48,49,56,59,60,61,62)* 0.1222 23508 12688

(2,5,7,17,29,31,32,33,35,36,38,51,55,58,62,64) 0.1381 17604 13090

( 4,10,20,25,26,29,32,33,36,40,45,46,47,50,62,63) 0.1379 18246 13087

(7,10,17,21,26,27,33,34,39,42,46,47,48,52,60,64) 0.1386 17521 13156

(3,9,10,11,23,25,33,36,37,41,46,47,59,60,61,62) 0.1300 19898 12986

(3,7,8,12,13,14,17,21,32,35,44,48,51,58,60,63) 0.1368 19127 13073

(5,9,11,16,18,29,33,37,41,43,46,48,56,58,59,64) 0.1364 19013 13063

the controller with random locations. In Figure 6, the effectiveness of the
controller with the optimal location is seen clearly.
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Figure 5. (a) Comparison of LQR controller performance for optimal location (red), random
location 6 (black), random location 4 (green) with open loop response (blue). (b) Comparison
of LQR controller performance for optimal location (red), random location 6 (black), random
location 4 (green)

Qc5 = 103 × diag(0.288, 0.098, 1.0390× 103, 3.0518, 2.4292, (55)

3.7554, 3.9606, 3.9606, 4.8601, 12.933, 7.1517, 10.978,

45.028, 31.608, 29.495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Rc5 = 10−4 × I (56)

Finally, the performance of the controller with the optimal actuator
location on the vertical trefoil mode is shown in Table 6 and Figure
7. Similar to the previous results, the optimal location for the weighted
vertical trefoil mode has the best performance compared to the random
locations. Q and R matrices for this mode are given in the equations (57)
and (58).
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Table 5. LQR controller performances of the actuator locations for the vertical astigmatism
(Z2

2) error

Actuator Locations ||ẽ5||2
Na∑

||ui||2
i=1

J

(2,7,9,12,13,16,26,31,34,39,49,52,53,56,58,63)* 0.0062 3314.2 1370.1

(2,5,7,17,29,31,32,33,35,36,38,51,55,58,62,64) 0.0123 5008.6 2113.3

(4,10,20,25,26,29,32,33,36,40,45,46,47,50,62,63) 0.0108 3486.7 2703

(7,10,17,21,26,27,33,34,39,42,46,47,48,52,60,64) 0.0070 3051.1 2027.5

(3,9,10,11,23,25,33,36,37,41,46,47,59,60,61,62) 0.0316 11564 2732.7

(3,7,8,12,13,14,17,21,32,35,44,48,51,58,60,63) 0.0091 4290.9 1903.4

(5,9,11,16,18,29,33,37,41,43,46,48,56,58,59,64) 0.0303 12022 2075.7

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-0.02

-0.01

0

0.01

0.02

0.03
(a)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-4

-2

0

2

4
10-3 (b)

Figure 6. (a) Comparison of LQR controller performance for optimal location (red), random
location 1 (black), random location 6 (green) with open loop response (blue). (b) Comparison
of LQR controller performance for optimal location (red), random location 1 (black), random
location 6 (green)

Qc6 = 103 × diag(0.288, 0.098, 1.0390× 103, 3.0518, 2.4292, (57)

3.7554, 3.9606, 3.9606, 4.8601, 12.933, 7.1517, 10.978,

45.028, 31.608, 29.495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Rc6 = 10−4 × I (58)
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Table 6. LQR controller performances of the actuator locations for the vertical trefoil (Z−3)3

error

Actuator Locations ||ẽ6||2
Na∑

||ui||2
i=1

J

(3,4,5,6,9,16,17,24,41,48,49,56,59,60,61,62)* 0.0305 16342 3244.7

(2,5,7,17,29,31,32,33,35,36,38,51,55,58,62,64) 0.0546 18076 4576

( 4,10,20,25,26,29,32,33,36,40,45,46,47,50,62,63) 0.0428 14098 4687.5

(7,10,17,21,26,27,33,34,39,42,46,47,48,52,60,64) 0.0363 12242 4550

(3,9,10,11,23,25,33,36,37,41,46,47,59,60,61,62) 0.0362 14797 3946.4

(3,7,8,12,13,14,17,21,32,35,44,48,51,58,60,63) 0.0513 17226 4452.6

(5,9,11,16,18,29,33,37,41,43,46,48,56,58,59,64) 0.0341 13785 3965.1
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Figure 7. (a) Comparison of LQR controller performance for optimal location (red), random
location 1 (black), random location 2 (green) with open loop response (blue). (b) Comparison
of LQR controller performance for optimal location (red), random location 1 (black), random
location 2 (green)

CONCLUSIONS

In this paper, the optimal actuator placement problem is investigated
for adaptive optics systems. To do that, the structural dynamics of the
deformable mirror and the dynamics of the wavefront aberrations are
considered in the design procedure. Since the adaptive optics control
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problem is mainly based on the disturbance attenuation, the cost function
is reformulated for this case. Then, the actuator locations for the
different aberration modes are optimized by minimizing the LQ cost. The
simulation results show that the closed-loop performance of the system
with the optimal actuator layouts performs much better than any other
random actuator layouts for the concerned optical aberration modes.

Acknowledgements

This work was partially supported by the Scientific and Technological Research Council of Turkey

(TUBITAK) (grant number 118E224).

References
Baudouin L, Prieur C, Guignard F and Arzelier D (2008) Control of adaptive optics system: an

H∞ approach. IFAC Proceedings Volumes 41(2): 13408–13413.
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Appendix A

Proof. Following the same idea in (Geromel (1989)), let the optimization
problem (34) is solved for π0 ∈ Φc and (x0, λ0) denote the optimal
trajectories correspond to π0 ∈ Φc. From theorem,

J(π0) = max h(π0, λ)
λ∈D(π)

= h(π0, λ0)

= min lim E[{H(π0, x, λ0)− λ′ ẋ]0
x∈ΩO t→∞

= lim E[{H(π0, x0, λ0)− λ′
0ẋ0}] (59)

t→∞

and for ∀π ∈ Φ,

J(π) = max h(π, λ)
λ∈D(π)

≥ h(π, λ0) 
= min lim E[H(π, x, λ0)− λ′ ẋ}]. (60)0

x∈Ω0 t→∞

The quadratic function H(π, x, λ0) can be decomposed as

NL∑
H(π, x, λ0) = H(π0, x, λ0)− 1

(πj − π0j)λ
′
0Ljλ0 (61)

2
j=1

and if equation (61) is substituted in (60)
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J(π) ≥ min lim E[H(π0, x, λ0)− λ′ ẋ}] (62)0
x∈ΩO t→∞︸ ︷︷ ︸

J(π0)

NLt ∑
− lim E

1
(πj − π0j)λ

′
0Ljλ0

t→∞ 2 0 j=1

t NL∑
J(π) ≥ J(π0)− lim E

1
(πj − π0j)λ

′
0Ljλ0 . (63)

t→∞ 2 0 j=1

are obtained. Then, from the relation λ0(t) = P (π0, t)x0(t) and the
solution of (29) with zero initial condition

t

x0(t) = exp(Acl(t− τ))Bωω(τ)dτ (64)
0

NL∑
where Acl � A− πjB̃uj

G, the second term in the right hand side of
j=1

inequality (63) can be rewritten as follows
⎡ ⎤∫ NL ∫ ∫t ∑ t t

= lim E ⎣− 1
(πj − π0j) ω(τ) B exp(A (t − τ))dτP (π0, t)LjP (π0, t) exp(Acl(t − ς))Bωω(ς)dς⎦ω clt→∞ 2 0 0 0j=1

(65)

Using the properties of the trace operator given in Appendix B, and
equation (30)

⎛ ⎞
NL ∫ ∫1 ∑ t t⎜ ′ ′ ′ ⎟

= lim Tr ⎝− (πj − π0j)Lj Bω exp(Acl(t − τ))P (π0, t) E ω(τ)ω (ς) P (π0, t) exp(Acl(t − ς))Bωdςdτ⎠
t→∞ 2 0 0j=1

⎛ ⎞
NL ∫ ∫∑ t t⎝− 1 ′ ′ ⎠= lim Tr (πj − π0j)Lj B exp(A (t − τ))P (π0, t) Wδ(τ − ς)P (π0, t) exp(Acl(τ − ς))Bωdςdτω clt→∞ 2 0 0j=1

(66)

⎛ ⎞
NL ∫∑ t

= lim Tr⎝− 1
(πj − π0j)Lj P (π0, t) exp(Acl(t − τ))BωWB exp(A (t − τ))P (π0, t)dτ⎠ω clt→∞ 2 0j=1

(67)

⎛ ⎞ ⎛ ⎞
NL NL

Tr⎝− 1
(πj − π0j)LjP (π0)θ(π0)P (π0)⎠ = Tr⎝ (πj − π0j)LjS(π0)⎠ (68)

2
j=1 j=1
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where S(π0) � −1
2
P (π0)θ(π0)P (π0) and θ(π0) is the solution of

(A− BG(π0))θ(π0) + θ(π0)(A− BG(π0))
′ + Bω

′ WBω = 0. (69)

Then,

NL∑
σ(π) ≥ σ(π0) + Tr S(π0) (πj − π0j)Lj (70)

j=1

Na∑
= σ(π0) + (πj − π0j)Tr (S(π0)Lj) (71)

j=1

= σ(π0) + μ(π0), π − π0 (72)

and the theorem is proved.

Appendix B

The trace operator Tr(·) satisfies the following equality.

xTx = Tr(xTx) = Tr(xxT ) (73)


