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Alzheimer’s disease (AD) is a neurodegenerative disorder known to affect functional connectivity
(FC) across many brain regions. Linear FC measures have been applied to study the differences in
AD by splitting neurophysiological signals such as electroencephalography (EEG) recordings into
discrete frequency bands and analysing them in isolation from each other. We address this limita-
tion by quantifying cross-frequency FC in addition to the traditional within-band approach. Cross-
bispectrum, a higher-order spectral analysis approach, is used to measure the nonlinear FC and is
compared with the cross-spectrum, which only measures the linear FC within bands. This work
reports the first use of cross-bispectrum to reconstruct a cross-frequency FC network where each
frequency band is treated as a layer in a multilayer network with both inter- and intra-layer edges.
An increase of within-band FC in AD is observed in low-frequency bands using both methods. Bis-
pectrum also detects multiple cross-frequency differences, mainly increased FC in AD in delta-theta
coupling. An increased importance of low-frequency coupling and decreased importance of high-
frequency coupling is observed in AD. Integration properties of AD networks are more vulnerable
than HC, while the segregation property is maintained in AD. Moreover, the segregation property of
γ is less vulnerable in AD, suggesting the shift of importance from high-frequency activity towards
low-frequency components. The results highlight the importance of studying nonlinearity and in-
cluding cross-frequency FC in characterising AD. Moreover, the results demonstrate the advantages
and limitations of using bispectrum to reconstruct FC networks.

I. INTRODUCTION

Alzheimer’s disease (AD) causes early degradation of
neural circuits leading to cell death and synaptic loss
and is the most common form of dementia [1, 2]. Studies
have shown that AD affects distributed brain networks,
alters functional connectivity, which can lead to discon-
nection syndrome and disrupts information processing
across multiple scales [3–6].

Electroencephalography (EEG) is a common method
to study and diagnose AD. The main EEG characteris-
tics associated with AD are slowing of signals and de-
creased synchronisation [4, 6–9]. Slowing of EEG in AD
was observed as increased activity in δ and θ frequency
bands and decreased activity in α and β frequency bands
[6, 7]. Similarly, AD shows changes in synchronisation
within low-frequency bands (<12 Hz) and is associated
with the altered functional connectivity, especially the
long-distance cortical connections [10]. A recent focus
on network-based methods reveals additional character-
istics of AD, namely, reduced integration of information
[11, 12] and loss of small-worldness [13]. However, these
characteristics are typically analysed only within specific
frequency bands.

This study aims to extend the functional connectivity
beyond within-frequency connectivity (WFC) and take
the cross-frequency coupling (CFC) [14] into account.
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WFC connectivity was previously analysed in AD by us-
ing coherence (linear) [15] and wavelet coherence (non-
linear) [16]. Only one CFC measure, i.e. phase synchro-
nisation index (PSI), had been used to reconstruct CFC
networks of AD [17]. This work extended the findings of
reduced integration and loss of small-worldness to CFC
multilayer networks. However, it does not consider the
roles of different frequency components in the networks,
and PSI is purely a phase-phase coupling measure. Other
attempts to use multilayer networks to characterise neu-
rological disorders were made. Guillon et al. [18] re-
ported loss of inter-frequency hubs in AD using MEG
multilayer networks, but without explicit inclusion of
CFC, rather inter-layer (i.e. cross-frequency) connections
were made only between the same nodes across layers. A
similar approach was used to characterise schizophrenia
from MEG [19].

Bispectrum is a higher-order extension of the spectrum
and quantifies quadratic coupling between two frequency
components and their algebraic sum [20]. It can detect
amplitude-amplitude and phase-amplitude CFC in addi-
tion to phase-phase coupling [21]. The bispectral cou-
pling also indicates an increase in non-Gaussianity [22].
Features derived from bispectrum were shown to pro-
vide biomarkers of epilepsy [23], Parkinson’s disease [24]
and AD [22]. These studies compute (cross-) bispectra
of only a few channels or pairs of channels. In contrast,
this study computes cross-bispectra between all pairs of
EEG channels to estimate the whole-brain FC network.

In this work, the cross-bispectrum (CBS) estimates
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FIG. 1: A conceptual schematic of implementing the proposed cross-bispectrum (CBS) multilayer network analysis. (A) Each
EEG signal is cleaned and scaled. (B) For each pair of EEG electrodes, a cross-bispectrum is estimated. The frequency bands
coupling edge weights are given by the maximum value within the respective CBS window, e.g. δ-δ (red). Note that CBS
estimates are directed, e.g. δ-γ 6= γ-δ (both in black). Thus from each CBS, 25 edges are inferred. (C) Using the edge weights
inferred from CBS, a multilayer network is constructed with layers representing the frequency bands of EEG. Such a network
has both intra-layer edges and inter-layer edges, representing the within-frequency coupling and cross-frequency coupling,
respectively.

of functional connectivity are computed in order to in-
vestigate the contribution of nonlinear CFC to the dif-
ferences between Alzheimer’s disease (AD) and healthy
controls (HC) compared to linear WFC measured with
cross-spectrum (CS). To the best of our knowledge, this
is the first application of CBS to reconstruct FC networks
of AD. Moreover, we report a novel multilayer-network-
based approach to elucidate the roles of the traditional
EEG frequency bands and their CFC in the whole-brain
networks of HC and AD.

II. DATA

EEG recordings were collected from 20 AD patients
and 20 healthy participants (HC) under 70. A detailed
description of the experimental design and confirmation
of the diagnosis is provided in [25]. All AD participants
were recruited in the Sheffield Teaching Hospital memory
clinic. AD participants were diagnosed between 1 month
and 2 years before data collection, and all of them were
in the mild to moderate stage of the disease at the time
of recording with the average Mini Mental State Exami-
nation score of 20.1 (sd = 4). High resolution structural
magnetic resonance imaging (MRI) scans of all patients
were acquired to eliminate alternative causes of demen-
tia. Age and gender-matched HC participants with nor-
mal neuropsychological tests and structural MRI scans
were recruited.

EEG was acquired using an XLTEK 128-channel head-
box, Ag/AgCL electrodes with a sampling frequency of
2 kHz using a modified 10-10 overlapping and 10-20 in-
ternational electrode placement system with a referential
montage with a linked earlobe reference. The recordings
lasted 30 minutes, during which the participants were in-
structed to rest and not to think about anything specific.
Within the 30 minutes recording, there were two-minute-

long epochs during which the participants had their eyes
closed (EC) (alternating with eyes-open epochs which are
not used in this study).

All the recordings were reviewed by an experienced
neurophysiologist on the XLTEK review station with
time-locked video recordings (Optima Medical LTD).
For each participant, three 12-second-long artefact-free
epochs were isolated. Finally, to avoid volume conduc-
tion effects related to the common reference electrodes,
the following 23 bipolar channels were created: F8–F4,
F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ, T4–C4,
T3–C3, C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, T4–T6,
T3–T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–O2, P3–O1
and O1–O2.

A. EEG pre-processing

EEG signals were filtered to be between 0.5 and 100
Hz using Fourier transform; 50 Hz relating to the power
line noise was removed and the data were downsampled
to 250 Hz. Only the first 4 seconds of each epoch were
used. Finally, the signals were normalised (to zero mean
and unit standard deviation).

III. METHODS

A. Cross-spectrum and cross-bispectrum

The spectrum of signal SX is calculated via smoothed
periodogram. Fast Fourier Transform (FFT) is used to
estimate the periodogram with Daniell smoothers. The
periodogram is computed over 256 frequency bins (0.98
Hz bandwidth). CS at frequency f is then computed
as: CSXY (f) = SX(f) · SY (f). An absolute value of
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FIG. 2: Average connectivity matrices measured with
cross-spectrum of (A) AD and (B) HC. For visualisation
purposes, the values were normalised. White asterisks
denote a significant difference in global coupling (p < 0.05).

CS is calculated. A direct FFT-based method is used to
estimate absolute CBS:

CBSXY (f1, f2) = |〈XT (f1) · YT (f2) · Y ∗T (f1, f2)〉|, (1)

where 〈·〉 denotes averaging, XT (f) is a Fourier Trans-
form of signal X over an interval T and Y ∗ is the com-
plex conjugate. 256-point FFT is used. CBS is computed
over 0.08 s long segments with 50% overlap over whole
frequency range (0.5 - 100 Hz). The estimated CBS is
then smoothed in the frequency domain using Rao-Gabr
window (size 5).

CS and CBS were computed for all pairs of EEG
channels. Five frequency bands b are considered: δ
(0.5− 4Hz), θ (5− 7Hz), α (8− 15Hz), β (16− 31Hz)
and γ (32− 100Hz).

The connectivity CN between channels X and Y and
frequency bands bX and bY is computed as:

CNCS
XY (bX) = max(CSXY (f ∈ bX)), bX = bY , (2)

CNCBS
XY (bX , bY ) = max(CBSXY (f1 ∈ bX , f2 ∈ bY )),

(3)
for CS and CBS respectively. This resulted in 5 WFC
(CS and CBS) and 20 CFC (CBS only) measures for each
pair of channels. It is of note that the CBS is directed.

In order to ensure statistical significance of the esti-
mated connectivity, surrogate thresholding was used [26].
For each pair of channels, 20 surrogate signals were gen-
erated with phase randomly shuffled, and their connec-
tivity is computed. The mean of surrogate connectivity
is used as a threshold. Connectivity values below the
threshold are set to zero.

We obtain a set of connectivity matrices for each EEG
recording, i.e. N × N matrices (N = 23). For CS and

CBS, there are 5 and 25 connectivity matrices, respec-
tively. A global (averaged per subject) connectivity is
computed for each 23×23 matrix and compared between
groups using Mann-Whitney test.

B. Network measures

To identify the important channels in the network, we
compute a coupling specific node strength (NS) [27] for
each channel i and the different types of frequency cou-
plings c given by:

NS(i, c) =
∑

j∈Π(i,c)

wij , (4)

where Π(i, c) are the nodes connected to i by edge type c
and wij is the edge weight, i.e. CS or CBS connectivity
given by ijth entry of N ×N connectivity matrix. This
measure is computed both for CS and CBS, resulting in
5 (5 frequency bands) and 25 (5 × 5 frequency bands)
values per channel respectively.

In order to analyse the importance of the different fre-
quency couplings in terms of the whole brain network, we
represent them in a multilayer network. In this network,
nodes are located within layers representing the differ-
ent frequency bands, WFC represents the edges between
nodes within a single layer, i.e. intra-layer, and CFC
represents the edges between nodes located in different
layers, i.e. inter-layer. In this paper, the CS networks
are not analysed as multilayer networks since such net-
works would have no inter-layer edges and thus would
not be directly comparable with the CBS networks. The
following measures are computed only for CBS networks.
We obtain networks with 23 nodes that are replicated
over 5 layers (L ∈ [δ, θ, α, β, γ]), resulting effectively in
115 nodes. There are 5 types of intra-layer edges such
as δ-δ, and 20 types of inter-layer edges such as δ-θ or
θ-δ. Moreover, as the following graph-theoretic measures
assume that the edge weight represents a distance, we
transform the weights as 1/wij so that a strong coupling
value results in a low weight.

We measure the importance of each type of frequency
coupling within the multilayer network by measuring the
contribution of each edge to enabling efficient passing of
information through the network. For this purpose, we
define betweenness centrality (CBW) based on an ad-
justed version of edge betweenness (BW) [28]:

CBW (c) =
1

E

E∑
i=1

BW (e), (5)

where E is the total number of edges of coupling type c
and BW (e) is edge betweenness centrality given by:

BW (e) =
∑
i 6=j

gij(e)

gij
, (6)
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FIG. 3: Average connectivity matrices measured with cross-bispectrum of (A) AD and (B) HC with input frequency on the
vertical facets and output frequency on horizontal. For visualisation purposes, the values were normalised. White asterisks
denote a significant difference in global coupling (p < 0.05).

where gij is the number of shortest paths between nodes
i and j, and gij(e) is the number of those paths that go
through edge e. CBW quantifies the contribution of each
coupling type to the information integration [29], i.e. the
amount of information flow through edges.

CBW assumes that the essential processes within the
network occur along the shortest paths. However, there
might be alternative paths with only minor length dif-
ferences, which CBW ignores. In case of a disruption of
the network structure, these alternative paths might en-
able recovery of function with negligible differences. We
quantify this as the vulnerability of the network to the
removal of one type of frequency coupling. The vulner-
ability is measured in two ways, the loss of ability to
integrate information [30] and the loss of segregation.

The integration property of network G, i.e. the abil-
ity of a network to communicate information globally, is
approximated with global efficiency (gE) given by:

gE(G) =
1

N(N − 1)

∑
i 6=j∈G

1

d(ij)
, (7)

where N is the number of nodes in network G and d(ij)
is the shortest path length between nodes i and j. gE is
related to CBW. CBW measures the information flow on
the more detailed edge-level while gE takes the node-level
perspective.

The segregation property of network G, i.e. the pres-
ence of densely connected clusters and sparse connections

between them, is approximated with local efficiency given
by:

lE(G) =
1

N

∑
i∈G

gE(Gi), (8)

where Gi is the neighbourhood of node i, i.e. subgraph
of nodes directly connected to i, without node i itself.

In order to measure the vulnerability of the network
and its dependence on different types of frequency cou-
pling gE and lE is computed for the full network, the
two measures are re-computed on a perturbed network
with single type of frequency coupling (i.e. set of edges)
removed and the change in gE and lE is computed,
resulting in the vulnerability measures gV (Gc) = 1 −
(gE(Gc)/gE(G)) and lV = 1 − (lE(Gc)/lE(G)), where
G is the full network and Gc is the perturbed network.

C. Network thresholding and statistical analysis

In order to filter out the unimportant edges that might
be the result of a spurious coupling, the weighted multi-
layer networks are thresholded through relative quantile-
based thresholding. Given a quantile Q, all edges with
weight lower than Q are removed from the network.
There are large differences between the weights of each
frequency coupling type (e.g. mean of γ-β = 1.627 com-
pared to mean of α-α = 8.975); thus, a separate thresh-
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FIG. 4: Node strength (normalised) measured with CS of
HC (blue) and AD (orange): mean with 95% confidence
intervals. Significant differences showed as: p ≤ 0.05 (*), p
≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).

old Q is used. As a result, the networks retain Q% of
the strongest edges. To ensure that the observed differ-
ences between the networks are not due to the choice of
threshold Q, all of the network measures are computed
over 10 of threshold values (Q ∈ [0.5, 0.95] in increments
of 0.05) and only significant differences observed over at
least 3 consecutive thresholds are declared significant.
The reported plots and numerical results are obtained
with Q = 0.7. Additionally, we report the number of
consecutive thresholds where significant differences were
observed. All p-values are corrected using the false dis-
covery rate method.

As NS compares the different frequency coupling types
in isolation, the weighted networks are used in this anal-
ysis. Furthermore, we convert the network from directed
to undirected by taking the maximum weight for each
pair of directed edges, thus collapsing them into a sin-
gle edge. Since NS follows a Gamma distribution, the
Gamma generalised linear model (GGLM) with log-link
function is used to compare the groups. Note that NS is
computed both for CS and CBS networks and frequency
bands that show a significant difference in the global av-
eraged coupling strength.

The multilayer graph measures aim to analyse the roles
of the frequency coupling types in the properties of the
global network. Since differences were observed between
the weights of frequency coupling types, we convert the
weighted networks into unweighted (or binary) networks
by setting the weight of all edges to 1, thus removing
the potential effect of the observed differences. Both
CBW and lV are not normally distributed but symmet-
rical around the median. Thus, a non-parametric Mann-
Whitney test is used to compare between groups. As gV
is Gamma-distributed, GGLM with log-link function is
used to compare between the groups.

IV. RESULTS AND DISCUSSION

A. Connectivity matrices and global connectivity

Averaged connectivity matrices (Fig. 2 and 3) indi-
cate that both methods seem to detect differences in
the topology of functional connectivity networks. In CS,
these differences seem to be the most pronounced in δ

and θ where AD have higher connectivity and in γ where
AD have lower connectivity, as shown by the differences
in global connectivity. In CBS, differences can be ob-
served in almost all frequency bands and their couplings.
The topology differences are rather obvious in δ, θ, α
and their CFC couplings wherein possible clusters are
visible in HC, while AD seem to have this structure dis-
torted. Moreover, significant differences were found in
global connectivity in all δ, θ and β CFC (except for δ-
γ,θ-γ and β-α) and in β-β. Differences in these bands
(both WFC and CFC) were reported by Cai et al. [17]
using PSI, but the reported differences are opposite to
our findings. Moreover, we found significant differences
in γ WFC and γ-δ and γ-β CFC.

These findings fit well with the literature reporting the
increased activity in δ and θ in AD [4, 6]. Moreover, the
visible distortion of structure within multiple frequency
bands detected both by CS and CBS is in line with the
disconnection syndrome and disturbed information pro-
cessing in AD.

B. Coupling-wise node strength

In order to statistically test the differences in connec-
tivity measured by both CS and CBS and to localise
the brain regions which show the most pronounced dif-
ferences between AD and HC, NS is measured for each
channel and coupling type separately. Due to the space
limits, we do not report the numerical results of these
tests. Alternatively, we show the results in Figs. 2 and 3
for CS and CBS respectively.

The differences in WFC detected by CS and CBS (Fig.
4 and diagonal elements in Fig. 5) are generally similar.
Both methods show increased δ and θ NS in AD across
most channels. CS shows increased γ NS in HC in frontal
and temporal channels. In addition, CBS detected dif-
ferences in β and γ WFC in a few central and temporal
channels, which CS missed. These differences showcase
the importance of assessing both linear and nonlinear
coupling to understand the changes in AD brain net-
works.

Multiple differences in CFC (off-diagonal elements in
Fig. 5) were detected, highlighting the need to analyse
the relationships between frequency components both in
healthy and AD brain networks. Interestingly, the CFC
involving δ and θ seems to be the most affected by AD,
extending the findings in the literature (i.e. AD showing
increased activity in these bands) from WFC to CFC as
well, as the δ-θ and θ-δ shows increased NS in AD in
frontal and a few central, temporal and parietal chan-
nels. Predominantly frontal channels show increased NS
in AD in δ-α, θ-α and their inverse, i.e. α-δ and α-θ.
This increased NS in AD is also present in a few frontal
channels in δ-β, θ-β and their inverse.

Cai et al. [17] report comparable differences using PSI
between AD and HC, but in contrast to our results, they
report mainly decreased NS in AD. This might be be-
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FIG. 5: Node strength (normalised) measured with CBS of HC (blue) and AD (orange): mean with 95% confidence intervals.
Input frequency is on the vertical facets and output frequency on the horizontal. Significant differences are showed as: p
≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).

δ θ α β γ

δ
CBW: U=946, p<0.001, 10 CBW: U=882, p<0.001, 10 CBW: U=834, p<0.001, 10 CBW: U=1670, p=0.604, 0 CBW: U=2391, p=0.002, 8

gV: t=4.632, p<0.001, 6 gV: t=5.481, p<0.001, 10 gV: t=6.22, p<0.001, 10 gV: t=4.585, p<0.001, 7 gV: t=3.148, p=0.004, 6
lV: U=2334, p=0.011, 7 lV: U=1480, p=0.203, 4 lV: U=1420, p=0.12, 4 lV: U=1859, p=0.738, 0 lV: U=1210, p=0.011, 9

θ
CBW: U=861, p<0.001, 10 CBW: U=896, p<0.001, 9 CBW: U=807, p<0.001, 9 CBW: U=1333, p=0.024, 7 CBW: U=2483, p<0.001, 10
gV: t=5.553, p<0.001, 10 gV: t=4.111, p<0.001, 6 gV: t=6.94, p<0.001, 10 gV: t=4.474, p<0.001, 7 gV: t=2.263, p=0.036, 5
lV: U=1613, p=0.54, 3 lV: U=2374, p=0.006, 7 lV: U=1417, p=0.116, 4 lV: U=1753, p=0.957, 0 lV: U=1323, p=0.042, 5

α
CBW: U=670, p<0.001, 10 CBW: U=636, p<0.001, 10 CBW: U=741, p<0.001, 10 CBW: U=1427, p=0.078, 3 CBW: U=2878, p<0.001, 10

gV: t=6.233, p<0.001, 8 gV: t=6.979, p<0.001, 10 gV: t=7.365, p<0.001, 10 gV: t=4.483, p<0.001, 7 gV: t=2.079, p=0.055, 4
lV: U=1796, p=0.933, 2 lV: U=1724, p=0.883, 4 lV: U=2002, p=0.328, 1 lV: U=1734, p=0.9, 1 lV: U=1223, p=0.014, 6

β
CBW: U=1084, p<0.001, 9 CBW: U=1217, p=0.005, 8 CBW: U=1248, p=0.007, 9 CBW: U=2130, p=0.065, 3 CBW: U=2663, p<0.001, 10

gV: t=4.641, p<0.001, 7 gV: t=4.724, p<0.001, 8 gV: t=4.679, p<0.001, 8 gV: t=-0.555, p=0.619, 0 gV: t=-0.574, p=0.61, 4
lV: U=2245, p=0.032, 6 lV: U=2348, p=0.009, 4 lV: U=1812, p=0.889, 1 lV: U=1274, p=0.025, 10 lV: U=1323, p=0.042, 5

γ
CBW: U=2824, p<0.001, 9 CBW: U=2755, p<0.001, 10 CBW: U=2976, p<0.001, 9 CBW: U=2535, p<0.001, 10 CBW: U=2392, p=0.002, 9

gV: t=3.172, p=0.003, 6 gV: t=2.717, p=0.012, 5 gV: t=2.422, p=0.024, 5 gV: t=0.603, p=0.593, 2 gV: t=-3.401, p=0.002, 10
lV: U=1614, p=0.541, 0 lV: U=2145, p=0.092, 0 lV: U=1707, p=0.823, 2 lV: U=1391, p=0.089, 4 lV: U=2790, p<0.001, 9

TABLE I: Differences in CBW, gV and lV. CBW and lV tests are performed using Mann-Whitney test, and gV is compared
using GGLM. The results are reported in the following order: test statistic, p-value and number of consequent thresholds
where significant differences were observed. The input frequency is on the vertical facets, and the output frequency is on the
horizontal.

cause CS and CBS are influenced by amplitude, while
PSI is a pure phase coupling measure. Fraga et al. [31]
report an increase of the δ-θ and δ-β CFC in AD compa-
rable to our results. This supports the claim that CBS
indeed measures some mixture of CFC [21].

C. Multilayer network analysis

In order to elucidate the roles of the frequency bands
and their coupling, both WFC and CFC, we analyse the
CBS networks as multilayer networks with 5 layers rep-
resenting the traditional frequency bands of EEG.

First, CBW is used to assess the importance of each
type of coupling for both local and global communication
in the network. Numerical results of comparing CBW
are reported in Table I and visualised in Fig. 6. The in-

creased importance of low-frequency-first coupling (δ and
θ to the rest) was observed in AD, while the importance
of high-frequency-first coupling is decreased compared
to HC. This finding confirms the characteristic slowing
down of AD signals [6, 7].

Then, gV is used to assess the vulnerability of infor-
mation integration of the network to the removal of a
coupling type. Numerical results of comparing gV are
reported in Table I and visualised in Fig. 7. The AD
brain networks are significantly more vulnerable as the
removal of most coupling types increases gV except for
θ-γ, α-γ, β-β, β-γ and γ-β where there is no difference be-
tween the groups. Moreover, γ-couplings show increased
gV in HC, which we suggest to be linked with the de-
crease in γ activity in AD [7]. Although mostly slow
waves are important in AD as measured with CBW, the
global vulnerability of AD extends to almost all types
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of coupling. Interestingly, WFC types cause a generally
larger increase in gV, suggesting that while CFC plays
a crucial role in the brain networks, WFC seems to be
dominant in the brain networks.

Finally, lV is used to assess the vulnerability of segre-
gation of the network to the removal of certain coupling
type. Numerical results of comparing lV are reported in
Table I and visualised in Fig. 8. This network property
seems to be mostly unrelated to the types of coupling,
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FIG. 8: Local vulnerability of HC (blue) and AD (orange).
Significant differences are encoded by asterisks: p ≤ 0.05
(*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****).

and we speculate that a mixture of coupling types enables
it. The γ-γ type is the most robustly linked to segrega-
tion which fits well with the hypothesis of high-frequency
bands being related to local processing. Moreover, this
type of coupling is significantly more vulnerable in HC,
which is likely related to the loss of γ activity in AD [6].
δ-δ causes a significant increase of lV in HC, suggest-
ing that although it is predominantly thought to support
long-range connectivity, HC networks use it to some ex-
tent for local processing as well, and this role is likely
disrupted in AD. On the other hand, δ-γ, α-γ and β-β
cause a significant increase in lV in AD.

D. Conclusions and Future work

We have demonstrated that CBS and CS detect sim-
ilar differences between AD and HC networks, but CBS
has an advantage over CS by including cross-frequency
and nonlinear interactions. We report several significant
differences in CFC both globally and on node-level, sug-
gesting that including CFC in a graph-theoretic analysis
of brain networks is crucial to obtain a more detailed in-
sight into their structure and function. Furthermore, we
show that multilayer network analysis provides a simple
yet powerful framework for representing and analysing
CFC brain networks. We present a novel approach to
elucidate the roles of different frequency components of
EEG signals using this framework.

CFC had been suggested to be related to modulatory
activity, slow band modulating the activity of fast oscil-
lations. However, it remains unclear why CFC would be
increased in AD and requires further in-depth study.

Next, although (cross-)bispectrum was shown to be a
powerful tool to detect various types of WFC and CFC,
it is not possible to distinguish between these types of
coupling. Therefore, a combination of bispectrum with
other types of CFC methods might be a plausible direc-
tion for future research.

Furthermore, by relying on traditional frequency bands
to define the layers of the networks, our framework might
miss some CFC occurring on finer scales, e.g. interaction
within one band. However, considering the CFC within
only a few bands allows us to construct multilayer net-
works with a relatively small number of layers. Thus, we
argue that relying on the five bands is necessary to intro-
duce the CFC into network analysis without increasing
the complexity significantly.

Finally, the presented multilayer network analysis fo-
cused only on how dependent or vulnerable the networks
are on different types of frequency coupling to enable
integration and segregation properties. Although these
two properties are hypothesised to be crucial in brain
networks, their analysis is not sufficient to elucidate the
different functions the frequency couplings might serve
in normal brains and how these functions disappear or
change during AD.

Moreover, it might be possible to use the multilayer
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networks features to classify the EEG networks automati-
cally. We speculate that including the information about
CFC might lead to machine learning models that per-
form significantly better than models that use only WFC-
based features. However, we do not explore this route in
this work. Instead, we focus on the relatively novel mul-
tilayer network analysis to show the importance of con-
sidering CFC in addition to WFC when reconstructing
EEG functional connectivity networks.
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