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An Effective Swarm Intelligence Optimization 
Algorithm for Flexible Ligand Docking 

Chao Li, Jun Sun, Li-Wei Li, Xiaojun Wu, Vasile Palade 

Abstract—In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding 

site is already known, and meanwhile, it can also be used without prior knowledge of the binding site. However, most of the 

optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly 

be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly 

adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, 

called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a 

diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-

QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. 

Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide 

for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for 

dockings without prior knowledge of the binding sites. 

Index Terms—Flexible ligand docking, Search algorithm, Quantum particle swarm optimization, Diversity-controlled strategy, 

Solis and Wets local search, Autodock 

——————————      —————————— 

1 INTRODUCTION

olecular docking methods are of utmost importance 
and have been widely used in drug discovery and 

other academic research projects [1], [2]. Generally, its aim is 
to predict the experimental binding modes and affinities of 
ligand molecules within the particular receptor targets. For 
the docking problems with small ligands and large protein 
receptors, flexible ligand docking is currently the most 
widely adopted method [3], because of its excellent balance 
between the computational efficiency and docking accu-
racy. This docking process can be simulated by numerous 
docking programs, and the quality of the simulation results 
depends on two factors, i.e. the search algorithm and the 
scoring function [4]. In flexible ligand docking, the search al-
gorithm explores suitable translations, orientations and con-
formations of a ligand, with the protein considered as a rigid 
object. The scoring function is the objective function (or fit-
ness function) that guides the search algorithm during the 
search process and is also used to evaluate the quality of the 
docking conformations. This work focuses on improving 
search algorithms for flexible ligand docking. 

During the past few decades, many docking software 
packages were developed to solve the flexible docking prob-
lem, such as Autodock [5], [6], Autodock Vina (referred to 
as Vina) [7], GOLD [8], Surflex [9], DOCK [10], Gilde [11], to 
name a few. Among them, Autodock is widely used and at-
tracts many researchers to make improvements on it, since 
it is open source and can be easily implemented. For the 
same reason, the work we undertake in this paper is based 
on the latest version of Autodock software (version 4.2.6). 
Autodock 4.2.6 adopts the Lamarckian genetic algorithm 

(LGA) [6] (i.e., a hybrid of the genetic algorithm (GA) and 
the Solis and Wets local search (SWLS) [12] method) as its 
default search algorithm, and a semi-empirical force field as 
its scoring function. 

Generally, most of the released docking software pack-
ages adopt flexible ligand docking under the premise that 
the binding site is already known, so that the area where the 
possible binding sites are located should be determined in 
advance [13], and several approaches can be used to solve 
this problem [14], [15], [16], [17]. After the binding area is 
determined, the search algorithm is then used to find candi-
dates for active compounds within this binding area. The 
binding area is definitely restricted in a small area rather 
than the entire surface of the protein, and thus the search 
algorithm is dedicated to solving a smaller-scale optimiza-
tion problem.  

However, sometimes we need to dock a ligand to the 
whole surface of a protein without prior knowledge of the 
binding site, that is, to find potential binding sites or directly 
reproduce the crystallographic docking pose. Such an opera-
tion is known as blind docking [18]. The significant differ-
ence between blind docking and the docking approaches 
mentioned above is that the search algorithms used for blind 
docking should find candidates by scanning the entire sur-
face of protein targets [19]. It should be noted that in blind 
docking, both the ligands and the proteins can also be rigid 
and flexible, and therefore flexible ligand docking methods 
can also be easily applied in blind docking. Thus, in order to 
distinguish between the flexible ligand docking around the 
binding site and blind docking with flexible ligand, in this 
paper, the former one is called “normal flexible ligand dock-
ing” or “normal docking”, and the latter one “blind flexible 
ligand docking” or “blind docking”. 

In terms of the search algorithms used for normal flexible 
ligand docking, many optimization algorithms have been 
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proposed to improve the docking performance, and some of 
them have been used as search algorithms in Autodock. 
Simulated annealing was used as default algorithm in ear-
lier version of Autodock [6], but it cannot perform so well as 
LGA when handling ligands with more degrees of freedom. 
In SODOCK [3], the PSO algorithm combined with the 
SWLS method was proposed for solving highly flexible lig-
and docking problems, and this search algorithm has al-
ready been integrated in Autodock 4.2.6. FIPSDock [20] is 
derived from the fully informed PSO and a newly devel-
oped energy function for improving the accuracy of dock-
ing. Both SODOCK and FIPSDock have better docking per-
formance than LGA, but have relatively low docking effi-
ciency due to the implementation of neighbourhood topol-
ogy [3], [20]. A more recent variant of Autodock, known as 
FWADOCK [21], utilized an improved fireworks optimiza-
tion method as its search algorithm, but it can only be com-
parable to some other variants of Autodock with other dif-
ferent optimization algorithms [21]. When it comes to blind 
flexible ligand docking, only a small amount of research fo-
cuses on applying optimization algorithms to sample the 
whole energy landscape surface [22], [23], [24], since it is 
very difficult for an optimization algorithm to reproduce the 
crystallographic complex directly by scanning a much larger 
search area. Therefore, the docking performance of most ex-
isting optimization algorithms can still be further improved 
on normal flexible ligand docking, and few of the algorithms 
can be suitable on both normal and blind dockings. 

In order to provide an effective optimization search algo-
rithm, which can adapt to different sizes of the search areas 
so that it can be used in the docking project no matter 
whether the prior knowledge of binding site is known or 
not, we propose in this paper a novel diversity-controlled 
hybrid optimization algorithm. The main body of this algo-
rithm is the quantum particle swarm optimization (QPSO), 
combining with the attractor guided (AG) strategy based on 
a modified definition of diversity. A modified SWLS 
(MSWLS) method is also integrated into the hybrid algo-
rithm to further improve the quality of the final search re-
sults. The diversity-controlled strategy used in QPSO and 
the modification in the local search method can make the al-
gorithm search in an appropriate area in terms of the size of 
the entire search scope, which allows this algorithm to be 
able to be used for both normal and blind dockings. The im-
plementation of the proposed hybrid algorithm adopts the 
environment and energy function of Autodock 4.2.6. Com-
pared with LGA [6], SODOCK [3], Vina [7] and Gilde [11] 
for both normal and blind flexible ligand docking, the pro-
posed hybrid algorithm is comparable to Vina and Glide for 
normal docking, and much better than all the other com-
pared docking methods for blind docking, as shown by ex-
perimental results. 

The rest of the paper is structured as follows. In Section 
2, we present in detail a modified definition of swarm diver-
sity, and based on this, the diversity-controlled strategy for 
QPSO and the modified local search method are proposed, 
which both contribute to the search performance of the hy-
brid search algorithm. Section 3 describes the dataset for 
testing and the experimental settings for all compared dock-
ing methods. Section 4 presents the docking experimental 

results and comparative analysis between the proposed 
method and other docking approaches. Finally, some con-
cluding remarks are given in Section 5. 

2 DIVERSITY GUIDED LAMARCKIAN QUANTUM 

PARTICLE SWARM OPTIMIZATION 

2.1 Quantum Particle Swarm Optimization 

Particle swarm optimization (PSO) is an important me-
taheuristic algorithm and is inspired by social behavior of 
bird flocks and was first proposed by Eberhart and Kennedy 
[25]. The PSO algorithm performs an optimization task by 
iteratively improving a swarm of candidate solutions with 
respect to an objective (fitness) function. In a PSO with 𝑀 in-
dividuals to solve an 𝑁-dimensional real problem, each par-
ticle 𝑖 (1 ≤ 𝑖 ≤ 𝑀)  is a candidate solution, representing a 
foraging bird in a flock. At the 𝑛𝑡ℎ iteration, the current po-
sition vector and the velocity vector of particle 𝑖  denote 
those of the bird, which can be expressed as 𝑋𝑖,𝑛 =
(𝑋𝑖,𝑛

1 , 𝑋𝑖,𝑛
2 , ⋯ , 𝑋𝑖,𝑛

𝑁 ) and 𝑉𝑖,𝑛 = (𝑉𝑖,𝑛
1 , 𝑉𝑖,𝑛

2 , ⋯ , 𝑉𝑖,𝑛
𝑁 ), respectively. 

With respect to the PSO algorithm applied to a docking 
problem, each dimension in 𝑋𝑖,𝑛 has its specific meaning: the 
first three are Cartesian coordinates for the ligand transla-
tion, the following four define a quaternion specifying the 
ligand orientation, and each of the remaining ones repre-
sents a ligand torsion. Thus, 𝑋𝑖,𝑛 can express a ligand pose at 
𝑛𝑡ℎ iteration during the docking process. 

In the canonical PSO, the particle moves according to the 
following equations [26]: 

𝑉𝑖,𝑛+1
𝑗

= 𝑤𝑉𝑖,𝑛
𝑗
+ 𝑐1𝑟𝑖,𝑛

𝑗
(𝑃𝑖,𝑛

𝑗
− 𝑋𝑖,𝑛

𝑗
) + 𝑐2𝑅𝑖,𝑛

𝑗
(𝐺𝑛

𝑗
− 𝑋𝑖,𝑛

𝑗
) (1) 

𝑋𝑖,𝑛+1
𝑗

= 𝑋𝑖,𝑛
𝑗
+ 𝑉𝑖,𝑛+1

𝑗  (2) 

for 𝑖 = 1,2⋯ ,𝑀 ;  𝑗 = 1,2⋯ , 𝑁 , where 𝑐1  and 𝑐2  are known 
as the acceleration coefficients. The vector 𝑃𝑖,𝑛 =
(𝑃𝑖,𝑛

1 , 𝑃𝑖,𝑛
2 , ⋯ , 𝑃𝑖,𝑛

𝑁 ) is the personal best (pbest) position of par-
ticle 𝑖 , records its previous best position. The vector 𝐺𝑛 =
(𝐺𝑛

1, 𝐺𝑛
2, ⋯ , 𝐺𝑛

𝑁)  is the best one according to the objective 
function among all the pbest positions in the particle swarm 
and is called the global best (gbest) position. The movement 
of each particle according to these two equations is some-
what similar to the flight path of each bird determined by its 
own information and that shared by the whole bird flock. 
When the search process is terminated, the current gbest po-
sition is the solution we finally found. In equation (1),  𝑟𝑖,𝑛

𝑗
 

and 𝑅𝑖,𝑛
𝑗

 are two different sequences of random numbers 
uniformly distriuted on the interval (0,1), and 𝑤 is the in-
ertia weight and is set as a linearly decreasing value in ca-
nonical PSO [27]. 𝑉𝑖,𝑛

𝑗
 and 𝑋𝑖,𝑛

𝑗
 should be restricted with 

[𝑉𝑚𝑖𝑛
𝑗
, 𝑉𝑚𝑎𝑥

𝑗
] and [𝑋𝑚𝑖𝑛

𝑗
, 𝑋𝑚𝑎𝑥

𝑗
], respectively during the search 

process. All these value ranges are set in advance according 
to the specific situation.  

QPSO is a variant version of PSO, motivated by concepts 
from quantum mechanics [28] and the trajectory analysis of 
the canonical PSO in [26]. The trajectory analysis in [26] 
demonstrated that each particle i in canonical PSO moves in 
a trajectory with its local focus (i.e. local attractor) 𝑝𝑖,𝑛 =
(𝑝𝑖,𝑛

1 , 𝑝𝑖,𝑛
2 , ⋯ , 𝑝𝑖,𝑛

𝑁 ), and each dimension of 𝑝𝑖,𝑛 is given by: 
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𝑝𝑖,𝑛
𝑗
=

𝑐1𝑟𝑖,𝑛
𝑗
𝑃𝑖,𝑛
𝑗
+𝑐2𝑅𝑖,𝑛

𝑗
𝐺𝑛
𝑗

𝑐1𝑟𝑖,𝑛
𝑗
+𝑐2𝑅𝑖,𝑛

𝑗    (3) 

In the canonical PSO, both acceleration coefficients are set to 
be equal, i.e. 𝑐1 = 𝑐2. Therefore, equation (3) is equivalent to 

𝑝𝑖,𝑛
𝑗
= 𝛾𝑖,𝑛

𝑗
𝑃𝑖,𝑛
𝑗
+ (1 − 𝛾𝑖,𝑛

𝑗
)𝐺𝑛

𝑗
      𝛾𝑖,𝑛

𝑗
~𝑈(0,1) (4) 

where 𝛾𝑖,𝑛
𝑗

 is a sequence of random numbers uniformly dis-
tribute on the interval  (0,1). 

Under the above premise, it is assumed that each particle 
i in QPSO is treated as a spin-less one moving in a quantum 
space and is attracted by its local focus, with a δ potential 

well centered at 𝑝𝑖,𝑛
𝑗

 in the jth dimension (1 ≤ 𝑗 ≤ 𝑁). Thus, 

in each dimension, we can solve the Schrödinger equation 

and obtain the wave function for 𝑋𝑖,𝑛+1
𝑗

 and then get the cor-

responding probability distribution function as 

  𝐹(𝑋𝑖,𝑛+1
𝑗

) =  1 − exp(−2|𝑋𝑖,𝑛+1
𝑗

− 𝑝𝑖,𝑛
𝑗
|/𝐿𝑖,𝑛

𝑗
) (5) 

where 𝐿𝑖,𝑛
𝑗

 is the characteristic length of the wave function, 

which determines the search scope of each particle in each 
dimension. Employing the Monte Carlo method, we can get 

𝑋𝑖,𝑛+1
𝑗

 as 

𝑋𝑖,𝑛+1
𝑗

= 𝑝𝑖,𝑛
𝑗
±

𝐿𝑖,𝑛
𝑗

2
ln(1/𝑢𝑖,𝑛+1

𝑗
), 𝑢𝑖,𝑛+1

𝑗
~𝑈(0,1) (6) 

where 𝑢𝑖,𝑛+1
𝑗

 is the sequence of random numbers uniformly 
distributed on the interval (0,1). In the canonical QPSO, 
the 𝐿𝑖,𝑛

𝑗
 is given by  

𝐿𝑖,𝑛
𝑗
= 2𝛼|𝑋𝑖,𝑛

𝑗
− 𝐶𝑛

𝑗
| (7) 

where 𝐶𝑛 = (𝐶𝑛
1, 𝐶𝑛

2, ⋯ , 𝐶𝑛
𝑗
)  is known as the mean best 

(mbest) position, which is defined as the mean of the pbest 

positions of all the particles in the swarm, tht is, 𝐶𝑛
𝑗
=

1

𝑀
∑ 𝑃𝑖,𝑛

𝑗𝑀
𝑖 , (1 ≤ 𝑗 ≤ 𝑁) . Therefore, we can get the update 

equation of each particle’s position as 

𝑋𝑖,𝑛+1
𝑗

= 𝑝𝑖,𝑛
𝑗
± 𝛼|𝑋𝑖,𝑛

𝑗
− 𝐶𝑛

𝑗
|ln(1/𝑢𝑖,𝑛+1

𝑗
) (8) 

𝛼 in equations (7) and (8) is known as the contraction-expan-
sion (CE) coefficient, which can be tuned to control the con-
vergence speed of the particles in QPSO. As QPSO can get 
better performance than many other variants of PSO for 
most practical problems [29], in this paper, it is used as the 
core part of the search algorithm in docking. According to 
the discussion in [29], when 𝛼 decreases linearly from 1.0 to 
0.5, QPSO can obtain generally better performance than 
other parameter configurations. In the following sections, 
the QPSO algorithm and its improved version also adopt 
this parameter setting. 

2.2 Definition of Normalized Swarm Diversity 

Although QPSO has a good algorithmic performance, like 
other PSO variants and evolutionary algorithms, it still in-
evitably encounters premature convergence when solving 
complex optimization problems such as flexible ligand 
docking, as will be shown in experimental results in the 
next section. Therefore, a novel diversity-controlled strat-
egy is proposed in this paper to further enhance the search 
ability of the QPSO algorithm used for flexible ligand 

docking. 
For the PSO algorithms, a genotype diversity measure 

is widely used, which defined as the average distance to 
the mean position of the particle swarm [30], [31], [32]: 

𝐷(𝑋𝑛) =
1

𝑀 ∙ 𝑆
∑ [∑ [𝑋𝑖,𝑛

𝑗
− 𝑋𝑛

𝑗̅̅̅̅ ]2
𝑁

𝑗=1
]1/2

𝑀

𝑖=1

=
1

𝑀 ∙ 𝑆
∑ |𝑋𝑖,𝑛 − 𝑋𝑛̅̅̅̅ |

𝑀

𝑖=1
 

(9) 

where 𝑆 is the diagonal length of the search space, repre-
sents the scope of the search area. 𝑋𝑛

𝑗̅̅̅̅  is the component of 
mean current position of all the particles in the 𝑗𝑡ℎ dimen-
sion. 𝐷(𝑋𝑛) represents the dispersion of the particle swarm 
over the whole search space at the 𝑛𝑡ℎ iteration. By control-
ling the diverisity, the particle swarm is able to maintain 
its search ability and avoid premature convergence as 
much as possible during the search process. 

However, such a definition of diversity in equation (9) 
is probelmetic when it is used in practical applications, 
since the magnitudes are different in each dimension of the 
search space and the dimensions with larger magnitudes 
have gereater impact on the value of 𝐷(𝑋𝑛) than those with 
smaller magnitudes. For example, in the flexible ligand 
docking, as the decision variables are positions or oriten-
tions so that their magnitudes are different from each 
other. Therfore, in this paper, we propose a modified di-
versity measure, in which the magnitude of each dimen-
sion is linearly normalized to ensure that each dimension 
has the same contribution to swarm diversity: 

𝑍𝑖,𝑛
𝑗
= (𝑋𝑖,𝑛

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
)/(𝑋𝑚𝑎𝑥

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
) (10) 

𝑁𝐷(𝑋𝑛) =
1

𝑀 ∙ √𝑁
∑ [∑ [𝑍𝑖,𝑛

𝑗
− 𝑍𝑛

𝑗̅̅ ̅]2
𝑁

𝑗=1
]1/2

𝑀

𝑖=1

=
1

𝑀 ∙ √𝑁
∑ |𝑍𝑖,𝑛 − 𝑍𝑛̅̅ ̅|

𝑀

𝑖=1
 

(11) 

where [𝑋𝑚𝑖𝑛
𝑗
, 𝑋𝑚𝑎𝑥

𝑗
]  is the range of the 𝑗 th diemsnion of 

search space, and 𝑍𝑖,𝑛
𝑗  is the normalized value of 𝑋𝑖,𝑛

𝑗
. Re-

placing 𝑋𝑖,𝑛
𝑗

 in equation (9) by 𝑍𝑖,𝑛
𝑗 , we get the normalized 

swarm diversity 𝑁𝐷(𝑋𝑛) given by equation (11), in which, 
the diagonal length of the search space is √𝑁, since the nor-
malized range of each dimension is assumed to be [0, 1]. 

2.3 Attractor-Guided Strategy in Quantum Particle 
Swarm Optimization 

In order to use QPSO to solve docking problems effec-
tively, the global search ability of QPSO should be en-
hanced to avoid premature convergence. A strong local 
search ability is also necessary to get a final result with 
higher quality. As swarm diversity measures the disper-
sion of the particles, the search directions of particles can 
be adjusted according to the current value of swarm diver-
sity to enable the particle swarm to search more globally or 
more locally. In order to guide the particles’ search direc-
tions without abandoning the search properties of QPSO, 
based on the definition of the normalized swarm diversity, 
we propose a novel diversity guided strategy for the QPSO 
algorithm as described below. 

According to equations (4) and (8), the motion direction 
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of each particle in QPSO is influenced by three other posi-
tions, namely, the particle’s own pbest position, the gbest 
position, and the mbest position. In this paper, the three 
kinds of positions are defined as the “attractors” of the re-
lated particle, and the particles’ search directions can be 
guided by adjusting the positions of attractors. Therefore, 
the novel update equation of each particle’s position can 
be expressed by 

𝐴(𝑝𝑖,𝑛
𝑗
) =  𝛾𝑖,𝑛

𝑗
𝐴(𝑃𝑖,𝑛

𝑗
) + (1 − 𝛾𝑖,𝑛

𝑗
)𝐺𝑛

𝑗
, 𝛾𝑖,𝑛

𝑗
~𝑈(0,1) (12) 

𝑋𝑖,𝑛+1
𝑗

= 𝐴(𝑝𝑖,𝑛
𝑗
) ± 𝛼|𝑋𝑖,𝑛

𝑗
− 𝐴(𝐶𝑛

𝑗
)|ln (1/𝑢𝑖,𝑛+1

𝑗
) (13) 

where 𝐴(𝑃𝑖,𝑛
𝑗
) and 𝐴(𝐶𝑛

𝑗
) are the adjusted values of 𝑃𝑖,𝑛

𝑗
 and 

𝐶𝑛
𝑗
, respectively. The positions of these attractors should be 

set according to specific situation, which will be elaborated 
below. It should be noted that the gbest position is not ad-
justed in the proposed diversiy-controlled strategy, since 
this historical best solution found by the particle swarm at-
tracts all the particles for convergence of the algorithm. The 
adjustment of the attractors is the most distinctive charac-
teristics of the proposed strategy, and correspondingly this 
strategy is called “attractor-guided (AG) strategy”. 

In the AG strategy, two types of swarm diversities 
should be measured. One is the position diversity 𝑁𝐷(𝑋𝑛), 
i.e., the normalized swarm diversity of all particles’ current 
positions, and the other is the cognitive diversity 𝑁𝐷(𝑃𝑛), 
defined as the normalized swarm diversity of all the pbest 
positions. Since all the attractors are related to pbest posi-
tions, both of the two diversities should not decrease rap-
idly, otherwise premature convergence can be resulted in. 
Considering that 𝑁𝐷(𝑃𝑛)  keeps declining in most of the 
search process, a linearly decreasing baseline 𝐵𝑛 of cogni-
tive diversity is set according to equation (14), indicating 
the desired decline rate of 𝑁𝐷(𝑃𝑛), and then the appropri-
ate distribution area of pbest positions can guide the parti-
cles to search within an appropriate scope. 

𝐵𝑛 = (1 − 𝑛/𝑛𝑚𝑎𝑥) ∗ (𝐵0 − 𝐵𝑛𝑚𝑎𝑥) + 𝐵𝑛𝑚𝑎𝑥  (14) 

where 𝑛𝑚𝑎𝑥 is the maximum number of iterations, and 𝐵0 
is the initial value of 𝐵𝑛 set to 0.25, which is the diversity 
value representing the uniform distribution of all the par-
ticles on the whole search space. 𝐵𝑛𝑚𝑎𝑥 is the end value cal-
culated by: 

𝐵𝑛𝑚𝑎𝑥 =
1

𝑀 ∙ √𝑁
∑ [∑ [𝑒𝑟 × 0.5]2

𝑁

𝑗=1
]1/2

𝑀

𝑖=1
= 𝑒𝑟/2 

(15) 

where 𝑒𝑟 is the ratio of the diagonal length of the desirable 
search scope at the end of the search process to that of the 
entire search space. 𝑒𝑟 should be low enough to make sure 
QPSO is able to search in a small scope during the later 
stage of the search process, so as to find a final result with 
higher quality. By using “0.5” in equation (15), we mean it 
is assumed that the mean current position of all the parti-
cles is at the center of search space, such that the distance 
of the mean position to the edge of the normalized search 
space should be 0.5. In this paper, 𝑒𝑟 is set empirically to 
be 1 × 10−4, corresponding to 𝐵𝑛𝑚𝑎𝑥 = 5 × 10

−5. 
With the set baseline, the whole search process of the 

QPSO algorithm can be divided into three phases accord-
ing to the comparison of the baseline with the 𝑁𝐷(𝑋𝑛) and 

𝑁𝐷(𝑃𝑛). In these phases, the positions of attractors are ad-
justed to control the search behavior of all particles, which 
are descried as follows. 

A. Normal phase 
When 𝑁𝐷(𝑋𝑛)  is larger than the baseline and 𝑁𝐷(𝑃𝑛) 

lower than the baseline, 𝐴(𝑃𝑖,𝑛
𝑗
) and 𝐴(𝐶𝑛

𝑗
) are just set to be 

the same as 𝑃𝑖,𝑛
𝑗

 and 𝐶𝑛
𝑗
, which means in this situation the 

algorithm searches as in the general setting. The reason is 
that the large difference between 𝑁𝐷(𝑋𝑛)  and 𝑁𝐷(𝑃𝑛)  in 
this phase promotes the particles with the QPSO mecha-
nism to search in a relatively large scope, which makes it 
hard for the 𝑁𝐷(𝑃𝑛) to sharply decrease, and thus gives the 
particles a good balance between global search and local 
search. 

B. Divergence phase 
When both 𝑁𝐷(𝑋𝑛) and 𝑁𝐷(𝑃𝑛) are lower than the cur-

rent value of the baseline, 𝑁𝐷(𝑃𝑛) should stop decreasing 
or decrease much lower than before to wait for the value 
of the baseline to go down. However, a relatively small 
value of 𝑁𝐷(𝑋𝑛) probably leads to constant convergence of 
the pbest positions. Hence, in this phase, all the particles 
should diverge to be distributed in a larger area, which can 
prevent 𝑁𝐷(𝑃𝑛)  from declining and in turn enhance the 
global search ability of the algorithm. 

To guide particles to diverge, the attractors, 𝑃𝑖,𝑛
𝑗

 and 𝐶𝑖,𝑛
𝑗

, 
should be set far from 𝐺𝑛

𝑗
 and 𝑋𝑖,𝑛

𝑗
 so that each particle can 

be pulled away from the center of the swarm. 𝐴(𝑃𝑖,𝑛
𝑗
) and 

𝐴(𝐶𝑖,𝑛
𝑗
) are set as the equations (16) and (17), respectively: 

𝐴(𝑃𝑖,𝑛
𝑗
)

=

{
 
 

 
 𝐺𝑛

𝑗
± 2 ∗ 𝑑𝑖 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, 𝑃𝑖,𝑛

𝑗
= 𝐺𝑛

𝑗

𝐺𝑛
𝑗
+ 2 ∗ 𝑑𝑖 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, 0 < 𝑃𝑖,𝑛

𝑗
− 𝐺𝑛

𝑗
< 2 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑

𝐺𝑛
𝑗
− 2 ∗ 𝑑𝑖 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, −2 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑 < 𝑃𝑖,𝑛

𝑗
− 𝐺𝑛

𝑗
< 0

𝐺𝑛
𝑗
+ 2 ∗ 𝑑𝑖 ∗ (𝑃𝑖,𝑛

𝑗
− 𝐺𝑛

𝑗
), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(16) 

𝐴(𝐶𝑖,𝑛
𝑗
)

=

{
 
 

 
 𝑋𝑖,𝑛

𝑗
± 𝑑𝑖 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, 𝐶𝑛

𝑗
= 𝑋𝑖,𝑛

𝑗

𝑋𝑖,𝑛
𝑗
+ 𝑑𝑖 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, 0 < 𝐶𝑛

𝑗
− 𝑋𝑖,𝑛

𝑗
< 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑

𝑋𝑖,𝑛
𝑗
− 𝑑𝑖 ∗ 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, −𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑 < 𝐶𝑛

𝑗
−𝑋𝑖,𝑛

𝑗
< 0

𝑋𝑖,𝑛
𝑗
+ 2 ∗ 𝑑𝑖 ∗ (𝐶𝑛

𝑗
− 𝑋𝑖,𝑛

𝑗
), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(17) 

where 𝑠𝑟𝑎𝑑 is the half of the search range in the 𝑗𝑡ℎ  dimen-
sion, i.e. 𝑠𝑟𝑎𝑑 = (𝑋𝑚𝑎𝑥

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
)/2  . 𝑑𝑖 > 1  represents the 

divergence coefficient expressed as: 

𝑑𝑖 = {
𝐵0/𝑁𝐷(𝑋𝑛), 𝐵𝑛𝑚𝑎𝑥 ≤ 𝐿(𝑋𝑛) < 𝐵𝑛
𝐵0/𝐵𝑛𝑚𝑎𝑥, 𝐿(𝑋𝑛) < 𝐵𝑛𝑚𝑎𝑥

 (18) 

During the divergence phase, there is little possibility 
for the algorithm to find a better solution, and thus the al-
gorithm only stays for one iteration each time it comes into 
this phase. Therefore, 𝑑𝑖 is set to increase with the decline 
of 𝑁𝐷(𝑋𝑛) in a reciprocal form to force 𝐴(𝑃𝑖,𝑛

𝑗
) and 𝐴(𝐶𝑖,𝑛

𝑗
) 

to leave far enough away from 𝐺𝑛
𝑗
 and 𝑋𝑖,𝑛

𝑗
 according to 

equations (16) and (17), respectively, with the 𝑁𝐷(𝑋𝑛) in-
creasing to 𝐵0. In equation (16), 𝐺𝑛

𝑗
 is set as the reference 

point to 𝑃𝑖,𝑛
𝑗

, since 𝐺𝑛
𝑗
 is the best one among all 𝑃𝑖,𝑛

𝑗
. In equa-

tion (17), 𝑋𝑖,𝑛
𝑗

 is the reference point to 𝐶𝑖,𝑛
𝑗

, since the second 
term on the right side of equation (8) is determined by the 
difference between 𝐶𝑛

𝑗
 and 𝑋𝑖,𝑛

𝑗
. As indicated by equation 

(17), 𝐴(𝐶𝑖,𝑛
𝑗
) is set according to the distance of 𝐶𝑛

𝑗
 to 𝑋𝑖,𝑛

𝑗
, 
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otherwise if 𝐶𝑛
𝑗
 is too close to 𝑋𝑖,𝑛

𝑗
, it should be determined 

by the desirable least distance from the reference point, i.e. 
𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑, without changing its motion direction. Similarly, 
𝐴(𝑃𝑖,𝑛

𝑗
) is set in the same way as 𝐴(𝐶𝑖,𝑛

𝑗
) according to equa-

tion (16). It should be noted that there is a scaling coeffi-
cient “2” before 𝑒𝑟  in equation (16), since 𝑝𝑖,𝑛

𝑗
, the linear 

combination of 𝑃𝑖,𝑛
𝑗

 and 𝐺𝑛
𝑗
, leads the expected position of 

𝑝𝑖,𝑛
𝑗

 to be the mean position of 𝑃𝑖,𝑛
𝑗

 and 𝐺𝑛
𝑗
. 𝑝𝑖,𝑛

𝑗
 in the first 

term on right side of equation (8) is the real local attractor, 
so multipling 𝑒𝑟 ∗ 𝑠𝑟𝑎𝑑 by 2 in equation (16) can set 𝐴(𝑝𝑖,𝑛

𝑗
) 

at the desirable position, making 𝑁𝐷(𝑋𝑛) increase to the 
ideal value.  

C. Acceleration phase 
If 𝑁𝐷(𝑃𝑛)  is higher than the baseline, the algorithm 

should change into acceleration phase, making the 𝑁𝐷(𝑋𝑛) 
rapidly decrease so that 𝑁𝐷(𝑃𝑛) is able to have more op-
portunity to go down to catch up the decline rate of the 
baseline. In this phase, only 𝐴(𝑃𝑖,𝑛

𝑗
) is set to be closer to 𝐺𝑛

𝑗
 

as shown by equation (19), while 𝐴(𝐶𝑛
𝑗
) leaves unchanged 

so that the particles can search in a relatively small area 
around the gbest position, resulting in enhanced local 
search ability of QPSO. 

𝐴(𝑃𝑖,𝑛
𝑗
) = 𝐺𝑛

𝑗
+ 𝑎𝑖 ∗ (𝑃𝑖,𝑛

𝑗
− 𝐺𝑛

𝑗
) (19) 

where 0 < 𝑎𝑖 < 1 is the acceleration coefficient, which can 
be expressed as 

𝑎𝑖 = 𝐵𝑛/ 𝑁𝐷𝑠(𝑋𝑛) (20) 

where 𝑁𝐷𝑠(𝑋𝑛) is a constant value during a continuous ac-
celeration phase, which equals to 𝑁𝐷(𝑋𝑛) of the first itera-
tion in such a continuous acceleration phase. When the al-
gorithm stays in a continuous acceleration phase for rela-
tively long time, this setting can make 𝑎𝑖 keep decreasing 
with the drop of the baseline, further narrowing the search 
scope. 

2.4 Position Diversity-Controlled Solis and Wets 
Local Search Method 

Like in LGA [6] and SODOCK [3], the SWLS method [12] is 
also employed in this study. The SWLS method is a stochastic 
heuristic for continuous search spaces, which introduces a 
probabilistic element. Its primal purpose is the local optimi-
zation of functions that do not provide gradient information 
[12]. Basically, the SWLS method always starts by a random 
search step with a normal distribution 𝑁(𝑏, 𝑞) in each dimen-
sion, and, during the evolving process, 𝑏 and 𝑞 are adjusted 
according to the current objective function value of the parti-
cle, then the search process should be ended when 𝑞 is lower 
than 1% of the start step, or the algorithm meets the maximum 
number of local search iterations. The specific steps of the 
SWLS method can be accessed in [3]. 

Due to the different value ranges of each dimension in 
docking problems, in LGA and SODOCK, the SWLS method 
has different constant initial 𝑞 value in each dimension. Simi-
lar to but not the same as these two algorithms, a modified 
SWLS (MSWLS) method is proposed in this paper, where the 
initial value of 𝑞 in the 𝑗𝑡ℎ dimension should be referred to 

𝑞𝑗 = ((𝑋𝑚𝑎𝑥
𝑗

− 𝑋𝑚𝑖𝑛
𝑗
)/𝑠) ∗ (𝑁𝐷(𝑋𝑛)/𝐵0) (21) 

In equation (21), 𝑞𝒋 is related to the value range in dimen-
sion 𝑗, since for normal docking and blind docking, there are 
large differences in search ranges of ligands’ coordinates. 𝑠 is 
the ratio of the maximum initial search step size to the entire 
search range in each dimension. In this paper, we set empiri-
cally 𝑠 = 30 . 𝑁𝐷(𝑋𝑛)/𝐵0  measures the size of the current 
search scope of the QPSO algorithm. Multiplying by this 
value means the MSWLS method is set to match the QPSO’s 
search behavior. If QPSO searches in a relatively large space, 
the initial search range of MSWLS method is also large, and 
vice versa. The termination criterion of this improved SWLS 
method is unchanged, that is, the lower bound of 𝑞 should 
still be 1% of the initial value so that it should be calculated 
every time the MSWLS method is applied. With respect to 
other settings in MSWLS, the maximum number of consecu-
tive successes or failures before doubling or halving the local 
search step size is set to 4, and the maximum number of iter-
ations should be set according to Table 1. 

2.5 The Hybrid Search Algorithm for Automated 
Docking 

The proposed hybrid algorithm combining the QPSO algo-
rithm, the AG strategy and the MSWLS method is named as 
the diversity-controlled Lamarckian QPSO (DCL-QPSO) al-
gorithm, which is implemented in the Autodock 4.2.6. Similar 
to LGA, the MSWLS method is expected at the end of each 
iteration, and each particle has a probability of 0.06 to be sub-
jected to local search [6]. With the implementation of the AG 
strategy based on the new definition of swarm diversity and 
the improved local search method, the hybrid algorithm has 
a good balance between global search ability and local search 
ability no matter how large the search range is. It means that 
the DCL-QPSO algorithm can be used for automated docking 
whether the binding site is known or not. The procedure of 
the hybrid algorithm is outlined below. 

 

Algorithm DCL-QPSO (𝑀,𝑁, 𝑋min, 𝑋max, 𝑛𝑒𝑣𝑎𝑙𝑚𝑎𝑥) 
1 𝑛𝑒𝑣𝑎𝑙 = 0; 
2 𝑛 = 0; 
3 for 𝑖 = 1 to M do 
4     randomly initialize 𝑋𝑖,𝑛; 
5     evaluate docked energy of 𝑋𝑖,𝑛; 
6     𝑃𝑖,𝑛 = 𝑋𝑖,𝑛; 
7 end for 
8 compute 𝐶𝑛 and find 𝐺𝑛 among all 𝑃𝑖,𝑛; 

9 
compute 𝑁𝐷(𝑋𝑛)  and 𝑁𝐷(𝑃𝑛)  using equation 
(11); 

10 while 𝑛𝑒𝑣𝑎𝑙 < 𝑛𝑒𝑣𝑎𝑙𝑚𝑎𝑥 do 
11     compute 𝐵𝑛 using equation (14); 
12     𝐴(𝑃𝑛) = 𝑃𝑛; 
13     𝐴(𝐶𝑛) = 𝐶𝑛; 
14     if 𝑁𝐷(𝑃𝑛) < 𝐵𝑛 and 𝑁𝐷(𝑋𝑛) < 𝐵𝑛 then 

15 
        compute 𝐴(𝑃𝑛)  and 𝐴(𝐶𝑛)  using equation 

(16). and (17); 
16     end if 
17     if 𝑁𝐷(𝑃𝑛) > 𝐵𝑛 then 
18         compute 𝐴(𝑃𝑛) using equation (19); 
19     end if 
20     for 𝑖 = 1 to M do 
21         for 𝑗 = 1 to N do 
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22             𝐴(𝑝𝑖,𝑛
𝑗
) =  𝛾𝑖,𝑛

𝑗
𝐴(𝑃𝑖,𝑛

𝑗
) + (1 − 𝛾𝑖,𝑛

𝑗
)𝐺𝑛

𝑗
; 

23 
            𝑋𝑖,𝑛+1

𝑗
= 𝐴(𝑝𝑖,𝑛

𝑗
) ± 𝛼|𝑋𝑖,𝑛

𝑗
− 𝐴(𝐶𝑛

𝑗
)|ln (1/

𝑢𝑖,𝑛+1
𝑗

); 
24             if 𝑋𝑖,𝑛+1

𝑗
> 𝑋𝑚𝑎𝑥

𝑗
 or 𝑋𝑖,𝑛+1

𝑗
< 𝑋𝑚𝑖𝑛

𝑗
 then 

25 
                set 𝑋𝑖,𝑛+1

𝑗
 a random value within its 

search range; 
26             end if 
27         end for 
28         evaluate docked energy of 𝑋𝑖,𝑛+1; 
29         𝑛𝑒𝑣𝑎𝑙 = 𝑛𝑒𝑣𝑎𝑙 + 1; 
30     end for 
31     compute 𝑁𝐷(𝑋𝑛) using equation (11); 

32 
    Apply the MSWLS method with a probability 

of 0.06 to each particle in 𝑋𝑖,𝑛+1; 
33     𝑛𝑒𝑣𝑎𝑙 = 𝑛𝑒𝑣𝑎𝑙 + 𝑛𝑒𝑣𝑎𝑙𝑙𝑠; 
34     update 𝑃𝑛, compute 𝐶𝑛 and find 𝐺𝑛; 

35 
    compute 𝑁𝐷(𝑋𝑛)  and 𝑁𝐷(𝑃𝑛)  using equation 
(11); 

36     𝑛 = 𝑛 + 1; 
37 end while 

 
In the DCL-QPSO algorithm, 𝑛𝑒𝑣𝑎𝑙 is the number of objec-

tive function evaluations. 𝑛𝑒𝑣𝑎𝑙𝑚𝑎𝑥 is the maximum number 
of the evaluations, and 𝑛𝑒𝑣𝑎𝑙𝑙𝑠 means the number of the ob-
jective function evaluations by the MSWLS method. In Ap-
pendix A, our preliminary experiments and the correspond-
ing analysis have proved the effectiveness of the diversity-
controlled strategies in improving the search ability of the 
QPSO algorithm from an algorithmic perspective. 

3 EXPERIMENTAL SETUPS 

3.1 Dataset 

To evaluate the performance of the DCL-QPSO algorithm for 
docking applications, the EDock dataset was used for testing 
the proposed algorithm [33]. This dataset consists of 102 test 
cases from DUDE [34] and 433 test cases from COACH [35]. 
All the 102 test cases in DUDE were chosen from a diverse 
family, including 26 kinases, 15 proteases, 11 nuclear recep-
tors, 5 GPCRs, 2 ion channels, 2 cytochrome P450s, 36 other 
enzymes, and 5 miscellaneous proteins. It should be pointed 
out that for each test case in DUDE, only the active compound 
is used in docking experiments, while the decoy compounds 
are skipped since they do not have a native pose that can be 
compared with the predicted conformation. The original 
COACH dataset contains 500 non-redundant proteins that 
harbor 812 ligands (410 natural ligand, 238 drug-like ligand 
and 164 metal ions) [35]. Eliminating the targets with metal 
ions and large ligands from the original COACH dataset, the 
remaining 433 test cases are suitable for protein-ligand dock-
ing experiments. Consequently, the EDock dataset totally 
contains 535 test cases. The number of torsions of the ligands 
in these test cases ranges from 0 to 24, representing that the 
search dimension varies from 7 to 31, so that the performance 
of the proposed algorithm can be evaluated comprehensively 
on the problems with different search dimensions. 

3.2 Docking preparation and experimental settings 

In this paper, the docking simulations comprise two parts, i.e., 

the normal flexible ligand docking and the blind flexible lig-
and docking. In each part, all the 535 test cases in EDock da-
taset were employed, and five docking methods, including 
DCL-QPSO, LGA [6], SODOCK [3], Vina (version 1.1.2) [7] 
and Glide (version 7.8, integrated in Schrodinger 2018-2) [11] 
were compared in terms of docking performance. The LGA 
was selected since it is still the default algorithm used in the 
latest version of Autodock. The SODOCK was chosen as a 
compared algorithm from many proposed optimization algo-
rithms integrated with Autodock, since in [36] Guo et al. has 
proved that the SODOCK generally has better docking accu-
racy and robustness than many other Autodock-based algo-
rithms. Vina was developed in order to improve the docking 
speed and accuracy of Autodock4, and thus this program was 
often used to compare with Autodock in many aspects [7], 
[37], [38] so that it was also employed in our experiments. As 
a commercial docking program with high robustness [37], 
Glide is another comparative docking program not based on 
Autodock used in our experiments. In this paper, all the dock-
ing experiments were run on a personal computer with an In-
tel® i7-6850 8-core 3.60GHz processor, a 12-GB RAM and an 
Ubuntu 16.04 Linux platform. The following paragraph in 
this subsection describes the specific parameter settings of 
each docking method in detail. 

Three Autodock-based docking algorithms, including 
DCL-QPSO, LGA and SODOCK, employed the docking en-
vironment and scoring function of Autodock 4.2.6. The semi-
empirical force field of Autodock 4.2.6 was used as the scoring 
function to evaluate conformations in docking simulations, 
with the total energy including the intermolecular and intra-
molecular interaction energies. Each term in the force field 
contains evaluations for dispersion/repulsion, hydrogen 
bonding, electrostatics, and desolvation. More detailed expla-
nation of this force field can be found in [39]. 

With respect to the experiment settings in the Autodock 
environment, 50 particles, 5 × 105  energy function evalua-
tions, 100 local search maximum iterations and 30 docking 
times were utilized for each normal docking test case; 100 par-
ticles, 3 × 106  energy function evaluations, 300 local search 
maximum iterations and 50 docking times were applied to 
each blind docking test case. The AutodockTools within 
MGLTools (version 1.5.6) was used to generate PDBQT for-
mat files of the receptor and ligand, and to add hydrogens to 
the receptor for each test case. The energy grid maps were cal-
culated with AutoGrid. For normal flexible ligand docking, 
the grid size was set to 60×60×60 points with a spacing of 
0.375Å (i.e., a cube with an edge length of 22.5 Å), and the 
center of the grid map was set as the center of the reference 
ligand for each test case. For blind flexible ligand docking, the 
grid size was set to a cube such that it can cover the whole 
protein for each test case and the spacing was also set to 
0.375Å. Within the corresponding search range of each dock-
ing trial, the component in each dimension of each particle’s 
position was randomly initialized. Besides, with respect to the 
specific setting in each Autodock-based algorithm, the DCL-
QPSO algorithm utilized the parameter setting specified in 
Section 2, and those of LGA and SODOCK were just as rec-
ommended in [6] and [3], respectively. 

For Vina, the PDBQT files and the grid maps were also pre-
pared by using AutodockTools and AutoGrid, respectively. 
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For both normal and flexible ligand docking on each test case, 
the grid maps were set to be the same as those for Autodock-
based programs. The maximum energy difference between 
the best binding mode and the worst one reported in the re-
sult files was set to 10 kcal/mol, in order to generate enough 
modes with different energy level. For each docking test, up 
to 20 (maximum number in Vina) binding modes were gen-
erated and the exhaustiveness was set to 8. 

The programs in Schrodinger (version 2018-2) were used 
for the docking preparation of Glide [11]. For both normal and 
flexible ligand docking, the grid center and the box size were 
set to be the same as those applied to Autodock-based pro-
grams. Docking precision mode was set to SP. The maximum 
number of the poses reported for each docking experiment 
was set to 50. All the other parameters were set to default val-
ues in Gilde. 

3.3 Performance metrics 

In this paper, the comparisons in terms of energy-related re-
sults are only done among DCL-QPSO, LGA and SODOCK, 
since their energy values are all calculated by the same scor-
ing function. However, in Autodock 4.2.6, the energy value 
calculated by the force field (i.e., the objective function value) 
is not used to rank the final docking conformations of multi-
ple trials in a single docking problem, but the binding free en-
ergy [6] is used instead. Its value can be easily calculated since 
it is part of the scoring function value, which is the sum of the 
intermolecular energy and the torsional free energy. In Auto-
dock-based algorithms, the binding free energy is only re-
ported immediately when the search process is finished. After 
all the required trials are ended for a docking test case, the 
value of the binding free energy is used to rank all the final 
docking conformations, since it is more instructive for the se-
lection and specific research of the final conformations than 
the energy value calculated by the force field. The binding free 
energy does not include the internal or intramolecular inter-
action energy of the ligand, since this part of energy cannot 
improve the accuracy of the binding free energy model but 
really affects the docking results during the search process. 
Therefore, the value of the binding free energy, rather than 
the scoring function value, is used as one performance metric 
for the Autodock-based algorithms in this paper. 

For evaluating the similarity between the produced con-
formation and the crystallographic one, the root mean 
squared deviation (RMSD) between these two conformations 
was calculated. In this paper, the RMSD value was calculated 
by using all the heavy atoms of the ligand without consider-
ing the symmetry. This calculation of RMSD is stricter than 
the default one applied in Autodock, which considers the 
symmetry of the conformations [39]. In this paper, two kinds 
of widely used RMSD, i.e., the best-scored RMSD and the 
best-sampled RMSD, are evaluated to compare docking pro-
grams with different scoring functions [40], [41]. The former 
is the RMSD between the reference structure and the confor-
mation with the lowest score or binding free energy, and the 
latter is the smallest RMSD among the RMSDs between all the 
produced conformations and the crystal one. A common 
threshold of RMSD is set to 2Å, which is used to determine 
whether the crystal structure was successfully reproduced. 

Another specific performance metric employed in this pa-
per is the highest cluster rank of all the successful docking 
conformations (referred to top-success cluster rank), which is 
only used to evaluate the results for blind flexible ligand 
docking. In the Autodock program, all the found confor-
mations for a docking test are classified to multiple clusters. 
In each cluster, the RMSDs between the conformation with 
the lowest binding free energy and the lowest-energy confor-
mations in all the other clusters are relatively large (>2Å), 
while the RMSDs between the lowest-energy conformation 
and all the other conformations in this cluster are smaller than 
2Å. Generally, a certain area around the center of a cluster is 
considered as a potential binding site [22]. Therefore, the re-
searchers can probably investigate the final docking confor-
mations based on the cluster rank, and a higher top-success 
cluster rank can probably lead users to find the right binding 
site and binding mode more efficiently. For Vina and Glide, a 
reported conformation in the result file represents a single 
cluster, since the found conformations very close to any re-
ported conformation have been eliminated during the dock-
ing process. Therefore, the top-success cluster rank of Vina or 
Glide docking results mentioned in section 4.2 is actually the 
highest rank of all the successful docking conformations 
found by the corresponding docking program. 

In order to determine whether there is a significant differ-
ence between two sets of evaluation data obtained by DCL-
QPSO and another compared docking method, we used the 
Wilcoxon signed ranked test [42] in this paper. Each value in 
a set of evaluation data represents a specific statistical result 
(e.g. mean binding free energy) obtained by a docking 
method after multiple trials for a test case. For evaluating the 
robustness in terms of the best or the lowest metrics (e.g. the 
best-sampled RMSD or the lowest binding free energy), the 
bootstrapping method [43] was used to compute the 95% 
bootstrap confidence interval for the average value of the cor-
responding metrics for all test cases. In this paper, the dis-
tances from the average value to the upper and lower limits 
of its confidence interval are called upper error and lower er-
ror, respectively. The number of bootstrap samples was set to 
2000 in the computations. 

4 RESULTS AND DISCUSSION 

4.1 Normal Flexible Ligand Docking 

With respect to normal flexible ligand docking, we firstly 
compare the statistical results of binding free energies among 
Autodock-based algorithms. Table 1 and Table 2 illustrate 
some statistics about the mean binding free energy and low-
est successful binding free energy, respectively. The lowest 
successful binding free energy is the lowest binding free en-
ergy among the energies obtained by all the successful dock-
ing conformations for each test case. It should be pointed out 
that the statistical results in Table 2 are calculated based on 
416 test cases, since all the three Autodock-based algorithms 
cannot find successful docking results out of 30 runs for the 
remaining 119 test cases, whose names are listed in Appendix 
B. Additionally, if a docking algorithm failed to find a success-
ful docking result for a test case, the lowest successful binding 
free energy was recorded as 0 in statistics. 

According to the average energy and the P-values in Table 
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1, it is obvious that the DCL-QPSO can obtain significantly 
better results of the mean binding free energy than LGA and 
SODOCK. The average standard deviation by the DCL-QPSO 
is the lowest among three compared algorithms, indicating 
the high robustness of the proposed method. From the statis-
tical results in Table 2, it can be concluded that the DCL-QPSO 
is also the best choice in finding a successful docking confor-
mation with enough low binding free energy. One reason is 
that the average energy by the DCL-QPSO algorithm in Table 
2 is much lower than those by LGA and SODOCK. Another 
reason is that both the lower and upper error values obtained 
by the DCL-QPSO are lower than those by the other two Au-
todock-based algorithms, which again demonstrates the su-
periority of the DCL-QPSO algorithm in robustness. 

TABLE 1 
COMPARISON OF THE MEAN BINDING FREE ENERGY RESULTS 

AMONG AUTODOCK-BASED ALGORITHMS FOR NORMAL FLEXIBLE 

LIGAND DOCKING 

 Average 

energy1 

Average standard 

deviation2 
P-value3 

DCL-QPSO -9.125 0.833  

LGA -8.291 1.017 3.19e-88 

SODOCK -5.756 0.855 2.11e-74 

1
 Average value of the mean binding free energy of all test cases after 30 runs 

2
 Average value of the standard deviation of all test cases after 30 runs 

3
 P-value for the results obtained by the corresponding algorithm and DCL-QPSO 

 
TABLE 2 

COMPARISON OF THE LOWEST SUCCESSFUL BINDING FREE EN-

ERGY RESULTS AMONG AUTODOCK-BASED ALGORITHMS FOR 

NORMAL FLEXIBLE LIGAND DOCKING1 

 Average 

energy2 

Upper 

error 

Lower 

error 
P-value3 

DCL-QPSO -9.175 0.375 0.400  

LGA -5.532 0.401 0.435 4.29e-54 

SODOCK -7.231 0.480 0.503 1.55e-28 

1
 All the statistics in this table were calculated based on the results for 416 test cases, 

not including the results for the 119 all-failed ones. 
2

 Average value of the lowest successful binding free energy out of 30 runs for all test 

cases 
3

 P-value for the results obtained by the corresponding algorithm and DCL-QPSO 

Secondly, the docking accuracy obtained by the proposed 
algorithm was also evaluated for normal flexible ligand dock-
ing. Therefore, the statistical results of best-scored RMSD and 
best-sampled RMSD obtained by five docking methods, i.e. 
DCL-QPSO, LGA, SODOCK, Vina and Glide, are recorded in 
Table 3 and Table 4, respectively. 

The statistics in Table 3 and Table 4 illustrate that the mean 
RMSD-related results obtained by the DCL-QPSO are the best 
ones among all the compared algorithms. For the upper and 
lower errors in both two tables, the DCL-QPSO is a little 
worse than LGA, but comparable to SODOCK, and better 
than Vina and Glide, indicating that the robustness of the 
DCL-QPSO is the second best among the five compared algo-
rithms in terms of RMSD. However, the P-values in these two 
tables show that Vina is comparable to the DCL-QPSO for the 
results of best-scored RMSD, and Glide is competitive to the 
DCL-QPSO for both two kinds of RMSD-related results. This 
conclusion can also be drawn by the number of successful 

dockings in Table 3 and Table 4, and in Table 3 Vina is even 
better than the DCL-QPSO for this evaluation criterion. 
Therefore, in order to further analyze the docking accuracy of 
the predicted docking poses obtained by DCL-QPSO, Vina 
and Glide, we plotted in Fig. 1 and Fig. 2 the histograms of the 
best-scored RMSD and the best-sampled RMSD with RMSD 
thresholds being 0.5Å, 1Å, 2Å and 3Å, respectively. Fig. 1 il-
lustrates that the DCL-QPSO can find the conformation very 
close to the crystallographic one (RMSD<0.5Å) for the least 
test cases among three compared docking methods, while for 
Fig. 2, the DCL-QPSO can find a result comparable to Vina 
and Glide. This probably demonstrates the mismatch be-
tween binding free energy and RMSD results for the DCL-
QPSO, which will be further discussed in section 4.2. Fig. 1 
also shows that although the DCL-QPSO cannot find the most 
successful docking test cases (less than 2Å) among three dock-
ing methods, it can find conformations for more test cases 
with RMSD between 2Å and 3Å than Vina and Glide, which 
may also be helpful in real docking applications. 

 
TABLE 3 

COMPARISON OF THE BEST-SCORED RMSD RESULTS AMONG 

FIVE DOCKING METHODS FOR NORMAL FLEXIBLE LIGAND DOCK-

ING 

 Average 

RMSD1 

Upper 

error 

Lower 

error 

P-

value2 
Succ3 

DCL-QPSO 3.580 0.254 0.256  231 

LGA 4.133 0.248 0.247 1.90e-12 161 

SODOCK 4.202 0.262 0.245 5.89e-06 178 

Vina 3.761 0.292 0.283 0.730 248 

Glide 3.815 0.297 0.270 0.699 225 

1
 Average value of the best-scored RMSD out of 30 runs for all test cases 

2
 P-value for the results obtained by the corresponding docking method and DCL-

QPSO 
3

 The number of the test cases for which the corresponding docking method can ob-

tain a best-scored RMSD lower than 2Å 

 
TABLE 4 

COMPARISON OF THE BEST-SAMPLED RMSD RESULTS AMONG 

FIVE DOCKING METHODS FOR NORMAL FLEXIBLE LIGAND DOCK-

ING 

 Average 

RMSD1 

Upper 

error 

Lower 

error 

P-

value2 
Succ3 

DCL-QPSO 1.847 0.158 0.136  379 

LGA 2.292 0.137 0.127 3.82e-28 288 

SODOCK 2.232 0.149 0.136 1.16e-09 296 

Vina 1.945 0.150 0.130 0.026 364 

Glide 2.264 0.242 0.215 0.337 347 

1
 Average value of the best-sampled RMSD out of 30 runs for all test cases 

2
 P-value for the results obtained by the corresponding docking method and DCL-

QPSO 
3

 The number of the test cases for which the corresponding docking method can ob-

tain a best-sampled RMSD lower than 2Å 

 
With the above analysis, it can be concluded that for nor-

mal flexible ligand docking, the DCL-QPSO is much better 
than the other two Autodock-based algorithms in all the eval-
uation criteria, and can be a docking method comparable to 
Vina and Glide in terms of the RMSD-related results. 
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4.2 Blind Flexible Ligand Docking 

In this subsection, the results of the top-success cluster rank 
(defined in section 3.3) and the best-sampled RMSD obtained 
by five docking methods are evaluated. The former metric 
specifies the probability of quickly finding the right binding 

site or even the correct docking pose. The latter metric denotes 
how similar the reproduced conformation can be to the crys-
tallographic one if one evaluates all the generated confor-
mations found by a docking method for a specific test case. 
What should be pointed here is that the overall statistical re-
sults in terms of the best-scored RMSD (see Appendix C) is 
not discussed in this section. The reason is that for the docking 
tests with RMSDs lower than 2Å, this performance metric is 
partially included in the top-success cluster rank (top-success 
cluster rank = 1), and for some of the other docking tests, the 
best-scored RMSD can be relatively large values (larger than 
10Å), making its statistical results for all the test cases mean-
ingless. 
 

TABLE 5 
COMPARISON OF THE TOP-SUCCESS CLUSTER RANK RESULTS 

AMONG FIVE DOCKING METHODS FOR BLIND FLEXIBLE LIGAND 

DOCKING1 

 Rank = 𝟏 Rank = 𝟐 Rank > 𝟐 

DCL-QPSO 189 40 80 

LGA 108 15 34 

SODOCK 61 9 32 

Vina 135 30 56 

Glide 64 13 28 

1
 The values in this table illustrates the number of the test case with specific top-suc-

cess cluster rank 

TABLE 6 
COMPARISON OF THE BEST-SAMPLED RMSD RESULTS AMONG 

FIVE DOCKING METHODS FOR BLIND FLEXIBLE LIGAND DOCKING 

 Average 

RMSD1 

Upper 

error 

Lower 

error 

P-

value2 
Succ3 

DCL-QPSO 4.058 0.485 0.437  309 

LGA 5.006 0.443 0.354 8.94e-26 157 

SODOCK 6.846 0.482 0.460 1.19e-37 102 

Vina 5.074 0.533 0.472 1.36e-08 221 

Glide 9.623 0.723 0.639 1.30e-43 105 

1
 Average value of the best-sampled RMSD out of 50 runs for all test cases 

2
 P-value for the results obtained by the corresponding docking method and DCL-

QPSO 
3

 The number of the test cases for which the corresponding docking method can ob-

tain a best-sampled RMSD lower than 2Å 

The statistical results in Table 5 illustrate that the DCL-
QPSO can obtain the best result for all evaluation criteria 
among five compared docking programs, and for more than 
74% of successful docking test cases, the DCL-QPSO can ob-
tain the first or the second top-success cluster rank. Moreover, 
the “Succ” criteria in Table 6 shows that the DCL-QPSO can 
find at least one successful docking conformation on most of 
the test cases. This means that for the blind flexible ligand 
docking, the DCL-QPSO has the strongest ability to find right 
binding sites or binding modes, and if the DCL-QPSO can re-
produce the crystallographic conformation successfully for a 
test case, there is a high probability of finding a right docking 
conformation efficiently. 

According to Table 6, for almost all the evaluation criteria, 
the DCL-QPSO algorithm can obtain the best results among 
five docking methods only except that LGA has the better up-
per and lower errors than the DCL-QPSO, and the advantage 
of the DCL-QPSO over the other docking methods is obvious 
(see P-values). This confirms that over all the 535 test cases, 

 

Fig. 1. Histograms of the best-scored RMSD for normal flexible ligand 
docking obtained by DCL-QPSO, Vina and Glide using RMSD thresh-
olds of 0.5Å, 1Å, 2Å and 3Å. 

 

Fig. 2. Histograms of the best-sampled RMSD for normal flexible ligand 
docking obtained by DCL-QPSO, Vina and Glide using RMSD thresh-
olds of 0.5Å, 1Å, 2Å and 3Å. 

 

Fig. 3. Histograms of the best-sampled RMSD for blind flexible ligand 
docking obtained by DCL-QPSO, LGA, SODOCK, Vina and Glide using 
RMSD thresholds of 0.5Å, 1Å, 2Å and 3Å.  
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the DCL-QPSO has the best mean performance and the sec-
ond-best robustness among all compared methods in terms of 
best-sampled RMSD. It should be pointed out that although 
Vina and Gilde can obtain comparable results to the DCL-
QPSO for normal flexible ligand docking, their RMSD-related 
results, especially those of Glide, have a relatively large gap 
with those of the DCL-QPSO for blind docking. Furthermore, 
the histograms in Fig. 3 show some detailed statistics of the 
best-sampled RMSD. The results verify the superiority of the 
DCL-QPSO to all the other docking methods with the thresh-
olds of 0.5Å, 1Å and 2Å, further showing the ability of the 
DCL-QPSO to find conformations as close as possible to the 
crystallographic one. Based on the aforementioned statistical 
results and analysis, we can conlude that unlike the perfor-
mance in normal flexible ligand docking, the DCL-QPSO 
does a better job for blind flexible ligand docking than all the 
other compared docking methods due to the implementation 
of AG strategy and MSWLS method. 

To further illustrate the effectiveness of the diversity-con-
trolled strategies for different sizes of the search scopes, the 
scatter plot in terms of energy values for blind docking and 
normal docking obtained by the DCL-QPSO on each test case 
is illustrated in Fig. 4. Note that the energy evaluated in Fig. 4 
is the lowest binding free energy out of multiple trials for a 
specific test case, regardless of whether the corresponding 
docking conformation is a successful one or not, since this cri-
terion can represent the search ability of the DCL-QPSO to 
some extent. According to Fig. 4, only a few points in the up-
per half of the figure are distributed far from the straight line, 
which means that the lowest binding free energies found by 
the DCL-QPSO for blind flexible ligand docking are better 
than or comparable to those for normal flexible ligand dock-
ing on most of the test cases. This indicates the diversity-con-
trolled strategies can definitely help the DCL-QPSO maintain 
its search ability when the search scope enlarges. 

However, the comparison between the RMSDs of the con-

formations with the lowest binding free energy (i.e. the best-
scored RMSDs) for normal docking and blind docking shows 
a completely different phenomenon. That is, the best-scored 
RMSDs for blind docking are much larger than those for nor-
mal docking on many test cases (see Fig. 5). It means that the 
lower binding free energy does not always match a smaller 
RMSD for DCL-QPSO. To illustrate it clearly, we plotted in 

Fig. 6 the energy versus RMSD of all the conformations found 
by the DCL-QPSO for blind flexible ligand docking on a spe-
cific test case rock1 (the PDB ID of the ligand) as an example. 
Fig. 6 shows that for some found conformations, the relatively 

low energies correspond to very large RMSDs (the points at 
upper left corner in Fig. 6), and the conformations with 
RMSDs lower or a little larger than 2Å has relatively high 
binding free energy (the points near the dotted line in Fig. 6). 
This demonstrates that not most of the low energy values can 
correspond to the docking poses with small RMSDs, verifying 
that the whole energy landscape surface of the protein can 
hardly be sampled by the scoring function used in Autodock 
4.2.6. Sometimes this limitation of the scoring function may 
bring undesirable results: one search algorithm which can 
only find relatively high binding free energy successfully re-

produces the crystallographic complex, while another search 
algorithm that can find much lower binding free energy fails 
to obtain a successful best-scored docking conformation (see 
the corresponding results of LGA and DCL-QPSO on the test 
case “nram” for normal docking and blind docking in Appen-
dix B and Appendix C, respectively, as an example). As such, 
our future work is to improve the scoring function of Auto-
dock to reduce the mismatch of energy and RMSD. 

Although the scoring function in Autodock 4.2.6 has its 
limitation, the best-scored RMSDs found by the DCL-QPSO 

 

Fig. 4. The scatter plot in terms of the lowest binding free energy for blind 
docking and normal docking obtained by DCL-QPSO on each test case. 

 

Fig. 5. The scatter plot in terms of best-scored RMSD for blind docking 
and normal docking obtained by DCL-QPSO on each test case  

 

Fig. 6. Energy versus RMSD of all the 50 conformations found by DCL-
QPSO for blind flexible ligand docking on rock1. 
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for blind docking have a relatively good correlation with 
those for normal docking. As shown in Table 7, for the test 
cases on which the docking method can find best-scored 
RMSD less than 2Å for normal docking, the DCL-QPSO has a 
much higher rate (66.23%) in finding successful docking con-
formations in terms of best-scored RMSD for blind docking 
than all the other docking methods. This shows that when the 
search scope enlarges, the probability for the algorithm to find 
a successful best-scored docking conformation will not drop 
dramatically, verifying the effectiveness of the diversity-con-
trolled strategies again. This characteristic of DCL-QPSO is 
desirable in real docking applications, since it can provide a 
certain possibility to help users directly find the right docking 
pose without having to obtain the suitable binding site in ad-
vance. 

TABLE 7 
THE STATISTICAL RESULTS OF THE NUMBER OF THE SUCCESS-

FUL DOCKING TEST CASES IN TERMS OF THE BEST-SCORED 

RMSD FOR BOTH BLIND DOCKING AND NORMAL DOCKING OB-

TAINED BY DCL-QPSO 

 Both  

success1 

Normal 

only2 

Blind 

only3 

Correlation 

rate4 

DCL-QPSO 153 78 11 66.23% 

LGA 79 82 20 49.07% 

SODOCK 48 130 10 26.97% 

Vina 125 123 10 50.40% 

Glide 49 176 17 21.78% 

1
 The number of the test cases for which DCL-QPSO can find successful docking in 

terms of the best-scored RMSD for both normal and blind docking 
2

 The number of the test cases for which DCL-QPSO can find successful docking in 

terms of the best-scored RMSD only for both normal docking 
3

 The number of the test cases for which DCL-QPSO can find successful docking in 

terms of the best-scored RMSD only for blind docking 
4

 Correlation rate = Both success / (Both success + Normal only) 

4.3 Docking Time Comparison 

TABLE 8 
MEAN TIME FOR GENERATING PER DOCKING POSE TAKEN BY 

EACH COMPARED DOCKING METHOD 

 Normal docking Blind docking 

DCL-QPSO 7.40s 57.05s 

LGA 28.54s 179.60s 

SODOCK 28.74s 198.27s 

Vina 7.31s 109.21s 

Glide 5.88s 46.95s 

In order to evaluate the docking efficiency of all the compared 
docking methods, we list in Table 8 the mean time of generat-
ing per docking pose for normal docking and blind docking. 
According to Table 8, the DCL-QPSO is much less time-con-
suming than LGA and SODOCK for both normal and blind 
docking problems, since it can take much time to exchange 
elements from genotype to phenotype in LGA [6] and to uti-
lize the neighborhood topology in SODOCK [3]. The mean 
docking time spent by the DCL-QPSO is equivalent to that by 
Vina for normal docking, but is about half of that by Vina for 
blind docking. The reason may be that the total number of 
steps for searching each docking pose in Vina is associated 
with the number of atoms, and thus Vina is forced to execute 
more search steps for blind docking problems. Glide con-
sumes less time than the DCL-QPSO for both normal docking 

and blind docking, but the difference between them is much 
smaller than that between the DCL-QPSO and the other two 
Autodock-based docking methods. Therefore, it can be con-
cluded that the DCL-QPSO is a competitive search algorithm 
among all the compared docking methods in terms of dock-
ing efficiency. 

5 CONCLUSIONS 

With respect to the optimization search algorithms used 
for popular docking software packages, when they are 
used for flexible ligand docking, most of them are far from 
ideal for normal docking and can be hardly used for real 
blind docking. Therefore, in this paper, the DCL-QPSO al-
gorithm was proposed to address this problem. This algo-
rithm is a hybrid search method, combining the QPSO al-
gorithm with a novel AG strategy and the MSWLS 
method. The implementation of the DCL-QPSO adopts the 
environment and energy function of AutoDock 4.2.6. The 
source code of DCL-QPSO integrated with Autodock 4.2.6 
(named DCLQdock) can be freely downloaded from 
https://codeocean.com/capsule/8601140/tree. Com-
pared with other four docking methods for normal flexible 
ligand dockings, the DCL-QPSO algorithm has much bet-
ter docking performance than LGA and SODOCK, and is 
comparable to Vina and Glide in terms of RMSD, as shown 
by the experimental results. For the blind flexible ligand 
docking problems, the DCL-QPSO is definitely the best 
one among all the compared methods according to the sta-
tistical results on top-success cluster rank and best-sam-
pled RMSD. Moreover, the high correlation between the 
results obtained by the proposed algorithm for normal 
docking and those for blind docking illustrates the effec-
tiveness of the AG strategy and MSWLS method for differ-
ent sizes of search areas. Besides, the docking efficiency of 
the DCL-QPSO is also acceptable. It should also be pointed 
out that generally users need not to change the key param-
eters (i.e., 𝑒𝑟  and 𝑠 ) in the AG strategy and MSWLS 
method in most cases. However, if researchers want to 
modify 𝑒𝑟 and 𝑠 for a specific docking test case, some rec-
ommendations can be given here. Specifically, increasing 
𝑒𝑟 and 𝑠, on one hand, can enhance the robustness but re-
duce the possibility of finding a conformation with rela-
tively low binding free energy for the DCL-QPSO, which 
is more suitable for a test case with a very small number of 
torsions. On the other hand, decreasing 𝑒𝑟 and 𝑠 can pro-
vide an opportunity for the DCL-QPSO to find a confor-
mation with enough low binding free energy, but can 
make the algorithm has a higher probability of generating 
a pose with poor energy value. Thus, users generally need 
to increase the number of trials for the specific test case 
when 𝑒𝑟 and 𝑠 both decline, in order to give the search al-
gorithm a chance to find low-energy conformations. 

Our future work is to modify the scoring function of Au-
todock to make it more suitable for sampling the energy land-
scape of the entire surface of a protein. Additionally, we will 
also apply the DCL-QPSO algorithm in some other docking 
software packages to test its performance with different scor-
ing functions and different docking environments. 

https://codeocean.com/capsule/8601140/tree
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APPENDICES 

Appendix A: The experimental results and corresponding 
analysis for verifying the effectiveness of the diversity-con-
trolled strategies 
Appendix B: The statistical results obtained by five compared 
algorithms for normal flexible ligand docking on each test 
case in the EDock dataset 
Appendix C: The statistical results obtained by five compared 
algorithms for blind flexible ligand docking on each test case 
in the EDock dataset 
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